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Abstract

A computational micromechanics (CMM) model is employed to interrogate the as-
sumptions of a recently developed mesoscale continuum damage mechanics (CDM)
model for fiber kinking. The CMM model considers an individually discretized three
dimensional fiber and surrounding matrix accounting for nonlinearity in the fiber,
matrix plasticity, fiber/matrix interface debonding, and geometric nonlinearity. Key
parameters of the CMM model were measured through experiments. In particular,
a novel experimental technique to characterize the in situ longitudinal compressive
strength of carbon fibers through indentation of micropillars is presented. The CDM
model is formulated on the basis of Budiansky’s fiber kinking theory (FKT) with a
constitutive deformation-decomposition approach to alleviate mesh size sensitivity.
In contrast to conventional mesoscale CDM models that prescribe a constitutive
response directly, the response of the proposed model is an outcome of material
nonlinearity and large rotations of the fiber direction following FKT. Comparison
of the predictions from the CMM and CDM models shows remarkable correlation in
strength, post-peak residual stress, and fiber rotation, with less than 10% difference
between the two models in most cases. Additional comparisons are made with sev-
eral fiber kinking models proposed in the literature to highlight the efficacy of the
two models. Finally, the CMM model is exercised in parametric studies to explore
opportunities to improve the longitudinal compression strength of a ply through the
use of nonconventional microstructures.
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List of Symbols

In general, the superscripts f , m, c are referred to quantities of the fiber, matrix,
and fiber/matrix cohesive interface respectively. Whereas the subscripts t, c indicate
tensile and compressive quantities.

Af Cross sectional area of a fiber
b Transverse length of fiber misalignment in a ply
cf Nonlinear parameter of the longitudinal elastic modulus, fiber
cl Nonlinear parameter of the longitudinal elastic modulus, ply
C Elastic stiffness tensor
CT Tangent constitutive tensor
d Fiber diameter
dp Micropillar diameter
dv Diameter of the channels or “islands” of hollow fibers
D Damage variable for failure of the fiber
êf , ên, êt Unit vector for the current directions in the fiber-aligned reference frame
E∗1 Longitudinal elastic modulus of the ply (nonlinear model)

E0f
1 Initial longitudinal elastic modulus of the fiber for the nonlinear model

E1, E2, E3 Elastic moduli of the ply
Ef Elastic modulus of the fiber

Ef1 , E
f
2 Longitudinal and transverse elastic moduli of the fiber

Em Elastic modulus of the matrix
E Green-Lagrange strain tensor
fCL Constitutive law relating shear strain to shear stress
F1+, F1− Damage activation functions under longitudinal tension and compression
FTOL Maximum change in volume allowed
F Deformation gradient
Fkb Deformation gradient for the kink band region
Fm Deformation gradient for the undamaged material region
G12, G13, G23 Shear moduli of the ply

Gf12, G
f
23 Longitudinal and transverse shear moduli of the fiber

Gft , G
f
c Fracture energy of the fiber under longitudinal tension and compression

Gm Shear modulus of the matrix
Gm2D Equivalent shear modulus in a 2-D micromechanical model
Gmt Fracture energy of the matrix under uniaxial tension
Gcn, G

c
s Interface Fracture energies for modes I and II

hp Micropillar height
H Compliance tensor of a ply
I Identity tensor

Ifx Second moment of inertia of the cross section of the fiber

If0
x Second moment of inertia of the cross section of a circular fiber
k0 Linear elastic stiffness during the micropillar compression test
kcn, k

c
s Penalty stiffness in the normal and shear directions of the interface

l1, l2, l3 Element edge lengths
L Length of the fiber
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M Damage evolution tensor
nNR Number of Newton-Raphson iterations
nmax Maximum number of Newton-Raphson iterations allowed
N c Normal tensile strength of the interface
r1+, r1− Elastic domain thresholds under longitudinal tension and compression
R Current misaligned reference frame
Rϕ0 Rotation matrix for the initial fiber misalignment
S Second Piola-Kirchoff stress tensor

S
′

Second Piola-Kirchoff stress tensor in the fiber-aligned reference frame
Sc Shear strength of the interface

Sf Compliance tensor of the fiber
tn, ts, tt Components of the traction vector
tkb Stress vector in the kink band region
tm Stress vector in the undamaged material region
tm Thickness of the matrix in a 2-D micromechanical model
tres Stress vector defining the residual to be minimized
u Displacement
V f Fiber volume fraction

V f
2D Equivalent fiber volume fraction in a 2-D micromechanical model
V m Matrix volume fraction
V v Void volume fraction
wkb Width of the kink band
wkb Relative kink band size
x Through-the-thickness direction
x1, x2 Longitudinal and transverse direction of a ply
x Current configuration
xkb Current configuration of the kink band region
xm Current configuration of the undamaged material region
X Reference frame

X
′

Fiber-aligned reference frame
Xc Compressive strength of a ply

Xf
t , X

f
c Strength of the fiber under longitudinal tension and compression

y Transverse direction
y0 Initial transverse imperfection
ȳ0 Parameter that defines the initial imperfection of the fiber
z Longitudinal direction (parallel to the fibers)
α Material parameter of a Ramberg-Osgood nonlinear curve

αf1 Coefficient of thermal expansion of the fiber in the longitudinal direction

αf2 Coefficient of thermal expansion of the fiber in the transverse direction
αm Coefficient of thermal expansion of the matrix
αR Coefficient of Rayleigh damping
β Kink band inclination
γ Shear strain
γ12 Shear strain in the 1-2 plane
γEL12 , γ

PL
12 Elastic and plastic shear strains in the 1-2 plane
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γC Critical shear strain
γY Shear yield strain
γTOL Maximum shear strain allowed
∆T Change in temperature
∆ε Strain increment tensor
ε Strain tensor
ε̇ Strain rate
εc Compressive strain
η Material parameter of a Ramberg-Osgood nonlinear curve
ηBK Benzeggagh-Kenane mode-mixity parameter
θp Taper angle of the micropillar
ν12, ν13, ν23 Poisson ratios of the ply

νf12, ν
f
23 Longitudinal and transverse Poisson ratios of the fiber

νm Poisson ratio of the matrix
ξc Friction coefficient of the fiber/matrix interface
ρ Density
ρ̃ Apparent density of hollow fiber composite
σ Nominal stress tensor
σ̃ Effective stress tensor
σc Compressive stress
σf Stress in the fiber
σr Residual crushing stress during fiber kinking
σmt0 Uniaxial tensile strength of the matrix
σmc0 Uniaxial compressive yield strength of the matrix
σmcu Uniaxial ultimate compressive strength of the matrix
σ Cauchy stress tensor
σm Cauchy stress tensor in the undamaged material region
σkb Cauchy stress tensor in the kink band region
τ Shear stress
τY Shear yield limit of a perfectly-plastic constitutive model
τYm Shear yield limit of the matrix
τL Shear stress at large fiber rotations
τu Material parameter of a hyperbolic tangent nonlinear curve
τµ Frictional shear stress
φ1+, φ1− Loading functions under longitudinal tension and compression
ϕ Fiber rotation
ϕ0 Initial fiber misalignment
ϕc Critical initial fiber misalignment
ϕ̃0 Standard deviation of the initial fiber misalignment distribution in a ply
ϕmax Maximum fiber rotation, micromechanical model
ϕavg Average fiber rotation, micromechanical model
ϕff Angle of fibers at fiber fracture
ϕk Angle of kinked fibers
χ Dimensionless constant that characterizes the compressive strength
ψm Dilation angle of the matrix
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> Transpose operator

Abbreviations:

CDM Continuum damage mechanics
CFRP Carbon fiber reinforced plastic
CMM Computational micromechanics
DGD Deformation gradient decomposition
EPP Elastic-perfectly plastic
FE Finite element
FIB Focused ion beam
FKT Fiber kinking theory
PBC Periodic boundary conditions
RVE Representative volume element
SEM Scanning electron microscopy
SFT Single fiber test
VUMAT Abaqus/Explicit user-defined material subroutine
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1 Introduction

Fiber-reinforced polymers are often used in structural applications where high spe-
cific stiffness and strength properties are required. One of the main drawbacks of
these materials is their complex mechanical behavior, due to their anisotropy and
heterogeneity. At the same time, their high degree of customization makes their ex-
perimental characterization very costly. As such, computational mechanics appears
as a promising tool to predict the structural response to complement experimental
characterization.

The strong anisotropy and heterogeneity of unidirectional fiber-reinforced com-
posites lead to very different failure mechanisms depending on the load state. In
this work, the fiber kinking phenomenon, which is the primary failure mechanism
when the fibers are loaded under longitudinal compression, is considered [1]. Numer-
ous examples of the fiber kinking mechanism are found in the literature, e.g. [2–7].
Fiber kinking takes place in most high fiber volume fraction composite materials.
As compressive stress, σc, increases, fibers rotate and the matrix undergoes shear
deformation. At some load level, the matrix cannot support the shear stress, and
the system becomes unstable and there is a drop in load. This shear instability is
translated into a localized shear band (i.e. kink band) with fibers misaligned by an
angle ϕ = ϕ0 + γ where ϕ0 represents the initial misalignment and γ is the shear
strain. The kink band has a width wkb and propagates along the specimen at an
angle, β, as shown in Fig. 1a. After the sudden drop of load, there is a plateau in
stress at a residual stress level, σr, as shown in Fig. 1b for large compressive strains,
εc. During this segment of the response, the kink band first propagates normal to
the fiber direction (crack-like) and then under certain conditions grows wider in the
fiber direction. The widening of the kink band along the fibers is referred to as band
broadening [8, 9]. Typically carbon fibers break at the regions of highest bending
stresses forming the characteristic kink bands observed postmortem.

Several reviews of analytical, numerical, and experimental investigations into
fiber kinking are available in the literature [1, 6, 10, 11]. As such, only a few of
the works most relevant to this report are reviewed here. The selected works that
are discussed in the following review are relevant in that they are foundational
to the models and approaches discussed herein or they are applied and compared
in Section 4. A brief review of analytical models, finite element based mesoscale
models, and finite element based micromechanical models are given in the following
three sections, respectively. Following the review, the objective and outline of the
present report are provided.
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Figure 1. Illustration of the fiber kinking phenomenon.

1.1 Analytical models for fiber kinking

One of the earliest analytical expressions developed for longitudinal compressive
strength Xc of fiber-reinforced composites is given by Rosen [12]

Xc =
Gm

1− V f
= G12 (1)

where Gm is the shear modulus of the matrix, V f is the fiber volume fraction, and
G12 is the shear modulus of the composite lamina. This expression was derived
assuming kinking is an elastic buckling phenomenon, the fibers are inextensible,
β = 0, and ϕ0 = 0. According to Budiansky [3], relaxing Rosen’s analysis to
account for β 6= 0 and ϕ0 6= 0 still overpredicts experimentally measured compressive
strength. Initial fiber misalignment ϕ0 of an infinitely long band of fibers (b→∞)
was included by Argon [13] assuming rigid perfectly-plastic shear behavior

Xc =
τY
ϕ0

(2)

where τY is the yield shear stress of the lamina. The influence of defects on the
compressive failure of a fiber reinforced composite was experimentally observed by
Chaplin [14] who noted that, for elastic microbuckling, failure should occur along
the width of the lamina simultaneously. However, that was not the case in his
experiments.

In the analytical expressions in eqs. (1) and (2), compressive failure was as-
sumed to be triggered by fiber microbuckling. For typical high fiber volume fraction
composites strength, these expressions overestimate 1.5 to 5 times the experimen-
tal values [1]. Budiansky [3] proposed combining the non-linear shear response of
the matrix and fiber misalignment in an analytical model. In his initial work, he
considered an elastic perfectly-plastic lamina with yield strain γY = τY /G12 under
longitudinal shear and inextensible fibers. For β = 0, equilibrium considerations
were used to derive
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Xc =
τY

γY + ϕ0
=

G12

1 + ϕ0/γY
(3)

Wisnom [15] derived a similar expression using a micromechanical approach. Later,
Budiansky [4] extended eq. (3) to consider strain hardening in the nonlinear shear
response of the lamina using a Ramberg-Osgood law [16]

γ =
1

G12
· (τ + sign(τ) · α · |τ |η) (4)

where G12 is the elastic shear modulus of the lamina, and η and α are material
parameters of the Ramberg-Osgood model. The closed-form solution for the longi-
tudinal compressive strength using eq. (4) is [4]

Xc =
G12

1 + η · α1/η ·
(
G·ϕ0

η−1

) η−1
η

(5)

The expressions proposed by Budiansky [3,4] are referred to as fiber kinking theory
(FKT). Pinho [17] generalized FKT to any nonlinear shear response and a 3-D stress
state (See Appendix A). Hsu et al. [18] proposed an approximation for calculating
the complete longitudinal compression stress-strain curve shown in Fig. 1b using
FKT where the longitudinal compressive stress is

σc =
τ(γ)

γ + ϕ0
(6)

and the corresponding compressive strain is

εc = ϕ0γ +
γ2

2
+
σc
E1

(7)

Equation (7) is calculated for increments in γ given ϕ0, τ(γ), and the longitudinal
elastic modulus of the lamina, E1. The stress-strain curve calculated using eqs. (6)
and (7) includes the snapback response and thus follows the dotted line in Fig. 1b.

Barbero [19] derived an expression for strength using the principal of total po-
tential energy. The result was a lengthy expression, so Barbero also proposed a
numerical fit to arrive at

Xc = G12

( χ

0.21
+ 1
)−0.69

(8)

where the constants are nondimensional factors that result from the numerical ap-
proximation. In eq. (8), χ = G12ϕ̃0/τu is a dimensionless constant that characterizes
the compressive strength, with ϕ̃0 being the standard deviation of ϕ0, and the non-
linear shear response is given by

τ = τutanh

(
G12γ

τu

)
(9)
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where G12 and τu are the material properties that define the shear response. It
is emphasized that eq. (8) is not empirical; rather the numerical values are nondi-
mensional and arise from the approximation used as a simplification for the exact
solution.

Experimental investigations have reported variation in strength with specimen
length [5,20], which is a trend that is not accounted for in eqs. (1) to (3), (5) and (8).
Lagoudas and Saleh [21] introduced an energy based formulation considering both
macroscale and microscale factors that accounts for the role of specimen length, L,
on strength

Xc = wkb

√
2V fE1

πdL
τYmϕk (10)

where V f is the fiber volume fraction, E1 is the laminate modulus, d is the fiber
diameter, τYm is the shear yield stress for the matrix only, and ϕk is the angle of
the kinked fibers. Wisnom suggested that strain gradient effects may also explain
the variations in experimental measurements [22].

Fleck et al. [23] proposed the bending theory of fiber kinking, which uses cou-
ple stress theory to account for fiber bending and the wavelength of initial fiber
misalignments while maintaining a ply-level homogenization. The couple stress ap-
proach includes a bending moment per unit area, which results in a stress tensor
that is not symmetric. The analysis shows that fiber bending and imperfection
wavelength have a negligible effect on strength prediction for large imperfection
wavelengths and carbon fibers. However, consideration of fiber bending is required
to predict the kink band width. The authors found that the kink band width is
relatively insensitive to material properties and is in the range 10 < wkb/d < 15 for
typical carbon/epoxy composites.

