https://ntrs.nasa.gov/search.jsp?R=20180007480 2019-08-31T18:19:24+00:00Z

NASA

National Aeronautics and Space Administration

Advanced Technologies for Artificial Intelligence in Flight Applications

Vahram Stepanyan ASRA NASA Ames Research Center

FAST Global Innovation Forum Yerevan, Armenia October 29-31, 2018

Flight Intelligence

Human pilot controlled flying machines

Same Performance

Safety

- Predictability
- ✤ Society acceptance

And same quality

Passenger comfort, noise, emission, ...

Picture ref. https://www.healthytravelblog.com/2013/08/29/safety-tips-for-kids-flying-alone/

http://www.connectivity4ir.co.uk/article/159844/Innovators-challenged-to-use-AI-to-boost-aircraft-performance.aspx

**

Artificial intelligence controlled flying machines

Human Controlled Flight

Pilot is the authority

- Monitoring
- Communication
- > Negotiation
- Decision making

- Reasoning
- Training
- Memory
- Creativity
- Etc.

- FatigueDistraction
- o Stress
- o Panic
- o Etc.

How can we do better ?

Picture ref. https://www.flightsafetyaustralia.com/2017/07/getting-smart-artificial-intelligence-and-aviation/ https://itunes.apple.com/us/app/f-sim-space-shuttle/id352670055?mt=8 https://alis.alberta.ca/occinfo/occupations-in-alberta/occupation-profiles/helicopter-pilot/

Intelligent Pilot Assistance

How to prevent? Design onboard AI to assist the pilot

Fatalities by CAST/ICAO Common Taxonomy Team (CICTT) Aviation Occurrence Categories Fatal Accidents – Worldwide Commercial Jet Fleet – 2001 Through 2010

Accidents happen

Technology requirements

- Reliable state estimation
- Maneuverability margin predictions
- Real-time pilot cueing

Reference: AIAA 2004-4811; Authors: Wilborn and Foster

• Current Control input

LOC Example Without Cueing

Pilot Cue (amber box) on left not displayed to pilot

Left wing damage with no pilot visual cue

LOC Example With Cueing

Left wing damage with pilot visual cue

Flying Robot's Architecture

Technology Requirements of Robotic Flight

How can we safely operate in high density urban environment?

- Estimator shall provide in real tome
 - Vehicle state and location in the environment
 - Obstacles locations and motion
 - Atmospheric disturbance
 - Detect and identify component failures
- Dynamic planner shall plan/replan in real time providing
 - Man maid strictures and terrain avoidance
 - Static and dynamic ground obstacle avoidance
 - Cooperative dynamic air obstacle avoidance
 - Acceptable air and ground risk.
 - Trajectory generator shall provide
 - Feasible trajectories in real time
 - Power required to traverse the trajectory
 - Minimum endurance and maximum vehicle range
 - Acceptable time time of flight
- Resilient controller shall provide
 - Stability of the vehicle
 - Acceptable tracking performance and flight envelop
 - Compensate for failures and disturbances
 - Flight within approved 4D volume in all phases

Use case: Point-to-Point Operation

Contingency Example: Wind

Objective

Autonomously fly the UAV in the uncertain wind field using onboard sensors and estimation algorithms.

Challenges

- Real-time wind estimation
- Real time re-planning to accommodate the wind
- Required power estimation for the new plan
- Decision making: continue or abort
- Find alternate landing site to abort
- Fly UAV though approved volume and change plan to land to alternate landing site taking into account wind and battery constraint.

- How reliable is the wind estimation?
- Is the mission still possible?
- Is the flight safe for the vehicle and environment?
- Are the predicted performance bounds acceptable?

Urban wind Field Specifics

- Turbulent air flow
- Isolated roughness
- Wake interference
- Skimming flow
- Hard to predict

Local Measurement

- Isolated roughness
- No infrastructure
- Too expensive

Wind field modeling

- Digital 3D mapping
- Heavy computations
- Large memory
- Not feasible onboard
- Expensive transmission

Wind Information

Can on-board sensors and compact CFD models provide sufficiently accurate and robust wind estimates?

Wind field is generated using CFD and city digital map

Typical Component Failure

Is it still possible to safely fly this vehicle?

Failure Identification Test

Resilient Control Application

40

20

20

20

- Motor 2 fails at t=8 sec
- Vehicle switches to safe mode
 - Find nearby emergence landing site ٠

Euler angles in degrees

