
September 2018

NASA/TM–2018-220089

Sensitivity Analysis for Multidisciplinary
Systems (SAMS)

Robert T. Biedron, Kevin E. Jacobson, William T. Jones, Steven J. Massey
Eric J. Nielsen, and William L. Kleb
Langley Research Center, Hampton,Virginia

Xinyu Zhang
Analytical Mechanics Associates, Inc., Hampton, Virginia

https://ntrs.nasa.gov/search.jsp?R=20180007513 2019-08-31T18:19:02+00:00Z

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the

advancement of aeronautics and space science. The

NASA scientific and technical information (STI)

program plays a key part in helping NASA maintain

this important role.

The NASA STI program operates under the auspices

of the Agency Chief Information Officer. It collects,

organizes, provides for archiving, and disseminates

NASA’s STI. The NASA STI program provides access

to the NTRS Registered and its public interface, the

NASA Technical Reports Server, thus providing one

of the largest collections of aeronautical and space

science STI in the world. Results are published in both

non-NASA channels and by NASA in the NASA STI

Report Series, which includes the following report

types:

 TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase of

research that present the results of NASA

Programs and include extensive data or theoretical

analysis. Includes compilations of significant

scientific and technical data and information

deemed to be of continuing reference value.

NASA counter-part of peer-reviewed formal

professional papers but has less stringent

limitations on manuscript length and extent of

graphic presentations.

 TECHNICAL MEMORANDUM.

Scientific and technical findings that are

preliminary or of specialized interest,

e.g., quick release reports, working

papers, and bibliographies that contain minimal

annotation. Does not contain extensive analysis.

 CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

 CONFERENCE PUBLICATION.

Collected papers from scientific and technical

conferences, symposia, seminars, or other

meetings sponsored or

co-sponsored by NASA.

 SPECIAL PUBLICATION. Scientific,

technical, or historical information from NASA

programs, projects, and missions, often

concerned with subjects having substantial

public interest.

 TECHNICAL TRANSLATION.

English-language translations of foreign

scientific and technical material pertinent to

NASA’s mission.

Specialized services also include organizing

and publishing research results, distributing

specialized research announcements and feeds,

providing information desk and personal search

support, and enabling data exchange services.

For more information about the NASA STI program,

see the following:

 Access the NASA STI program home page at

http://www.sti.nasa.gov

 E-mail your question to help@sti.nasa.gov

 Phone the NASA STI Information Desk at

757-864-9658

 Write to:

NASA STI Information Desk

Mail Stop 148

NASA Langley Research Center

Hampton, VA 23681-2199

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

September 2018

NASA/TM–2018-220089

Sensitivity Analysis for Multidisciplinary
Systems (SAMS)

Robert T. Biedron, Kevin E. Jacobson, William T. Jones, Steven J. Massey,
Eric J. Nielsen, and William L. Kleb
Langley Research Center, Hampton,Virginia

Xinyu Zhang
Analytical Mechanics Associates, Inc., Hampton, Virginia

Available from:

NASA STI Program / Mail Stop 148

NASA Langley Research Center

Hampton, VA 23681-2199

Fax: 757-864-6500

The use of trademarks or names of manufacturers in the report is for accurate reporting and does not

constitute an official endorsement, either expressed or implied, of such products or manufacturers

by the National Aeronautics and Space Administration.

ii

Contents
Contents ... ii

List of Acronyms, Abbreviations, and Symbols .. iv

Introduction ... 1

Modal Aeroelastic Analysis Formulation in FUN3D ... 2

Modularization .. 4

Steady and Unsteady Modal Aeroelastic Sensitivity Analysis.. 5

Analysis .. 5

Steady Simulation .. 5

Static Aeroelastic Simulation .. 9

Dynamic Simulation .. 9

Sensitivities via Complex Variables ... 14

Compiling FUN3D in Complex Mode .. 17

Verification of the Complex-Step for Modal Sensitivities... 18

Benchmark Supercritical Wing (BSCW) .. 18

BSCW – Time-Dependent Sensitivity Derivatives ... 19

VIV – Time-Dependent Sensitivity Derivatives ... 19

AGARD 445.6 Wing – Time-Dependent Sensitivity Derivatives .. 20

FEM-based Aeroelastic Analysis .. 22

Hermes-based Client-Server Model ... 22

Steady Aeroelastic Analysis .. 23

Steady Aeroelastic Sensitivities.. 24

Steady Aeroelastic Simulation Setup ... 24

FUNtoFEM model .. 24

FUN3D Server .. 26

Transfer Scheme Server .. 28

TACS Server ... 29

FUNtoFEM driver/client ... 31

Steady Aeroelastic Verification .. 33

FEM-based Unsteady Aeroelastic Analysis and Sensitivities ... 34

Unsteady Aeroelastic Primal Analysis ... 34

iii

Unsteady Aeroelastic Sensitivities ... 34

Unsteady Aeroelastic Simulation Setup ... 35

Unsteady Aeroelastic Verification .. 37

VIV Optimization ... 38

Appendix A: Benchmark Test Cases ... 41

Vortex-Induced Vibrations (VIV) ... 41

Benchmark Supercritical Wing (BSCW) .. 45

AGARD 445.6 Wing .. 48

Appendix B: Pseudo Code for Modal Fluid-Structure Interaction ... 51

References .. 55

iv

List of Acronyms, Abbreviations, and Symbols
AGARD Advisory Group for Aerospace Research and Development

BSCW Benchmark Supercritical Wing

CRM Common Research Model

FSI Fluid-Structure Interaction

KS Failure Kreisselmier-Steinhauser Failure

SAMS Sensitivity Analysis for Multidisciplinary Systems

SLSQP Sequential Least Squares Quadratic Programming

PBS Portable Batch System

TACS Toolkit for the Analysis of Composite Structures

uCRM undeflected Common Research Model

VIV Vortex-Induced Vibrations

 angle of attack
*
infa reference speed of sound (e.g., in m/s)

c damping coefficient

 structural displacement

 damping ratio

E energy

f frequency
*f characteristic frequency

aF aerodynamic force

ˆ
aF generalized aerodynamic force

h displacement

i loop index

 state-transition matrix

 convolution integral of []

D damping matrix

I identity matrix

K stiffness matrix
*
refL reference length of the physical problem (e.g., chord in ft)

refL corresponding length in the grid (dimensionless)

M mass matrix

n iteration count

qinf freestream dynamic pressure

Re Reynolds number

chrt characteristic time

t non-dimensional time step

x vector of generalized displacements and velocities

i
 natural frequency of ith mode

 x
i
 ith mode shape

n
 series coefficient for the representation of x

1

Introduction
This report describes the research conducted under an interagency collaboration agreement between the

Aerospace Systems Directorate of the Air Force Research Laboratory (AFRL/RQ) and the Computational

AeroSciences Branch of NASA Langley (NASA LaRC). Both organizations have a long-term goal of

developing a modular computational system for coupling fluids and structures to enable both analysis and

optimization of aerospace vehicles. Ultimately, the system should support multiple solvers within the fluid

and structure domains to allow the best combination for the task at hand, as well as to allow for institutional

preferences of specific software components. Towards this goal, the current research was focused on

enhancing the existing modal aeroelastic analysis in the NASA FUN3D software (Biedron et al. 2018), as

well as developing new aeroelastic analysis and optimization capabilities based on a non-linear finite-

element method. The methods and enhancements described in this document pertain to FUN3D Version

13.4.

Enhancements to existing capabilities include:

o modularization of the modal solver and modal fluid-structure transfer routines

o modal sensitivity analysis via complex variables

Completely new capabilities include:

o steady and unsteady FEM-based aeroelastic analysis

o coupled CFD-FEM adjoint-based sensitivities for design optimization

Modularization of the modal aeroelastic routines breaks the traditional tightly-integrated software design

paradigm of FUN3D, and allows for these software components to be used outside of the FUN3D

ecosystem.

Capabilities for FEM-based aeroelastic analysis and sensitivity analysis were leveraged from work done

by Georgia Tech under a NASA NRA entitled, An Efficient Scalable Framework for Aeroelastic Analysis

and Adjoint-based Sensitivities Using FUN3D and TACS (NNX15AU22A). The FUNtoFEM (Kiviaho et

al. 2017) framework was developed to couple FUN3D with the structural solver TACS (Kennedy and

Martins 2014). In addition to FUNtoFEM, a Hermes-based (Snyder 2017) client-server was developed to

transfer loads and displacements to and from the flow solver and the structural solver.

Three benchmark aeroelastic test cases were added to the FUN3D test suite which include: Vortex

Induced Vibration (VIV) of a cylinder, the Benchmark Supercritical Wing, (BSCW), and the AGARD

445.6 wing (see Appendix A).

2

Modal Aeroelastic Analysis Formulation in FUN3D
The coupled linear structural dynamics equations can be written as

      M D K Fa     (1)

where  M is the mass matrix,  D the damping matrix,  K the stiffness matrix,  x,t the displacement,

and  Fa t the loading vector, here assumed to be from aerodynamic forces only. The mass and stiffness

matrices are diagonal matrices. In this implementation it is assumed that the damping matrix is also

diagonal. The displacements are written as an expansion in terms of natural vibration modes   xi

    
modes

1

q x

N

i i

i

t 


  ,

where the coefficients of the series,  qi , are referred to as the generalized coordinates. The vibration

modes have associated natural frequencies  i and are orthonormalized, so that   ˆM MT
i i   

 
, where

M̂ 
 

 is the generalized mass matrix. Substitution of the series representation into Eq. (1) and multiplying

by T yields

 ˆ ˆ ˆ ˆM D K F FT
a aq q q         

     
, (2)

where F̂a is the vector of generalized aerodynamic forces, D̂ 
 

 the generalized damping matrix, and K̂ 
 

the generalized stiffness matrix. The system represented by Eq. (2) can be added to the identity system of

equations          I 0 0 I 0q q q q    , and the second derivatives may be converted to first derivatives

through the substitution  x= q,q
T

 to give the system

  
0I 0 0 I

x + x u
ˆˆ ˆ ˆ F0 M K D a

t
     

     
      

This may be cast as a system of first order ordinary differential equations, one for each mode, subject to

time-dependent forcing terms

  x + Ax Bu t (3)

where

1 1 1

0 I I 0
A B

ˆ ˆ ˆ ˆ ˆM K M D 0 M  

   
    
      

 (4)

The solution of Eq. (3) is performed using the libmodalstructure library described in the next section,

with assistance from libmodalfsi to evaluate u(t) based on the flow solution from a CFD solver such as

FUN3D. The library can solve Eq. (3) using either a 2nd-order predictor-corrector method (recommended)

or a family of backward-difference schemes from 1st to 3rd-order. The predictor-corrector scheme is

described in Biedron and Thomas (2009), while the backward-difference schemes are the same as used

3

within the FUN3D flow solver, described in Biedron et al. (2005). The predictor-corrector scheme is

recommended for two reasons: 1) a long history of use for a range of aeroelastic applications, and 2) limited

testing of the backward-difference schemes indicate that additional fluid-structure subiterations are required

to attain the same solution that the predictor-corrector scheme provides without the cost of additional FSI

subiterations.

Static (steady-state) solutions can be obtained from Eq. (3) with large damping values and large time

steps. Eq. (3) is solved in dimensional form within libmodalstructure, so the calling application must

provide inputs in dimensional form.