Budiansky et al. [8] extended his previous work and used couple-stress theory to
derive expressions for the behavior of kink bands after they have formed. The angle
of fibers at fracture ϕff is found to be

ϕff =

(
2τY

Ef1

)1/3

(11)

An expression for the band broadening stress, which is referred to as the residual
stress σr herein, is also given in [8]

σr =
2τL

sin2β
(12)

where τL is the shear stress associated with large rotations (the approximation τL =
2τY is suggested). The parameter β is left unspecified since no simple explanation
for the range of experimentally reported values of 10◦ < β < 30◦ [24] was available.

Moran et al. [25] proposed an expression for the residual stress based on an
energy balance and preservation of volume (ϕ = 2β)

σr =
1

2sin2β

∫ 2tanβ

0
τ(γ)dx (13)
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where τ(γ) is the nonlinear stress-strain law in shear. Moran suggested a trilinear
curve for τ(γ). The resulting expression for σr is minimized with respect to β. Moran
demonstrated this approach yields reasonable values for both β and σr for ductile
matrix composites. However, other authors have questioned the validity of the
ϕ = 2β assumption, e.g. [9]. It is noted that Moran’s approach can be extended to
strain hardening shear nonlinearity curves such as eq. (4) using numeric integration.

Moran’s model is one of the very few analytical models that determine β; most
models require β to be specified as an input parameter. Schapery [26] proposed
that β is set by a balance between satisfying a matrix tensile failure criterion and
shear instability. Despite these efforts, no consensus has been reached for predicting
analytically σr or β.

In contrast to the aforementioned homogenized mesoscale models, a microme-
chanical approach has been taken by others. Hahn and Williams [27] derived a model
based on equilibrium of an initially misaligned fiber in a matrix with a nonlinear
shear response. Effendi [28] added considerations for fiber failure and showed that
low strength fibers with small initial fiber misalignments fail by fiber compression,
while composites with larger initial fiber misalignments failed by fiber kinking.

Pimenta et al. [29] built on the approach used in [27] to derive a closed-form
expression for the longitudinal compression strength and predict the post-failure
response of a unidirectional lamina. The model is based on the equilibrium of
an imperfectly aligned fiber loaded in compression and bending, and supported in
shear by an elastic perfectly-plastic matrix. An initial fiber misalignment given by
y0(x) = ȳ0 · (1− cos(πx/L)) is assumed where the fiber axis is along the x-direction
and the parameters ȳ0 and L define the initial imperfection. The expression for the
compressive strength is

Xc = τY
Gm2Dd+ π2

L2 E
f
1 I

f
x

τY + π ȳ0LG
m
2D

(
V f

2D

Af

)
(14)

where superscript f indicates quantities associated with the fibers and Gm2D =

Gm/(1 − V f
2D) with V f

2D = d/(d + tm) where tm is the thickness of the matrix
in the 2-D approximation and d is the fiber diameter. Assuming that fiber failure
is governed by maximum compressive stress, wkb is obtained from the analysis by
identifying the location along the fiber where the maximum stress criterion is sat-
isfied. The trends predicted from this model were found to be consistent with the
bending theory for fiber kinking [23].

While these analytical models provide great insight and utility, they lack the
ability to analyze particular structural configurations and ignore many details of
the kinking process. For these reasons, several numerical approaches have been
proposed using the finite element (FE) method. FE modeling approaches that are
relevant to the mesoscale and microscale models developed herein are reviewed in
the following two sections.
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1.2 Modeling fiber kinking at the mesoscale using FE

A variety of FE modeling approaches for fiber kinking in homogenized lamina (i.e.
mesoscale) have been proposed. Wisnom [30] introduced superposing beam ele-
ments on a continuum mesh where the beam elements represent the fibers and the
continuum mesh represents the matrix. The study showed the importance of con-
sidering fiber rotation, shear nonlinearity in the matrix, and bending of the fibers in
order to make accurate predictions of fiber kinking. Wisnom pointed out that most
commercial FE codes lack the ability to represent fiber rotation and fiber bending
in a homogenized mesoscale model, and thus require techniques such as the beam
superposition approach to predict fiber kinking. Other authors have used Wisnom’s
approach to study the effects of the distribution of fiber misalignments [31, 32] and
fiber packing [33].

In order to account for fiber bending in homogenized mesoscale models, Fleck
and Shu [34] used Cosserat theory (also termed micropolar theory), which is a higher
order continuum theory that introduces stress couples into the constitutive law. The
model was used to explore the FKT assumption of an infinitely long band (b→∞ in
Fig. 1a) of misaligned fibers. Finite element simulations using the two-dimensional
(2-D) couple stress based model showed the effect of the size of the initial imperfec-
tion where, as b increases from zero to infinity, the strength decreases from the value
predicted by eq. (1) to the asymptote predicted by the one-dimensional (1-D) couple
stress model in [23]. This model has been extended to study the effect of multiaxial
loading [35], strain gradient effects [36], and random fiber waviness [37]. Hasanyan
and Waas [38] proposed calibration procedures to define the unconventional material
property inputs for their couple stress theory based model using micromechanical
models. These higher order continuum approaches show tremendous promise, but
their usage remains limited since they depart from standard conventions in structural
analyses (e.g., using an unsymmetrical stress tensor), which makes implementation
into commercial FE codes challenging.

In contrast to the efforts to model fiber kinking directly, some authors have used
phenomenological constitutive laws that resemble the characteristic fiber kinking
response (Fig. 1b). In these approaches, the constitutive laws are defined by model
input parameters that define the residual stress σr and fracture toughness. Careful
selection of model parameters enables accurate simulations of damage for complex
structures, e.g. [39–43]. However, the predictive capability of these approaches is
limited due to the requirement for calibration at the structural scale.

Approaches based on FKT where the fiber rotation and shear nonlinearity are
carefully modeled provide an appealing alternative. Basu et al. [44] formulated one
such model using Schapery theory [45] where the misaligned fiber direction was
tracked by integrating the increment in shear strain. Good agreement for strength
as predicted by a 2-D model similar to that of Kyriakides [5] was achieved. Feld
et al. [46] proposed augmenting an existing continuum damage mechanics (CDM)
model with an additional term based on a rheological model to account for fiber
kinking. Davidson and Waas [47] used Hill’s anisotropic plasticity to model out-of-
plane kinking. By introducing thin regions representing resin-rich layers between
the plies, predictions with β > 0 were obtained. Bergan and Leone [48] proposed
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a CDM model based on fiber kinking theory that uses the deformation gradient
decomposition (DGD) method [49] to account for the coupling between longitudinal
splitting and fiber kinking. The model predictions show that large rotations and
shear nonlinearity dominate the response. Likewise, Gutkin, Costa, and Olsson
[50–52] introduced a model based on fiber kinking theory and a physically based
constitutive law for shear nonlinearity. The authors demonstrated that the model is
capable of predicting the compression strength and residual stress. These methods
are attractive since they are physically based on the mechanics of fiber kinking,
while, at the same time, they avoid the complications of high-order theories. The
mesoscale model developed herein adopts this approach.

1.3 Microscale FE modeling of fiber kinking

Numerical micromechanical models of fiber kinking have offered important insights.
By explicitly modeling the fiber and matrix individually in a representative volume
element (RVE) and accounting for material and geometric nonlinearity, the fiber
kinking process can be modeled numerically. Some of the first such models were
developed by Kyriakides et al. [5] consisting of a 2-D representation with a layered
composite of alternating elastic fibers and J2 flow theory elasto-plastic matrix. The
layers followed a sinusoidal curve representing the initial fiber misalignment (ϕ0).
These models were among the first to predict the sequence of events leading to the
formation of kink bands and realistic values for the kink band angle, β, determined
by fiber failure.

One of the first three-dimensional (3-D) micromechanical FE models for fiber
kinking was developed by Hsu et al. [18] to assess the limitations of 2-D models.
The model used a hexagonal fiber pattern with 60 elastic, isotropic fibers and J2

flow theory elasto-plastic behavior for the matrix. The authors demonstrated that
2-D and 3-D models were in good agreement for predictions of Xc when separate
2-D and 3-D RVEs were used to calibrate the plasticity parameters to the same
test data for the shear stress-strain response. The authors noted that the matrix
shear response resulting from the calibration differed for the 2-D and 3-D models.
Furthermore, the matrix shear response is not equivalent to measurements for neat
resin. In contrast to the good agreement for strength, the post-peak predictions
for the two models differ: the 3-D model predicts larger values for wkb and β. In
the same study, the FE models were compared with analytical FKT predictions.
While the strength predictions were in good agreement, the FKT predicted larger
values for the residual stress, σr. Thus the authors highlighted the complications of
accurate prediction of the post-peak regime. The authors modified the 3-D model
in a follow up study on the propagation behavior of already-formed kinks, where β
was explicitly modeled [53]. Reasonable agreement was demonstrated with Budian-
sky’s band broadening stress (i.e. residual stress), eq. (12). Fiber kinking initiation
and kink band propagation transverse to the fibers was systematically tested and
simulated by Vogler et al. [54, 55]. Experimental tests were carried out holding a
constant longitudinal compressive load while applying a progressive shear load under
displacement control. In this manner, kink band propagation along the width of the
specimen was noticeably more stable. It was observed that kink band inclination,
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β, was insensitive to the initial imperfection features. The numerical model consid-
ered a Drucker-Prager model for the matrix to account for inelastic dilatancy and
sensitivity to hydrostatic pressure which were found to affect the post-peak regime
of the composite, especially the β angle.

Yerramalli and Waas [56] developed a 3-D model with 37 fibers that accounted
for fiber orthotropy and J2 flow theory of plasticity for the matrix. An RVE with
shear loads was used to calibrate the shear nonlinearity curve. By comparing the
results obtained using isotropic fibers, consideration of fiber orthotropy was shown
to reduce the post-peak residual stress σr. Examination of the stresses in the fibers
showed that high shear strains in the fibers would likely lead to failure and that
smaller diameter fibers may break before fiber kinking occurs.

A number of 2-D micromechanical models have been developed building on the
foundational efforts described above to study different features and parameters af-
fecting the fiber kinking phenomenon. Gutkin et al. [57] analyzed the failure en-
velopes for fiber reinforced composites under combined longitudinal compression
and in-plane shear (σ11 − τ12) through a single-fiber 2-D model employing peri-
odic boundary conditions (PBC). This study showed two types of failure mecha-
nisms: shear-driven fiber failure and kink-band formation, which were confirmed in
the complementary experimental work [58]. Interaction between fiber kinking and
fiber-matrix debonding (splitting) was investigated by Prabhakar et al. [59] using
a multiple-fiber 2-D model which incorporated a cohesive zone model between the
fibers and the matrix. The results suggested that it may be important to con-
sider both fiber kinking and matrix splitting for accurate prediction of compressive
strength.

Modern computational resources have enabled massive multi-fiber 3-D microme-
chanical models. Bai et al. [60] developed one such model and subjected it to a
triaxial stress state including longitudinal compression. The model results show the
same sequence of events as shown by other authors, with plasticity in the matrix
being the most dominant factor leading to kinking. A multiscale FE model of a 3-D
cross-ply laminate section was developed by Bishara et al. [61] with the longitudinal
plies represented through a single row of fibers as in [62], while the 90◦ plies were
modeled by means of a homogeneous CDM model. This multiscale model was able
to capture several failure mechanisms including fiber kinking formation in the 0◦

plies, subsequent delamination between adjacent plies and matrix cracking in the
90◦ plies.

Recently, Naya et al. [63] developed a 3-D micromechanical model generated by
extruding a fiber distribution along a sinusoidal curve representing the initial fiber
misalignment, ϕ0. The model consists of fibers oriented in the extrusion direction,
a pressure-dependent polymer matrix and a cohesive interaction in the fiber-matrix
interface accounting for friction. The application of periodic boundary conditions,
as in [57], permits the model to be simplified to a single-fiber system. The model
predictions were found to be in good agreement with experimental measurements.
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1.4 Objective and outline

The aim of this work is to compare and validate a mesoscale CDM model to cap-
ture fiber kinking with a high fidelity computational micromechanics (CMM) model
based on the micromechanical model published in [63]. The CMM model is used to
assess the relative significance of various model features and assumptions in order
to improve the understanding of the mechanics of the fiber kinking process. While
the CMM model is a powerful tool for analyzing the mechanics of the kinking pro-
cess, its small scale precludes application to typical structures. Therefore, the CMM
model is exploited to interrogate the assumptions of the mesoscale model for fiber
kinking.

This report is organized as follows. In Section 2, the CDM model is described
in detail including the phenomenological basis, constitutive equations, element de-
composition, and model verification. The FE micromechanical models are presented
in Section 3: the single-fiber kinking model, multi-fiber kinking model, and the in-
plane shear model. The CMM models rely on several unconventional experimental
measurements for input properties. A new micromechanical test procedure to ob-
tain the compressive strength of carbon fibers through micropillars indentation is
described in Section 3.3. Results from the CMM and CDM models are compared in
Section 4. Two parametric studies taking advantage of the micromechanical model
developed are shown in Section 5. Finally, concluding remarks are presented in
Section 6.

2 Mesoscale Model

A mesoscale constitutive model is formulated in this section with the aim of repre-
senting the fiber kinking phenomenon using geometric nonlinearity and shear nonlin-
earity. The model is developed for the purpose of analyzing longitudinal compression
failure at the structural scale. As a result of the objective to analyze structural fail-
ure, the model includes several simplifying assumptions. The formulation is based on
Budiansky’s fiber kinking theory [3,4,8] with the assumption that β = 0. The model
includes the kinematics of the fiber kinking process by tracking fiber misalignment
throughout loading. The characteristic constitutive response shown in Fig. 1b is not
directly prescribed in the model. Instead, this characteristic response is a result of
the shear nonlinearity and large rotation of the fiber. The model is formulated in the
context of CDM and is integrated into the existing code CompDam [64]. CompDam
is a NASA-developed open-source material model implemented as an Abaqus user
subroutine for predicting damage in carbon fiber reinforced polymer laminates [65].
The deformation gradient decomposition (DGD) [49] method is used for accurate
representation of the kinematics of the kink band and fiber misalignments. The
following subsections describe the model formulation, implementation, and verifi-
cation. This report focuses on the model development in CompDam and does not
directly address application of the mesoscale model to analyze structural failure.

15



Figure 2. The two coordinate systems used in the CDM model shown in the reference
configuration.

