
Mission Control
Technologies
Empowering users

by Jay Trimble, NASA Ames Research Center
Tom Dayton, UARC at NASA Ames Research Center

Alan Crocker, NASA Johnson Space Center

Monday, March 10, 14

https://ntrs.nasa.gov/search.jsp?R=20180007632 2019-08-31T17:12:13+00:00Z

Project Summary

• Purpose of the project

• Goals and Objectives

• Timeline

Monday, March 10, 14

Project Summary

• The Core Issues

• Mainstream software technology
built and distributed as monolithic
applications

• For users, this creates artificial
packaging of functionality

• This adversely affects NASA
mission operations, constraining
flight controllers by technology
limits, rather than operational
tasks

• It also creates heterogeneous
environments that put the users
in the role of software integrators http://youtu.be/_etDYWy9v2s

Monday, March 10, 14

http://youtu.be/_etDYWy9v2s
http://youtu.be/_etDYWy9v2s

Project Summary

• To address the problems we built a
new software framework, Mission
Control Technologies (MCT)

• MCT provides users with an
environment populated with “live”
composable user-objects, from
which they may assemble their
own software

• Eliminate artificial software
boundaries that put users in the
role of software integrators

Compositions Instead of
Applications

Monday, March 10, 14

Timeline

The idea - Mars Rover Training,
users request interoperability not

possible with monolithic apps

2001 2003 2005 2007

First design sessions with users,
prototype test in mission control

test facility, user surveys

2008

Project
go-ahead

2009 2010 2011 2012

Operational
Certification

Exploratory workshop with
industry, including OpenDoc

and CUA user experience leads/
architects

First prototype
component

model
demonstrated

1st user-ready delivery/ongoing
iterative design with users

Formal
Testing

First user
measurements
with product in

operational environmentFirst Compositions/User
Feedback

Monday, March 10, 14

Stakeholders

Director, Mission Operations
NASA Johnson Space Center
Safe, successful, cost effective
Mission operations

Space Station Mission
Controllers
NASA Johnson Space Center
Minimal operational disruptions
Safe missions
Some want new software, some
don’t

Principle Investigator
NASA Ames
Replace monolithic apps
with user composable
objects, update mission
control

Mission Operations Chief
Engineer
NASA Johnson Space Center
Safe, successful, cost effective
Mission operations

User Experience Team
NASA Ames
Make object oriented composable
GUI style mainstream, make great
software for the users

Mission Control Facilities Team
Working mission control center
for mission controllers, IT
security and operations

Monday, March 10, 14

Project Requirements

• Business Marketing

• Salability

• Functional

• Technical

• Organizational

• Customer

• Usability

• Others

Monday, March 10, 14

Business/Marketing

• Replace existing
multitude of
heterogeneous apps

• Save software
sustaining costs

• Believed by users, but
not quantifiable, that
significant benefits to
operations emerge
with use

http://youtu.be/s3nb7Opjzsg

Monday, March 10, 14

http://youtu.be/s3nb7Opjzsg
http://youtu.be/s3nb7Opjzsg

What Sold the Project
• Management

• Reduced sustaining costs, software modernization, inter-center NASA
collaboration

• A fundamental change in how operational displays are certified for use. Current
practice requires every display to be certified. There is no object reuse. The
MCT object model will allow certification of objects, which need only be done
once. Objects may then be reused.

• Management believed that the power for users to compose their own software
had significant potential benefits. However, since those were not quantifiable
they were not part of the business case

• Users

• The power to compose your own software, empowerment, build your own
displays

Monday, March 10, 14

Organizational

• The customer must be able to take over
maintenance of the software

• Do not incur new significant training requirements
on users

• Do not force re-authoring of already existing
content

• Do not incur new risks on existing host facilities

Monday, March 10, 14

Customer

• Provide a user interface that conforms to
customer’s cultural norms but is significantly
more usable than current tools.

• Same look and feel

• More bells and whistles

• Do not incur new risks on existing host facilities

Monday, March 10, 14

The Conundrum

• The customer expects a new product with new
capability.

