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Abstract 

Omics data sharing is especially crucial to the biological research community, and the last decade or two has seen a 
huge rise in collaborative analysis systems, databases, and knowledge bases for omics and other systems biology data. 
We assessed the “FAIRness” of  NASA’s GeneLab Data Systems (GLDS) along with four similar kinds of systems 
in the research omics data domain, using 14 FAIRness metrics.  14 metrics.  The range of Pass ratings was 29-79% of 
the 14 metrics, Partial Pass 0-21%, and Fail 7-50%.  The range of overall FAIRness scores was 5-12 (out of 14).  The 
systems we evaluated performed the best in the areas of data findability and accessibility, and worst in the area of data 
interoperability.  We propose two new principles that Big Data systems, in particular, should consider for increasing 
data accessibility.  We relate our experiences implementing semantic integration of omics data from several systems 
for the federated querying and retrieval functions of the GLDS, given the shortcomings in data interoperability of 
these systems. 

Introduction 

Over the last decade the vast increase in outputs from “omics” (genomics, transcriptomics, proteomics, and 
metabolomics) assays, together with decreasing assay and data storage costs, have resulted in an exponentially 
increasing volume of these “big” data.  The high feature-number aspect of these big data has highlighted the 
importance of data sharing (reuse) functions of these systems, as data sets often have relevance for investigating a 
very large number of hypotheses.  Thus, developers of big data systems increasingly are focusing on the needs of users 
to discover, annotate, share, and analyze data.  Omics data sharing is especially crucial to the biological research 
community, and the last decade or two has seen a huge rise in collaborative analysis systems1-3, databases4-10, and 
knowledge bases11-13 for omics and other systems biology data.  

The FAIR14 principles are a set of guiding principles that are being advocated as being foundational in the broad areas 
of data findability, accessibility, interoperability, and reusability.  However, the challenges involved in using current 
technologies and real-world infrastructures within organizational guidelines to develop data repositories and/or data 
analytical systems that are “FAIR” are substantial.  The FAIR principles deal with aspects of data handling such as 
identification, representation, and attribution.  Metrics to evaluate the “FAIRness” of a data system or its design are 
currently being developed15.  System developers should consider familiarizing themselves with these metrics, as many 
of the FAIR principles have significant implications for big-data management and analysis systems in terms of feasible 
design options and operations resource planning. Below, we assess the “FAIRness” of  NASA’s GeneLab Data 
Systems (GLDS) along with four similar kinds of systems in the research omics data domain, using 14 FAIRness 
metrics. We discuss FAIRness concepts for the design of Big Data omics systems in particular, relating some of the 
challenges we faced developing our system.   

In addition to designing a data system to be FAIR, developers of Big Data systems, in particular, should consider how 
system design can maximize data usability for its users.  We propose a few new design principles for FAIR systems 
that handle Big Data like omics data from our experiences with the GLDS.  By complying with these usability 
principles and the FAIR principles together, systems that manage Big Data can maximize both the usability and 
reusability of their data. 

Methods 

NASA GeneLab    

GeneLab (http://genelab.nasa.gov) is a NASA initiative designed to accelerate “open science” biomedical research in 
support of the human exploration of space and the improvement of life on earth.16 GeneLab data have been used to 
research impacts of space on mice, humans, and plants.  Phase I of GeneLab Data Systems (GLDS) project 
implemented an “omics” (genomics, transcriptomics proteomics, and metabolomics) data repository for biomedical 
research data conducted in or relevant to space environments (Figure 1).  This initial phase developed processes and 
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systems for data submission, curation, indexing, search, and retrieval. In Phase II GeneLab implemented federated 
data search and retrieval capabilities from GeneLab and three other open-access data systems, in order to facilitate 
data integration and biological meta-investigation (Figure 1a).17  Such meta-investigations are key to corroborating 
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Figure 1. The GeneLab Data Systems. (a) The GeneLab Data Repository.  The search interface shown includes not 
only search of GLDS repository data, but of the extramural data sources Gene Expression Omnibus (NIH GEO), 
the European Bioinformatics Institute’s PRoteomics IDEntifications repository (EBI PRIDE), and the Argonne 
National Laboratory’s Metagenomics Analysis server (ANL MG-RAST).  (b) The GLDS User Workspace.  (c) One 
of the tools for omics data analysis hosted within the GLDS (an instance of a Galaxy server1). 