4

Modularization
The original modal solver in FUN3D was not implemented in such a way as to be an independent piece

of software, callable by flow solvers other than FUN3D. Furthermore, the solution of the linear (modal)

structural dynamics equations (Eq. 1) was entangled with the necessary, but independent, processes of

transferring loads from the flow solver to the modal solver, and transferring displacements from the modal

solver to the flow solver. As a part of the SAMS effort, two subroutine libraries were developed. The first,

libmodalstructure, solves the linear structural dynamics equations, given inputs such as mode shapes,

mode frequencies, and time step. The second, libmodalfsi, orchestrates the transfer of force and

displacement data. In this manner, the solution of a linear structural dynamics problem with FUN3D is

more closely aligned with the solution of a nonlinear dynamics problem using, for instance, TACS and

FUNtoFEM.

Both libmodalstructure and libmodalfsi are simply collections of subroutines with defined

interfaces. Each library has an include subdirectory with a .inc file defining the interfaces. The interfaces

contain what might be termed as “plain old data” (POD) within the FORTRAN programming language:

integers, logicals, character strings, and reals. No derived types are used, although arrays of POD with rank

1 and 2 are. Subroutines fall into three categories – “setters”, “getters”, and “actions”. Within

libmodalstructure, subroutine names begin with struc_, while within libmodalfsi, subroutine names

begin with fsi_. In both libraries, setter routine names contain set_ and getter routines contain get_.

Action routines follow a less defined naming convention, but an attempt has been made to provide each

with a descriptive name. Thus, for example, struc_set_nmode provides the number of modes to use within

the modal solver, while fsi_get_fluid_movement retrieves the movement (displacement, velocity, and

acceleration) of the fluid side of the fluid-structure interface. A call to struc_update_solution will update

the solution of the linear structural dynamics equations, and a call to fsi_fld_to_str_force_xfer will

transfer forces from the fluid side of the interface to the structure side. Note: libmodalfsi is not intended

to be a general fluid-structure transfer package like FUNtoFEM. A simplifying assumption for

libmodalfsi is that both sides of the fluid-structure interface must be defined by the same points in space.

The points need not be ordered the same on each side of the interface however.

Both libraries are designed to operate in parallel, with a portion of the entire fluid-structure interface

residing on a given processor. Parallelism is obtained via MPI, and specifically the MPI wrappers that are

provided by FUN3D’s lmpi library – the use of these MPI wrappers are the last entanglement between

FUN3D and libmodalstructure or libmodalfsi. Both libraries may be “complexified” (i.e., converted

to source code that uses complex arithmetic rather than real-valued arithmetic) to allow the evaluation of

arbitrarily-accurate derivatives of the modal response (generalized displacement, velocity, acceleration and

force). Complex versions of both libraries are built when the FUN3D source code is complexified. The

pseudo code presented in Appendix B illustrates the code flow required to use these new libraries.

5

Steady and Unsteady Modal Aeroelastic Sensitivity Analysis

Analysis
This section provides an example of running an aeroelastic analysis simulation with the FUN3D modal

solver. The AGARD 445.6 test case is used in this example.

Steady Simulation

A steady-state solution is needed for both the static and the dynamic aeroelastic analysis. The inputs are

defined in the namelist file (fun3d.nml) and as command-line options in the Portable Batch System (PBS)

script (sub.fun3d).

Inputs

1. Grid file (agard1pw.b8.ugrid)

2. Boundary conditions definition file (agard1pw.mapbc)

3. FUN3D namelist file (fun3d.nml)

4. Script for running FUN3D on K-cluster (sub.fun3d). This file will need to be edited depending on

the computing platform and to set command-line options (CLO), environment variables, paths, and

so forth.

Running the Simulation

1. Create a soft link to *.ugrid and *.mapbc files in the Steady directory.

cd Steady

ln -s ../Grids/agard1pw.* .

2. Copy the FUN3D namelist file for the steady run into the Steady directory:

cp ../InputsScripts/fun3d.nml_Steady fun3d.nml

3. Copy the PBS script file for the steady run into the Steady directory:

cp ../InputsScripts/sub.fun3d_Steady sub.fun3d

Make sure that the paths are set correctly in the PBS script.

4. Submit the job:

qsub sub.fun3d

Outputs of Interest

1. Time history file (agard1pw_hist.dat). To verify if the solution has reached steady state or not.

2. Restart file (agard1pw.flow). Needed to start the dynamic simulation.

3. Mapping files (agard1pw_massoud_body1.dat, agard1pw_ddfdrive_body1.dat). FUN3D

surface connectivity information used in generating mode shapes. In this example it is assumed that

the mode files are already provided in the Modes directory. The user only needs the restart file after

running this step.

It is assumed that the user is already familiar with the basic steady-state, time-dependent, and dynamic-

mesh solver operations and controls, especially related to deforming meshes, as well as basic flow

visualization of FUN3D output. Please refer to FUN3D user’s manual (Biedron et al. 2018) for details on

these topics.

6

A portion of the fun3d.nml file used for running the steady case is shown here. Input parameters relevant

to the aeroelastic simulations are highlighted in blue. Please note that the .moving_grid. is set to false.

fun3d.nml (steady run)

! --

! – fun3d namelist file (agard steady run)

! --

&project

 project_rootname = 'agard1pw'

/

&raw_grid

 grid_format = 'aflr3'

 patch_lumping = 'family'

/

&governing_equations

 viscous_terms = 'inviscid'

/

&reference_physical_properties

 mach_number = 0.9

/

&force_moment_integ_properties

 area_reference = 548.0

 x_moment_length = 22.0

 y_moment_length = 30.0

 x_moment_center = 3.0

/

&nonlinear_solver_parameters

 schedule_cfl = 100.0 100.0

/

&code_run_control

 steps = 1

 restart_write_freq = 200

 restart_read = 'on' ! restarting from a previous run

/

&massoud_output

 n_bodies = 1

 nbndry(1) = 1

 boundary_list(1) = '3' ! note: this is the numbering after lumping

/

&global

 moving_grid = .false.

 boundary_animation_freq = -1

/

7

The &massoud_output namelist is used to generate output for providing the interface with geometry

parameterization software.

&massoud_output

 n_bodies = 1 ! parameterize one body

 nbndry(1) = 1 ! # of bounds, which comprise body 1

 boundary_list(1) = '3' ! note: this is the numbering after lumping

/

Other options under this namelist are described in the FUN3D user’s manual. In addition to the

&massoud_output namelist, the command-line option --write_aero_loads is specified when running the

simulation. The aero loads output is written to [project]_ddfdrive_bodyN.dat file (Tecplot™ ASCII

format by default).

Most aeroelastic problems require an integer tag that maps a surface point to the corresponding volume

grid and this tag needs to be preserved throughout any manipulation (e.g., when the surface geometry is

updated or mode shapes are mapped onto the surface). The command-line option --write_massoud_file

needs to be specified in order to write this file. The output is written to [project]_massoud_bodyN.dat

(Tecplot™ ASCII format by default):

agard1pw_massoud_body1.dat

title="surface points and l2g id for massoud"

variables="x","y","z","id"

zone t="mdo body 1", i=20497, j=40792, f=fepoint, solutiontime= 0.2203000E+04,

strandid=0

 0.219960000000000E+002 0.000000000000000E+000 0.000000000000000E+000 1

 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 2

 0.463800000000000E+002 0.300000000000000E+002 0.000000000000000E+000 7

 0.318840000000000E+002 0.300000000000000E+002 0.000000000000000E+000 8

 0.728296446815993E-001 0.685262121207643E-001 0.000000000000000E+000 89

 0.150486858624087E+000 0.141594735155298E+000 0.000000000000000E+000 90

 0.233265620261247E+000 0.219482176472447E+000 0.000000000000000E+000 91

[…]

8

A portion of the sub.fun3d file used for running the steady case is shown here. Input parameters relevant

to the aeroelastic simulations are highlighted in blue.

sub.fun3d (steady run)

--

- pbs script for running fun3d on K-cluster

--

#PBS -S /bin/csh

#PBS -q K3-standard

#PBS -N agard_steady

#PBS -r n

#PBS -j oe

#PBS -l select=2:ncpus=12:mpiprocs=12

#PBS -l walltime=1:00:00

--

- set environment variables

--

setenv F_UFMTENDIAN big

setenv FUN3D_TUTORIALS /lustre2/hpnobackup1/nnahmad/fun3d/aeroelastic/AGARD_445_6/

setenv WORKDIR $FUN3D_TUTORIALS/flow_modal_aeroelasticity/Steady

--

- load modules

--

source /usr/local/pkgs/modules/init/tcsh

module purge

module use --append /u/shared/fun3d/fun3d_users/modulefiles

module load MASSOUD/2.2.1

module load FUN3D/13.1

module add PORT_1.0

--

- go to work directory and run fun3d

--

cd $WORKDIR

mpiexec nodet_mpi --write_aero_loads_to_file --write_massoud_file

9

Figure 1: AGARD 445.6 wing; Mach number = 0.9;  = 0. Inviscid solution. Residuals (left); and the pressure

field in the xz-plane at y = 12 (right).

Static Aeroelastic Simulation

For the general case, the next step would be to run a static aeroelastic simulation in a manner very similar

to the dynamic simulation described in the next section, but with the critical damping ratio for each mode

set to a value close to one (e.g. 0.99), and a large time step. However, the AGARD 445.6 wing is

symmetrical, so that the static aeroelastic deflection will be zero. In practice, small asymmetries in the mesh

and solution algorithm will result in a very small static deflection, but since these are small, the intermediate

static aeroelastic step is ignored here.

Dynamic Simulation

Inputs for and the outputs from running the dynamic aeroelastic simulation are described next. The

inputs are defined in the namelist file (fun3d.nml), the moving_body.input file, and as command-line-

options in the PBS script (sub.fun3d).

Inputs

1. Grid file (agard1pw.b8.ugrid).

2. Boundary conditions definition file (agard1pw.mapbc).

3. Restart file (agard1pw.flow) from the Steady run.

4. Mode shape files (agard1pw_body1_*.dat) from the Modes directory. See Figure 2.

5. FUN3D namelist file (fun3d.nml).

6. moving_body.input file.

7. Script for running FUN3D on K-cluster (sub.fun3d). This file will need to be edited depending on

the computing platform and to set environment variables, paths, and so forth.

Running the Simulation

1. Create a soft link to *.ugrid and *.mapbc files in the Dynamic directory.

cd Dynamic

ln -s ../Grids/agard1pw.* .

2. Copy input files into the Dynamic directory:

cp ../InputsScripts/fun3d.nml_Dynamic fun3d.nml

cp ../InputsScripts/sub.fun3d_Dynamic sub.fun3d

cp ../InputsScripts/moving_body.input .

10

cp ../Steady/agard1pw.flow .

cp ../Modes/agard1pw_* .

3. Submit the job:

qsub sub.fun3d

Outputs of Interest

1. The time histories of generalized displacement, force, etc. (aehist_body1_mode[1-4].dat). The

time histories of generalized displacements from these files are plotted in Figure 3.

2. Surface files (agard1pw_tec_boundary_timestep*.szplt). The output frequency is specified in

the namelist file.

A portion of the fun3d.nml file used for running the dynamic case is shown here. Input parameters

relevant to the aeroelastic simulations are highlighted in blue. The .moving_grid. option is set to true.

fun3d.nml (dynamic simulation)

! --

! – fun3d namelist file (agard dynamic run)

! --

&project

 project_rootname = 'agard1pw'

/

&raw_grid

 grid_format = 'aflr3'

 patch_lumping = 'family'

/

&global

 moving_grid = .true.