• Yet they want it to look just like their old
capability. The first action is often to rebuild
exactly what they already had in their legacy
products

• Over time, and with ongoing use, they become
more open to new features.

Monday, March 10, 14

HCI Best Practice Solution

• Project Narrative

Monday, March 10, 14

Methods used and how

• Research

• Design

• Development

• Deployment

• Product lifecycle

Monday, March 10, 14

Research

• Research ethnography
provided an overview
of mission control
center disciplines and
issues

• The data helped to
select focus areas for
software design and
development http://youtu.be/lEmPFx_mpaY

Monday, March 10, 14

http://youtu.be/lEmPFx_mpaY
http://youtu.be/lEmPFx_mpaY

Participatory Analysis, Design & Assessment

• Customers are part of the
design team

• Use customer domain
expertise

• Shared ownership of the
design

http://youtu.be/Oe5rpE2mA6I

Monday, March 10, 14

http://youtu.be/Oe5rpE2mA6I
http://youtu.be/Oe5rpE2mA6I

Two Teams Become One

• The tangible output from participatory design
is a series of artifacts

• Perhaps as important, the method built a joint
team out of what began as two separate teams

• We developed a shared mental model and a
common language

• For the users, who were experts at
performing their tasks, but not creating explicit
representations, they saw their job in a new
way, with new possibilities

Monday, March 10, 14

Design Artifacts

• Triggers

• Task Flows

• Blue sky

• Real world

Monday, March 10, 14

Design Artifacts

• Task Objects

• User Objects

• Windows

Monday, March 10, 14

Design is Not Enough
• Designing a great product with users is

meaningless if it cannot be built

• We developed a three-week agile user-centered
delivery cycle, with our customer being a key
part of the flow

• This enabled our small team to focus on the
highest priorities, and to quickly react to
customer inputs

• Minimal lag between design and customer hands
on experience with the deployed features

Monday, March 10, 14

Agile User-Centered Development Process

User Feedback

3 Weeks Iteration n

Daily iteration n
Build to
Customer

Test
Feature mods/additions,
bug fixes

Optional Mid-Iteration
Hackathon tests big
features

Pre-Ship
Hackathon

Priorities/JIRA
Rankings

Nightly Build/Internal testing as features roll out

Coding

Issue Tracking Updates/Priorities/Rankings
UE & Tech Spec dates driven by coding dependencies

Deliver
to customer

Agile Development Iteration

Code Freeze
(-3 days)

Feature
Freeze
(-7 days)

Customer triages
issues it discovered

Customer
acceptance test

Customer verification
of closed JIRA issues

Customer
installs
iteration n-1

Optionally, hot
patch

Iteration n+1

Start 24 hour test (-2 day)

• Continuous
customer feedback/
nightly build

• Just in time user
experience specs

• QA verification with
feature rollout

• Feature closure
upon customer
acceptance

Monday, March 10, 14

Participatory Design + Agile

• Agile and participatory design work together

• Strategically plan the design cycles so that design specifications
are ready when they are needed by developers - this means
planning months ahead

• Design ahead - use “gap” times, such as engineering focused
iterations, to begin long lead design cycles

• We abandoned big design specs. The designers linked individual
specifications to developer issues in the team issue tracking
system

• The developers set due dates for design specs - a design spec
was due when the developer needed it for start of coding

Monday, March 10, 14

Participatory Design + Agile

• Participatory Design and Agile both facilitated close customer
participation, but on different timescales

• Through agile, and the availability of the nightly build, our users
would run new versions of the software almost every day

• The customer used the nightly builds to provide constant
feedback, thus they were a core part of feature development,
validation and design

• Feedback from the nightly build was often spontaneous - the
customer would call when they had an input, or the designers
and developers would initiate calls when they had questions

Monday, March 10, 14

Participatory Design + Agile

• Participatory Design, like agile, incorporated the
customer as part of the design team

• Unlike agile, which had us talking to the customer
daily, through an ongoing feedback loop that was
initiated by either party spontaneously, the design
cycles were planned based on the strategic road map

• Design sessions typically lasted several days and
focused on a small number of features in detail