2.1 Constitutive model formulation

The material model computes the stress state given the current deformation, state
variables, and material properties as follows. Consider a material point with a
reference frame, X. An initial fiber misalignment angle, ϕ0, is assumed such that a
fiber-aligned reference frame, X

′
, is defined with rotation, Rϕ0 , as

X
′

= Rϕ0X (15)

where

Rϕ0 =

cosϕ0 − sinϕ0 0
sinϕ0 cosϕ0 0

0 0 1

 (16)

The two reference frames are shown in Fig. 2. For a given deformation gradient, F ,
the Green-Lagrange strain, E, is calculated as

E =
1

2
(F>F − I) (17)

Shear nonlinearity is accounted for in the X
′
1–X

′
2 plane using a one-dimensional

plasticity model as follows

E
′

= R>ϕ0
ERϕ0 −

γPL12

2

0 1 0
1 0 0
0 0 0

 (18)

where the plastic portion of the shear strain is γPL12 = γ12 − γEL12 . The nonlinear
shear behavior of the matrix is often modeled using a third-order polynomial [17],
a hyperbolic tangent [66], or a power law such as the Ramberg-Osgood curve [16].
Herein, the Ramberg-Osgood expression is used

γ12 =
1

G12
[τ12 + sign(τ12)α |τ12|η] (19)

where γ12 is the shear strain, G12 is the shear modulus of the composite, and α and
η are parameters that define the strain-hardening portion of the Ramberg-Osgood
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curve. The second Piola-Kirchoff stress in the fiber-aligned reference frame, S
′
, is

calculated using the elastic stiffness tensor, C

S
′

= C : E
′

(20)

with

C = H−1 (21)

and

H =



1
E∗1

−ν21
E2

−ν31
E3

0 0 0
−ν12
E∗1

1
E2

−ν32
E3

0 0 0
−ν13
E∗1

−ν23
E2

1
E3

0 0 0

0 0 0 1
G12

0 0

0 0 0 0 1
G23

0

0 0 0 0 0 1
G13


(22)

using the typical elastic constants and the order of the shear terms follows the
Abaqus/Explicit convention. Elastic nonlinearity in the longitudinal direction is
considered with a linear dependence of stiffness on strain producing a quadratic
stress vs. strain curve as in [67]

E∗1 = E1(1 + clε11) (23)

where cl is the nonlinearity coefficient for the lamina and is an additional material
property to be obtained from test data or micromechanics characterization of the
fiber. In the reference frame, X, the second Piola-Kirchoff stress is

S = Rϕ0S
′
R>ϕ0

(24)

Finally, the Cauchy stress is calculated

σ = FSF>|F |−1 (25)

This model has been implemented in Abaqus/Explicit [65] as a VUMAT. The fol-
lowing subsections include practical considerations for implementation as a material
model for finite element analysis.

2.2 Initial misalignment angle

The initial misalignment angle, ϕ0, accounts for fiber misalignments and other man-
ufacturing anomalies that may contribute to fiber kinking initiation. The initial fiber
misalignment is calculated by rearranging eq. (5) as

ϕc =
η − 1

G12
·

(
G12 −Xc

Xc η α
1
η

) η
η−1

(26)
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where ϕc is used instead of ϕ0 to emphasize that the particular value for ϕ0 obtained
from eq. (26) corresponds to the strength, Xc. The fiber misalignment ϕc is fully
defined in terms of material property inputs. Some authors have suggested that Xc is
not a material property due to the variation in measured values for Xc with specimen
size and test configuration [20,68]. The dependence of the present model on Xc as a
material property input could be eliminated by considering experimentally measured
fiber misalignments in place of eq. (26). A first step towards using experimentally
measured fiber misalignments is investigated by considering the spatial variation of
ϕ0 in Section 2.7.

2.3 Mesh objectivity and decomposition

Material models that exhibit strain-softening behavior are mesh sensitive when
strain localizes. In conventional CDM models, this deficiency is typically addressed
with Baz̆ant’s crack band theory [69] in which the energy dissipated during failure of
a material point is scaled by the element size. In the present model, there is no crack
surface on which traction goes to zero and therefore the crack band theory is not ap-
plicable. Nonetheless, there is an inherent mesh sensitivity since the model includes
a strain-softening response leading to strain localization in a band of elements after
the strength is reached. Recently, Costa et al. [52] identified this mesh sensitivity
as it relates to modeling fiber kinking and recommended two options for ensuring
mesh objectivity. The method used herein is analogous to the strain decomposition
method proposed by Costa et al. [52] and is an adaption following previous work by
Bergan and Leone [48].

When the plastic strain in an element becomes non-negligible, an element de-
composition is performed. The kink band width, wkb, is assumed to be smaller than
the element size in the X1-direction, l1. The relative kink band size is defined as
wkb = wkb/l1. When wkb ≤ 0.95, the element is decomposed into an undamaged
material region and a kink band region, as shown in Fig. 3, in order to preserve mesh
objectivity. In the decomposed element, shear nonlinearity is enabled in the kink
band region, whereas in the undamaged material region the shear response is linear.
When wkb > 0.95, the kink band width is close enough to the element size that
the decomposition has a negligible effect on the constitutive response; as such, the
material model described in Section 2.1 is applied directly without decomposition of
the element. When the element is decomposed, the DGD approach [48, 49] is used
to enforce continuity and equilibrium conditions between the undamaged and kink
band regions as follows.

Consider a rectangular continuum of fiber-reinforced material where the fiber
direction is initially aligned with the reference X1-direction. The reference configu-
ration is defined as

X =

l1 0 0
0 l2 0
0 0 l3

 (27)

where the nonzero diagonal components are the undeformed dimensions of the con-
tinuum. The current configuration, x, is a function of X and the deformation
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gradient, F

x = FX (28)

F is decomposed into a deformation gradient for the undamaged material region,
Fm, and a deformation gradient for the kink band region, Fkb. In the fiber direction,
compatibility of the deformations requires

x(1) = (1− wkb)x(1)
m + wkbx

(1)
kb (29)

where the superscript (1) indicates the first column of x. Substituting eqs. (27)
and (28) into eq. (29)

FX(1) = (1− wkb)FmX
(1) + wkbFkbX

(1) (30)

then simplifying and rearranging yields an expression for Fkb in the 1-direction

F
(1)
kb =

1

wkb
F (1) +

(
1− 1

wkb

)
F (1)

m (31)

In the X2-direction, there is no decomposition, so compatibility of the deformation
requires

x
(2)
kb = x(2)

m = x(2) (32)

Substituting eq. (28) into eq. (32) and simplifying yields

F
(2)
kb = F (2)

m = F (2) (33)

Using eqs. (31) and (33) with F provided as an input, the quantities Fkb and Fm

can be determined in terms of the unknown F
(1)
m through the equilibrium equations

as described in the following section.

Figure 3. Schematic representation of the model: element decomposition into the
kink band region and the undamaged material region.
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2.4 Equilibrium and solution procedure

It is necessary to ensure that the tractions that arise in the kink band and the neigh-
boring undamaged material are in equilibrium. Equilibrium is enforced between the
kink band region and the neighboring undamaged material on the plane normal to
êf , where the current misaligned reference frame is

R =
[
êf ên êt

]
(34)

where the carrot indicates a unit vector, n̂ = n/||n||, and

ef = Fkb

cosϕ0

sinϕ0

0

 (35)

en = F−>kb

− sinϕ0

cosϕ0

0

 (36)

et = ef × en (37)

The current fiber misalignment is obtained from eqs. (34) to (37) as

ϕ = tan−1

(
R21

R11

)
(38)

Cauchy’s stress theorem is used to obtain the stress vector acting on a plane defined
by the fiber direction in the kink-band region

tkb = σkb · êf (39)

where σkb is calculated from eqs. (17) to (25). Likewise, in the undamaged material
region

tm = σm · êf (40)

where σm is also calculated from eqs. (17) to (25) with the exception that the second
term in eq. (18) is omitted. An iterative solution procedure is required to solve for
the state of stress at equilibrium. A residual stress vector tres is defined in terms of
the stress vectors in eqs. (39) and (40) in the current misaligned coordinate system
as

tres = R>(tm − tkb) (41)

Newton-Raphson iteration is used to solve eq. (41) for F
(1)
m . The iterations are

determined to be converged when |tres| is less than a tolerance. Herein, 0.01% of
the shear strength is used as the convergence tolerance.
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2.5 Determination of the kink band width

While the model includes fiber rotation, bending of the fibers is ignored, which is
one of the fundamental assumptions of FKT. As a result of this assumption, wkb

cannot be predicted by the model [3,4]. As such, wkb is an input parameter for the
model and must be obtained from micromechanical analysis or experimental mea-
surements. Values reported in the literature for different carbon/epoxy composites
are summarized in Table 3.

Budiansky [3] derived an expression for wkb by accounting for rigid-perfectly
plastic shear nonlinearity and inextensional bending of perfectly aligned fibers using
a couple-stress formulation. Assuming β = 0, wkb is

wkb

d
=
π

4

(
E1

2τY

)1/3

(42)

where d is the fiber diameter and τY is the shear yield stress. Budiansky suggested
a kink band width of about 12 fiber diameters for typical carbon/epoxy materials.
Jelf and Fleck [24] fit an expression with the same form as eq. (42) to experimental
data for AS4/PEEK and found that

wkb

d
= 0.68

(
E1

2τY

)0.37

(43)

was in good agreement with the test data, which is very similar to Budiansky’s
expression, eq. (42). The kink band widths predicted using eq. (42) and eq. (43) for
the materials analyzed in this work, AS4/8552 and IM7/8552, are shown in Table 3,
with τY = 95 MPa determined from the Ramberg-Osgood shear curve using a 5%
offset, and the fiber diameters reported in Table 6. Herein, the kink band width of
the CDM model was set to 100 and 50 µm for AS4/8552 and IM7/8552, respectively,
which is on the order of values reported in the literature, see Table 3.
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Table 3: Values of wkb reported in the literature.

Material system wkb Method Reference
[µm]

AS4/8552 59 Analytical 2D, eq. (42) Budiansky et al. [3]
AS4/8552 67 Experimental, eq. (43) Jelf et al. [24]
AS4/8552 120 3-D micromechanical FE Naya et al. [63]

IM7/8552 25 Microscopy Laffan et al. [70]
IM7/8552 25 In situ X-Ray CT Bergan and Garcea [71]
IM7/8552 45 Analytical 2D, eq. (42) Budiansky et al. [3]
IM7/8552 50 Microscopy Zobeiry et al. [72]
IM7/8552 51 Experimental, eq. (43) Jelf et al. [24]

HTS/RTM6 200 Microscopy Svensson et al. [73]
HTS40/977-2 80 Microscopy Jumahat et al. [74]

T300/913 70 Microscopy Pinho et al. [75]
T700/977-2 55 Microscopy Hapke et al. [76]
T800/924C 55 Microscopy Soutis [77]
T800/924 50 Microscopy Gutkin et al. [58]
T800/924 250 Analytical 2D Pimenta el al. [29]
AS4/3501 49 3-D micromechanical FE Bai et al. [60]

2.6 Element deletion

Fiber kinking often occurs at or near collapse and may correspond with a substan-
tial release of energy. As a result, difficulties including excessive mesh distortion,
excessive deformation rate, or failure to find a converged solution to eq. (41) may
occur in an analysis, especially for problems that fail by unstable collapse. When
one of these errors occurs and the analysis terminates, the strength prediction is am-
biguous because, while the analysis output indicates the type of error that occurs,
no load drop is predicted. Consequently, it is unclear when structural failure occurs.
To circumvent these runtime errors, element deletion can be enabled by specifying
values for the following conditions

|Fkb| < FTOL (44)

nNR > nmax (45)

|γ12| > γTOL (46)

where |Fkb| is the determinant of Fkb, nNR is the number of Newton-Raphson it-
erations to solve eq. (41), and |γ12| is the absolute value of γ12. When any of the
conditions in eqs. (44) to (46) is satisfied, the element is deleted. Element deletion
is disabled in the analyses discussed in the subsequent sections except where noted
otherwise.
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2.7 Model verification

The steps taken to verify the performance of the mesoscale model are described
in this section. First, single element models were used to verify the constitutive
response. The key characteristics of the constitutive response are noted and com-
pared with predictions from FKT. Then, mesh objectivity is demonstrated. The
verifications are performed using two common materials, IM7/8552 and AS4/8552,
with the material properties listed in Table 4.

Table 4: Material properties for the CDM model.

Material E1 E2 G12 ν12 ν23 α η Xc

[GPa] [GPa] [GPa] [MPa1−η] [MPa]

AS4/8552 [79] 131.6 9.24 4.83 0.30 0.45 2.86 10−11 6.49 1480
IM7/8552 [80] 152.7 8.7 5.16 0.32 0.45 4.06 10−9 5.4 1731

The fiber-direction moduli, E1, reported in Table 4 are the tensile values mea-
sured on the interval 0.1% and 0.3% strain. Often, separate values for E1 are
reported for tension and compression for a piecewise linear representation. A more
elegant approach is to represent the elastic nonlinearity of the fibers as a continu-
ous function. Herein, eq. (23) is used to represent the fiber nonlinearity, thereby
adding the requirement to calibrate the fiber nonlinearity parameter, cl. Test data
from tension and compression tests of IM7/8552 unidirectional specimens reported
by Peterson and Murphey [78] are shown in Fig. 4 as the light gray lines (one line
for each test replicate). It is evident that the fiber nonlinearity occurring at large

Figure 4. Fiber-direction stress-strain data for IM7/8552 lamina [78].
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strains is not well captured by the stiffness on the interval between 0.1% and 0.3%.
The dashed line in the figure corresponds to E1 = 152.7 GPa. A least squares fit is
used to obtain cl = 11 with the resulting curve shown as the dotted back line in the
figure. It is observed that accounting for fiber nonlinearity is important for large
strains (ε > 0.8%). While ply-scale test data was obtained from the literature for
IM7/8552, no comparable data was available for AS4/8552. However, experimental
single-fiber tests were conducted to obtain a fiber nonlinearity parameter at the
fiber-scale, cf , as described in Section 3.3.1. This value was related to the lamina
through the rule of mixtures, cl = V f · cf , where V f = 60% is the fiber volume
fraction. Following this procedure, the value obtained for AS4/8552 was cl = 12.2.

2.7.1 Verification of the constitutive response: single element model

Analyses were conducted using a model with a single C3D8R element subjected to
uniform end shortening in the longitudinal direction in order to verify the constitu-
tive behavior of the model. Boundary conditions were imposed to prevent hourglass-
ing modes of deformation. The element had a uniform edge length of l1 = 0.15 mm.
A smooth-step was applied with a duration of 0.1 seconds and uniform mass scaling
was applied with a factor of 104. Rayleigh damping was used to limit vibrations
which occur as a result of the large load drop when the strength is reached. The
value of the Rayleigh damping coefficient, αR, was chosen so as to minimize the
vibration without changing the overall response.

