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ABSTRACT
We describe analytical methods for the design of the discrete elements of

ultralight lattice structures. This modular, building block strategy allows for
relatively simple element manufacturing, as well as relatively simple robotic
assembly of low mass density structures on orbit, with potential for
disassembly and reassembly into highly varying and large structures. This
method also results in a structure that is easily navigable by relatively small
mobile robots. The geometry of the cell can allow for high packing efficiency
to minimize wasted payload volume while maximizing structural performance
and constructability. We describe the effect of geometry choices on the final
system mechanical properties, manufacturability of the components, and
automated robotic constructability of a final system. Geometry choices
considered include building block complexity, symmetry of the unit cell, and
effects of vertex, edge, and face connectivity of the unit cell. Mechanical
properties considered include strength scaling, modulus scaling, and structural
performance of the joint, including proof load, shear load, mass, and loading
area; as well as validation and verification opportunities. Manufacturability
metrics include cost and time, manufacturing method (COTS versus custom),
and tolerances required. Automated constructability metrics include local
effects of loads imparted to the structure by the robot and assembly
complexity, encompassing the ability of the robot to clamp and number of
placement motions needed for assembly.

• Research, design, and test different 
connection types for ease in robotic assembly

• Evaluate unit cells to determine optimal 
geometry

• Design and implement a robotic end effector 
for mechanical fastening of the lattice

METHODS

RESULTS

FUTURE WORK

We evaluated a variety of unit cell geometries to determine which would
best suit our requirements of structural performance and mechanical ability
to be assembled. Additionally, for each lattice geometry, we evaluated the
effects of the selected adjacencies – here, defined as a neighboring voxel;
adjacency type can be face, edge, or vertex – and attachments, which
occur between the base voxel and the adjacency.

ACKNOWLEDGEMENTS

OBJECTIVES

I would like to thank my amazing mentors, Olivia Formoso, Greenfield
Trinh, and Ben Jenett, along with everyone in the Coded Structures
Laboratory, for helping me throughout the summer, with a special
shoutout to Kenny Cheung. Thanks also go out to NASA Ames
Research Center for this wonderful opportunity.

(A) cubic lattice with vertex adjacencies and attachments; (B) the cube unit
cell; (C) the unit repeating volume
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• Mechanical fasteners outperform
others options for assembly,
disassembly, and reassembly in a
space environment

• Feeding of mechanical fasteners
proves quite difficult for robotic
assembly; the use of captive
fasteners overcome this
challenge

• Cell geometries with a higher
number of attachments per each
adjacency – commonly found
with “smaller” adjacencies, such
as vertex – increase significantly
in complexity

A captive
mechanical
joint for a
cubic lattice
with edge
adjacency
and vertex
attachment.

Left: ACF prototype with no unused
fasteners; example of integration
into face adjacency
Below: androgynous captive
fastener (ACF) prototype;
Bottom: sizable material difference
between prototypes

Examples of the unit cells examined, from left to right: cube, truncated
cube, cuboctahedron, truncated octahedron, rhombic dodecahedron,
elongated rhombic dodecahedron, and hexagonal prismatic

• Select final geometry for unit cell using determined metrics
• Determine optimal adjacency and attachment combination for

maximized robotic assembly efficiency and ease
• Integrate joining method into chosen unit cell geometry
• Design, fabricate, and test robotic end effector for fastening

assembly; integrate into relative robot
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