Monday, March 10, 14

Participatory Design + Agile

• The design sessions set joint expectations among
customer and developer for what we would see
when each feature rolled out

• Customers first saw features in the nightly builds

• By the time a feature was officially delivered, in an
iteration or a release, the customer was familiar
with it both from their participation in design
sessions and the nightly builds

Monday, March 10, 14

Participatory Design + Agile

• Constantly showing the product, every day, and always using the
product hands on, drives everyone to improve it

• Agile facilitates fast reaction to customer feedback

• The customer saw our product on three timescales

• Nightly Build

• Three-week iterations

• Twelve-week Release

• These multi-faceted interactions with different cycles, each with
it’s own set of expectations, forced all of us to make the product
better

Monday, March 10, 14

User Objects not Widgets
• User Objects

• Representations of real-
world domain objects

• View the same thing in
different ways

• Shareable

• Composable entities

• “Live”

• Consistent behavior

Monday, March 10, 14

The Product

• Everything is a
user-object

• Objects may be
groups into
collections

• Collections are
user-objects

http://youtu.be/9YxOqIw2NME

Monday, March 10, 14

http://youtu.be/9YxOqIw2NME
http://youtu.be/9YxOqIw2NME

The Power of Objects
• This notebook

is a user-object,
with embedded
text and
telemetry
objects

• The same thing
is shown in two
views -
notebook and
timeline

Monday, March 10, 14

End User Composition

http://youtu.be/yBGhOh_MTME

• This multi-domain
composition
contains multiple
user-object types

• Each object may be
viewed and
manipulated
independently
within the
composition

Monday, March 10, 14

http://youtu.be/yBGhOh_MTME
http://youtu.be/yBGhOh_MTME

Data

• A core project assertion that was not quantifiable at
inception, was that we could significantly reduce the
time it took flight controllers to build displays, or to
modify existing displays

• Upon delivery of a usable product we were able to
measure the number of steps and time to build
displays with users in context in their work
environment

Monday, March 10, 14

Data Display Build Steps and Time

Legacy MCT

Steps 20 8
Manual	 data	 entries 5 1

External	 tools	 used 1 0

Bu
ild

Te
st

Bu
ild

Te
st

Process	 steps
Steps	 required	 to	 build	 and	 test	 a	 display

Process	 6me
Time	 required	 to	 build	 and	 test	 a	 display

Legacy MCT

Minutes	 to	 complete 65 6

90%	 reduc6on	 in	
6me

60%	 reduc6on	 in	
steps

80%	 reduc6on	 in	
manual	 entry
Manual	 data	 entry	 is	 the	 primary	
source	 of	 errors	 /	 risk.	 	

Monday, March 10, 14

http://upload.wikimedia.org/wikipedia/commons/0/02/Analogue_clock_face.svg
http://upload.wikimedia.org/wikipedia/commons/0/02/Analogue_clock_face.svg
http://upload.wikimedia.org/wikipedia/commons/0/02/Analogue_clock_face.svg
http://upload.wikimedia.org/wikipedia/commons/0/02/Analogue_clock_face.svg
http://upload.wikimedia.org/wikipedia/commons/0/02/Analogue_clock_face.svg
http://upload.wikimedia.org/wikipedia/commons/0/02/Analogue_clock_face.svg
http://upload.wikimedia.org/wikipedia/commons/0/02/Analogue_clock_face.svg
http://upload.wikimedia.org/wikipedia/commons/0/02/Analogue_clock_face.svg
http://upload.wikimedia.org/wikipedia/commons/0/02/Analogue_clock_face.svg
http://upload.wikimedia.org/wikipedia/commons/0/02/Analogue_clock_face.svg
http://upload.wikimedia.org/wikipedia/commons/0/02/Analogue_clock_face.svg
http://upload.wikimedia.org/wikipedia/commons/0/02/Analogue_clock_face.svg
http://upload.wikimedia.org/wikipedia/commons/0/02/Analogue_clock_face.svg
http://upload.wikimedia.org/wikipedia/commons/0/02/Analogue_clock_face.svg
http://upload.wikimedia.org/wikipedia/commons/0/02/Analogue_clock_face.svg
http://upload.wikimedia.org/wikipedia/commons/0/02/Analogue_clock_face.svg
http://upload.wikimedia.org/wikipedia/commons/0/02/Analogue_clock_face.svg
http://upload.wikimedia.org/wikipedia/commons/0/02/Analogue_clock_face.svg
http://upload.wikimedia.org/wikipedia/commons/0/02/Analogue_clock_face.svg
http://upload.wikimedia.org/wikipedia/commons/0/02/Analogue_clock_face.svg
http://upload.wikimedia.org/wikipedia/commons/0/02/Analogue_clock_face.svg
http://upload.wikimedia.org/wikipedia/commons/0/02/Analogue_clock_face.svg