 



  

findings from different studies and/or kinds of bioassay data,  and translating them into systems biology knowledge 
and, eventually therapeutics18.  In Phase III, GeneLab has begun to deploy an omics data analysis platform as part of 
the GLDS.  Using this platform, investigators can design, execute and share in silico experimentation of omics data 
sets.  At the end of Phase III, users with results of these kinds of experiments will be able to store them directly into 
the GLDS repository, linked to originating data and to the analysis workflows that generated them (Figure 1b and 
Figure 1c).   

Even though the inception of the GLDS predated publication of the FAIR principles, many of the concepts behind the 
principles were discussed extensively prior to its design (Figure 2).  These discussions included substantial input from 
the National Academies of Sciences and from a steering committee of outside experts in omics biological data, and 
had significant impacts on required resources for development and operations, on selection of technological 
approaches and system architectures, and on the policies developed for operating the GLDS.  These concepts included 
metadata normalization, inferred data relationships, and federation of data querying and retrieval, all of which have 
impacts on data findability and interoperability.  Issues of integrated credentialing and authentication, and global data 
identification impact findability and accessibility of data. Costs were a big factor in designs for data acquisition and 
curation that adequately support data interoperability and reusability.  Finally, a lack of available schemas for metadata 
associated with processed data has impacts on our ability to design for compliance with each of the FAIR principles. 

FAIRness of Omics Data 

The FAIR principles were designed to guide the management of data so that it is maximally findable, accessible, 
interoperable, and reusable.  They are not precise prescriptions for FAIR system design specifications; rather they are 
aspirational guidelines with some references to exemplar standards and technologies. Among the findability principles 
are requirements that data be assigned a persistent, global unique identifier (GUID), be described by rich metadata, 
and be indexed by a system for retrieving the data.  Accessibility requires the use of standardized, open (available for 
implementation to all) communications protocols for retrieval of data by GUID.  Interoperability is supported through 

 

 

Figure 2. Impacts of FAIR concepts on the design of the GeneLab Data Systems. 
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the use of machine-actionable metadata and data.  Reusability requires systems to be compliant in the management of 
their data objects with the first three principles, specifically so that data and metadata can be linked and integrated 
across FAIR systems.  

We assessed compliance of five open-access, omics data systems and the GLDS for FAIRness using the current 
working draft of the FAIRness metrics developed by the GO FAIR Metrics group19 (Table 1).  We chose the systems 
for their similarity to the GLDS; all are open-access, government or government-funded research lab-developed omics 
data systems.  As the FAIR principles themselves are only aspirational, the assessment of the systems can only be at 
most semi-quantitative, and they would likely be affected by further clarifications or details in the principles and/or 
metrics which are almost certain to come.  We rated systems with Pass when we had no evidence of any failure of a 
test by the metric.  Systems were rated as Partial Pass, if the metric had multiple steps or components, and the system 
passed some, but not all; or if we had evidence that some data inputs for the metric yielded a pass, while others did 
not.   We chose Fail only if we could find no evidence the system was compliant with any part of the metric, for any 
inputs we tried.  We developed an overall FAIRness Score by assigning a score of 1 for each Pass, 0.5 for each Partial 
Pass, and 0 for each Fail. 

Findability 

The first findability principle, F1 (Table 1), states that systems should identify data using globally unique  and 
persistent identifiers.  The objective is to make data findable, but its implementation also supports data accessibility 

Table 1. The FAIR principles, corresponding draft FAIRness metrics, and semi-quantitative FAIRness ratings for 
select omics data systems. 
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F1. (meta)data are assigned a globally unique and persistent identifier FM-F1A      
F1. (meta)data are assigned a globally unique and persistent identifier FM-F1B      
F2. data are described with rich metadata (defined by R1 below) FM-F2      
F3. metadata clearly and explicitly include the identifier of the data it 
describes 

FM-F3 
     

F4. (meta)data are registered or indexed in a searchable resource FM-F4      
A1. (meta)data are retrievable by their identifier using a standardized 
communications protocol 

N/A - - - - - 

A1.1 the protocol is open, free, and universally implementable FM-A1.1      
A1.2 the protocol allows for an authentication and authorization 
procedure, where necessary 

FM-A1.2 
     

A2. metadata are accessible, even when the data are no longer 
available 

FM-A2 
     

I1. (meta)data use a formal, accessible, shared, and broadly applicable 
language for knowledge representation. 

