

Component Specific Environmental Conversion Factors

RAM XI Training Summit October 2018 Aaron Young, QD35, Bastion Technologies, Inc. Frank Hark, QD35, Bastion Technologies, Inc. Spence Hatfield, QD22, Bastion Technologies, Inc.

- Spacecraft face the unique challenge of experiencing several different environments (e.g. temperature, pressure, gravitational forces) over the course of a single mission.
- Risk and reliability analyses must consider the period of performance within and the impacts of each environment to the mission.
- Unfortunately data for operating environments of interest is often unavailable for the operating environment.
- Therefore it is common practice in reliability analyses to refer to a handbook (e.g. MIL-HBK-338B) to provide guidance and environmental conversion factors for electrical components to apply data across multiple environments.
- However due to the wide range of differences between mechanical and electrical components, using a standard set of environmental conversion factors for all components could result in over- or underestimating the reliability for components based on their sensitivity to various environments.

The Environments

- The three commonly recognized environments that a spacecraft must undergo over the course of a mission are on-pad, ascent (through atmosphere), and space operations.
- Depending on the environment, the impact of natural and induced factors vary in their effect on a given component's reliability.

NATURAL		INDUCED					
Clouds	Rain	Acceleration					
Fog	Salt Spray	Electromagnetic, Laser					
Freezing Rain	Sand and Dust	Electrostatic, Lightning					
Frost	Sleet	Explosion					
Fungus	Snow	Icing					
Geomagnetism	Hail	Radiation, Electromagnetic					
Gravity, Low	Ice	Radiation, Nuclear					
Temperature, High	Wind	Shock					
Temperature, Low		Temperature, High, Aero. Heating					
Humidity, High		Temperature, Low, Aero. Cooling					
Humidity, Low		Turbulence					
Ionized Gases		Vapor Trails					
Lightning		Vibration, Mechanical					
Meteoroids		Vibration, Acoustic					
Pollution, Air							
Pressure, High							
Pressure, Low							
Radiation, Cosmic, Solar							
Radiation, Electromagnetic							

Military Handbooks

- MII-HDBK-217F provides environmental tables for converting the provided failure rate point estimate from one environment to another, but does not estimate the uncertainty associated with this conversion.³
- Using a microelectronic part-type as an example, the environmental factor (π_E) conversion formula was first derived from the failure rate (λ_p) reference
 - $\lambda_P = (C_1 \pi_\mathrm{T} + C_2 \pi_E) \pi_Q$
 - C_1 is the circuit complexity, C_2 is the packaging complexity
 - π_{T} is the component joint temperature factor, π_{Q} is the component quality factor
 - π_L is the learning factor (assumed 1 by the handbook)
- Solving for π_{E} , the equation becomes

 $\pi = \frac{\left(\frac{\lambda_p}{\pi_Q}\right)_{-}C_1\pi_{\mathrm{T}}}{C}$

- MIL-HBK-338B provides guidance to determine an electrical component's reliability by evaluating performance shaping factors, including environmental factors.
- Table 10.3-3 provides a conversion factor to apply to a failure rate when transitioning from one environment to another.

	To Environment												
		GB	$\mathbf{G}_{\mathbf{F}}$	$\mathbf{G}_{\mathbf{M}}$	N_S	N_U	AIC	AIF	AUC	AUF	ARW	$\mathbf{s_F}$	
	GB	x	0.5	0.2	0.3	0.1	0.3	0.2	0.1	0.1	0.1	1.2	
	$\mathbf{G}_{\mathbf{F}}$	1.9	x	0.4	0.6	0.3	0.6	0.4	0.2	0.1	0.2	2.2	
	$\mathbf{G}_{\mathbf{M}}$	4.6	2.5	x	1.4	0.7	1.4	0.9	0.6	0.3	0.5	5.4	
From	$\mathbf{N}_{\mathbf{S}}$	3.3	1.8	0.7	x	0.5	1.0	0.7	0.4	0.2	0.3	3.8	
Environment	$\mathbf{N}_{\mathbf{U}}$	7.2	3.9	1.6	2.2	x	2.2	1.4	0.9	0.5	0.7	8.3	
	AIC	3.3	1.8	0.7	1.0	0.5	x	0.7	0.4	0.2	0.3	3.9	
	AIF	5.0	2.7	1.1	1.5	0.7	1.5	x	0.6	0.4	0.5	5.8	
	AUC	8.2	4.4	1.8	2.5	1.2	2.5	1.6	x	0.6	0.8	9.5	
	AUF	14.1	7.6	3.1	4.4	2.0	4.2	2.8	1.7	x	1.4	16.4	
	A _{RW}	10.2	5.5	2.2	3.2	1.4	3.1	2.1	1.3	0.7	x	11.9	
	$\mathbf{s_F}$	0.9	0.5	0.2	0.3	0.1	0.3	0.2	0.1	0.1	0.1	x	

TABLE 10.3-3: ENVIRONMENTAL CONVERSION FACTORS (MULTIPLY SERIES MTBF BY)

Databases (Historical Experience)

- The Nonelectric Part Reliability Data (NPRD-2016)⁵ and the Electric Part Reliability Data (EPRD-2014)⁶ provide one of the largest existing general collections of failure data today.
- By comparing the failure rates for the same component in different environments, it is possible to generate an environmental conversion factor for that given component based on historical experience.
- The resulting environmental conversion factor will then be compared to the value within MIL-HBK-338B.