Challenges

• Technical

• Team

• Stakeholder

• Other constraints

Monday, March 10, 14

Technical Challenges

• The component model to facilitate end user
composability was too complex for developers and
used non-standard technology

• Addressed by simplification of the component
model

• Focus on core requirements, eliminate unneeded
features

• Required use of standard technologies, Java/Swing

Monday, March 10, 14

Technical Challenges

• Initial product performance was unacceptable, too
many features added too fast, buggy

• Developed an agile user-centered development
process

• We found that process dictums can go
unheeded. To succeed a new process required
either automation or socialization within the
team

Monday, March 10, 14

Team Challenges

• The designers and developers were not communicating
effectively, causing development effort to be spent
building the wrong things

• Addressed by: Shared lab space, emphasis on social
skills and team compatibility in hiring

• Daily communication with agile development cycles

• Developers must be part of the participatory design
process, even if it seems that resources don’t permit it,
you’ll pay more later if developers are not part of
design from inception

Monday, March 10, 14

Stakeholder Challenges

• Many of our stakeholders did not understand
software design and development.

• A significant number of users resented the idea of
replacing their existing applications

• Users were concerned about losing the
functionality of their existing applications

Monday, March 10, 14

Other Constraints

• There was an ongoing mismatch between project
budget and project scope

• The constant threat of cancellation often resulted
in mitigation strategies rather than development
strategies

• The stakeholder requirements changed over time,
causing delays

Monday, March 10, 14

Results of your teams efforts: The Bad

• The tightly integrated developer/customer team
exacerbated a pre-existing polarization that pitted
those who wanted new software “against” those
who did not.

• Our deploy early and often model was
incompatible with the broader user groups mental
model of users not seeing the software until the
final product.

Monday, March 10, 14

Results of your teams efforts: The Bad

• Ongoing difficulties in educating the community of
stakeholders who participated occasionally and
who’s pre-existing beliefs influenced their
perception as much or more than the real product

Monday, March 10, 14

Results of your teams efforts: The Good

• A breakthrough product providing end user
empowerment

• Democratization of end user software

• The potential to change the relationship between
users and IT by allowing IT to provide a certified
environment that users may configure without IT
support

Monday, March 10, 14

Results of your teams efforts: The Good

• Through participatory design and agile development
we built a unified team composed of the designers,
developers and users.

• A user object model in which objects behave as
consistent representations of their real world domain
object counterparts - these are not widgets

• We successfully built a modular user-composable
software architecture that was certified for
operations for the International Space Station Mission
Control Center

Monday, March 10, 14

References

• Participatory GUI Design From Task Models, Tom Dayton, Joseph
Kramer, Al McFarland, Monica Heidelberg, CHI 96

• Bridging User Needs to OO GUI Prototype Via Task Object Design,
Tom Dayton, Al McFarland, Joseph Kramer, User Interface Design:
Bridging the Gap from Requirements to Design, CRC Press, 1998

• Agile Development Methods for Space Operations, Jay Trimble, Chris
Webster, Spaceops 2012, American Institute of Aeronautics and
Astronautics

• From Traditional, to Lean, to Agile Development: Finding the Optimal
Software Engineering Cycle, Jay Trimble, Chris Webster, Hawaii
International Conference on System Sciences, January 2013

• UARC Frontiers of Science, http://128.114.198.239/packages/5

Monday, March 10, 14

http://128.114.198.239/packages/5
http://128.114.198.239/packages/5