The stress vs. strain results predicted by the model for the IM7/8552 material
system are shown in Fig. 5a. The compressive stress, σc, is calculated from the
reaction force divided by the element cross-sectional area, σc = F1/(l2l3). Likewise,
the compressive strain is obtained from the end shortening displacement εc = u1/l1.
The stress vs. strain results are shown as the solid black and gray lines that lay
on top of each other, where the gray line is the result for the undamped model
αR = 0 and the black line is the result for the damped model with αR = 104. The
linear stiffness calculated using E1 is denoted by the dotted line. The strength is
shown on the plot as the horizontal line labeled Xc. The results from FKT, eqs. (6)
and (7), are shown with cross symbols. The results show that the model reproduces
the initial stiffness in good agreement with the linear stiffness at small strains.
At larger strains, the model predicts that the stiffness degrades as the strength is
approached. The stiffness reduction is primarily a result of the fiber nonlinearity,
eq. (23). However, fiber rotation also contributes to the stiffness reduction. The
strength from the model is in very good agreement with the input property, where
it can be observed that the model just slightly over predicts the input value of Xc

by 1.6%. Once the strength is reached, a snap-back phenomenon occurs as shown
for the FKT results. Since the present model is not capable of predicting the snap-
back behavior, the model response has an abrupt drop followed by vibration. The
vibrations are mostly suppressed by damping in the case where αR = 104, with no
other significant change in the response as compared with the undamped case. After
the dynamic effects from the abrupt load drop dissipate at around 2% strain, the
damped and undamped case suggest the same behavior where a residual stress level,
σr, is approached asymptotically. A range of σr is calculated using eq. (12) with
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Figure 5. Constitutive response of the mesoscale model obtained from a single
element analysis for IM7/8552.
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Figure 6. Constitutive response of the mesoscale model obtained from a single
element analysis for AS4/8552 showing the effect of different values for ϕ0.

shear stress τL = 95 MPa (at 5% strain) and β = 12◦ to 16◦ based on experimental
measurements [71]. The present model predicts lower residual stress than FKT and
eq. (12) when wkb = 0.05 mm. The difference in σr is due to wkb < 1 in the CDM
model. Since wkb and l1 are not accounted for in FKT, it is only expected that the
CDM will agree with FKT for wkb = 1. When wkb = l1 such that wkb = 1 (thus,
wkb = 0.15 mm in this particular case), the CDM predicts the same residual stress
as FKT.

The fiber rotation vs. strain response is shown in Fig. 5b. The current fiber
rotation, ϕ, calculated using eq. (38) shows the initial misalignment at no load
leads to slight rotation up to the point where the strength is reached. When the
strength is reached, large fiber rotation occurs. The fiber rotation continues to grow
as the model approaches the residual stress in the post-peak regime. Again, when
wkb = l1 = 0.15 mm, the CDM predictions are in very good agreement with FKT
throughout the loading history. For the realistic value of wkb = 0.05 mm, the model
predicts significantly more rotation, which explains the lower σr.

The constitutive response described in this section and the accompanying figures
is an outcome of the model, not prescribed directly. As a result, the model has the
ability to account for several aspects of FKT, such as the relationship between the
initial misalignment angle (ϕ0), compressive strength (Xc), and residual stress (σr).

The dependence of strength on the initial misalignment angle is shown in Fig. 6
for the AS4/8552 material system.1 The results for ϕ0 = 1◦, 2◦, 3◦, and 4◦ are

1AS4 fibers are used to show a slightly different material response. The results for IM7 fibers
are similar.
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shown in addition to the nominal case where ϕ0 = ϕc = 1.6◦. As in Fig. 5, the
strength, initial linear stiffness, and residual stress, eq. (12), are shown in Fig. 6. It
is observed that the stiffness and residual stress results are mostly independent of
ϕ0, which is in good agreement with FKT. Furthermore, the strength is a function of
ϕ0, with increasing value of ϕ0 yielding lower strengths. For the case where ϕ0 = ϕc,
the strength result from the model is in excellent agreement with the input strength
with an error of 1.7%. These results suggest that the model has captured accurately
the key features of the FKT.

2.7.2 Verification of the decomposition procedure: two element model

The decomposition approach described in Section 2.4 is verified in this section by
comparing the results from the single element model described above to the results
from a two element model. Schematic illustrations of the model configurations
are shown in Fig. 7. In the single element model, the mesoscale kinking model is
applied as described in Section 2.7.1 with the exception that several values for the
parameter wkb are considered. The two element model is designed as a reference
for comparison to verify the results from the decomposition procedure in the single
element model. In the two element model, one element, designated “Element 1”
is defined with a length equal to wkb in the X1-direction. Thus, Element 1 is not
decomposed since wkb = wkb/l1 = 1. The second element, designated “Element
2” is defined with the kinking model disabled and a linear stress-strain response
in shear. The two element model was analyzed for the same set of values of wkb

as the single element model. Both models used C3D8R elements with an overall
length in the X1-direction of l = 0.2 mm and the IM7/8552 material properties
defined in Table 4. The expectation of this verification exercise is that the single
and two-element models should yield identical results if the decomposition procedure
performs as designed.

The comparison of the compressive stress-strain response from the two models
for wkb = 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1 is shown in Fig. 8. The compressive stress
is normalized to the strength for IM7/8552. The results from the single element
models are shown with dashed lines and the results from the two element models
are shown with solid lines. The results for each value of wkb are given a different
color and labeled near the right of the figure. It is observed that the single element
and two element model predictions are in excellent agreement for the range of wkb

considered. Furthermore, the decomposition and value of wkb only play a role in
the post-peak regime. These results verify that the decomposition implementation
performs as expected. It is interesting to note that larger values of wkb produce
higher values of σr (observed in Fig. 5a also), which is a result that is discussed in
more detail in Section 4.

While these results verify several aspects of the model, they do not fully demon-
strate mesh objectivity. In order to verify mesh objectivity as well as applicability
to larger-scale analyses, the mesoscale model is used to analyze an unnotched uni-
directional compression specimen in the next section.
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Figure 7. Schematic illustration of the models used to verify the kink band decom-
position procedure.

Figure 8. Compression stress vs. strain results for different values of wkb for single-
element and two-element models. Dashed curves are single-element model predic-
tions and solid curves are two-element model predictions.
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2.7.3 Unnotched compression

The unnotched compression configuration was chosen to resemble the gauge section
of test specimens often used to measure the longitudinal compression strength. The
unidirectional specimen has a 5-mm width, 14-mm length, and 6 plies for a thickness
of 1.1 mm. The IM7/8552 material system was used in the analysis. Damage was dis-
abled in the regions of the specimen near the ends to force failure in the mid-section,
as shown in Fig. 9a. The model was meshed with C3D8R elements with enhanced
hourglass control enabled. Analyses were conducted with an Abaqus/Explicit step
with a duration of 0.1 seconds. Automatic mass scaling was set with a target time
increment of 10−6 seconds. Three mesh sizes, 0.05 mm, 0.1 mm, and 0.2 mm, were
used to assess the mesh objectivity of the model predictions. On the top and bottom
faces of the specimen at X1 = 0 and X1 = l, uniform end shortening is applied and
displacements in the X2 and X3 directions are set to zero, as shown in Fig. 9b. End
shortening is applied to both ends as opposed to displacing one end while holding
the other fixed to reduce the overall dynamic energy in the model.

A difficulty in the progressive damage analysis of unnotched configurations is the
need for a nonuniformity to trigger localization of damage. For fiber kinking, the
initial fiber misalignment, ϕ0, presents a possibility to achieve a physically based
spatial variation that will trigger damage localization in unnotched specimens. Sut-
cliffe showed the use of random fiber misalignments as an initiation mechanism while
studying the role of spatially varying fiber misalignments using a 2D plane strain
finite element model [31,32]. It should also be recognized that if fiber misalignments
in all elements are the same, an overall shearing occurs when the coupon is com-
pressed due to the anisotropy induced by the misalignment. Such a response is a
departure from reality since measured fiber misalignments have a random distribu-
tion with a mean misalignment near zero [81, 82]. While implementation of a 2-D
or 3-D spatial variation of initial fiber misalignments is possible (although complex)
using experimental measurements available in the literature [57, 83], a simple 1-D
implementation is used herein. A 1-D variation of fiber misalignments has the ad-
vantages of simplicity and consistency with Budiansky’s infinite band assumption,
which is useful for verification. Thus, a uniform random distribution of fiber mis-
alignments in the interval [−ϕc, ϕc] is applied, where eq. (26) and the properties in
Table 4 are used to obtain ϕc = 1.15◦. The initial misalignment angle is assumed
to vary only as a function of the longitudinal position, ϕi0 = ϕi0(x) where ϕi0 rep-
resents the initial misalignment distribution in the model, which is consistent with
Budiansky’s assumption. No wavelength is associated with the fiber misalignment.
One realization of fiber misalignments used for verification is shown in Fig. 9c for
l1 = 0.2 mm. The location of the most severe misalignment, where a large positive
misalignment is adjacent to a large negative misalignment is denoted with a black
arrow. All realizations satisfy max(|ϕi0|)/ϕc ≥ 0.97 and so it can be expected that
the analysis should reproduce the input strength, Xc.

The normalized applied stress, σc/Xc, versus end shortening, ∆, results are
shown in Fig. 10a. It is observed that the model reproduces the strength accurately
with all three element sizes. Without element deletion, the analysis crashes at
the peak load due to excessive mesh distortion. Using element deletion with the
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Figure 9. Unnotched compression specimen for le = 0.2 mm.

Figure 10. Mesoscale model results for the unnotched compression specimen.
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Table 5: Element deletion tolerances used in UNC analysis.

FTOL nmax γTOL

0.25 104 400%

tolerance values provided in Table 5 enables capturing the load drops shown in
Fig. 10. It is noted that the tolerance values for element deletion are set to very
large values and are only satisfied for very distorted elements. Therefore, the element
deletion scheme is nothing more than a numerical convenience for this particular
analysis. A better representation of the physical reality would require consideration
of contact, which is beyond the scope of this work. The evolution of plastic strain
just before collapse is shown in Fig. 10b and indicates that damage localizes in the
band of elements where the most severe initial misalignment is located (as identified
in Fig. 9c) and rapidly propagates across the width of the specimen in a direction
corresponding to a kink band angle β = 0, which is consistent with the formulation
of the model. The fiber rotation associated with the kink band is evident in the
deformed mesh.

The unique relation between strength and ϕc given in eq. (5) may lead to the
conclusion that a spatial distribution of ϕ0 is no different from spatially distributing
strength. However, it should be recognized that fiber misalignment measurements
can be used to introduce a length scale associated with the wavelength of mis-
aligned fibers. Although not addressed here, a length scale for material variability
seems likely to be an important feature for overcoming the limitation of random
distributions where strong elements neighboring weaker elements prevent damage
propagation, especially when considering 2-D and 3-D spatial variations. Further-
more, as demonstrated by Wisnom [68], the spatial variation of misalignments has
an important constraining effect where gradients in misalignment arrest rotation of
the most severely misaligned fibers so that the strength is a function of the aver-
age misalignment instead of the maximum misalignment. These features should be
accounted in future works in order to predict accurately longitudinal compression
failure.

2.8 Summary of the mesoscale model developments

The mesoscale model described in this section is intended for use in prediction of
failure in composite structures from the coupon scale to the component scale. The
verification problems discussed in this section are a first step towards this goal. As
a result of the requirement to scale up to large structures, several assumptions are
made in the mesoscale model for both compatibility with existing progressive dam-
age analysis techniques used to model matrix damage modes and for computational
efficiency. In order to assess how well the mesoscale model captures the mecha-
nisms of the fiber kinking process, a detailed micromechanical model is used. The
micromechanical model is described in the following section.
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3 Computational Micromechanics Model

A 3-D single-fiber computational micromechanics (CMM) model is used to assess
the relative significance of various features and assumptions of the relatively coarse
mesoscale model in order to improve the understanding of the mechanics of the
fiber kinking process. In this section, the micromechanical finite element model is
described including the geometry, discretization, and material properties. Experi-
mental measurement and calibration undertaken to define some of the most critical
material properties are described. This section concludes with verification examples
that demonstrate the behavior of the CMM model.

3.1 3-D RVE for fiber kinking

During the last three decades, a variety of micromechanical models have been de-
veloped to represent the fiber kinking process. The aim of this work is to study the
initiation and evolution of the fiber kinking process, including kink band residual
stress [8, 25] in the post-failure regime. As such, there is no need to use a multiple-
fiber model that could capture kink band propagation. Instead, a single-fiber 3-D
model with periodic boundary conditions is employed based on [63], as shown in
Fig. 11.

The model represents a 3-D single carbon fiber extruded in the longitudinal
direction, z, along the half wavelength of a sine curve of length L, with an initial
misalignment, ϕ0

y(z) = L
ϕ0

π
·
(

1− cos
(
π
z

L

))
(47)

Due to the anisotropic behavior of the carbon fiber, material orientations were de-
fined according to the local misalignment along the fiber axis according to

y′(z) = ϕ0 · sin
(
π
z

L

)
(48)

as shown in Fig. 11.
The fiber diameter was d and a fiber volume fraction V f = 60% was assumed,

leading to a square RVE of side length w = d/2
√
π/V f . The model is discretized

using finite elements in Abaqus/Standard [65]. Both, the matrix and the fiber are
modeled with 8-node fully integrated isoparametric elements (C3D8). The in-plane
mesh size is set such that there are six elements along the fiber diameter. In the
longitudinal direction the element edge length is 10 µm and the model length is
L = 500 µm. The partitions in the longitudinal direction are normal to the fiber
axis to guarantee a good quality of the finite elements regardless of the initial fiber
misalignment, as shown in Fig. 11.

A single-fiber model requires special definition of boundary conditions, as free
boundaries would promote Euler buckling of the fiber, and the predicted strength
would largely underestimate the strength of the composite. Periodic boundary con-
ditions (PBC) appear to provide the most adequate solution. By comparing a single
fiber model to a model with 100 fibers, Gutkin et al. [57] showed that PBC can be
applied on single-fiber models for longitudinal compressive strength prediction (Xc)
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Figure 11. Illustration of the single-fiber 3-D CMM, detail of the mesh, exploded cut
view of the model, and side view with detail of the longitudinal mesh and material
orientation.

at the expense of inducing β = 0◦. PBC are applied on the lateral faces of the model,
while the model ends are subjected to isostrain conditions to introduce the longitu-
dinal compressive load. PBC are imposed between opposite faces of the model such
that ~ui − ~ui′ = ~uMN, where i and i′ are twin nodes of opposite faces and MN is the
master node governing the corresponding pair of faces’ relative displacement. Pre-
liminary analysis showed the ability of PBC combined with the partitions normal
to the fiber direction, to achieve a meaningful representation of the fiber kinking
mechanism (see Section 3.5).

A homogeneous thermal step with a temperature drop, ∆T , was applied without
external loading prior to the loading step to consider the residual thermal stresses
induced by the cool down from the curing temperature. This thermal step induces a
residual thermal stress field as a result of the mismatch between the thermo-elastic
constants of fibers and matrix. The magnitude ∆T is not easily determined since
the residual stresses accumulate nonlinearly during the cool down. As a result, the
value used for ∆T is determined as described in Section 3.4.