- Ground Rules & Assumptions
 - Only Military Grade equipment are considered in this evaluation.
 - Any data used in the evaluation must have at least 100,000 hours of operating experience and at least 1 failure.
 - Since data is often provided in the context of an Airborne Uninhabited (AUF) environment, the cases evaluated will be limited to conversions between the AUF and Space Flight (SF) and the AUF to Ground Mobile (GM) environments.
- Limitations
 - Data pertaining to components operating in a space flight environment is limited, thus reducing the possible number of comparisons.
 - Data does not account for specific manufacturing processes.

- The following table is a comparison of components operating within the AUF and GM environments.
 - The conversion factor from AUF to GM is 3.1.

	Туре	Airborne Uninhabited (AUF) Environment				Ground I	Mobile (G	M) Environn		% Difference	
Component		Failure Rate (per million hours)	Failures	Data Time (hrs)	Data Source	Failure Rate (per million hours)	Failures	Data Time (hrs)	Data Source	Demonstrated Conversion Factor	Between MIL-338B (Demonstrated/MIL- 338B)
Circuit Card	Electrical	0.81	33	40,739,000	17718-000	0.03	1	30,420,000	17718- 000	24.64	694.88%
Connector	Electrical	1.07	40	37,229,582	265827- 000	0.31	2	6,404,060	14851- 000	3.44	10.98%
Power Transmitter	Electrical	5.41	12	2,217,000	16953-000	0.44	7	15,774,000	NPRD- 106	12.20	293.46%
Relay	Electrical	3.49	20	5,727,628	265827- 000	1.38	9	6,528,340	23037- 000	2.53	-18.29%
Switch	Electrical	17.09	6	351,096	23035-000	17.48	23	1,315,971	23037- 000	0.98	-68.46%
Transformer	Electrical	0.70	6	8,591,442	265827- 000	0.21	2	9,606,090	14851- 000	3.35	8.20%

- The following table is a comparison of components operating within the AUF and GM environments.
 - The conversion factor from AUF to GM is 3.1.

Component	Туре	Airbo	rne Uninh Enviror	nabited (A nment	UF)	Ground M	lobile (GN	1) Environ	Domonstrated	% Difference	
		Failure Rate (per million hours)	Failures	Data Time (hrs)	Data Source	Failure Rate (per million hours)	Failures	Data Time (hrs)	Data Source	Conversion Factor	338B (Demonstrated /MIL-338B)
Actuator	Mechanical	48.13	76	1,579,000	16953- 000	2.21	1	453,000	10812- 000	21.80	603.34%
Filter	Mechanical	8.55	1	117,000	16953- 000	2.75	14	5,098,000	NPRD- 106	3.11	0.40%
Generator	Mechanical	256.41	60	234,000	16953- 000	18.87	2	106,000	NPRD- 095	13.59	338.38%
Heat Exchanger	Mechanical	13.31	6	450,900	13514- 000	0.69	3	4,354,000	NPRD- 106	19.31	522.98%
Valve (Hydraulic)	Mechanical	104.11	147	1,412,000	16953- 000	14.42	3	208,000	NPRD- 095	7.22	132.84%

AUF to SF Comparison

- The following table is a comparison of components operating within the AUF and SF environments.
 - The conversion factor from AUF to SF is 16.4
 - Lack of data in the space flight environment results in limited comparisons.

		Airborne l	d (AUF) Env	vironment	Spa	ice Flight (S		% Difference				
Component	Туре	Failure Rate (per million hours)	Failures	Data Time (hrs)	Data Source	Failure Rate (per million hours)	Failures	uilures Data Time Data Conversion (hrs) Source Factor		Demonstrated Conversion Factor	Between MIL- 338B (Demonstrate d/MIL-338B)	
Relay	Electrical	3.491847	20	5,727,628	265827-000	0.714796	2	2,798,000	10219-034	4.89	-70.21%	
Switch	Electrical	17.089343	6	351,096	23035-000	0.418235	1	2,391,000	NPRD-106	40.86	149.15%	
Generator	Mechanical	256.410256	60	234,000	16953-000	1.223446	11	8,991,000	NPRD-056	209.58	1177.93%	

- When comparing the conversion factor based on demonstrated data against the conversion factor in the handbook, applying a conversion factor intended for electrical components to mechanical components results in under- and over-estimating the risk contribution.
 - Potential significant reliability assessment impacts (i.e. single point failures)
 - Furthermore, historical experience reveals a wide variance in environmental conversion factors on a component by component basis.
- Implementing component specific environmental conversion provides a path forward to aptly estimate the reliability rates for components operating across multiple environments.
 - However, in order to do so, more work needs to be performed into gathering component reliability data across the operating environments.

- 1. <u>https://www.navsea.navy.mil/Portals/103/Documents/NSWC_Crane/S</u> D-18/Test%20Methods/MILHDBK338B.pdf
- 2. <u>https://pdfs.semanticscholar.org/b658/f300dd0f46cc746a7de31f1d21b</u> 341894619.pdf
- 3. Source Data Impacts on Epistemic Uncertainty for Launch Vehicle Fault Tree Models. Mohammed Hassan, Steven Novack, Rob Ring.
- 4. <u>https://www.nasa.gov/sites/default/files/files/NP-2015-03-015-JSC_Space_Environment-ISS-Mini-Book-2015-508.pdf</u>
- 5. NPRD-2016
- 6. EPRD-2014
- 7. <u>https://open.nasa.gov/blog/being-the-nasa-trajectory-analyst-for-the-launch-vehicle-on-mars-science-lab-2/</u>