

Total Temperature Measurements Using a Rearward Facing Probe in Supercooled Liquid Droplet and Ice Crystal Clouds

Juan H. Agui, and Peter M. Struk. NASA GRC

And

Tadas P. Bartkus *Ohio Aerospace Institute*

10th AIAA Atmospheric and Space Environments Conference

Atlanta, GA

25–29 June 2018

Outline

- » Background
- » Probe & Facility
- » Thermal model
- » Test Campaign
- » Results
- » Conclusions

Background and Motivation

Engine Icing

- Performance loss: rollback, surge, flameout, and even internal engine damage
- Partial melting and refreeze of ice inside engine core (Mason et al., 2006)
- Ingestion of ice crystals and aggregates, mixed-phase droplets, or supercooled liquid droplets
- Need to better understand the conditions and properties that lead to engine icing.
- Simulation and analysis (physical and computational, and modeling)
 - Test facilities (PSL, NRC, ...)
 - Thermal and computational models and analysis

• Probes

- Multiple probes (aerothermal probes and ice cloud characterization probes and techniques)
- Total temperature
 - Traditional total temperature probes (vented forward facing)
 - Heated total temperature probes (De-Ice total temperature probe, Goodrich)
 - Rearward facing (developmental)

Background

Total temperature (thermal and inertial):

$$T_0 = T + \frac{V^2}{2C_p}$$
$$\frac{T_0}{T} = 1 + \frac{\gamma - 1}{2}M$$

Total temperature relevance –

- Thermal interaction between the icing cloud and air flow
- impinging particles contribute to kinetic heating effect (Gent et al., 2000)

Measurement considerations-

- Temperature sensor accuracy
- Incomplete recovery of total temperature
 - Thermal surfaces (sources and sinks)
 - Flow effects (viscous losses)
 - Debris contamination, including icing and ice ingestion

Background

Recovery factor and correction

$$Y = \frac{T_r - T_s}{T_0 - T_s}$$
 $\eta = \frac{T_0 - T_r}{T_0}$, $\eta = f(M)$

 $(T_r - recovery temperature ~ measured temperature)$

For ice cloud interaction at M = const.,

$$\frac{T_{0,1} - T_{r,1}}{T_{0,1}} = \frac{T_{0,2} - T_{r,2}}{T_{0,2}} \qquad \qquad T_{0,2} - T_{0,1} \left(\frac{T_{0,2}}{T_{0,1}}\right) = T_{r,2} - T_{r,1} \left(\frac{T_{0,2}}{T_{0,1}}\right) \qquad \qquad \text{1- before identify the set of the set$$

e cloud e cloud

For small temperature changes around freezing,

 $\Delta T_0 \approx \Delta T_r$

Propulsion Systems Laboratory (PSL)

Tunnel Capability

- Freeze out liquid cloud
- 12 parameters can be varied
 - P, V, T_{air}, T_{water}, RH, MVD, TWC,
 Water Type, Nozzle Pattern...

Rearward Facing Probe (RFP)

Rearward Facing Probe

Total Temperature signals

Rearward Facing Probe

Humidity signal

Sampled flow \longrightarrow Gas/Humidity Analyzer

Thermal Model

Bartkus et al. (2015, 2016, 2017)

2017 Cloud Calibration Test Campaign

- Test objectives
 - Expand facility and measurement capabilities
 - Validate models
- 223 Test runs (conducted over 13 days)
- 12 parameters can be varied:
 - P, V, Tair, Twater, RH, MVD, TWC, Water Type, Nozzle Pattern...
- Data reduction
 - Discard any unsteady or fluctuating signals or signals that did not reach equilibrium during cloud spraying.
 - average variables before and during spray
 - Determine delta Temperatures and humidity
- Selection of variable sweeps (e.g. Total Water Content)

Tests

TWC sweeps

Plenum Pressure (P pl)	Plenum Temp.	Parameter	Particle	Mach	Tw	City/DI	RH
	(T _{pl})	in plots	MVD			water	
[kPa (Pisa)]	[°C]		[µm]		[°C (°F)]		
							%
low: 20 to 28 (2.9 to 3)	low, mid, high*	Temp	15 - 20	0.44	7.2 (45)	City	45
mid: 62 to 70 (9 to 10.2)	low, mid, high*	Temp	15 - 20	0.22	82 (180)	DI	45
high: 90 to 97 (13 to 14)	low, mid, high*	Temp	15 - 20	.1322	82 (180)	DI	45

Results

Negative Changes in Total temperature

Results

Negative Changes in Total temperature

Results

Negative Changes in Total temperature

Cases with Positive increase in temperature

Test Run	T _{PL} (total)	P _{PL} (total)	RH _{PL} (Total)	Exit Air Velocity	Target TWC	Approx Initial MVD	Water Type	Initial Water Temp
#	[⁰ C]	[kPa]	[%]	[m/s]	[g/m ³]	[µm]	[City/DI]	[⁰ C]
201	-3.1	22.5	45	144	6.52	33	City	8
214	-23.7	21.5	45	101	9.26	33	City	8
216	-35.7	23.9	45	128	4.70	41	City	8
304	-3.2	22.5	45	142	6.39	45	City	8
313	-15.7	86.6	45	115	6.45	24	City	8

Conclusions

• A Rearward Facing Probe is being developed in-house to measure local total temperature and humidity during atmospheric icing flow conditions.

• The thermal model showed that the large temperature differential between the injected droplet and the atmospheric flow produced competing evaporative and convective heat transfer effects.

Results:

• Small total temperature drops in the range of 0.6 to 2.8 ^oC and up to 1.5 g/kg of water vapor rise through the interaction.

• The largest changes in total temperature and humidity generally occurred at plenum conditions of low pressure and high temperature, and under glaciated cloud conditions.

• The least effects in total temperature were found at large *TWC* and low temperatures.

• Under certain high *TWC* conditions and glaciated , the interaction with the cloud produced a warming of the airflow.

• The thermal model in terms of evaporative and convecting heat transfer mechanisms helped in interpreting these trends.