3.2 Material models for the fiber, matrix, and interface

The carbon fiber was modeled as a transversely isotropic material considering elas-
tic nonlinearity and inelastic damage. Elastic nonlinearity of carbon fibers in the
longitudinal direction is reported in the literature [84] and typically the longitudinal
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elastic modulus is modeled as a linear function of the longitudinal strain [67,78,85]
as considered herein with

Ef1 = E0f
1 (1 + cfε11) (49)

where cf is the nonlinear parameter of the fiber and E0f
1 is the tangent modulus at

ε11 → 0.
Fiber failure is given by a maximum stress criterion either in longitudinal tension,

σf11 ≥ Xf
t , or compression, |σf11| ≥ Xf

c and subsequent damage based on a CDM
scheme [86]. The details of the numerical implementation of the user subroutine for
the carbon fiber constitutive behavior can be found in Appendix B.

The thermoelastic constants of the carbon fibers analyzed are reported in Ta-
ble 6. The longitudinal strengths, Xf

t and Xf
c , and the nonlinear parameter, cf ,

were determined using novel tests, which are described and reported in Section 3.3
(numerical values are given in Table 9). The experimental procedure to character-
ize the fiber nonlinearity is described in Section 3.3.1. AS4 fiber tensile strength
was obtained from single-fiber tensile tests, whereas the longitudinal compressive
strength of AS4 carbon fiber was experimentally measured from in-situ microtests
as shown in Section 3.3.2. The compressive strength of IM7 fiber was obtained from
the literature [57].

The polymer matrix behavior is represented using the Lubliner damage-plasticity
model included in Abaqus [65, 87]. This constitutive equation allows the material
to behave as quasi-brittle when subjected to dominant tensile stress and models
elasto-plastic behavior under pressure confinement and compressive loads. Hence,
the tensile response is linear and elastic with elastic modulus and Poisson ratio,
Em and νm, until the tensile failure stress, σmt0 , is reached. Beyond this point, a
quasi-brittle softening is induced in the material, with Gmt being the matrix fracture
energy. Under uniaxial compression, the response is linear up to the initial yield
limit, σmc0 . Then, the matrix strain hardens until the ultimate stress value, σmcu , is
reached. Finally, the model includes a dilation angle, ψm, which couples dilatancy
with deviatoric deformation. The matrix was characterized by in-situ instrumented
nano-indentation as described by Rodŕıguez et al. [88]. The material model parame-
ters used in the simulations are reported in Table 7 [89,90]. The dilation parameter,
ψm, was not obtained in the experimental characterization, so it was determined
using the calibration procedure described in Section 3.4.

Fiber-matrix interface failure is taken into account using a cohesive crack ap-
proach. To this end, a cohesive interaction between the fiber and the matrix surfaces
is governed by a mixed-mode traction-separation law where damage onset follows a

Table 6: Material properties of linear elastic model of AS4 and IM7 carbon fibers.

Fiber d Ef1 Ef2 νf12 νf23 Gf12 Gf23 αf1 αf2
[µm] [GPa] [GPa] [GPa] [GPa] [K−1] [K−1]

AS4 [91] 7.2 Table 9 12.97 0.3 0.46 11.3 4.45 -0.9 10−6 7.1 10−6

IM7 [57] 5.1 Table 9 11.9 0.3 0.49 11.6 3.97 -0.6 10−6 5.2 10−6
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Table 7: Parameters of the damage-plasticity model for the matrix [89,90].

Em νm αm σmt0 Gmt σmc0 σmcu
[GPa] [K−1] [MPa] [J/m2] [MPa] [MPa]

5.07 0.35 52 10−6 121 90 176 180

quadratic stress criterion [65](
〈tn〉
N c

)2

+

(
ts
Sc

)2

+

(
tt
Sc

)2

= 1 (50)

where 〈 〉 stands for Macaulay brackets defined as 〈x〉 = max(0, x), tn is the normal
traction and, ts and tt are the shear components of the traction vector. N c is the
normal strength and Sc is the shear strength assumed to be equal in both shear
directions s and t. In addition, mixed-mode damage evolution is governed by a
Benzeggagh-Kenane law [92] as

Gc = Gcn +
(
Gcs −Gcn

)
·
(

2Gs
Gn + 2Gs

)ηBK

(51)

where ηBK is the Benzeggagh-Kenane power exponent, Gcn and Gcs are the normal
and shear fracture energies respectively, and Gn and Gs are the reciprocal work un-
der mixed mode propagation. Isotropic coulomb friction, ξc, is enabled at cohesive
damage initiation after cohesive failure is included in the cohesive contact defini-
tion. The fiber-matrix interface parameters used in the simulations are presented in
Table 8. It should be noted that interface properties were estimated based on the
calibration of the in-plane shear model described in section 3.4, but are in agreement
with experimental values reported in the literature [90]. Nevertheless, some of the
mechanical properties of the fiber/matrix interface have never been experimentally
measured, such as the normal strength (N c) or the fracture energies (Gcn, G

c
s), so

they need to be estimated or calibrated [93]. Together with the mechanical proper-
ties of the matrix, interface properties also play a major role on the initiation and
evolution of the fiber kinking phenomenon, as it will be shown in section 5.

Table 8: Material properties of fiber-matrix interface based on the calibration of the
shear model in section 3.4 and [90].

N c Sc kcn kcs Gcn Gcs ηBK ξc

[MPa] [MPa] [GPa/µm] [GPa/µm] [J/m2] [J/m2]

57 85 100 100 7 81 1.2 0.4

3.3 Experimental characterization

Experimental investigations were conducted to characterize several of the critical
input properties of the CMM model as described in this section.
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3.3.1 Carbon fiber non-linear elastic behavior

Various authors have reported the difference in elastic moduli of carbon fibers under
tensile and compressive loading, e.g. [6]. Under tensile load, fibers become gradually

stiffer until the tensile strength is reached, Xf
t , while in compression the modulus

decreases until a critical compressive stress, Xf
c , is reached. This phenomenon is

clearly observed in fibers under pure bending where the neutral axis shows an offset
from the middle of the fiber cross section [94,95]. The reduction in the compressive
modulus with increasing compressive strain is explained on a microstructural basis
by the local buckling of carbon crystallites promoted by the presence of needle-like
pores [96]. This phenomenon is observed as elastic nonlinearity at the ply scale.
For instance, the linear elastic modulus of CFRP was measured experimentally
by Mujika [97] through a four point bending test carried out on a unidirectional
laminate of AS4/8552, and showed a ratio of compressive to tensile moduli of 0.9.
Nonlinear elastic response in the fiber direction of CFRP thin plies was observed
experimentally by [78,85] and modeled with a variable elastic modulus as shown in
eq. (23).

Single-fiber tensile tests were performed on AS4 carbon fibers to obtain the
stress-strain curve up to failure. Carbon fibers were first extracted carefully with
mechanical tweezers from tows previously separated from woven fabrics. Special
care was taken to avoid damage while handling and mounting fibers for testing. The
fiber ends were bonded with cyanoacrylate adhesive on cardboard with 20 mm free-
gauge length. A total of 70 fibers were tested to characterize the elastic nonlinearity
parameters and the tensile strength. The ends of the fibers were directly connected
to the mechanical grips of the tensile tester and then submitted to uniaxial straining
up to failure under stroke control at 1 mm/min, leading to strain rates on the order
of ∼ 10−3 s−1. The linear density of the fibers was determined by the fiber tester
system through the frequency method according to the ASTM D1577 standard
[98]. In this method, the fiber is pre-stressed to a given force in the range of 0.45-
0.70 cN/tex. Then, the natural frequencies are extracted to determine the linear
density and, subsequently, the cross-sectional area. These latter values were used
to determine the individual tensile stress and strength of each fiber tested. As a
uniaxial loading state, the longitudinal stress, σ11, is obtained by integrating the
elastic modulus in eq. (49) along the longitudinal strain, resulting in

σ11(ε11) = E0f
1 ·

(
ε11 +

cf

2
· ε2

11

)
(52)

The red curves shown in Fig. 12 were obtained from single-fiber tensile tests of
AS4 carbon fibers. Assuming that the nonlinearity can be defined by the same cf

parameter in tension and compression, the blue curves correspond to the extrapo-
lation of the tensile side, previously fitted by means of eq. (52). The least squares
fit of all the test data is plotted as the green curve with the following parameters:
E0f

1 = 211.5 GPa and cf = 18.7. The black line illustrates the elastic modulus

from the traditional linear fitting, Ef1 . The compressive side curves are extended up

to εfcu = −εftu just to illustrate the modulus loss during longitudinal compression.
IM7 carbon fibers were not tested for availability reasons, so the ply-scale nonlinear
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Figure 12. Stress-strain curves from single-fiber tests of AS4 carbon fibers and
nonlinear fitting.

parameter from the literature, cl [78], was scaled by means of the rule of mixtures
to estimate the nonlinear parameter of the fiber, cf = cl/V f = 16.7, and the initial
elastic modulus was scaled with the modulus obtained for AS4 fibers resulting in
E0f

1 = 256 GPa.

3.3.2 Fiber compression strength

A number of experimental techniques have been developed to measure the com-
pressive strength of carbon fibers [6] including (i) the elastic loop test [99], (ii) the
fiber recoil method [100], (iii) single fiber composites testing [101], (iv) bending of a
micro-beam [102–104], and (v) direct fiber compression [96,105]. In the elastic loop
test (i) a fiber is bent into a loop and the ends of the loop are pulled until the fiber
breaks. Although this method was originally developed as a means of determining
the tensile strength of fibers [106], the compressive stress in the loop may induce
compressive failure of the fiber first. The fiber recoil method (ii) was introduced
by Allen [100] for the measurement of the compressive strength of polymeric fibers.
This technique consists of stretching a fiber at a certain tensile stress and then cut-
ting it in the middle. The resulting wave from the cut travels to the fixed ends of
the specimen and is reflected inducing a compressive stress state along the fiber.
The initial tensile stress is increased consecutively until damage is observed in the
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fiber cut ends. This procedure is prone to induce buckling along the fiber as large
gauge lengths are required and interpretation of the results is not direct. Hawthorne
and Teghtsoonian [101] carried out uniaxial compression tests on single-carbon fiber
epoxy composites (iii). They found an inverse relation between the elastic modu-
lus and compressive strength of the carbon fibers, as occurs in longitudinal tension
for rayon-based and PAN-based fibers. Compressive failure stress ranged from 0.8
to 2.5 GPa. The bending method includes different configurations to induce com-
pressive loading in single fibers (iv). DeTeresa et al. [102] employed a cantilever
beam-like design to induce a linear strain distribution along the beam-fiber until
the fiber was damaged. A different scheme was taken by other authors [103, 104]
setting up a single-fiber four point bending test producing a region of constant strain
in carbon fibers. Direct compression of single carbon fibers (v) was accomplished
by Macturk et al. [105] by fixing the fiber ends to the loading fixture with a gauge
length of 200 µm. It was found that the fiber compressive strength determined
using this method is sensitive to the fiber gauge length: if the fiber is too long it
will buckle, while if it is too small the stress field will not be homogeneous and the
strength measurement will be affected by the boundary conditions. Oya et al. [96]
performed a similar test to measure the compressive strength of different types of
carbon fibers and found the fixtures had an important effect on the fiber failure.

In this study, a novel technique for the compressive strength characterization of
carbon fibers is presented. Longitudinal compressive strength of AS4 carbon fibers
was measured through in situ micropillar compression tests. A FEI Helios NanoLab
DualBeam 600i equipped with a Focused Ion Beam (FIB) was used to manufacture
micropillars at the center of carbon fibers on the composite cross section (Fig. 13a).
Pillars of 1.5 µm in diameter (dp) and 3 µm in height (hp) were fabricated using
annular milling which resulted in pillars with a taper angle (θ ≤ 3◦) as shown
schematically in Fig. 14a. Beam currents were selected in order to produce suitable
pillar geometries while keeping reasonable milling times, starting with an initial
current of 0.79 nA down to 80 pA for the last milling step. The pillar diameter
must be sufficiently small compared to the fiber diameter such that pillar collapse
occurs before fiber-matrix debonding due to the shear stress induced at the interface.

Samples were then mounted on a special holder for easy transfer between the
FIB and the nanoindenter instrument. Compression tests were conducted using a
Hysitron TI 950 TriboIndenter equipped with a 10 µm diameter flat punch. The
experiments were carried out under displacement control at a constant displacement
rate of 12 nm/s. Considering the height of the pillars was around 3 µm, the test
speed guarantees quasi-static conditions (ε̇ ≈ 10−3 s−1). A total of 13 fiber pillars
were milled along the composite cross section and tested.

Typical stress-displacement curves obtained during the compression tests are
plotted in Fig. 14b. All curves present the same features distinguishing three differ-
ent regions. The initial nonlinear region corresponds to the contact stage between
the indenter punch and the top face of the pillar, followed by a linear region during
elastic deformation of the fiber pillar and the surrounding material. This second
stage turns into a smooth softening of the stiffness promoted by fiber pillar split-
ting. Fiber compression strength is computed at this point, and is indicated by
the red crosses in Fig. 14b. The splitting phenomenon was barely visible using the

38



(a) Cross-section view of an AS4/8552 composite lamina

(b) Pillar A (pre-mortem) (c) Pillar A (post-mortem)

(d) Pillar B (pre-mortem) (e) Pillar B (post-mortem)

Figure 13. Pre and post-mortem views of two micropillars milled on AS4 carbon
fibers.

SEM. If the load keeps increasing, eventual collapse of the micropillar takes place
due to the transverse tensile stresses generated within the bulk of the pillar as in a
Brazilian disc test of concrete, see Fig. 13(c) and Fig. 13(e). These images confirm
fiber push-in phenomenon is prevented in favor of micropillar compression up to
failure.

The pillar compressive strength was obtained based on the loss of linearity of
the loading curve as in [107]. The stiffness of the system, k0, was computed through
least squares fitting of the linear stage of the curve. Then, this linear fitting was
shifted to the right (∆u = 2%) and the compressive strength of the fiber, Xf

c , was
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Figure 14. Pillar compression test for compressive strength characterization of AS4
carbon fibers (red crosses denote initial fiber failure).

computed as the intersection between this line and the loading curve. The value
of the displacement offset, ∆u, was somewhat arbitrary, but provided good and
repeatable estimations for the critical load at damage onset. This technique might
be applied to other kind of fibers like glass, basalt, aramid, and poly-ethilene. As the
micropillar milling requires minimal electrical conductivity of the sample, a common
surface treatment, like gold sputtering, is enough for imaging purposes.

The average compressive strength obtained for AS4 carbon fibers was 3500 MPa
with a standard deviation of 200 MPa. IM7 carbon fibers were not tested for avail-
ability reasons, therefore, the compressive strength value shown in Table 9 was
obtained from the literature [57].

Table 9: Longitudinal properties of carbon fibers for the linear and nonlinear cases.