FM-I1 
     

I2. (meta)data use vocabularies that follow FAIR principles FM-I2      
I3. (meta)data include qualified references to other (meta)data FM-I3      
R1. meta(data) are richly described with a plurality of accurate and 
relevant attributes 

N/A - - - - - 

R1.1. (meta)data are released with a clear and accessible data usage 
license 

FM-R1.1 
     

R1.2. (meta)data are associated with detailed provenance FM-R1.2      
R1.3. (meta)data meet domain-relevant community standards FM-R1.3      
Overall Score  11 11 5 9.5 12 

 



  

(FAIR principle A1).  The qualifier “global” should be interpreted as global within the domain of conceivable use of 
the data.  Thus, it is not sufficient to use locally (system-specific) controlled processes to manage data identifiers20, as 
this approach can never absolutely guarantee against overlap with other systems’ local identifier schemes.  In addition, 
F1 specifies the persistence of issued identifiers; identification systems that employ Uniform Resource Locators 
(which  rely on alterable domain name resolution) cannot guarantee persistence of identifiers.   

All but one of the systems we assessed passed the metric for F1 metric by employing persistent, globally unique 
identifiers.  (ANL MG-RAST only offers global identifiers as an option for data submission, and so was assessed as 
Partial Pass.)  However, among the schemes for providing such identifiers, the most reliable over time are likely to be 
those that use third-party resolution (versus those that rely on in-house redirection). Third-party resolution identifiers 
include Digital Object Identifiers (DOIs) and those provided by identifers.org, among others21.  However, in the 
biomedical research and clinical practice realms, publishers have now widely selected the DOI scheme for 
identification and citation of literature; more than 80% of 2015 articles indexed by PubMed have assigned DOIs22.   
As a consequence, the biomedical community is already (and continues to become more and more) familiar with using 
these identifiers to retrieve and cite literature.  Yet to date only a few omics data repositories have similarly 
implemented DOIs for data publications. Consequently, actual findability and accessibility of data in these repositories 
is less than optimal, even though they are technically in compliance with F1, and will continue to be so, unless and 
until the biomedical community is trained on how to use other identifying schemes for citing data.  Furthermore, 
metadata from these repositories are not currently indexed in DOI meta-indexes (such as the one produced by 
DataCite23).  In order to be compliant with F1 and A1, the GLDS is implementing methods to issue DOIs for all data 
publications.  Additionally, curated metadata records of the publications are transmitted to DataCite23 for meta-
indexing, increasing the chances for reuse of GLDS-hosted data. 

FAIR data also need to be described “with rich metadata” in order to be findable.  The draft metric to assess F2 
compliance merely requires a metadata description document that specifies a format for machine-readable metadata. 
The definition of the term “machine-readable” varies somewhat, but it is generally agreed that it cannot be natural 
language.  (Although F2 refers to reusability principles requiring data “have a plurality of accurate and relevant 
attributes” (R1), the metric for F2 does not attempt to assess compliance with principle R1 [perhaps it should]).  All 
the systems we assessed passed this metric.  Furthermore, all systems passed F3, requiring association of metadata 
with data it describes (although it should be noted that FM-F3 refers only to IRIs and not broadly to any other kinds 
of acceptable data identifiers; we assume that ultimately FM-F3 will be broadened to allow other kinds of F1-
compliant data identifiers.  Also, it is difficult to determine if any of the systems truly support IRIs, given that none 
of them currently appear to use non-ASCII character encodings in their data identifying schemes).    

The FAIRness metric FM-F4 is rather ill-defined currently.  It requires submission of an identifier of FAIR data and 
its metadata to search engines (which precisely, it does not yet specify, but some common search engines are 
mentioned as examples in the comments for the metric).  A Pass should be given if the returned search results include 
links to the published data (again, it does not yet specify where in the returned results, although among both the top 
10 and top 40 are mentioned in metric comments).  Some of the systems we assessed failed this metric, and it seems 
their data records are likely not indexed by at least some search engines.  For example, search of the ANL MG-RAST 
data record identified by “http://metagenomics.anl.gov/linkin.cgi?metagenome=mgm4447971.3” or any of its tabular 
metadata yielded no search results referring to the repository using Google.    More of the systems would fail this 
metric if it required data to be submitted specifically to DOI-based search systems (such as DataCite). 