/

&governing_equations

 viscous_terms = 'inviscid'

/

&reference_physical_properties

 mach_number = 0.9

/

&force_moment_integ_properties

 area_reference = 548.0

 x_moment_length = 22.0

 y_moment_length = 30.0

 x_moment_center = 3.0

/

&nonlinear_solver_parameters

 time_accuracy = '2ndorder'

 time_step_nondim = 3.6

 subiterations = 25

 schedule_cfl = 50.0 50.0

 temporal_err_control = .true.

 temporal_err_floor = 0.01

/

&code_run_control

 steps = 10000

 restart_write_freq = 1000

 restart_read = 'on_nohistorykept'

/

&special_parameters

 large_angle_fix = 'on'

/

11

In the AGARD case, it is known from experiment that the flutter frequency at Mach 0.9 is * ~120

rad/s. Therefore, we need to resolve at least up to this frequency. This determines the nondimensional time

step (time_step_nondim) in the fun3d.nml for the dynamic simulation.

* *
inf inf* * * *

1 2ref ref
chr

ref ref

L L
t a a

f L L





      
                  

, (5)

where,
*

1
ref

ref

L

L
 and

*
* inf
inf

11680.8
12978.67

0.9

U
a

Ma
   in/s. *

infU is specified in the moving_body.input

file.

*
inf* *

2 2
12978.67 679.56

120

ref
chr

ref

L
t a

L

 



    
             

. (6)

If we need 200 steps to resolve this frequency, then

679.56

3.39
200

chrt
t

N
    . (7)

The nondimensional time step of 3.6 is used for the dynamic simulation. In practice, a time step refinement

study will be required to verify if the specified time step is adequate.

moving_body.input (dynamic simulation)

! --

! – moving_body.input file (agard dynamic run)

! --

&body_definitions

 n_moving_bodies = 1 ! define bodies as collection of surfaces

 body_name(1) = 'airfoil' ! identifier

 n_defining_bndry(1) = -1 ! use all solid surfaces

 motion_driver(1) = 'aeroelastic'

 mesh_movement(1) = 'deform'

/

&aeroelastic_modal_data

 plot_modes = .true. ! write back mode shapes for verification

 nmode(1) = 4 ! 4 modes for this body

 uinf = 11680.8 ! free stream velocity (in/s)

 qinf = 0.52083 ! free stream dynamic pressure (psi)

 freq(1,1) = 60.3135016 ! mode 1 frequency (rad/s)

 freq(2,1) = 239.7975647 ! mode 2 frequency (rad/s)

 freq(3,1) = 303.7804433 ! mode 3 frequency (rad/s)

 freq(4,1) = 575.1924565 ! mode 4 frequency (rad/s)

 gmass(1:4,1) = 4*1.0 ! generalized mass (nondimensional)

 gvel0(1:4,1) = 4*0.1 ! nonzero initial velocity to kick off dynamic

/ ! response. should be set to zero for restart.

12

A portion of the sub.fun3d file used for running the dynamic case is shown here. Parameters relevant

to the aeroelastic simulations are highlighted in blue. The command-line option --aeroelastic_internal

is needed to run FUN3D for aeroelastic analysis.

sub.fun3d (dynamic simulation)

--

- pbs script for running fun3d on K-cluster

--

#PBS -S /bin/csh

#PBS -q K3-standard

#PBS -N agard_dynamic

#PBS -r n

#PBS -j oe

#PBS -l select=2:ncpus=12:mpiprocs=12

#PBS -l walltime=12:00:00

--

- set environment variables

--

setenv F_UFMTENDIAN big

setenv FUN3D_TUTORIALS /lustre2/hpnobackup1/nnahmad/fun3d/aeroelastic/AGARD_445_6/

setenv WORKDIR $FUN3D_TUTORIALS/flow_modal_aeroelasticity/Dynamic

--

- load modules

--

source /usr/local/pkgs/modules/init/tcsh

module purge

module use --append /u/shared/fun3d/fun3d_users/modulefiles

module load FUN3D/13.1

--

- go to work directory and run fun3d

--

cd $WORKDIR

mpiexec nodet_mpi --aeroelastic_internal

13

Figure 2: AGARD 445.6 wing. First bending mode (top left); first torsion mode (top right); second bending

mode (bottom left); second torsion mode (bottom right).

Figure 3: AGARD 445.6 wing; Mach number = 0.9;  = 0. Inviscid solution. The aeroelastic response is shown

in the time history of generalized displacements.

14

Sensitivities via Complex Variables
Use of complex step method for estimating derivatives was first proposed by Lyness and Moler (1967)

and first used for aerodynamic applications by Newman et al. (1998). The method has been described and

evaluated in detail in the past (Anderson et al. 1999; Squire and Trap 1998). Consider a function f of a real

variable x, and perturb x by a small positive and small negative value h:

          2 3f x h f x hf x h f x O h      , (8)

and,

          2 3f x h f x hf x h f x O h      . (9)

Subtracting Eq. (9) from Eq. (8),

  
   

 2

2

f x h f x h
f x O h

h

  
   . (10)

Eq. (10) is the classic central difference accurate to O(h2). Note however, that if the positive and negative

perturbations and are very close to each other – as is desired for high accuracy – then the numerical results

using finite-precision arithmetic may suffer from subtractive errors not accounted for in the O(h2) truncation

error. However, if for a function of a complex variable x + ih, where h is again a small step, one can write

          2 3f x ih f x ihf x h f x O ih      . (11)

Taking the imaginary part gives

      2Imf x f x ih O ih      . (12)

The derivative in Eq. (12) is also accurate to O(h2), but is not subject to subtractive error. Thus, h may be

taken to be very small, yielding essentially exact derivatives. In practice, complex step sizes of 10-20 or even

10-50 are used. The simple idea above may be applied to software, which in effect provides an output f given

an input x. Thus, by creating a complex-arithmetic version of the code, providing some facility to provide

the desired input x with a small complex perturbation ih, taking the imaginary part of the desired output f,

and finally dividing by the step size, gives the desired derivative.

The FUN3D build environment has the infrastructure to create a complex version of itself and its

associated libraries. The complex versions of libmodalstructure and libmodalfsi are automatically

generated when a complex version for FUN3D is compiled. Only minor modifications to the libraries were

required to accommodate the complex arithmetic beyond what is already provided by the FUN3D

complexification process, principally regarding output formatting. A flag, complex_mode, can be passed to

libmodalstructure during initial set up via the “setter” function struc_set_complex_mode. When this

flag is set to .true. (default is .false.) and the complex version is used, in addition to the usual output

of modal response (i.e. the aehist files), the imaginary part of the modal response is also output, with a

suffix _imaginary added to the file name to distinguish from the corresponding real part. The values in

the _imaginary file(s) are not divided by the step size. To obtain the actual derivatives, the user must

perform that simple operation.

Please note that the libmodalstructure does not have any procedure to specify the complex step size.

If the user wishes to employ the complex version to generate sensitivities of the modal response with respect

to say, the freestream dynamic pressure (qinf), the value of qinf that is passed to the library via the call to

15

struc_set_qinf must already contain the complex perturbation. In other words, it is up to the calling

application to add a complex perturbation to the input variable of interest. To this end, FUN3D has been

modified to allow complex perturbations to the following: freestream velocity, freestream dynamic

pressure, the critical structural damping coefficient of any mode, the frequency of any mode, the generalized

mass of any mode, the initial generalized velocity of any mode, and the initial generalized displacement of

any mode. These perturbation options are defined in more detail in the FUN3D Manual, in the

&aeroelastic_modal_data namelist documentation.

The perturb.input file (shown below) is required when running FUN3D in the complex mode. For

aeroelastic sensitivities the user needs this file in the current working directory with the input PERTURB set

to zero and EPSILON set to the desired complex step size. Aeroelastic sensitivity inputs are specified in the

moving_body.input file.

perturb.input (complex run)

! --

! – perturb.input file

! --

 PERTURB EPSILON GRIDPOINT

 0 1.e-20 666

0 = No perturbation

1 = Mach number

2 = Alpha

3 = Shape

! --

! - end of file

! --

16

moving_body.input (complex run)

! --

! – moving_body.input file

! --

&body_definitions

 n_moving_bodies = 1 ! define bodies as collection of surfaces

 body_name(1) = 'airfoil' ! identifier

 n_defining_bndry(1) = -1 ! use all solid surfaces

 motion_driver(1) = 'aeroelastic'

 mesh_movement(1) = 'deform'

/

&aeroelastic_modal_data

 modal_ae_complex_to_perturb = 3 ! 1=qinf, 2=uinf, 3=damp, 4=freq, 5=gmass,

 ! 6=gvel0, 7= gdisp0

 modal_ae_mode_to_perturb = 2 ! #3-7 need a mode specified

 modal_ae_body_to_perturb = 1 ! #3-7 need a mode specified

 uinf = 973.4,

 grefl = 1.00,

 qinf = 75.0,

 nmode(1) = 4,

 freq(1,1) = 60.3135016 ! index 1: mode number index 2: body number

 freq(2,1) = 239.7975647,

 freq(3,1) = 303.7804433,

 freq(4,1) = 575.1924565,

 gmass(1,1) = 1.0,

 gmass(2,1) = 1.0,

 gmass(3,1) = 1.0,

 gmass(4,1) = 1.0,

 damp(1,1) = 0.999,

 damp(2,1) = 0.999,

 damp(3,1) = 0.999,

 damp(4,1) = 0.999,

 gvel0(1,1) = 0.0 ! 0.1 ! nonzero only first time

 gvel0(2,1) = 0.0 ! 0.1

 gvel0(3,1) = 0.0 ! 0.1

 gvel0(4,1) = 0.0 ! 0.1

/

When running FUN3D in the complex mode, in addition to the aehist_bodyN_modeN.dat file(s), the

aeroelastic sensitivity data is written to aehist_bodyN_modeN_imaginary.dat file(s). As mentioned

earlier, the imaginary part given in the aehist_bodyN_modeN_imaginary.dat file(s) needs to be divided

by the complex step size (10-20 in the current example) in order to obtain the derivatives.

aehist_body1_mode4_imaginary.dat

variables = "time", "Im(gdisp)", "Im(gvel)", "Im(gforce)" "Im(gaccel)"

zone t = "modal history for body 1, mode 4"

 0.000000000E+00 0.000000000E+00 0.000000000E+00 0.000000000E+00 0.000000000E+00

 2.588863776E-02 9.254199952E-28 2.546329696E-30 5.102685639E-23 3.061720055E-22

 5.177727552E-02 1.898992484E-27 2.678811711E-30 5.368168541E-23 1.592815974E-23

[…]

17

Compiling FUN3D in Complex Mode
Steps for compiling FUN3D in complex mode are described in this section. The selection of compilers

is based on Langley’s K-cluster. The users will need to modify this selection based on their computing

environment and available resources.

Compiling FUN3D in Complex Mode

cd fun3d

. /usr/local/pkgs/modules/init/bash

module purge

module load intel_2017.2.174

module load mpt-2.14

module use --append /u/shared/fun3d/fun3d_users/modulefiles

module load hdf5/1.8.17-mpt-2.14-intel_2017.2.174

module load Suggar++/2.5.1-mpt-2.14-intel.2017.2.174

module load cgnslib/3.3.0-mpt-2.14-intel_2017.2.174

./bootstrap

mkdir Complex_mpi_build

cd Complex_mpi_build/

../configure \

 --prefix=$PWD \

 --enable-ftune \

 --enable-complex \

 --enable-full-precision \

 --with-mpi=/opt/sgi/mpt/mpt-2.14 \

 --with-mpiexec=mpiexec_mpt \

 --with-parmetis=/u/shared/fun3d/fun3d_users/modules/ParMETIS/4.0.3-mpt-2.14-intel_2017.2.174 \

 --with-SPARSKIT=/u/shared/fun3d/fun3d_users/modules/SPARSKIT/2-mpt-2.14-intel_2017.2.174/lib \

 FCFLAGS="-fp-model precise"

make -j 8

make install

make -j 8 complex

make install

18

Verification of the Complex-Step for Modal Sensitivities
In this section, the “complexifed” versions of libmodalstructure and libmodalfsi are used to

compute the sensitivities (derivatives) of several quantities of interest, and the results are verified against

the more traditional finite-difference approach. Central differences are used for all finite-difference results.