Fiber Linear Nonlinear

E0f
1 [GPa] cf E0f

1 [GPa] cf Xf
c [MPa] Xf

t [MPa]

AS4 230 0 211.5 18.7 3500 4000
IM7 [57,78] 275 0 253 18.3 3200 5000

3.4 In-plane shear response

The mesoscale model requires the non-linear stress-strain relation under in-plane
shear loading, τ12 = τ12(γ12), to derive the compressive strength of the composite.
Ideally, the parameters that define the shear response of the ply are obtained from
an experimental test that isolates the behavior of a single ply subjected to large
shear deformations. However, in the absence of such test data, the ASTM D3518
test of a ±45◦ laminate subjected to longitudinal tensile loading [108] is used to
define the shear nonlinearity behavior. The ±45◦ laminate test data smears a wide
variety of damage mechanisms into a single stress-strain curve, including mechanisms
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such as large fiber rotations and delamination, which are not desirable to include
in the shear nonlinearity characterization. Nonetheless, the ±45◦ laminate is the
best source of material input data available for the mesoscale model. Therefore,
the micromechanical model was calibrated, in a similar fashion to the approach
proposed by Yerramalli and Waas [18, 56], so that the RVE model produces an
equivalent shear stress-strain response using a ±45◦ RVE. This approach facilitates
a one-to-one comparison of the mesoscale and micromechanical models for the fiber
kinking mechanism.

An RVE of a ±45◦ laminate, as shown in Fig. 15a, was developed with the
parameters and modeling approach described in Sections 3.1 and 3.2. Under in-
plane shear loading, the model is initially linear elastic until the interface begins
degrading and plastic shear deformation of the matrix take place. Fig. 15b depicts
the longitudinal fiber/matrix debonding (interface damage, Dc) and the maximum
principal plastic strain of the matrix (εpI) for high shear strains in the model (γ12 ≈
6%). The two undefined input parameters, the dilation angle of the matrix, ψm, and
the effective temperature drop, ∆T , were adjusted by trial-and-error to reproduce
the experimentally measured stress-strain response. The final response produced
from the ±45◦ micromechanical RVE, and the experimentally measured response
of a ±45◦ laminate are nearly identical as shown in Fig. 15c. The parameters for
the Ramberg-Osgood curves used to reproduce the experimental shear curve of the
laminate are found in Table 4.
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Figure 15. Numerical characterization of the non-linear shear response of the com-
posite materials (AS4/8552 and IM7/8552). Experimental curves in c) are obtained
from the literature for AS4/8552 [79] and IM7/8552 [80].
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3.5 Model verification

This section describes several analyses that verify the CMM modeling parameters
and demonstrate the characteristics of the model predictions. In this section, the
behavior of the fiber is assumed as linear and elastic (cf = 0) without damage
consideration and the initial fiber misalignment is ϕ0 = 1.5◦.

3.5.1 Verification of model parameters

Verification studies were conducted to investigate the influence of the model length,
element size, and periodic boundary conditions for the CMM model. These analyses
were carried out for an AS4 carbon fiber.

To analyze the effect of the boundary conditions on the model representativity,
two models were compared. The first model consists of the single-fiber model with
periodic boundary conditions described at the beginning of Section 3. The second
model consists of a vertical array of 3-D fibers extruded along a sine curve as in the
single-fiber model, eq. (47), but in this case periodic boundary conditions are only on
the lateral faces x = 0, w of the model; the top and bottom faces are free [53,54,62].
An increasing number of fibers was considered in this latter model ranging from 50
up to 400. A schematic representation of the model is presented in Fig. 16a.

A 2-D model was also developed for comparison purposes, as shown in Fig. 16b,
based on the work of other authors in the literature [7, 54, 59, 109]. Nevertheless,
since the shear response was calibrated using a 3-D micromechanical model, the
equivalence with a 2-D model is not guaranteed.

The results indicate that the predictions obtained with the single and multiple-
fiber models for compressive strength are in good agreement with FKT, as shown
in Fig. 17a. As the number of fibers increases in the multiple-fiber models, theb)

lateral face (PBC)

bottom face (free)

top face (free)

front face (load)

back face (supported)

(a) Multiple-fiber 3-D model with 10 fibers

b)

d)

(b) Multiple-fiber 2-D model

Figure 16. Schematic representation of the multiple-fiber FE models.
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Figure 17. Analysis of the multiple-fiber models comparing the numerical results
from different FE models with the analytical solution from FKT, eq. (5).

strength approaches the strength predicted by the single-fiber model, as shown in
Fig. 17b. The limiting case of an infinite number of fibers is equivalent to the single-
fiber model with periodic boundary conditions, which is in excellent agreement with
FKT.

The model length effect was assessed by analyzing single-fiber 3-D models with
the following length values: 200, 300, 500, 700, 800 and 1000 µm. The longitudinal
mesh size was kept constant at 10 µm and linear elastic behavior of the fibers
was considered. The stress-strain curves for ϕ0 = 1.5◦ with the different length
values are shown in Fig. 18a. A convergent trend towards the strength predicted
by FKT is observed in Fig. 18a as the model length increases. The error between
the CMM and FKT for strength is below 2% for L ≥ 500 µm. The maximum fiber
rotation in the CMM model takes place at z = L/2 and is denoted as ϕmax. The
average rotation of the kinked fiber is calculated from the transverse deflection at
the end of the fiber, uy, and the kink band width, wkb, as ϕavg = tan−1(uy/wkb).
Comparing the kink band rotation in Fig. 18b, the kinematic behavior is equivalent
regardless of the fiber length. In Fig. 18c, it is observed that the kink band width at
fiber kinking initiation was very similar for all the model lengths analyzed, around
100 µm. The maximum band broadening increases with the model length, as the
fiber is longer and fiber failure, which may limit band broadening, is not considered
in these analyses. Nevertheless, the relative kink band size is identical in all cases,
wkb/L = 0.7, as shown in Fig. 18d. These results show that the kink band width at
initiation does not depend on the length of the model, L, but the band broadening
once the kink has formed is affected by the far-field boundary conditions.

Based on these analyses, the single-fiber 3-D model with periodic boundary
conditions and L = 500 µm was selected as the most suitable and representative
model to analyze the fiber kinking phenomenon in terms of stress-strain curve and
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kink band kinematics. This version of the CMM model is used as the nominal
configuration throughout the remainder of this report.

3.5.2 Sequence of events in the kinking process

The sequence of events observed in the CMM model is illustrated in Fig. 19. Critical
points in the process are indicated by the points labeled i through iv on the predicted
stress vs. strain response provided in Fig. 19a. As the compressive stress, σc, in-
creases the shear stress along the matrix grows due to the fiber initial misalignment,
eq. (A1). At point i, the matrix starts yielding along a narrow band at the center
of the imperfection, as shown in Fig. 19b. The yielded region continues spreading
in the longitudinal direction until the yield band is wide enough to promote local
rotation of the fiber (point ii), leading to the formation of a kink band (point iii),
as shown in Fig. 19b and c. The same sequence of events prior to fiber kinking was
observed by Davidson and Waas [110]. Fiber rotation results in a sudden drop in
load carrying capacity and produces the kink band, which corresponds to the region
where the matrix has deformed plastically bounded by the fiber sections with the
highest bending stresses, see Fig. 19d. The fiber/matrix interface also participates
in triggering fiber kinking. When the interface is damaged (Fig. 19c), the fiber
cannot transfer part of the shear load to the matrix, resulting in premature kinking
failure.

Due to the single-fiber model design and the periodic boundary conditions, once
the kink band appears, it is assumed that it has already propagated simultaneously
through the whole composite, so transverse propagation cannot be observed with this
model. Instead, as compressive strain increases, εc, the kink band keeps growing
along the fiber direction. This phenomenon is known as band broadening, and
can be observed experimentally once the kink band has fully propagated across
the specimen (in the direction transverse to the loading) [25]. Band broadening
is accompanied by progressive fiber rotation, while compressive stress decreases
gradually (Fig. 19d). This sequence of events was also observed in the literature in
periodic models including several fibers [63].

Neither the tensile strength nor the compressive strength of the fibers are reached
for the model parameters considered here. Small values of initial misalignment do
result in fiber damage, as discussed in Section 4.2. For small values of initial mis-
alignment, ϕ0 < 1◦, the fibers fail under pure compression yielding a constant
compressive strength value, Xc, regardless of ϕ0 [57]. However, fiber breakage was
not observed in the models with initial misalignment higher than 1◦, neither at fiber
kinking initiation, nor during kink band broadening. Such predictions seem unre-
alistic since nearly all experimental observations of kink bands show broken fibers.
More realistic failure models for the fibers are required to address this deficiency.
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3.5.3 Kink band angle

The use of periodic boundary conditions in the CMM single-fiber model forces the
kink angle, β, to be zero [57]. Since the model predicts the residual stress, σr, the
kink band angle can be estimated from by rearranging eq. (12) as

β =
1

2
arcsin

(
2τL
σr

)
(53)

Using eq. (53) with the residual stress values from the CMM model ranging between
600 and 500 MPa from fiber kinking initiation up to 2% strain (as shown in Fig. 18a)
and assuming a shear yield stress τL = 95 MPa (at 5% strain in Fig. 15b), the
resulting effective kink angle is found to be between 9◦ and 12◦. This range for β
agrees well with values reported in an experimental study carried out in parallel
through X-Ray computed tomography observation of fiber kinks in IM7/8552 [71].

For the sake of completeness, the 3-D multiple fiber model was used to obtain the
kink band angle, β. The model was similar to the 3-D multiple-fiber model described
in Section 3.5.1, but included an inhomogeneous initial misalignment to trigger fiber
kinking from one of the edges following the approach of Vogler et al. [54]. To improve
the stability of the problem, loading is applied in two steps [54]. First, a constant
compressive stress, σc, in the fiber direction is applied up to a subcritical level.
Then, an in-plane shear load, τ12, is increased until fiber kinking takes place. The
kink band initiates on the free edge where the larger initial misalignment is located
and propagates across the model with a β angle of 12◦ and a constant band width,
wkb = 100 µm, as shown in Fig. 20. The values for β and wkb are in good agreement
with the values obtained from the single-fiber models and with values reported in
the literature. Some kink band angle values reported in the literature for carbon
reinforced composites are shown in Table 10. Although a variety of experimental
techniques were employed to promote the fiber kinking failure mechanism, it is
observed that typical values of β are found between 10◦ to 20◦ in most cases.

From the shear stress-strain curve, Moran’s energy-based analytical model [25]
is able to predict σr and β for fiber kinking assuming there is no change of volume
in the material, thus ϕ = 2β. The values obtained from Moran’s model using
the Ramberg-Osgood shear stress-strain curve (substituting eq. (4) in eq. (13) and
minimizing with respect to β) are similar for both AS4/8552 and IM7/8552, due
to the similar shear curves. The σr predicted is around 300 MPa with β = 40◦.
Although the estimation for σr is reasonable compared to the results of the models
presented in this work, the kink band angle is not in good agreement with the CMM
model. The mismatch in β is likely a result of the fact that the CMM model includes
compressibility of the matrix and is therefore not restricted to Moran’s assumption
of ϕ = 2β. Vogler et al. [54] showed that β is a function of pressure sensitivity and
dilatancy of the matrix, which may explain the difference between the present model
and Moran’s model. It also should be noted that using the residual stress from the
CMM model predictions σr = 400 MPa in Moran’s model results in β ≈ 18◦, which
is in much better agreement.
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Table 10: Kink band angle values reported in the literature from experiments and
numerical models.

Material system β [◦] Method Reference

IM7/8552 5–30 Experimental Lee and Soutis [111]
IM7/8552 15–25 Experimental Bergan and Garcea [71]
IM7/8551-7 17 Numerical Bishara et al. [62]
AS4/8551-7 15 Numerical Bishara et al. [62]
AS4/PEEK 16 Experimental Jelf and Fleck [24]
AS4/PEEK 20–30 Experimental Couque et al. [112]
AS4/PEEK 12–16 Experimental Kyriakides et al. [5]
AS4/PEEK 12–15 Experimental Vogler et al. [55]
AS4/PEEK 5–17 Numerical Vogler et al. [54]
T300/913 22–28 Experimental Pinho at al. [75]
T800/924C 10–15 Experimental Fleck et al. [23]
T800/924 8–10 Numerical Pimenta et al. [7]
APC-2/PEEK 12–22 Experimental Moran et al. [25]

4 Comparison of the mesoscale and micromechanical
models

The predictions from the micromechanical model were compared with the predic-
tions from the mesoscale model to understand the role of the simplifying assumptions
in the mesoscale model. In both analyses, an end shortening displacement in the
longitudinal direction was prescribed. In this section, the micromechanical model
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assumes the fiber behaves as a nonlinear elastic solid (cf 6= 0) and considers tensile
and compressive failure, except where noted. The mesoscale finite element model
is composed of one cubic C3D8R element with an edge length l1 = 0.15 mm as
described in Section 2.7.1. The material properties used in the mesoscale analysis
are provided in Table 4.

Additionally, analytical models from the literature, including Argon’s model,
Pimenta’s model, and Budiansky’s FKT are compared with the CMM and CDM
model results where applicable. The assumptions followed to characterize the shear
response of the material are fundamental to the prediction of fiber kinking for all of
the analytical models considered. The characteristic shear curves for the different
models are shown in Fig. 21. Argon’s expression, eq. (2), considers the matrix as a
rigid perfectly-plastic solid [13]. A value of 80 MPa was assumed as the yield limit of
the matrix under shear. On the other hand, Pimenta’s model [29] assumes an elastic-
perfectly plastic (EPP) matrix shear response and is based upon micromechanical
features such as fibers packing and cross section. The shear modulus is defined
as Gm2D = Gm/(1 − V f

2D) = 10.06 GPa, and the shear yield limit is set to τY =
80 MPa. Budiansky’s FKT does not require a simplified shear response, and so a
more representative constitutive nonlinear response can be used. For comparison
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with the other models, both the Ramberg-Osgood and EPP shear responses are
used with the FKT approach.