Accessibility 

All of the systems for which we assessed compliance with FAIR principles A1 and A1.1 passed; all use open source 
communication protocols to access data, which are retrieved by their identifiers.  FAIR Principle A1.2 stipulates that 
any protocol used to retrieve data “allows for an authentication and authorization procedure, where necessary.”  All 
the systems we assessed describe which functions of the system require credentials, and how to obtain the credentials. 
It should be noted that A1.2 can be applied to the design of all types of systems, from those with highly restricted 
access controls, to the kinds of “open access” systems we assessed, that typically require minimal authentication and 
grant the widest possible access to all users. Furthermore, the data in question could any kind of data, including raw 
instrument output, shared data analysis workflows or data products, or scientifically-relevant user comments and 
opinions.  Even for open access systems, some systems functions such as user-workspace file management, user 



  

commenting and messaging, and user 
attribution of data always require 
authentication, because these 
functions must necessarily leverage 
user-specific information.   

A specific challenge that GeneLab 
faced when implementing A1.2 for the 
GLDS was a diversity of credentialing 
services available to the system’s 
target users, with no single service 
common to all users.  Furthermore, the 
goal of GeneLab is to maximize access 
to GLDS data across all kinds of users, 
but within the bounds of authentication 
and credentialing policies of NASA – 
another challenge.  Aside from policy 
restrictions, the development of any 
new credentialing and authentication 
functions or services can require 
considerable resources.    

A solution for organizations that are 
seeking to develop open-access 
systems for is to consider investments in developing an organization-wide integrated credentialing and authentication 
architecture (ICAA, Figure 3), and policies for allowing users to leverage extramural credentials, with appropriate 
access limitations.  ICAAs and attendant policies can provide flexibility to develop and/or deploy data systems with 
available resources that can meet policy requirements of the organization that support extramural user access.  It 
should be noted that using an ICAA to leverage credentialing systems developed independently from the system 
requires 1) technical compatibility between the authentication services of credentialing providers and the ICAA; and 
2) compatibility of the credentialing policies of credentialing organizations and those of the organization developing 
the data system.  Technical compatibility is facilitated through the use of authentication protocols and standards.  
Organizational credentialing policy incompatibility is more problematic to resolve.  For example, it may be that the 
organization deploying the data system requires credentials be updated at an interval that is different from that required 
by one or more extramural credential provider.  If these differences cannot be resolved, the only option may be to 
limit access for some extramural users data system functions requiring authentication. 

NASA is developing an ICAA and adopting policies that permit certain intramural data systems to leverage it for user 
credentials and authentication.  These policies stipulates that users within the organization must use the organization’s 
own credentialing services, while extramural users may authenticate using one from a defined set of externally-
managed credentialing systems (currently including authentication by selected “social media” systems).  At NASA 
(and at most U.S. federal agencies), intramural credentialing is quite a long process involving corroboration of much 
identifying information.  The use of the ICAA, users without NASA credentials can specify a minimum of information 
(e.g., only a verifiable email address), which they can provide easily through a web browser, and gain almost 
immediate access to the GLDS.  Through use of the ICAA, the GLDS is able to recognize a lower level of confidence 
when authenticating extramural users, and implement appropriate access controls to some functions for these users 
(e.g., they may not join system administrator groups).  It seems reasonable to suggest that an additional principle be 
considered when designing FAIR data systems that have at least some functions requiring authentication or 
authorization (A1.2.1 in Table 2).  This principle, would stipulate that an integrated credentialing architecture, like 
that shown in Figure 3 be leveraged, in order to offer access to data to the widest number of users possible, when and 
where data policies permit such access.   

Most of the systems we assessed for FAIR compliance to A2 have some policy to retain at least some metadata when 
data are removed from the system. It is frequently unclear, however, which metadata were to be retained when data 

 

Figure 3. Use of an Integrated Credentialing and Authentication 
Architecture (ICAA) to comply with FAIR principle A.2.  The ICAA 
provides services and policies that use information from intra- and 
extra-mural credentialing services to authenticate users of a data 
system.   
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records are removed from the system. Data systems should ensure that policies for retaining metadata are clearly 
stated, including which metadata and for what period of time. 