Both methods have errors that scale as the square of the step size, and as noted earlier, the finite-difference

method is also susceptible to subtractive errors.

Three configurations are considered: Benchmark Supercritical Wing (BSCW) from the Aeroelastic

Prediction Workshop (Chwalowski et al. 2017), the Vortex Induced Vibration (VIV) of a cylinder

(Anagnostopoulos and Bearman 1992), and the AGARD 445.6 Wing (Yates 1987; Lee-Rausch and Batina

1993). Flow regimes range from incompressible to transonic. Both static/steady and time-dependent

sensitivity derivatives are evaluated for the BSCW configuration, while time-dependent sensitivities are

evaluated for the other two configurations.

Benchmark Supercritical Wing (BSCW)
The first verification example for modal sensitivity derivatives via complex arithmetic corresponds to a

static aeroelastic condition for the BSCW on a grid of approximately three million nodes. Note that in

FUN3D, a static aeroelastic case is run as an unsteady case, with a large time step and a critical damping

ratio of O(1) used to quickly reach static equilibrium. In particular, the critical damping ratio was taken as

0.999, and the nondimensional time step of 50 used in FUN3D corresponded to approximately 0.0082

seconds at the freestream speed of 4508.4 in/s. The Mach number was 0.74, with a Reynolds number of

278,400 per inch. The flow was assumed fully turbulent and the Spalart-Allmaras turbulence model was

employed. The BSCW tests were conducted in a working fluid other than air, however,  = 1.4 was assumed

for the computations shown here. All simulations were run for 600 time steps, which were sufficient to

reach static equilibrium. The freestream dynamic pressure was 1.1722 lb/in2. The complex step size was

1×10-50 while the finite-difference step size was 1×10-6. Table 1 shows selected sensitivities (f) with respect

to several independent variables (x) of interest for modal aeroelastic analysis.

Table 1: Comparison of Complex vs. Finite Difference Sensitivities – BSCW Static Deflection

x f Complex Finite Difference

freestream  tip pitch angle 0.25492 0.25551

gdisp mode 1 0.11623 0.11633

gforce mode 2 -27.4202 -27.5016

freq mode 1 tip pitch angle -0.8740×10-5 -1.0×10-5 *

gdisp mode 1 -0.11351 -0.11351

gforce mode 2 -162.6105 -162.6057

qinf tip pitch angle 1.51058 1.51058

gdisp mode 1 1.15195 1.15195

gforce mode 2 -162.5892 -162.5990

initial displacement

mode 1

tip pitch angle -0.1278×10-6 0*

gdisp mode 1 1.4217×10-8 0*

gforce mode 2 3.3082×10-5 0*

Complex step size = 1×10-50 and the central difference step size = 1×10-6

* Need more digits output or bigger finite difference step

19

BSCW – Time-Dependent Sensitivity Derivatives
The second verification case is also for the BSCW, but this time using a smaller time step so that some

level of time-accuracy is retained. Furthermore, the configuration is perturbed from a static solution in the

manner typical of flutter-onset analysis. Note that this case is for zero angle of attack. The dynamic

sensitivity study used the same flow conditions (excepting angle of attack), and turbulence model as the

static sensitivity study. For the dynamic sensitivities, the critical damping ratio was set to zero, and both

modes were given an initial generalized velocity of 0.1. For this case sensitivities of the generalized

response (displacement, velocity, force) with respect to the frequency of mode 1 (plunge) are computed.

The complex step size is again 1×10-50, but the finite-difference step size was increased to 1×10-5 after some

preliminary results suggested the smaller finite-difference step size was in the range of error subject to

subtractive cancellation and/or insufficient subiterative convergence. Figure 4 shows 3750 time steps (each

corresponding to 0.19697×10-3 seconds) after an initial static solution was obtained. It can be seen that the

results from the complex step and finite-differences are indistinguishable.

Figure 4. Sensitivities of the generalized response for mode 1 (plunge, left) and mode 2 (pitch, right) with respect

to the frequency of mode 1, computed by the complex-step method (solid lines) and the finite-difference method

(dashed lines).

VIV – Time-Dependent Sensitivity Derivatives
For the VIV configuration, only one mode (plunge) is active. The sensitivities of the generalized

response (displacement, velocity, force) with respect to the critical damping ratio are examined. The

nominal critical damping ratio corresponding to the experimental setup was determined to be 0.00135942.

The flow conditions corresponded to a Reynolds number of 120 (based on diameter), with a freestream

speed of 0.0670842 m/s and a dynamic pressure of 2.23626 N/m2 (kg/ms2). The modal frequency is 44.0828

rad/s, and the generalized mass was taken as 0.000476666 kg for this 2D simulation. The grid contained

approximately 10,000 nodes on the x-z plane. The Mach number for this case is very small, O(1×10-5), so

the incompressible option was used in FUN3D, with an artificial compressibility parameter taken as the

default value, 15.0. Laminar flow is assumed for this low Reynolds number.

As this is a 2D simulation on a relatively coarse grid many time steps were performed - 10,000 steps

beyond an initial unsteady solution during which the cylinder was held fixed. The initial unsteady solution

at this Reynolds number was sufficient to excite a dynamic response without an additional perturbation to

the generalized velocity as was used in the BSCW example. A FUN3D nondimensional time step of 0.05

was chosen, corresponding to 0.0011925 seconds at the given freestream speed. A complex step size of

20

1×10-50 was used, and the finite-difference step size was 1×10-5. Figure 5 shows close-up views of the initial

and final sensitivities of the generalized response with respect to the critical damping ratio, omitting the

many intervening time steps for clarity. As for the BSCW case, the complex-step and finite-difference

sensitivities are indistinguishable to plotting accuracy.

Figure 5. Sensitivities of the generalized response of the cylinder with respect to the critical damping ratio,

computed by the complex-step method (solid lines) and the finite-difference method (dashed lines); left, initial

sensitivities; right, final sensitivities.

AGARD 445.6 Wing – Time-Dependent Sensitivity Derivatives
The final configuration considered for sensitivity verification is the AGARD 445.6 wing. The

sensitivities of the generalized response (displacement, velocity, force) with respect to the freestream

dynamic pressure and with respect to the frequency of mode 1 (first bending) are examined. Inviscid flow

at Mach 0.9 is assumed, and the solution is initiated from a rigid steady state at zero angle of attack. The

unsteady simulations were run for 5000 time steps past this steady initial state, using a FUN3D non-

dimensional time step of 3.6, corresponding to 0.00027738 seconds at a freestream speed of 11680.8 in/s.

Each of the four modes was given an initial generalized velocity of 0.1 to initiate the dynamic response.

The nominal freestream dynamic pressure was 0.52083 lb/in2.

Figure 6 shows close-up views of the initial and final sensitivities of the modal response with respect to

qinf, omitting the many intermediate time steps for clarity. A complex step size of 1×10-50 was used, and the

finite-difference step size was 1×10-5. Similarly, Figure 7 shows the initial and final history of the modal

response sensitivity with respect to mode 1 frequency. A complex step size of 1×10-20, and the finite-

difference step size was 1×10-6 was used in these computations.

21

Figure 6. Sensitivities of the generalized response of mode 1 for the 445.6 wing with respect to the

freestream dynamic pressure, computed by the complex-step method (solid lines) and the finite-

difference method (dashed lines); left, initial sensitivities; right, final sensitivities.

Figure 7. Sensitivities of the generalized response of mode 1 for the 445.6 wing with respect to the

frequency of mode 1, computed by the complex-step method (solid lines) and the finite-difference

method (dashed lines); left, initial sensitivities; right, final sensitivities.

22

FEM-based Aeroelastic Analysis
The FEM-based aeroelastic analysis is performed with the FUNtoFEM framework (Kiviaho et al. 2017).

FUNtoFEM is a modular Python-based framework developed for adjoint-based aeroelastic optimization.

The FUNtoFEM framework provides coupling algorithms for both steady and unsteady aeroelastic

problems in addition to implementations of load and displacement transfer schemes to exchange data in-

core between the structural and fluid solvers. Kiviaho et al. (2017), and Jacobson et al. (2018) have

performed analysis and calculated sensitivities with solver interfaces to FUN3D, TACS, and the

FUNtoFEM transfer scheme. These solver interfaces contain direct calls to the Python wrapper of the codes.

For SAMS, the direct Python calls to FUN3D, TACS, and the transfer scheme implementation have been

replaced with a Hermes-based client-server model (Snyder 2017).

Hermes-based Client-Server Model
The direct Python mode of FUNtoFEM is depicted in Figure 8. The FUNtoFEM driver orchestrates the

coupling. Solvers are added through their Python interfaces. There are three MPI communicators in the

problem: one for the aerodynamic solver, one for structural solver, and a global communicator which is the

union of the other two. Note that the structural communicator may be a subset of the aerodynamic

communicator making the global and aerodynamic communicators identical. The FUNtoFEM driver

operates with distributed aerodynamic vectors as determined by the aerodynamic solver’s domain

decomposition. This is illustrated by the multiple blue lines in Figure 8 where each line represents an

instruction or transfer of data on an MPI rank of the aerodynamic communicator. In the same manner, the

FUNtoFEM driver uses the distributed structural vectors as illustrated by the multiple orange lines.

Figure 8: Direct Python mode in FUNtoFEM.

Figure 9 shows how the direct Python mode has been modified for the client and server model in

FUNtoFEM. The clients replace the interface classes and implement the same methods, but they send

requests to the corresponding server instead of direct calls to the codes’ Python wrappers.

Serialization of data for network communications would be a serious bottleneck because

multidisciplinary problems involve large amounts of data transfer between the solvers. Therefore, the client

server model has been implemented to avoid serializing data and maintain the distributed representation of

23

the aerodynamic and structural vectors. Each server is started as an MPI process where every rank listens

on a separate port, i.e., rank i of the server will listen on port (base port number) + i. The FUNtoFEM

driver is then started as an MPI process with a global communicator that is the same size as the transfer

scheme server, an aerodynamic communicator that is the same size as the FUN3D server, and a structural

communicator that is the same size as the TACS server. The FUNtoFEM driver exchanges data with and

gives instructions to the clients. Each MPI rank of the clients then sends a request to the corresponding port

of the server as represented by the dashed lines in Figure 9.

Figure 9: Hermes client-server mode in FUNtoFEM.

Steady Aeroelastic Analysis
For steady aeroelastic analysis, FUNtoFEM uses a nonlinear block Gauss-Seidel algorithm which is

represented by the red path in Figure 10. Each block in Figure 10 represents an evaluation of a residual in

the algorithm, and the color of the block corresponds to the server in Figure 9 that the evaluation occurs on.