4.1 Stress vs. strain response

The predicted stress-strain curves indicate excellent agreement between the two
models (CDM and CMM) for a variety of initial fiber misalignments, ϕ0 of 1.5, 2,
2.5, 3, and 4◦, as shown in Fig. 22a for AS4/8552. The compressive stress, σc, is the
nominal stress calculated as the reaction force divided by the original area, and the
compressive strain, εc, is the end shortening divided by the original length. Both
models predict the initial elastic response, strength, subsequent collapse, and finally
a non-zero residual stress. Since the energy released during instability is large for
small values of ϕ0, some vibrations are predicted by both models immediately after
the instability. The transition from a strong instability (snap-back) to a smooth
response is predicted by both models to occur between ϕ0 = 2.5◦ and 3◦. The value
of ϕ0 at which the transition to snapback occurs can be estimated from FKT as
the smallest value of ϕ0 for which there exists a local maximum of eq. (7). The
results in Fig. 22a illustrate that both models predict a dependence of the peak
load on ϕ0 whereas the predicted residual stress, σr, is independent of ϕ0, which
is consistent with fiber kinking theory. Moran et al. [25] and others proposed the
residual stress to be a material property. A range of values of σr, calculated using
eq. (12), is superimposed on Fig. 22 showing very good agreement with the model
predictions. The range of σr was calculated using the shear strength at 5% strain
τL = 95 MPa and β was varied from 12◦ to 16◦, as reported from an experimental
investigation on IM7/8552 [71], in eq. (12). The residual stress is expected to follow
an asymptotic trend at large compressive strain (εc > 20%) as shown in the material
model developed by Gutkin et al. [51], which yields an asymptotic value around
230 MPa for another carbon fiber reinforced epoxy resin (HTS45/LY556). The
excellent agreement between the two models for strength, subsequent instability,
and residual stress suggests that the most significant features of the kinking process
are captured by the relatively simple mesoscale model. Further, the agreement
between the two models demonstrates that ignoring fiber bending appears to be
a reasonable assumption for relatively small carbon fibers with large wavelength
misalignments. Similar results were obtained from both the CDM and CMM models
for the IM7/8552 material system.

Of the analytical models, only Hsu’s augmentation of FKT, eqs. (6) and (7),
and Pimenta’s, eq. (14), provide a complete stress vs. strain response. The results
obtained from these two models are plotted next to the CMM and CDM curves in
Fig. 22b for ϕ0 = 2.0◦. The stiffness predicted by Pimenta’s model is constant up to
the peak-load because it does not include the fiber nonlinear elastic behavior. The
strength predicted by this model is different from the other models in the figure in
that it considers a linear elastic perfectly plastic response of the composite lamina
under shear, instead of the more realistic strain-hardening shear response employed
by the CMM and CDM models. During fiber kinking, the snap-back phenomenon is
captured by Pimenta’s model because the model is not displacement-controlled. A
lower σr is predicted by Pimenta’s model compared to the other models. The main
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Figure 22. Stress vs. strain curves for the CMM and CDM models of AS4/8552
including nonlinear response of the fibers (cf , cl 6= 0). Comparison with analytical
models of the literature (FKT [18] and Pimenta et al. [29]). Residual stress, σr, is
estimated from eq. (12).

feature responsible for the difference in σr is the shear curve shape. The absence
of strain hardening in Pimenta’s model results in the lower prediction for residual
stress level. The effect of not considering strain hardening in the shear response is
also noticed in the predictions for fiber rotation, as discussed in Section 4.3. On the
other hand, FKT predicts the same compressive strength as the CMM and CDM
models, since it is based on the same nonlinear shear curve. However, the stiffness
of the composite up to collapse is slightly higher in the FKT result since the fiber
modulus is assumed to be constant. The residual stress predicted agrees very well
with the CDM and CMM models.

4.2 Strength sensitivity curves

The compressive strength, Xc, for AS4/8552 and IM7/8552 predicted by FKT,
eq. (5), and by the CMM single-fiber model are shown in Fig. 23a as a function of
ϕ0 . Very good agreement is observed between the two models for ϕ0 ≥ 1◦, which
is attributed to the similarity of the nonlinear shear response in the two models
(Fig. 15). Though not shown, the predictions by the mesoscale model are identical
to the FKT results, as is expected since the mesoscale model is based on FKT. The
strength sensitivity curve provides a one to one relation between Xc and ϕ0, such
that, for the typical compressive strengths of the materials addressed in this work
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Figure 23. Compressive strength sensitivity curves.

(horizontal lines in Fig. 23a), a representative value of ϕ0 is obtained: 1.2◦ and 1.6◦

for IM7/8552 and AS4/8552, respectively.
For very small values of initial misalignment, ϕ0 < 1◦, the CMM model predicts

fiber failure due to pure longitudinal compression, instead of fiber kinking. A cut-off
strength point is found at Xc = V f ·Xf

c , yielding 2100 and 1920 MPa for AS4/8552
and IM7/8552 respectively.

The strength sensitivity curves predicted by other analytical models are shown
in Fig. 23b. All the models predict a critical effect of the initial misalignment, ϕ0,
on the compressive strength, Xc, of the unidirectional fiber-reinforced composite.
The effect of the misalignment, ∂Xc/∂ϕ0, is more pronounced for low initial mis-
alignment angles. Argon’s model predicts the highest strength for the misalignment
range considered, going to infinity for the limit ϕ0 = 0◦. The two FKT predictions
show the effect of the Ramberg-Osgood shear curve as compared with the EPP shear
curve: the EPP shear curve produces higher strengths for the same misalignment
angle. In both cases, FKT has an upper limit Xc(ϕ0 = 0) = G12. Pimenta’s model
predictions are very close to the FKT results obtained using the same EPP shear
curve. The assumptions and strategy followed by Pimenta could be extended for
different nonlinear shear curves as proposed by the author [29]. Finally, Barbero’s
analytical model predicts a similar strength-misalignment trend [19]. For the re-
sults presented, a half-normal statistical distribution of the fiber misalignment was
assumed with zero mean and standard deviation of ϕ0.
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4.3 Fiber rotation

The fiber rotation angle, ϕ, as a function of the longitudinal strain for AS4/8552
is shown in Fig. 24a for ϕ0 ranging from 1.5◦ to 4◦. Since ϕ = ϕ(z) in the CMM
model, two definitions for ϕ are plotted for comparison with the fiber rotation,
ϕCDM, predicted by the CDM model in eq. (38). The maximum fiber rotation in
the CMM model takes place at z = L/2 and is denoted as ϕmax

CMM. The average
rotation of the kinked fiber is calculated from the transverse deflection at the end
of the fiber, uy, and the kink band width, wkb, as ϕavg

CMM = tan−1(uy/wkb). In all
cases, the fiber misalignment shows slight rotation (ϕ ≈ ϕ0) prior to the strain at
which the peak load is attained. When the critical strain corresponding to the peak
load is reached, the fiber rotates rapidly into the kinked configuration, which is seen
as the abrupt change in ϕ in Fig. 24a at εc ≈ 1%. The rotation is much more rapid
for small initial fiber misalignments than for large initial fiber misalignments. Under
yet higher strains (in the strain regime that corresponds with the residual stress,
εc ≥ 1.5%) the fibers continue to rotate at a constant rate with increasing εc. The
fiber rotation predicted by the CDM is bounded by the average and maximum ϕ
from the CMM model. It could be argued that ϕCDM should match ϕmax

CMM since
both represent the critical or maximum fiber misalignment. The difference between
ϕCDM and ϕmax

CMM is most likely due to considerations of fiber bending and periodic
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boundary conditions in the CMM model, both of which affect the fiber rotation and
are not included in the CDM. It should be noted that different material systems
may be more sensitive to fiber bending, in which the agreement between the two
models would be limited. Nonetheless, the agreement between the two models is
quite good and thus highlights further efficacy of the relatively low-fidelity mesoscale
model at representing the large rotations associated with the fiber kinking process
as predicted by the high-fidelity micromechanical model.

Results from the model proposed by Pimenta et al. [29] are included in Fig. 24b
displaying the maximum rotation of the fiber during kinking. In qualitative terms,
the same features are represented: fiber rotation is negligible up to the point when
the fiber kinking mechanism is triggered. Then, sudden rotation of the fibers hap-
pens during snap-back. Finally, under large compressive strains, the fibers continue
to rotate gradually. However, quantitatively, the predictions for ϕ rise beyond 20◦

at ε = 2%, which is noticeably higher than ϕ ≈ 14◦ predicted by the mesoscale and
micromechanical models for the same strain level. By ignoring strain-hardening, the
model underestimates the shear stiffness at large strain and therefore over predicts
ϕ. Nevertheless, Hsu’s [18] analytical estimate, based upon FKT theory, of the
fiber rotation is equivalent to the average fiber rotation obtained from the microme-
chanical model, ϕavg

CMM, see Fig. 24b. It is important to notice that this analytical
model employs the characteristic Ramberg-Osgood nonlinear shear curve which is
introduced in the CDM model, see Fig. 15c.

4.4 Fiber nonlinearity

The effect of fiber nonlinearity on the mechanical response of the CMM and CDM
models is illustrated in Fig. 25. Both models account for fiber nonlinearity and
therefore show a pre-peak reduction in stiffness. The resulting compressive strength,
Xc, is not affected. However, fiber nonlinearity increases the strain to failure from
1% to 1.2% for AS4/8552 with ϕ0 = 2◦ in both models. Kink band rotation is not
affected once the fiber kinking phenomenon is triggered, following the same rotation
rate (∂ϕ/∂εc).
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Figure 25. Comparison of the CMM and CDM models for AS4/8552 with and
without nonlinearity of the fibers.

4.5 Kink band width

The kink band width, wkb, was computed in the micromechanical model as the dis-
tance between the points with the highest bending stress along the fiber occurring
at the peak stress following [29]. The CMM model shows wkb ∝ d, as reported in
the literature [3, 24]. The results for wkb of the CMM model as well as other ana-
lytical models from the literature considering fiber bending [3, 23, 29] are presented
in Table 11.

The CDM model does not consider fiber bending, as detailed in Section 2, so a
kink band width value must be specified as input to the model. The values employed
in the CDM model are reported in Table 11 and are based on the CMM results and
analytical models from the literature [3,23]. The selection of wkb has an important
effect on the post-peak response of the model as shown in Fig. 26. Wider kink bands
arrest kink band rotation (see Fig. 26b and d), thus enhancing the residual stress
sustained by the material during the softening regime for both material systems,
as shown in see Fig. 26a and c. Most of the kink band rotation occurs abruptly
during the load drop right after the peak stress is reached. The sensitivity of the
residual stress to the kink band width is an important consideration for application
of the CDM. In the event that experimental evidence of the kink band width is not
available, the CMM provides an important utility for use of the CDM in that the
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kink band width input parameter for the CDM can be determined from the CMM.
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Figure 26. Effect of the kink band width, wkb, on the CDM constitutive model.
Curves obtained for ϕ0 = 2◦ and cl = cf = 0.

Table 11: Values for wkb.

Material CDM CMM eq. (42) Fleck et al. [23] Pimenta et al. [29]
[µm] [µm] [µm] [µm] [µm]

AS4/8552 100 90− 120 50 85 62− 118
IM7/8552 50 50− 80 38 70 48− 93
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5 Parametric studies with the micromechanical model

Taking advantage of the CMM single-fiber model presented in Section 3, two para-
metric studies were carried out: the first one analyzes the effect of the fiber-matrix
interface strength on the fiber kinking mechanism, and the second tests the potential
of the fiber cross section to improve the mechanical performance of the composite
material under longitudinal compressive loads. For simplicity, the results shown in
this section do not include fiber nonlinearity (i.e. cf = 0) or fiber failure.

5.1 Fiber-matrix cohesive interface analysis

A parametric study of the fiber-matrix cohesive interface strength was carried out to
analyze its effect on the fiber kinking mechanism. To this end, the single-fiber CMM
model with an initial misalignment of ϕ0 = 2◦ was simulated for different interface
shear strengths, Sc = 21, 63, 85 and 300 MPa. The baseline case with Sc = Sc0 = 85
MPa corresponds to the results presented in Section 4 and the interface properties of
Table 8. For the rest of the interface shear strength cases, the normal strength and
fracture energies were scaled accordingly. The case where Sc = 300 MPa, represents
a perfect interface model. The fiber-matrix friction coefficient was kept constant,
ξc = 0.4, except where noted.

The results of this analysis are summarized in Fig. 27. A low interface strength
triggers fiber kinking earlier, reducing the compressive strength as shown in Fig. 27a
for the cases with Sc = 21 and 63 MPa. On the other hand, when the interface
shear strength is higher than the shear yield limit of the matrix, Sm = 80 MPa, fiber
kinking is activated by matrix shear instability regardless of the interface strength.
For this reason, a perfect interface does not increase the compressive strength of the
material.

The residual stress is not only dependent on the matrix yield limit in shear,
Sm, but also on the ability of the interface to transfer load between the matrix
and the fiber. A strong interface is able to sustain the shear loads on the interface
and promotes the plastic shear deformation of the matrix as shown in Fig. 27c
for the case with Sc = 85 MPa. On the other hand, if the interface is weak, it
fails prematurely and the matrix slips along the fiber when the interface shear stress
overcomes the interface shear strength, preventing plastic deformation of the matrix.
In Fig. 27d, it is observed the interface longitudinal slippage, δcz, is much higher for
the weak interface case going up to 1.4 µm, compared to 0.5 µm over a larger fiber
section. According to this hypothesis, the perfect interface case can be employed as
an upper bound of σr as it further exploits the potential of the matrix to dissipate
plastic energy through shear deformation.

The effect of a frictionless interface was observed after the load drop due to fiber
kinking. Although, friction does not participate until the fiber-matrix interface is
damaged, it plays a role arresting fiber rotation during the post peak regime. In
absence of friction, fiber rotation can only be arrested by fiber bending and matrix
hardening due to the hydrostatic pressure induced by ϕ, thus fiber rotation in the
CMM model with ξc = 0 is higher as shown in Fig. 27b. The additional fiber
rotation results in a reduction in σr by about 150 MPa.
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Figure 27. Effect of fiber-matrix interface shear strength of AS4/8552 with ϕ0 = 2◦.

5.2 Non-conventional fiber cross sections

While conventional carbon fibers are circular, some research groups have been able
to produce non-conventional carbon fiber cross sections using different techniques
[113]. A wide variety of carbon fiber sections produced at lab-scale can be found
in the literature: lobular [114], ribbon-shaped [115], with complex patterns and
hollow sections [116], to cite some of them. An especially attractive fiber pattern
for the design and production of lightweight structures are hollow fibers. In this
regard, the research work carried out by Kumar [117] on the manufacturing of hollow
honey-comb carbon fibers should be highlighted. Using the cross section geometry
developed by Kumar, a short study on the potential of hollow fibers to provide
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higher specific strength to fiber kinking was performed. Two fiber cross sections
were tested: a hollow tube-like fiber (HT), and a honeycomb hollow fiber (HC).
AS4 carbon fiber properties were assumed, with a fiber diameter, d, see Table 6.
For simplicity, the fiber is a linear elastic transversely isotropic solid without any
failure criterion. The matrix volume fraction was kept constant to V m = 40%
while varying the void volume fraction, V v, as reported in Fig. 28e. Hollowness is
controlled by the diameter, dv, of the channels or “islands”, see Fig. 28c–d.

The results of the parametric study are summarized in Fig. 28. The loss in
stiffness can be estimated from the rule of mixtures, nevertheless, as the hollowness
fraction increases (V v ≥ 24%), HC fibers stiffness is slightly higher compared to
the HT fibers due to their higher bending stiffness as observed in Fig. 28a and in
the last column of Fig. 28e where the relative second moment of area compared to
the baseline cross section are shown, Ifx/I

f0
x . The compressive strength, Xc, is not

significantly affected by the reduction in the longitudinal stiffness from the fiber
hollowness. The HT and HC designs preserve the fiber bending stiffness efficiently,
providing an important increase of the specific compressive strength per unit mass
compared to the solid baseline fiber as shown in Fig. 28b. The residual stress level
remains unaffected by the fiber hollowness as it is mainly governed by the matrix
shear yielding.