Another factor that specifically affects accessibility to Big Data is data transport. Data to be used as inputs in Big Data 
systems, but which are not located in the same environment as executable code of the system, commonly must first 
be transported (duplicated or moved) to the environment first.  This environment typically is a user-specific 
workspace.  The transport process for Big Data can require minutes, hours or even days in some Big Data systems, 
and represents a significant barrier to efficient access. Designers of Big Data would benefit from a principle that 
stipulates the collocation within Big Data systems of data and executable code (A3 in Table 2).   

Interoperability 

I1 stipulates the “use a formal, accessible, etc. language for knowledge representation.  The draft metric for this 
principle requires that the language for data or metadata be available by URL, and have a BNF representation.  The 
comments on the metric suggest additional required language qualities, including that the language must have 
semantics (“[‘vanilla’] xml and json ..should fail”). While current knowledge representation languages such as RDF 
and OWL24 are available to generate metadata specifications with inherent semantics, tools that leverage such 
languages require some sophistication in their use. All the repositories we assessed have metadata specifications that 
do not have inherent semantics, and thus would not yield a Pass for this metric.  Metabolights and the GLDS both use 
the ISATab metadata specification, which can be converted to RDF, and so were rated with Partial Pass.  

The metric for principle I2 has a related requirement: that data systems use open, community-developed vocabularies 
for data and metadata, and that such vocabularies be more than simple keywords (i.e., include semantics in some 
form).  As the ISATab specification supported ontological lookup from such vocabularies, we again only rated 
Metabolights and the GLDS with Partial Pass, and the rest of the systems as FAIL. 

In addition to lack of experience with knowledge representation technologies like RDF and OWL, another likely 
reason for lack of compliance of the systems with I1 and I2 is a general lack of available semantic resources developed 
by the community to generate metadata specifications and vocabularies, particularly in more recent domains like 
genomics, proteomics and metabolomics.  We have ourselves sought such resources for use in the GLDS development, 
where we are seeking to provide users with omics data analysis capabilities, an omics “workbench” consisting of user-
specific workspaces and data access controls, together with access to a suite of omics analysis tools (see Figure 1b 
and Figure 1c).  Users of these tools will create data processing (analysis) workflows to transform input data into 
“higher-order” data products, which they will likely want to share with others and/or associate with the workflows 
and data inputs.  One of the challenges we have observed for making these kinds of processed information FAIR 
include a lack of semantic resources for creating metadata specifications for such processed data and the processing 
workflows that generate them.  While schemas like the Common Workflow Language25 (CWL) specification provide 
a method to represent and reproduce the mechanics of data processing, they lack domain-specific semantics regarding 
the nature of these data transformations (e.g., what are the goals of the transformation from a biological perspective? 
What are the biological data concepts produced in output files? how do these relate to input data elements? etc.).  
Without these descriptors, systems may not adequately index these processed data and workflows for discovery and 
retrieval.  While sophisticated users (e.g., trained bioinformaticians) who do encounter processed data and workflows 
may be able to understand and reuse them, others without domain-specific experience and knowledge of omics data 
processing may not.  A challenge for the GLDS will be to help spur the creation of community resources so that it can 
implement rich metadata for processed omics data and workflows in a timely fashion. 

The objective of the metric for principle I3 is to measure how much data in one system are linked semantically to data 
in other systems. It is not surprising that none of the data sources link data “out” to data in external systems in 
semantically qualified ways; this is a challenging objective for any data system.  (We ignored links to records that 
were merely duplicated between systems)  Manual linking of data requires subject matter expertise and can be time-
consuming for systems with many data records.  Automated linking requires that source and linked data both be 

Table 2. Additional principles for optimizing data accessibility 

A1.2.1 Authentication protocols should support multiple credential providers 
A3 Data transport should be minimized  

 



  

characterized semantically so that links may be inferred.  As mentioned above, semantic resources for characterizing 
omics data are by and large still forthcoming.  

Reusability 

R1 is referred to by the findability FAIR principle F2 (see above); at this time there is no metric specifically for R1.  
R1.1 requires data systems to provide licenses for data usage (and is curiously intended to facilitate “legal 
interoperability” rather than reusability26. All the data repositories we assessed are governmental entities, and as such, 
licensing is traditionally prohibited.     