The first block, D, is the displacement transfer which takes displacements from the structural mesh and

calculates the displacement of the aerodynamic surface. The grid deformation, G, moves the aerodynamic

volume mesh to account for the deformed surface mesh. The aerodynamic solver, A, then calculates the

aerodynamic solution on the new mesh. The forces on the aerodynamic surface are calculated from the new

aerodynamic state (block F). Next, the load transfer, L, determines the forces on the structural model from

the forces on the aerodynamic surface. The structural solver, then updates the structural displacements

based on those loads. The process is repeated until the problem converges to a steady solution. Aitken’s

acceleration (Irons et al. 1969) is applied for stability of the coupled solver.

24

Figure 10: Flow of information in FUNtoFEM for steady aeroelastic coupling.

Steady Aeroelastic Sensitivities
For adjoint-based sensitivities, there is an adjoint residual that corresponds to each of the primal

residuals. For the coupled adjoint problem, the flow of information is reversed compared to that of the

primal analysis as represented by the blue lines in Figures 10. A linear block Gauss-Seidel algorithm is

applied in the FUNtoFEM steady adjoint analysis. Like the primal analysis, the steady solution is found by

iteratively evaluating the set of residuals until the problem converges. The full set of adjoint equations are

provided in Kiviaho et al. (2017) for the steady problem. The reference also presents the expressions which

relate the adjoint solution to the sensitivities of functions of interest to design variables.

Like the primal analysis, the FUNtoFEM adjoint formulation is modular. Aerodynamic solvers do not

need to have any knowledge of structural functions or design variables and vice versa.

Steady Aeroelastic Simulation Setup
There are five parts to the steady problem setup:

1. Defining the FUNtoFEM model

2. The FUN3D server

3. The TACS server

4. The FUNtoFEM transfer scheme server

5. The FUNtoFEM driving script/client

These steps are illustrated below with the undeflected CRM (uCRM) example.

FUNtoFEM model

The FUNtoFEM model defines the problem that is going to be solved. The model is made up of bodies

(the wing in the uCRM case) and scenarios that describe parameters such as the flow conditions and output

functions of interest. For the uCRM case, a wing body is defined and given a set of design variables that

define the thickness of panels of the wing box structure. A cruise scenario is defined, and the angle of attack

is defined as a design variable. The scenario is also given function definitions for the problem which are a

KS failure function that represents the maximum stress in the structure, lift, and drag.

25

This build_model module that defines the FUNtoFEM model in Python is invoked by other parts of the

problem setup.

build_model.py (FUNtoFEM uCRM simulation)

from pyfuntofem.model import *

from funtofem import TransferScheme

def build_model():

 crm = FUNtoFEMmodel('crm')

 wing = Body('wing',group=0,boundary=3)

 if TransferScheme.dtype==complex:

 thickness = np.loadtxt('sizing_complex.dat',dtype=TransferScheme.dtype)

 else:

 thickness = np.loadtxt('sizing.dat',dtype=TransferScheme.dtype)

 for i in xrange(thickness.size):

 wing.add_variable('structural',Variable('thickness '+

str(i),value=thickness[i],lower = 0.001, upper = 0.1))

 crm.add_body(wing)

 cruise = Scenario('cruise',group=0,steps=300)

 cruise.set_variable('aerodynamic',name='AOA',value=3.0,lower=-15.0,upper=15.0)

 ks = Function('ksfailure',analysis_type='structural')

 cruise.add_function(ks)

 drag = Function('cd',analysis_type='aerodynamic')

 cruise.add_function(drag)

 lift = Function('cl',analysis_type='aerodynamic')

 cruise.add_function(lift)

 crm.add_scenario(cruise)

 return crm

26

FUN3D Server

The FUN3D part of the problem set up is similar to a standard problem setup with a couple of exceptions.

In fun3d.nml, the aero_loads_dynamic_pressure in the massoud_output namelist specifies the dynamic

pressure for dimensionalization of the surface forces. Additionally, moving_grid in the global namelist

needs to be set to true.

fun3d.nml (FUNtoFEM uCRM simulation)

&project

 project_rootname = 'ucrm'

/

&raw_grid

 grid_format = 'aflr3'

 patch_lumping = 'family'

/

&global

 moving_grid = .true.

 boundary_animation_freq = 100 ! write *tec_boundary* files every 100 iter

/

&governing_equations

 viscous_terms = 'inviscid'

/

&reference_physical_properties

 mach_number = 0.84

 temperature = 216.66

/

&nonlinear_solver_parameters

 time_accuracy = 'steady'

 time_step_nondim = 0.0

/

&code_run_control

 steps = 300

 restart_write_freq = 300

 restart_read = 'off'

/

&elasticity_gmres

 tol=1e-15

 tol_abs=1e-15

/

&massoud_output

 aero_loads_dynamic_pressure = 9510.486

/

27

In the body_definitions namelist of moving_body.input, the motion driver for the moving body is

specified as ‘funtofem’. This tells FUN3D that it should calculate nodal forces on the surface and use

displacements of the surface received via the FUN3D Python extension module.

moving_body.input (FUNtoFEM uCRM simulation)

&body_definitions

 n_moving_bodies = 1

 body_frame_forces = .false.

 body_name(1) = 'wing'

 motion_driver(1) = 'funtofem'

 n_defining_bndry(1) = 1

 defining_bndry(1,1) = 3

 mesh_movement(1) = 'deform'

/

Once the input files and meshes have been set up, the FUN3D server can be started:

mpirun -n X python flow_server.py &

where X is the number of processors that the flow solver will use. The FUN3D server will then listen for

communication from the client. flow_server.py is the FUN3D Hermes server included in the FUN3D

repository.

28

Transfer Scheme Server

For the transfer scheme server, the user writes a Python script. The script has three parts. First, the MPI

communicator is split, so that the transfer scheme server knows which ranks/ports to use for aerodynamic

data versus structural data. Next, the options are selected for the transfer scheme itself which includes things

like which transfer scheme to use and whether there is a symmetry plane. The final section of the Python

script is to start the transfer scheme server. This script is run in the same manner as the FUN3D flow server:

mpirun -n X python transfer_server.py &

where again, X is the number of aerodynamic processors (assuming that the number of aerodynamic

processors is greater than the number of structural processors in the simulation).

transfer_server.py (FUNtoFEM uCRM simulation)

import zmq

from mpi4py import MPI

from funtofem_server import Server

if __name__ == "__main__":

 # split the communicator

 n_struct_procs = 8

 comm = MPI.COMM_WORLD

 world_rank = comm.Get_rank()

 if world_rank < n_struct_procs:

 color = 55

 key = world_rank

 else:

 color = MPI.UNDEFINED

 key = world_rank

 struct_comm = comm.Split(color,key)

 # set the transfer scheme options

 transfer_options = {}

 transfer_options['scheme'] = 'MELD'

 transfer_options['isym'] = 1

 transfer_options['beta'] = 0.5

 transfer_options['npts'] = 200

 # start the server

 context = zmq.Context()

 endpoint = 'tcp://*:' + str(43200+comm.Get_rank())

 server = Server(comm,struct_comm, context=context, endpoint=endpoint,

 type_=zmq.REP, transfer_options=transfer_options)

 server.serve()

 server.close()

 context.destroy()

29

TACS Server

Like the transfer server, the TACS server requires writing some Python to set up. In tacs_server.py,

a problem specific server class inherits the server functionality from a TACS server base case then the

reading of the mesh and set up of TACS itself is added to the constructor (parts of this constructor have

been left out of this example for brevity). The main function in tacs_server.py loads the function

information in the FUNtoFEM model defined by the build_model module then launches the CrmServer.

The server is started by running:

mpirun -n Y python tacs_server.py &

where Y is the number of processors being used to solve the structural problem.

tacs_server.py (FUNtoFEM uCRM simulation)

from tacs import TACS, elements, functions, constitutive

from tacs_steady_server import Server

from build_model import build_model

from mpi4py import MPI

import numpy as np

import zmq

class CrmServer(Server):

 def __init__(self, comm, context, endpoint, type_, ndof, model):

 super(CrmServer,self).__init__(comm, context, endpoint, type_, ndof, model)

 struct_mesh = TACS.MeshLoader(comm)

 struct_mesh.scanBDFFile("CRM_box_2nd.bdf")

 # Set constitutive properties

 rho = 2500.0 # density, kg/m^3

 E = 70.0e9 # elastic modulus, Pa

 nu = 0.3 # poisson's ratio

 kcorr = 5.0 / 6.0 # shear correction factor

 ys = 350e6 # yield stress, Pa

 min_thickness = 0.001

 max_thickness = 0.100

 thickness = 0.015

 spar_thick = 0.015

 # Loop over components in mesh, creating stiffness and element

 # object for each

 self.num_components = struct_mesh.getNumComponents()

 for i in xrange(self.num_components):

 descript = struct_mesh.getElementDescript(i)

 comp = struct_mesh.getComponentDescript(i)

 stiff = constitutive.isoFSDT(rho, E, nu, kcorr, ys, thickness, i,

 min_thickness, max_thickness)

 element = None

 if descript in ["CQUAD", "CQUADR", "CQUAD4"]:

 element = elements.MITCShell(2,stiff,component_num=i)

 struct_mesh.setElement(i, element)

 .

 .

 .

 # Initialize member variables pertaining to TACS

 self.tacs = tacs

 self.res = res

 self.ans = ans

30

 self.mat = mat

 self.pc = pc

 self.struct_X = struct_X

 self.struct_nnodes = struct_nnodes

 self.gmres = gmres

 self.svsens = tacs.createVec()

 self.struct_rhs_vec = []

if __name__ == "__main__":

 comm = MPI.COMM_WORLD

 context = zmq.Context()

 endpoint = 'tcp://*:'+ str(44200+comm.Get_rank())

 model = build_model()

 server = CrmServer(comm, context=context, endpoint=endpoint, type_=zmq.REP,

ndof=6, model=model)

 server.serve()

 server.close()

 context.destroy()

31

FUNtoFEM driver/client

In the FUNtoFEM main run script, the user first splits the communicator so that the structural and

transfer scheme clients know which processors/ports to use for communication with the servers. The driver

script then gets the FUNtoFEM model definition from build_model. Next, it creates a Python dictionary

of the solver clients which the FUNtoFEM driver will access the solvers. These clients have basic functions

defined such as “initialize”, “iterate”, “get_function”, etc. Within these methods, the client makes requests

to the server. The options dictionary in the main script typically tells the FUNtoFEM driver what options

to use for the transfer scheme, but for the Hermes example, it tells the driver to use the transfer scheme

client instead of directly using the transfer scheme (the transfer scheme options are specified in transfer

scheme server set up). The final steps for the main script are to instantiate the driver object and call the

solve_forward and solve_adjoint methods of that object. After starting all the servers, the main script

is run with:

mpirun -n X python hermes_driver.py

where X is the number of processors used to solve the flow problem.

hermes_driver.py (FUNtoFEM uCRM simulation)

from mpi4py import MPI

from pyfuntofem.model import *

from pyfuntofem.driver import *

from pyfuntofem.fun3d_client import Fun3dClient

from pyfuntofem.hermes_structure import *

from build_model import build_model

split the communicator

n_tacs_procs = 8

comm = MPI.COMM_WORLD

world_rank = comm.Get_rank()

if world_rank < n_tacs_procs:

 color = 55

 key = world_rank

else:

 color = MPI.UNDEFINED

 key = world_rank

tacs_comm = comm.Split(color,key)

build the model

crm = build_model()

solvers= {}

instantiate the fem_solver

solvers['structural'] = TacsHermes(comm,tacs_comm,crm)

instantiate the flow_solver

solvers['flow'] = Fun3dClient(comm,crm)

options = {'scheme': 'hermes'}

instantiate the driver

driver =

FUNtoFEMnlbgs(solvers,comm,tacs_comm,0,comm,0,model=crm,transfer_options=options)

32

run the forward analysis

fail = driver.solve_forward()

vrs = crm.get_variables()

funcs = crm.get_functions()

if comm.Get_rank() ==0:

 for func in funcs:

 print 'FUNCTION: ' + func.name + " = ", func.value

run the adjoint

fail = driver.solve_adjoint()

derivatives = crm.get_function_gradients()

if comm.Get_rank() ==0:

 for i, func in enumerate(funcs):

 print 'FUNCTION: ' + funcs[i].name + " = ", funcs[i].value

 for j, var in enumerate(vrs):

 print ' var ' + var.name, derivatives[i][j]

33

Steady Aeroelastic Verification
The Hermes-based client-server model is verified by comparing results to the direct Python mode of

FUNtoFEM. The test case for verification is the uCRM wing set up in the previous section. The Euler

aerodynamic model has 24,187 nodes that represent the CRM wing. The structural model has 10,584

linearized shell elements that represent the wing box. Table 2 compares output functions from the primal

analysis. The lift and drag values are aerodynamic quantities from the coupled simulation. The KS-failure

function is an aggregated approximation of the maximum stress in the structure. The table indicates that

there is no difference between the real results of the direct Python and Hermes simulations indicating that

the client-server model has been implemented properly.