Some variables that were not considered are the fiber failure due to higher com-
pressive stress levels that would promote premature collapse of the material, and
the higher fiber waviness and defects which arise from the more complex fiber ar-
chitecture and may degrade the strength of the composite material. Although this
parametric study is missing important variables that will play a role on the final
mechanical response of the virtual composite material, the preliminary results are
promising in terms of lightweight structural designs in the near future. Potential
applications are found in woven configurations, where fiber waviness is very high
and the longitudinal stresses sustained by the fibers are not as high as in the unidi-
rectional ply case.
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6 Concluding Remarks

A mesoscale continuum damage mechanics (CDM) model based on fiber kinking
theory has been developed. This model has a stress-strain response that includes a
sharp drop due to the onset of fiber kinking, followed by a nonzero residual stress.
Furthermore, the mesoscale model tracks the fiber rotation through the kinking
response such that longitudinal shortening deformation is coupled with shearing de-
formations. These characteristics arise from consideration of material nonlinearity
in the shear stress-strain behavior and large fiber rotations. Thus, the constitu-
tive response is not prescribed directly. Rather, it is a result of the fundamental
material and geometric nonlinearities that contribute to the fiber kinking process.
Verification studies demonstrated that the mesoscale model reproduces strength,
fiber rotation, and residual stress in excellent agreement with fiber kinking theory.

The mesoscale model makes use of the deformation gradient decomposition
(DGD) technique to enable mesh objectivity. Analyses of an unnotched compres-
sion configuration with three mesh sizes suggest that the model results are objective
with respect to the mesh size. The initial fiber misalignment angle ϕ0 provides a
means of introducing stochastic variations into the model with a physical basis. In-
troducing spatial variation in ϕ0 is necessary for accurate structural simulation so
that the mean value ϕ0 is near zero. Additionally, variation in ϕ0 is useful to trigger
localization of damage in structures with a uniform stress field.

A high-fidelity computational micromechanics (CMM) model was developed to
further understanding of the fiber kinking mechanism and to assess the extent to
which the mesoscale model captures the key features of fiber kinking. The CMM
model was a 3-D single-fiber finite element model that considered nonlinearity in the
fiber, matrix plasticity, and fiber/matrix interface debonding as well as geometric
nonlinearity. The most significant difference between the CMM and CDM models as
related to fiber kinking is that the CMM model includes fiber bending whereas the
mesoscale model does not. The CMM model predicts that fiber kinking occurs with
the following sequence of events: a) yielding in the matrix begins in a narrow band
near the maximum misalignment well before peak load; b) then, under increasing
load, yielding in the matrix spreads in the longitudinal direction until the yielded
region is large enough to promote local rotation of the fiber; c) next, instability
between fiber rotation and matrix yielding leads to the formation of the kink band;
and d) finally, the rotation of the fibers is arrested once the angle becomes large.
The kinking process predicted by the CMM model is in good agreement with other
micromechanical models in the literature [110].

Comparisons between the mesoscale and microscale model serve as a basis for
assessing how well the relatively coarse mesoscale model captures the key features
of the fiber kinking process. To focus the comparisons on the characteristics of
the two models instead of differences in input properties, the CMM model was
calibrated with the same shear nonlinearity response used in the mesoscale model.
The comparison between the mesoscale and microscale models was made through
the analysis of the corresponding stress-strain curves (σc vs. εc) and the kinematics
of fiber kinking (ϕ vs. εc). Analyses were also conducted to study the influence of
the kink band width wkb and the kink band angle β. The following conclusions are
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drawn from the comparative study of the two models:

1. The stiffness of the microscale and mesoscale models showed very good agree-
ment both with and without consideration for elastic nonlinearity in the fibers.
It was noted that the coefficients of fiber nonlinearity for the microscale and
mesoscale models are related by the rule of mixtures.

2. The strength predicted by the two models is a function of the initial misalign-
ment angle and is nearly identical for 1◦ < ϕ0 < 4◦. Small values of ϕ0 lead
to fiber compression failure, which is only accounted for in the CMM model.

3. Fiber kinking occurs as an instability due to interaction between fiber rotation
and shear nonlinearity. The two models predict similar values of strain for the
onset of the instability.

4. The residual stress σr predicted by the two models is in excellent agreement,
with both models showing a slight decay under increasing compressive strain.
The value of σr is a function of the width of the kink band and fiber rotation.

5. Despite the fact that mesoscale model does not include fiber bending, the re-
sults for fiber rotation (ϕ vs. εc) show excellent agreement throughout the
kinking process. Both models show a jump in the fiber rotation at the on-
set of fiber kinking, followed by the progressive rotation of the fiber as the
compressive strain increases.

6. The kink angle β is assumed to be zero in both models. While experimental
measurements uniformly show nonzero values for β (Table 10), the two models
are nonetheless able to capture the residual stress level in good agreement with
models in the literature that account for β 6= 0. An effective β̃ angle can be
estimated through eq. (12) yielding 10 to 15◦, which is in agreement with
an experimental study carried out through X-ray CT in IM7/8552 [71]. A
multi-fiber micromechanical 3-D model based on [54] was employed to verify
the β angle estimation. The multi-fiber model yielded β = 12◦ supporting
the estimation using eq. (12) and in good agreement with the experimental
measurements.

7. The mesoscale CDM model requires the kink band width wkb as an input pa-
rameter. This value may be estimated from analytical models that consider
fiber bending like [3, 23], measured experimentally [71] or computed numeri-
cally using micromechanical models like the CMM model presented.

The comparison between the results of the mesoscale and micromechanical mod-
els show a remarkable correlation in strength, post-peak residual stress, and fiber
rotation. The quality of the correlation indicates that the significant features of the
kinking process are included in the relatively simple mesoscale model.

Parametric analyses were conducted using the CMM model to explore opportu-
nities to improve longitudinal compression strength. It was shown that the fiber-
matrix interface properties (stress transfer between the fibers and the matrix) not

63



only controls the compressive strength, Xc, but also plays a major role on the resid-
ual stress, σr. If the interface is very weak, the fiber slides during kinking and the
matrix is not deformed plastically. Fiber-matrix friction only has a positive effect on
σr, reducing fiber rotation through the additional interface shear stress introduced
by the friction coefficient. Additionally, it was shown that nonconventional hollow
and honeycomb fibers provide improvements in specific strength if fiber breakage
can be avoided.

While many developments in modeling fiber kinking at the micro and mesoscale
have been described in this report, many questions remain unanswered. Further
development at both scales in conjunction with detailed experimental investigations
are needed to achieve predictive capability for failure by fiber kinking.
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Appendix A

Compressive strength: Fiber kinking theory

The fiber kinking theory (FKT) was initially proposed by Budiansky in 1983 [3]
for an elastic-perfectly plastic composite material under in-plane shear. Later, it
was generalized for a non-linear response [4], in particular, deriving the closed-form
solution for a Ramberg-Osgood nonlinear shear type (see eq. (5) and incorporated
the effect of additional shear loading (τ12). Pinho et al. [17] extended this approach
to any non-linear shear response and a 3-D stress state.

FKT is founded on the assumption of an initial, infinitely-wide, fiber misalign-
ment ϕ0, consideration for large rotation of the fiber axis, and a nonlinear response
when subjected to shear stresses. Under compressive stress, the initially misaligned
fiber rotates thereby introducing shear strain. Due to shear nonlinearity, shear stiff-
ness decreases with shear strain, thereby reducing the resistance to rotation of the
fiber with increasing compressive stress. When the critical point is reached (the lam-
ina strength), an unstable feedback loop develops resulting in large local rotation of
the fibers.

The shear stress in the rotated fiber frame is

τ ′12 =
σc
2

sin(2ϕ) (A1)

where σc is the longitudinal compressive stress and ϕ the sum of an initial misalign-
ment, ϕ0, with the rotation due to loading, γ′12

ϕ = ϕ0 + γ′12 (A2)

From the constitutive law, the shear stress-strain relationship is represented as

τ ′12 = fCL(γ′12) (A3)

where fCL, in the case of a Ramberg-Osgood expression is the inverse function,
γ = (τ + ατη)/G = f−1

CL(τ).
In summary, eq. (A3) represents the material response, while eq. (A1) embodies

the load applied. The graphical representation of each term is shown in Fig. A29a,
where the black line stands for the constitutive law of the material in shear and
the blue line depicts the loading term. For the loading case shown in Fig. A29a,
the loading curve intersects the material curve revealing the shear strain in the
rotated fiber frame, γm. However, as σc increases, the slope of the blue curve grows
proportionally and eventually it becomes tangent to the black curve, as illustrated
in Fig. A29b. At this point, instability is reached and the the material is unable to
sustain higher compressive load, σc = Xc. The analytical solution can be analytically
expressed as
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a)

Material

(eq. A3)

Loading 

(eq. A1)

(a) Stable compressive stress loading

LHSb)

Material

Loading

(b) Instability point, σc = Xc

Figure A29. Shear stress vs. strain curves representing the non-linear material
response (eq. A3) and the induced shear stress due to compressive loading (eq.
A1). Adapted from Pinho et al. [17].

fCL(γC) =
1

2
Xc sin[2(ϕ0 + γC)] (A4)

∂fCL
∂γ

∣∣∣
γC

= Xc cos[2(ϕ0 + γC)] (A5)

where the unknowns are the compressive strength, Xc, and the shear strain to failure,
γC . See [17] for the extension to handle 3-D states of stress.
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Appendix B

Continuum Damage Mechanics model for fiber failure

To consider the fiber failure under longitudinal loading and the nonlinear elastic
response in the longitudinal direction, a 3-D continuum damage mechanics model
(CDM) was developed. This model is based on the work of Maimı́ et al. [86] and
is implemented as a UMAT in Abaqus/Standard. The material is considered trans-
versely isotropic with a compliance matrix as,

Sf =



1

(1−D)Ef1

−νf12
Ef1

−νf12
Ef1

0 0 0

1

(1−D)Ef2

−νf23
Ef2

0 0 0

1

(1−D)Ef2
0 0 0

1

(1−D)Gf12
0 0

sym 1

(1−D)Gf12
0

1

(1−D)Gf23


(B6)

where Ef1 and Ef2 are the longitudinal and transverse elastic moduli respectively,

νf12 and νf23 are the longitudinal and transverse Poisson ratios, Gf12 and Gf23 are the
longitudinal and transverse shear moduli. Transverse isotropy of the material is
verified with Gf23 = Ef2 /2/(1 + νf23).

Nonlinear elasticity in the longitudinal direction of the fiber is included in the
constitutive model including a material parameter, cf , as shown in Equation (B7).

Ef1 = E0f
1 · (1 + cf · ε11) (B7)

where E0f
1 is the tangent longitudinal elastic modulus of the fiber when ε11 → 0, and

cf > 0 is the nonlinear parameter. These parameters were obtained fitting experi-
mental curves from single-fiber tensile tests. Under uniaxial loading, the expression
for the longitudinal stress results from integrating Equation (B7).

σ11(ε11) =

∫ ε11

0
Ef1 (ε)dε = E0f

1 ·
(
ε11 +

cf

2
· ε2

11

)
(B8)

Care must be taken when selecting the compressive strength of the fiber, Xf
c , as

eq. (B8) is a concave quadratic function and its lower bound is Xf
c > E0f

1 /2 cf .
The damage variable, D, lumps longitudinal damage distinguishing between ten-

sile, D1+, and compressive loading, D1−.

D =

{
D1+ , ε11 ≥ 0

D1− , ε11 < 0
(B9)

Two damage activation functions are required to represent longitudinal damage
under tensile:
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Figure B30. Stress-Strain curve for longitudinal loading of the fiber constitutive
model: nonlinear elastic response (green line) until damage onset followed by linear
softening (red lines).

F1+ = φ1+ − r1+ ≤ 0

F1− = φ1− − r1− ≤ 0
(B10)

where φM are the loading functions under longitudinal tension (M = 1+) and
compression (M = 1−), and rM are the elastic domain thresholds, initially they
are set to 1 (undamaged) and increase with damage. A maximum stress criterion
governs damage initiation either in tension or compression as:

φ1+ =
σ̃11

Xf
t

φ1− =− σ̃11

Xf
c

(B11)

The evolution of the elastic domain thresholds, rM , is expressed by the Kuhn-
Tucker conditions preventing damage healing of the material.

ṙM ≥ 0; FM ≤ 0; ṙMFM = 0 (B12)

This conditions are guaranteed updating the thresholds as,

ri1+ = max(ri−1
1+ , ri−1

1− , φ1+)

ri1− = max(ri−1
1− , φ1−)

(B13)

where i represents the current increment and i− 1 is the previous increment.
The damage evolution laws are defined to implement linear strain softening either

under tensile or compressive loads.
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ε̄M = rM
Xf
M

E1

DM =
εuM · (ε̄M − ε0

M )

ε̄M · (εuM − ε0
M )

(B14)

where ε̄M is the equivalent longitudinal strain for tension (M = 1+) or compression
(M = 1−), εuM is the ultimate strain, ε0

M is the strain at damage initiation for
tension or compression.

Mesh objectivity is achieved through a crack band regularization by selecting
the εuM as a function of the element size, le, following Baz̆ant’s scheme [69] as,

εuM =
2GM
XM · le

(B15)

where GM is the fracture energy in longitudinal tension or compression, XM is the
tensile or compressive strength and le is the characteristic length of the element.

The convergence of the solving algorithm requires the computation of the mate-
rial tangent constitutive tensor, CT , as:

CT = H−1 : (I−M) (B16)

where H is the compliance constitutive tensor, I is the identity tensor and the tensor
M is:

M =
1

(1−D)2

∂D

∂ε11



σ11
Ef1

0 0 0 0 0
σ22
Ef2

0 0 0 0 0
σ33
Ef2

0 0 0 0 0
τ12
Gf12

0 0 0 0 0
τ13
Gf12

0 0 0 0 0
τ23
Gf23

0 0 0 0 0


(B17)

where the damage variable derivative is,

∂D

∂ε11
=

εuM · ε0
M

ε̄2
M · (εuM − ε0

M )
(B18)

The integration of the constitutive model is equivalent to the algorithm presented
by Maimı́ et al. [86]:

1. Read the strain and the strain increment tensors. εi, ∆εi

2. Compute the effective stress tensor. σ̃i = H−1
0 : εi

3. Compute the loading functions. φiM (σ̃i)

4. Compute the threshold values. riM (ri−1
M , φiM )

5. Compute the damage variables. Di
M (riM )
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6. Compute the nominal stress tensor. σi = (Hi)−1 : (εi + ∆εi)

7. Compute the tangent constitutive tensor. Ci
T = (Hi)−1 : (I−Mi)
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