R1.2 and R1.3 require that data are published together with provenance metadata, and that data and metadata conform 
to community-derived standards, respectively.  Such standards include taxonomies, ontologies and other vocabularies 
for metadata, and data and file formats.  The metric for R1.2 involves demonstration that a system can provide FAIR-
compliant citational and contextual provenance metadata.  While all the repositories provide such metadata, some do 
not use FAIR-compliant schemes for these metadata.  Similarly, most of the repositories assessed validate submitted 
metadata and data files against FAIR-schemes and formats.   

Summary of FAIRness Assessments 

There is quite some variability in FAIRness among the omics data systems we assessed using the 14 metrics.  The 
range of Pass ratings was 29-79% of metrics, Partial Pass 0-21%, and Fail 7-50%.  The range of overall FAIRness 
scores was 5-12.  The systems evaluated performed the best in the areas of data findability and accessibility, and worst 
in the area of data interoperability. 

Discussion 

The systems we assessed for FAIRness clearly have shortcomings, particularly in the area of supporting data 
interoperability. None of the systems currently use a metadata representation language with sufficient semantics.  In 
addition, none fully leverage FAIR vocabularies for metadata.  There are perhaps several causes at work for these 
observations.  There are often myriad vocabularies (ontologies) for metadata (each of which is a de facto community 
standard) even within a given biological sub-domain, and often much overlap in semantic content between them, 
creating the need for systems to be able to “normalize” input metadata across them somehow. For example, the concept 
of zero or very low-gravity experimental conditions appears in at least 5 different, widely-used biomedical 
vocabularies: SNOMED CT, MeSH, Read Codes Clinical Terms, Psychology Ontology, PLOS Thesaurus, and FAST 
Topical Facet, with varying language for the concept (“weightlessness” vs. “zero gravity”).  True semantic 
interoperability and data reusability that would permit a user to find all data in tagged with this concept require either 
that all these concept instances be individually associated with the data, or use of a system that reliably maps all the 
concepts from these ever-changing, ever-expanding set of ontologies. Even if such metadata normalizing mechanisms 
are developed, their performance and value in generating “rich” metadata is dependent on the quality of input concepts 
supplied either by original data submitters or biodata curators (typically employed by the system).  The expertise that 
submitters have is critical to shaping metadata that have value for many different kinds of audiences, and that allow 
associated data to be found and reused.  In the biomedical field, submitters to shared data repositories have relatively 
low motivation to go to any great lengths to provide “rich metadata” (or assist biocurators in generating them).  This 
is likely due, at least in part, to the fact that only a small fraction of shared data appears to be cited in publication 
references when they are reused.27  Without their input, niche repositories and data systems, like the GLDS, with 
limited resources for acquiring (and maintaining) rich metadata that meet all the criteria above must constantly trade 
the use of resources to acquire or generate rich metadata with those that could be used for other worthy goals.    

The findability and interoperability principles, when implemented in data systems, support data integration functions 
like multi-source data querying and retrieval.  Principles F2, I1, I2, and R1.3 require the use of community-developed 
metadata standards, formal languages for metadata representation, FAIR vocabularies, and qualified references to 
other data.  These principles are unfortunately not yet widely or fully implemented across biomedical data systems, 
making it difficult for systems to develop functions that integrate data semantically.  To illustrate this, we examine 
our own experience developing the GLDS to provide federated search and retrieval of omics data from several data 
sources. We sought to import metadata records from three open-access data systems into our own metadata warehouse: 
the National Center for Biotechnology Information’s Gene Expression Omnibus (GEO), the European Bioinformatics 
Institute’s PRoteomics IDEntifications (PRIDE) repository, and the Argonne National Laboratory’s Metagenomics 
Analysis server (MG-RAST).  Each of these systems defines metadata for omics data sets differently, but none of 
them make these schemas available in a formal semantic language format (such as RDF or OWL). Furthermore, there 
are no existing maps of any of the metadata schemas to each other.  As such, we resorted to manually creating semantic 



  

maps of these schemas for use in our system; queries generated via the GLDS or its RESTful search API are executed 
against the mapped schema concepts, and matching records are shown in a common object model representation 
(Figure 4).  While this approach met our immediate goals of allowing users to query several data sources using our 
system, it required a good deal of resources and domain expertise to develop a schema mapping.  Furthermore, 
maintaining this mapping over time as each of the data sources inevitably change will require more of our limited 
resources.  The research community should recognize the value of federated system functions like the querying 
function that the GLDS offers, and urge all open access repositories and data systems to make their metadata schemas 
available to all according to the aforementioned FAIR principles.  
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