Table 2: Steady uCRM aeroelastic primal results.

 Lift Drag KS Failure

Direct Python - complex 123.630842869 9.10252216846 0.574068911078

Direct Python - real 123.630842860 9.10252216776 0.574068911109

Hermes - real 123.630842860 9.10252216776 0.574068911109

Tables 2–5 compare the sensitivities calculated by the complex step method with the adjoint-based

sensitivities from the direct Python and client-server modes of FUNtoFEM. These sensitivities are shown

for a structural design variable and an aerodynamic design variable. Like the primal analysis outputs, the

direct Python and Hermes-based client-server sensitivities agree exactly. The complex step and adjoint-

based derivatives match between 8–10 digits which is about the same level of agreement as the primal

results.

Table 3: Comparison of steady uCRM aeroelastic sensitivities for lift.

 Panel thickness 0 Angle of attack

Direct Python - complex step 48.7704833661 23.0410731084

Direct Python - adjoint 48.7704833648 23.0410731069

Hermes - adjoint 48.7704833648 23.0410731069

Table 4: Steady uCRM aeroelastic sensitivities for drag.

 Panel thickness 0 Angle of attack

Direct Python - complex step 6.41532214679 3.02932046898

Direct Python - adjoint 6.41532214652 3.02932046864

Hermes - adjoint 6.41532214652 3.02932046864

Table 5: Steady uCRM aeroelastic sensitivities for KS failure.

 Panel thickness 0 Angle of attack

Direct Python - complex step -4.61360099686 0.0755157643653

Direct Python - adjoint -4.61360098971 0.0755157643636

Hermes - adjoint -4.61360098971 0.0755157643637

34

FEM-based Unsteady Aeroelastic Analysis and Sensitivities

Unsteady Aeroelastic Primal Analysis
FUNtoFEM extends the nonlinear block Gauss-Seidel algorithm from the steady analysis to unsteady

analysis by staggering the structural displacements for each time step. That is, the displacement transfer at

time step n is dependent on the structural displacements at step n-1. The flow of information in the unsteady

primal analysis is illustrated in Figure 11a. Each row in figure represents a time step, and the unsteady

analysis can be solved by marching from left to right and top to bottom in the flow chart. In the unsteady

aeroelastic analysis, there are time derivatives of quantities such as the flow state and the displacement of

the structure. When discretized, these time derivatives create dependencies of the aerodynamic and

structural residuals on states from previous time steps represented by the purple lines in Figure 11a.

However, these time derivatives are confined within the individual disciplinary solvers. Therefore, the

aerodynamic and structural solvers can use any time marching method inside this coupling algorithm as

long as the time step size matches.

Unsteady Aeroelastic Sensitivities
The flow of information in the unsteady adjoint analysis is illustrated in Figure 11b. As in the steady

case, the dependencies have been reversed. Each row in the figure represents a time step, and the unsteady

adjoint can be solved by reverse time marching, i.e., from right to left and bottom to top in the flow chart.

The full set of adjoint equations and sensitivity expressions are provided in Jacobson et al. (2018).

35

a) Forward Analysis

b) Adjoint Analysis

Figure 11. Flow of information in FUNtoFEM for unsteady aeroelastic coupling.

Unsteady Aeroelastic Simulation Setup
The unsteady problem setup only has a few differences from the steady aeroelastic version which are

highlighted here in blue The transfer scheme server does not change. In the model_builder module, the

scenario is specified as unsteady:

36

build_model.py (unsteady modifications)

steps = 300

cruise = Scenario('cruise',group=0,steps=steps,steady=False)

In the FUN3D namelist, the solver is instructed to use time dependent analysis:

fun3d.nml (unsteady modifications)

&nonlinear_solver_parameters

 time_accuracy = '2ndorderOPT'

 time_step_nondim = 0.1

 subiterations = 10

/

Like the steady problem, the TACS script creates a server class that inherits all the required functionality

of the server from a base class, then adds the TACS initialization to the constructor. The structural server

uses a TACS utility called TACSBuilder to help set up the unsteady problem. One additional change is that

the server is given a Python dictionary of time integrator options when it is instantiated. This dictionary

tells TACS the number of time steps, the time step size, and other integration related options.

tacs_server.py (unsteady uCRM version)

import zmq

from mpi4py import MPI

from tacs_unsteady_server import Server

from tacs_builder import *

from tacs import TACS

from build_model import *

class CRMServer(Server):

 def __init__(self, comm, context, endpoint, type_, ndof, model,

integrator_options):

 rho=2500.0

 E=70.0e9

 nu=0.3

 kcorr=5.0/6.0

 ys=350.0e6

 thickness=0.015

 tmin=1.0e-4

 tmax=1.0

 tdv=0

 # Create an instance of TACS

 self.builder = TACSBuilder(comm)

 shellStiff = ShellStiffness(rho,E,nu,kcorr,ys,thickness,tmin,tmax)

 wing =

self.builder.addMITCShellBody('wing','CRM_box_2nd.bdf',0,shellStiff,isFixed=False)

 super(CRMServer,self).__init__(comm, context, endpoint, type_, ndof, model,

integrator_options)

if __name__ == "__main__":

 comm = MPI.COMM_WORLD

37

 context = zmq.Context()

 endpoint = 'tcp://*:'+ str(44200+comm.Get_rank())

 model = build_model()

 steps = model.scenarios[0].steps

 options = {'integrator': 'BDF', 'start_time': 0.0, 'step_size': 0.001,

 'steps': steps, 'integration_order': 2, 'solver_rel_tol':

1.0e-10,

 'solver_abs_tol':1.0e-9, 'max_newton_iters': 50, 'femat':1,

 'print_level': 1, 'output_freq': 10, 'ordering':

TACS.PY_RCM_ORDER }

 server = CRMServer(comm, context=context, endpoint=endpoint, type_=zmq.REP,

ndof=6, model=model, integrator_options=options)

 server.serve()

 server.close()

 context.destroy()

Apart from these changes described, the unsteady forward and adjoint problems is set up and run in the

same way as the steady problem.

Unsteady Aeroelastic Verification
The unsteady verification is performed with the uCRM and the vortex induced vibration (VIV) cases.

For the VIV case, there is one difference between the analysis described in the Appendix and the simulations

used for verification. For sensitivity verification, only pressure forces are considered in the load transfer.

Traditionally, viscous forces have a negligible effect on the structure in aerospace aeroelastic problems,

and the sensitivity terms for the viscous force transfer have not yet been implemented; however, these are

very low Reynolds number cases where the viscous forces are significant if the correct aeroelastic response

is desired.

For the uCRM verification, the wing starts at the jig shape and free stream flow conditions. The

simulation is run for 10 time steps and the lift and KS failure functions are calculated. In Table 6, the

calculated lift and KS failure values match the direct Python results. Tables 7 and 8 show the comparison

of the derivatives of the functions of interest with respect to the thickness of one of the structural panels

and the angle of attack. The tables show at least 10 digits of agreement between the complex step method

and the two adjoint methods.

Table 6: Unsteady uCRM aeroelastic primal results.

 Lift KS Failure

Direct Python - complex 0.000192515603246 0.0259753355763

Direct Python - real 0.000192515603246 0.0259753355763

Hermes - real 0.000192515603246 0.0259753355763

Table 7: Unsteady uCRM lift sensitivities.

 Panel thickness 0 (10-5) Angle of Attack

Direct Python - complex -2.00547262678 2.89636955472

Direct Python - adjoint -2.00547262677 2.89636955472

Hermes - adjoint -2.00547262677 2.89636955472

38

Table 8: Unsteady uCRM KS failure sensitivities.

 Panel thickness 0 Angle of Attack (10-6)

Direct Python - complex -0.0695002469313 5.1745426714

Direct Python - adjoint -0.0695002469313 5.1745426714

Hermes - adjoint -0.0695002469313 5.1745426714

The VIV case is treated as an energy harvesting problem where the selected function of interest is the

energy dissipated by the damper over a set time period. The design variables are the damping, the spring

stiffness, and the angle of attack. Table 9 shows good agreement for the calculated harvested energy

between the client-server mode and the direct Python mode. Table 10 compares the derivatives of the energy

harvested with respect to the spring stiffness and damping values. Like the unsteady uCRM, the agreement

between the different versions is at least 10 digits.

Table 9: VIV aeroelastic primal results.

 Energy Harvested (10-9)

Direct Python - complex 8.40950521459

Direct Python - real 8.40950521459

Hermes - real 8.40950521459

Table 10: VIV energy sensitivities.

 Angle of attack (10-8) Stiffness (10-9) Damping (10-8)

Direct Python - complex 6.79477451161 4.24403436189 8.40211347566

Direct Python - adjoint 6.79477451142 4.24403436186 8.40211347566

Hermes - adjoint 6.79477451142 4.24403436186 8.40211347566

VIV Optimization
An energy harvesting optimization of the VIV case was performed with FUNtoFEM. The objective

function was the energy extracted by the damper attached to the cylinder.

  
2

1

2t

t
E ch t dt  , (13)

where c is the damping coefficient and h is the displacement of the cylinder. The design variables were the

spring stiffness and the damping coefficient. To avoid the effects of the initial transients, the energy

harvesting window was the final 3,000 time steps of the 10,000 step simulation. As in the sensitivity

verification, only the pressure forces were considered in the load transfer. Therefore, the optimization is

intended to demonstrate the design capability rather than draw meaningful scientific conclusions from

optimization results.

The optimization used the sequential least squares quadratic programming (SLSQP) from PyOpt. After

11 design cylces, the sensitivites of the energy harvest were -5.76×10-4 and 8.94×10-5 for the spring stiffness

and damping coefficient respectively which are close to zero indicating that the optimization had converged

39

to a locally optimal result. Figure 12 shows that the optimization convergence and that the energy extracted

increased by more than a factor of 8. The history of the design variables is given in Figure 13. The initial

stiffness value was selected to have a natural frequency near the rigid cylinder shedding frequency to

produce large amplitudes of the motion. Over the optimization, the stiffness more than doubled, and the

damping ratio also increased significantly. The higher spring stiffness increases the frequency of the

cylinder motion; this produces more oscillations (29 stationary points versus 25) over the window of

measured energy harvest as illustrated by the displacement history in Figure 14 and the vortex shedding in

Figure 15. The higher damping allows more energy to be harvested per cycle despite the lower amplitude

of the motion.

Figure 12. Optimization history of VIV energy harvested normalized by the initial design’s value.

Figure 13. Design variable history for the VIV optimization. The spring stiffness is normalized by the

stiffness that corresponds to the natural frequency matching the shedding frequency of the rigid

cylinder.

40

Figure 14. Comparison of the displacement of the cylinder over the time window of energy harvesting

for the initial and final design.

Figure 15. The VIV mesh colored by the vorticity for initial and optimal design at a time step within

the energy harvesting window.

41

Appendix A: Benchmark Test Cases
Three benchmark aeroelastic test cases have been added to the FUN3D test suite. This was done in order

to ensure that any future FUN3D code development will not break the current implementation of aeroelastic

capabilities. The test suite includes three cases: Vortex Induced Vibrations (VIV), the Benchmark

Supercritical Wing (BSCW), and the AGARD 445.6 wing. These tests are run on a weekly basis on the

NASA Langley’s K-cluster. The cases' grids and inputs have been placed in the FUN3D git repository.

The tests are run via Jenkins and metrics (plots/tables) are generated upon their successful completion.

Resources allocated for the tests are given in Table A.1.

Table A.1: Resources used for the Aeroelastic Benchmark Tests

Case Wall Time Number of Cores

VIV (19,840 nodes)

Re=112

Re=120

Re=130

~2hr 30min

~3hr

~2hr 30min

48

BSCW (2,968,550 nodes) ~3hr 40min 120

AGARD (439,415 nodes) ~1hr 72

Vortex-Induced Vibrations (VIV)
The Vortex-Induced Vibrations (Anagnostopoulos and Bearman 1992) case is run at three different

Reynolds numbers (Re = 112, 120, and 130). Simulations at Re=112 and 130 are run for a total of 10,000

steps initially with no perturbation. A perturbation in velocity (gvel=0.02) is added after 10,000 iterations.

The simulation with Re = 120 is run with no perturbation. The FUN3D namelist file and the

moving_body.input file for Re = 120 is given below.

fun3d.nml (Re=120)

&global

 slice_freq = 0

 boundary_animation_freq = 10000

 moving_grid = .true.

/

&project

 project_rootname = "project"

 case_title = "case project"

/

&raw_grid

 grid_format = "aflr3"

 data_format = "stream"

 patch_lumping = "none"

 twod_mode = .true.

/

42

&massoud_output

!use with --write_aero_loads_to_file

 massoud_output_freq = -1

 massoud_file_format = 'ascii'

 n_bodies = 1

 nbndry(1) = 1

 boundary_list(1) = '2'

/

&boundary_output_variables

 number_of_boundaries = 1

 boundary_list = '3'

 y = .false.

 u = .true.

 v = .false.

 w = .true.

 vort_y=.true.

/

&governing_equations

 eqn_type = "incompressible"

 viscous_terms = "laminar"

/

&reference_physical_properties

 reynolds_number = 120

 angle_of_attack = 0.0

 angle_of_yaw = 0.0

/

&force_moment_integ_properties

 area_reference = 1.0

 x_moment_length = 1.0

 y_moment_length = 1.0

 x_moment_center = 0.0

 y_moment_center = 0.0

 z_moment_center = 0.0

/

&inviscid_flux_method

 flux_construction = "roe"

 first_order_iterations = 0

 flux_limiter = "none"

/

&nonlinear_solver_parameters

 time_accuracy = "2ndorderOPT"

 time_step_nondim = 0.05

 subiterations = 25

 schedule_iteration = 1 100

 schedule_cfl = 10 10

 schedule_cflturb = 5 5

/

&linear_solver_parameters

 meanflow_sweeps = 15

 turbulence_sweeps = 10

 linear_projection = .false.

/

43

&special_parameters

 large_angle_fix = "off"

/

&code_run_control

 steps = 50000

 restart_write_freq = 5000

 restart_read = "off"

/

&elasticity_gmres

 nsearch = 50

 nrestarts = 100

 tol = 1.e-5

 restart_deformation = .true.

 elasticity = 1,

 elasticity_exponent = 1.0,

 restart_deformation = .true.

/

moving_body.input (Re=120)

! --

! – ViV – Re=120

! --

&body_definitions

 n_moving_bodies = 1

 body_name(1) = "cylinder"

 n_defining_bndry(1) = 1

 defining_bndry(1,1) = 2

 motion_driver(1) = "aeroelastic"

 mesh_movement(1) = "deform"

/

&aeroelastic_modal_data

 nmode(1) = 1

 grefl = 0.0016

 uinf = 0.0670842

 qinf = 2.23626

 gmass(1,1) = .000476666

 freq(1,1) = 44.0828

 damp(1,1) = 0.00135942

 genforce_include_shear = .true.

 gvel0(1,1) = 0.0 ! don't need to perturb with unsteady starting flowfield

/

44

Figures A.1–A.2 show the generalized displacement for Re=112, Re=120, and Re=130. Upon the

successful completion of the test, these plots are posted on Jenkins. The means and variances of generalized

displacement peaks of the last 10,000 steps are checked against reference values. The tolerance is set to

0.1% for the mean and 1% for the variance. The reference values are provided in Table A.1.

Figure A.1. Generalized displacement for the VIV case. Re = 112 (left), and Re = 120 (right).

Figure A.2. Generalized displacement for the VIV case. Re = 130.

Table A.2: VIV Reference Values

Re Reference Mean Reference Variance

112 6.9261309E-04, -6.9268444E-04 7.9077064E-15, 8.0097116E-15

120 6.1567323E-04, -6.1575137E-04 5.2378125E-15, 5.1437498E-15

130 4.4499669E-04, -4.4501731E-04 6.2714526E-15, 6.1559374E-15

45

Benchmark Supercritical Wing (BSCW)
The FUN3D namelist file and the moving_body.input file for the Benchmark Supercritical Wing

(Chwalowski et al. 2017) simulation are given below. This simulation is restarted from a restart file (5000

iterations) and run with no perturbation.

fun3d.nml

&project

 project_rootname = "bscw_coarse_mixed_nc"

/

&governing_equations

 eqn_type = "compressible"

 viscous_terms = "turbulent"

/

&reference_physical_properties

 mach_number = 0.74

 angle_of_attack = 0.00

 reynolds_number = 278399.75

/

&code_run_control

 steps = 1000

 restart_read = "on"

 restart_write_freq=100

/

&nonlinear_solver_parameters

 time_accuracy = "2ndorder"

 time_step_nondim = 1.2

 subiterations = 15

/

&raw_grid

 grid_format = "aflr3"

 data_format = "stream"

/

&global

 moving_grid = .true.

 boundary_animation_freq = -1

 volume_animation_freq = 0

/

&boundary_output_variables

 number_of_boundaries = 1

 boundary_list = "6"

/

46

moving_body.input

! --

! – BSCW

! --

&body_definitions

 n_moving_bodies = 1

 body_name(1) = "wing"

 n_defining_bndry(1) = 8

 defining_bndry(1,1) = 1

 defining_bndry(2,1) = 2

 defining_bndry(3,1) = 3

 defining_bndry(4,1) = 10

 defining_bndry(5,1) = 11

 defining_bndry(6,1) = 12

 defining_bndry(7,1) = 13

 defining_bndry(8,1) = 14

 motion_driver(1) = "aeroelastic"

 mesh_movement(1) = "deform"

/

&aeroelastic_modal_data

 nmode(1) = 2

 grefl = 1

 uinf = 4508.4

 qinf = 1.1722

 gmass(1,1) = 1.0

 gmass(2,1) = 1.0

 freq(1,1) = 20.923

 freq(2,1) = 32.673

/

47

The BSCW test is restarted from 5000 steps and runs for an additional 1000 steps. Plots shown in Figure

A.3 are posted on Jenkins on the successful completion of the simulation. Peaks for both the plunging and

the pitching modes are compared with the reference values (Table A.3). The tolerance is set to 0.1%.

Figure A.3. Generalized displacements for the BSCW case. The plunging mode (left), and the pitching

mode (right).

Table A.3: BSCW Reference Values

Mode Reference Value

Plunging Mode -0.2083332, 0.5575934

Pitching Mode -0.0180195, 0.2156386

48

AGARD 445.6 Wing
The FUN3D namelist file for the AGARD wing (Yates 1987; Lee-Rausch and Batina 1993) simulation

is provided below. A steady solution is obtained by running the simulation for 2000 steps. This solution is

used as the restart for the dynamic run. A perturbation in velocity (gvel=0.4) is added for the dynamic run.

fun3d.nml (dynamic simulation)

&project

 project_rootname = 'agard1pw'

/

&raw_grid

 grid_format = 'aflr3'

 patch_lumping = 'family'

/

&global

 moving_grid = .true.

 boundary_animation_freq = -1

/

&boundary_output_variables

 primitive_variables = .true.,

 cp = .true.,

/

&governing_equations

 viscous_terms = 'inviscid'

/

&reference_physical_properties

 mach_number = 0.9

/

&force_moment_integ_properties

 area_reference = 548.0

 x_moment_length = 22.0

 y_moment_length = 30.0

 x_moment_center = 3.0

/

&nonlinear_solver_parameters

 time_accuracy = '2ndorder'

 time_step_nondim = 3.6

 subiterations = 25

 schedule_cfl = 50.0 50.0

 temporal_err_control = .true.

 temporal_err_floor = 0.01

/

&code_run_control

 steps = 2000

 restart_write_freq = 1000

 restart_read = 'on_nohistorykept'

/

&special_parameters

 large_angle_fix = 'on'

/

49

The following moving_body.input file was used in the simulation:

moving_body.input

! --

! – AGARD

! --

&body_definitions

 n_moving_bodies = 1

 body_name(1) = 'airfoil'

 n_defining_bndry(1) = -1

 motion_driver(1) = 'aeroelastic'

 mesh_movement(1) = 'deform'

/

&aeroelastic_modal_data

 plot_modes = .true.

 nmode(1) = 4

 uinf = 11680.8

 qinf = 0.52083

 freq(1,1) = 60.3135016

 freq(2,1) = 239.7975647

 freq(3,1) = 303.7804433

 freq(4,1) = 575.1924565

 gmass(1:4,1) = 4*1.0

 gvel0(1:4,1) = 4*0.1

/

Figure A.4 shows the plot of generalized displacements which is posted on Jenkins on the successful

completion of the simulation.

Figure A.4. Generalized displacements for all four modes is shown in the plot.

50

The damping ratio is found from logarithmic decrement by:

 

2

0 1

1

2
1

ln /x x







 
   
 

, (A.1)

where 𝑥0and 𝑥1are two successive peaks of the generalized displacement. If 1 ,

 0 1ln /

2

x x



 . (A.2)

The slope is obtained by performing a linear least square fit of the natural logarithm of generalized

displacement peaks

2

slope

f



  , (A.3)

where, f is the median frequency. The damping ratios and frequencies of the four modes are compared with

reference values given in Table A.4. The tolerance is set to 0.1%.

Table A.4: AGARD Reference Values

Mode Reference Damping Ratio Reference Frequency (Hz)

1 0.005698 14.980801

2 0.001559 39.722305

3 0.020199 50.011787

4 0.019484 91.099510

51

Appendix B: Pseudo Code for Modal Fluid-Structure Interaction

A “call struc_XXX” is defined as an interface in libmodalstructure

A “call fsi_YYY” is defined as an interface in libmodalfsi

For readability, no arguments are shown for any subroutine call – all require at

least one argument, an output integer indicating success (0) or falure (>0)

Flow solver actions indicated by “FLOW:” are not shown, but the nature of the action

is described.

!---

! data registration for modal solver

!---

call struc_set_time_integration_scheme() ! default: predictor-corrector

call struc_set_mach() ! default: 0.0 (for output info only)

call struc_set_uinf() ! default: 0.0 (for output info only)

call struc_set_qinf() ! default: 0.0 (for output info only)

call struc_set_dt() ! default: 0.0 (time step, sec.)

call struc_set_time() ! default: 0.0 (start time, sec.)

call struc_set_force_basis() ! default: face (for or node)

call struc_set_complex_mode() ! default: .false. (ouput Im() part)

call struc_set_restart() ! default: .true. (is it a restart?)

call struc_set_project_rootname() ! default: my_project (restart file name)

call struc_set_nbodies() ! default: 1

 body_loop : do body = 1,nbodies

 call struc_set_nmode()

 mode_loop : do j = 1, nmode(body)

! set initial conditions for generalized displacement, velocity and force generally,

! give gvel0 a non-zero value to initiate dynamic response

 call struc_set_gdisp0() ! default: 0.0

 call struc_set_gvel0() ! default: 0.0

 call struc_set_gforce0() ! default: 0.0

! set modal properties

 call struc_set_gmass() ! default: 0.0

 call struc_set_freq() ! default: 0.0

 call struc_set_damp() ! default: 0.0

! not shown: setter calls for never/infrequently-used perturbation options for

! initiating a dynamic response - all these options turned off by default; almost

! always use gvel0 to initiate

 end do mode_loop

 end do body_loop

52

! define the modal structural interface from mode-shape files and set mode shapes

! struc_read_mode_shapes reads Jamshid Samareh style mode shape files (Samareh 2001)

! and return the global (unpartitioned) structure interface and modal

! surface(s), but does NOT set up the required data in the modal solver.

! Must call struc_set_interface and struc_set_mode_shape to do that.

! note: modal solver does not know how to partition, but can be fed either

! partitioned or unpartitioned interface / mode shapes

 body_loop2 : do body = 1,nbodies

 mode_loop2 : do mode=1,nmodes

 call struc_read_mode_shapes()

! FLOW: optionally partition mode shapes and interface

 if (mode == 1) call struc_set_interface()

 call struc_set_mode_shape()

 end do mode_loop2

 end do body_loop2

!---

! data registration for FSI module

!---

 call fsi_set_nbodies() ! default: 1

 call fsi_set_force_basis() ! default: face

 call fsi_set_fsi_mapping_tolerance() ! default: 1.e-8

! Register both sides of the fluid/structure interface with the FSI module

 set_fsi_interface: do body = 1,nbodies

! FLOW: set convenience arrays to store struc_interface and fluid_interface

! FLOW: fill in the fluid_interface data

! Structure side: first retrieve the interface description from the structure

! module, then pass it to the FSI module

 call struc_get_interface()

 call fsi_set_struc_interface()

 call fsi_set_fluid_interface()

 end do set_fsi_interface

!---

! Initialize the modal structural solver and FSI module

!---

 call struc_initialize()

 call fsi_initialize()

53

!---

! Time step loop - assumes predictor-corrector scheme for structural dynamics

! equations.

!---

 time_stepping : do step = 1,nsteps

! FLOW: prepare to take a time step (but do not yet take it)

 call struc_start_timestep()

 call fsi_start_timestep()

 predctor_corrector : do subit = -1,0 ! -1 = predictor; 0 = corrector

 body_loop : do body = 1,nbodies

! FLOW: compute current forces on fluid interface

! Pass fluid forces to FSI module

 call fsi_set_fluid_force()

! Have the FSI module transfer the fluid-side loading to the structure

 call fsi_fld_to_str_force_xfer()

! Retrieve structure-side loading from FSI module

 call fsi_get_struc_force()

! Pass the forces on the structural interface to structure module

 call struc_set_force()

! Update structural solution - subit value routes to either predictor or corrector

 call struc_update_solution()

 end do body_loop

 predictor_only : if (subit == -1) then

! update CFD surface meshes

 body_loop : do body = 1,nbodies

! Retrieve the current interface motion (displacement) from the structural solver,

! and pass to the FSI module

 call struc_get_movement()

 call fsi_set_struc_movement()

! Have the FSI module interpolate movements (disp, vel, accel) from structure side

! fluid side and retrieve the interpolated values

 call fsi_str_to_fld_movement_xfer()

 call fsi_get_fluid_movement()

54

! FLOW: Add the displacements to the t=0 surface mesh (xs0, ys0, zs0)

! xs = xs0 + xdisp/length_factor

! ys = ys0 + ydisp/length_factor

! zs = zs0 + zdisp/length_factor

 end do body_loop

! FLOW:

! 1) deform volume mesh, given current xs, ys, zs

! 2) flow solver now takes a time step

 end if predictor_only

 end do predictor_corrector

 call struc_end_timestep()

 call fsi_end_timestep()

 end do time_stepping

! Finalize the modal solver and fsi module; all memory deallocated and all variables

! reset to default values

 call struc_finalize()

 call fsi_finalize()

55

References
Anagnostopoulos, P., Bearman, P. W., “Response Characteristics of a Vortex-Excited Cylinder at Low

Reynolds Numbers,” Journal of Fluids and Structures, Vol. 6, Issue 1, 1992, pp 39–50.

Anderson W. K., Newman, J. C., Whitfield, D. L., Nielsen, E. J., “Sensitivity Analysis for the Navier-

Stokes equations on unstructured meshes using complex variables,” AIAA Paper 1999–3294.

Bartels, R. E., Rumsey, C. L., Biedron, R. T., “CFL3D Version 6.4 - General Usage and Aeroelastic

Analysis,” National Aeronautics and Space Administration, 2006, NASA/TM–2006–214301.

Bhatia, M., Beran, P., “MAST: An Open-Source Computational Framework for Design of Multiphysics

Systems,” AIAA Paper 2018–1650.

Biedron, R. T., Carlson, J., Derlaga, J. M., Gnoffo, P. A., Hammond, D. P., Jones, W. T., Kleb, B., Lee-

Rausch, E. M. Nielsen, E. J., Park, M. A., Rumsey, C. L., Thomas, J. L., Wood, W. A., “FUN3D

Manual: 13.3,” National Aeronautics and Space Administration, 2018, NASA/TM–2018–219808.

Biedron, R. T., Thomas, J. L., “Recent Enhancements to the FUN3D Flow Solver for Moving-Mesh

Applications,” AIAA Paper 2009–1360.

Biedron, R. T., Vatsa, V. N., Atkins, H. L., “Simulation of Unsteady Flows Using an Unstructured Navier-

Stokes Solver on Moving and Stationary Grids,” AIAA Paper 2005–5093.

Chwalowski, P., Heeg, J., Biedron, R. T., “Numerical Investigations of Benchmark Supercritical Wing In

Transonic Flow,” AIAA Paper 2017–0190.

Edwards, J. W., Bennett, R. M., Whitlow, W. J., Seidel, D. A., “Time-Marching Transonic Flutter Solutions

Including Angle-of-Attack Effects,” AIAA Journal, Vol. 20, No. 11, 1983, pp. 899–906.

Irons, B. M., Tuck, R. C., “A Version of the Aitken Accelerator for Computer Iteration,” International

Journal for Numerical Methods in Engineering, Vol. 1, No. 3, 1969, pp. 275–277.

Jacobson, K., Kiviaho, J. F., Smith, M. J., Kennedy, G., “An Aeroelastic Coupling Framework for Time-

accurate Analysis and Optimization,” AIAA Paper 2018–100.

Kennedy, G., Martins, J. R. R. A., “A parallel finite-element framework for large-scale gradient-based

design optimization of high-performance structures,” Finite Elements in Analysis and Design, Vol.

87, 2014, pp. 56–73.

Kiviaho, J. F., Jacobson, K., Smith, M. J., Kennedy, G., “A Robust and Flexible Coupling Framework for

Aeroelastic Analysis and Optimization,” AIAA Paper 2017–4144.

Lee-Rausch, E. M., Batina, J. T., “Calculation of AGARD Wing 445.6 Flutter Using Navier-Stokes

Aerodynamics,” AIAA Paper 1993–3476.

Lyness J. N., Moler, C. B., “Numerical differentiation of analytic functions,” SIAM Journal of Numerical

Analysis, Vol. 4, No. 2, 1967, pp 202–210.

Newman, J. C., Anderson, W. K., Whitfield, D. L., “Multidisciplinary Sensitivity Derivatives Using

Complex Variables,” MSSU-COE-ERC-98-09, Engineering Research Center Report, Mississippi

State University, 1998.

Samareh, J. A., “Novel Multidisciplinary Shape Parameterization Approach,” Journal of Aircraft, Vol. 38,

No. 6, 2001, pp 1015–1024.

Snyder R. D., “A Cross-Language Remote Procedure Call Framework,” AIAA Paper 2017–3822.

Squire, W., Trapp, G., “Using Complex Variables to Estimate Derivatives of Real Functions,” SIAM

Review, Vol. 40, No. 1, 1998, pp 110–112.

Yates, E. C., “AGARD Standard Aeroelastic Configurations for Dynamic Response. Candidate

Configuration I. – Wing 445.6,” National Aeronautics and Space Administration, 1987,

NASA/TM–1987–100492.

REPORT DOCUMENTATION PAGE

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data

sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other

aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information

Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other

provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

2. REPORT TYPE 3. DATES COVERED (From - To)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)
(757) 864-9658

NASA Langley Research Center
Hampton, VA 23681-2199

National Aeronautics and Space Administration
Washington, DC 20546-0001

NASA-TM-2018-220089

8. PERFORMING ORGANIZATION
REPORT NUMBER

L-20932

1. REPORT DATE (DD-MM-YYYY)
1-09-2018 Technical Memorandum

STI Help Desk (email: help@sti.nasa.gov)

U U U UU

4. TITLE AND SUBTITLE

 Sensitivity Analysis for Multidisciplinary Systems (SAMS)

6. AUTHOR(S)

PAGES

NASA

 031102.02.07.05.93O4.17

Unclassified
Subject Category 02
Availability: NASA STI Program (757) 864-9658

Biedron, Robert T.; Jacobson, Kevin E.; Jones, William T.; Massey, Steven J.;
Nielsen, Eric J.; Kleb, William L.; Zhang, Xinyu

14. ABSTRACT
This report describes the research conducted under an interagency collaboration agreement between the Aerospace Systems Directorate of the Air Force Research
Laboratory (AFRL/RQ) and the Computational AeroSciences Branch of NASA Langley (NASA LaRC). Both organizations have a long-term goal of developing a
modular computational system for coupling fluids and structures to enable both analysis and optimization of aerospace vehicles. Ultimately, the system should support
multiple solvers within the fluid and structure domains to allow the best combination for the task at hand, as well as to allow for institutional preferences of specific
software components. Towards this goal, the current research was focused on enhancing the existing modal aeroelastic analysis in the NASA FUN3D software (Biedron
et al. 2018), as well as developing new aeroelastic analysis and optimization capabilities based on a non-linear finite-element method. The methods and enhancements
described in this document pertain to FUN3D Version 13.4.

63

Aerodynamics; Computational fluid dynamics; FUN3D; Mathematics; Mechanics; Propulsion system

