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Thermal Protection Systems
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NASA TM 101055, 1989



Phenolic Impregnated Carbon Ablator (PICA)

Mars	Science	Laboratory,	NASA
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Carbon	fibers Resin PICA

A	successful	lightweight	material	for	planetary	entry

Stardust,	NASA

0.
8	
m

Dragon,	SpaceX

3.6	m	4.5	m	

From Tomography to Material Properties of Thermal Protection Systems 3

Stackpoole et al., AIAA 2008-1202 www.nasa.gov www.spacex.com

Courtesy of M. Stackpoole (NASA)



Objective: high-fidelity material models
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Digital	
material	for	
simulation

Micrograph	
of	the	real	
material

Lachaud and Mansour, AIAA 2010-984

Panerai et al., J. Thermophys Heat Transfer 28 (2014), 181-190



A bright source of X-rays

The	synchrotron	
Advanced	Light	

Source	(ALS)

Micro-CT	
setup
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Courtesy of D. Parkinson (ALS)



X-ray tomography scan
Collect	X-ray	images	of	the	sample	as	you	

rotate	it	through	180°
Use	this	series	of	images	to	
“reconstruct”	the	3D	object
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This	is	a	movie.	Email:	francesco.panerai@nasa.gov for	info.

Courtesy of D. Parkinson (ALS)



Tomography reconstruction
Material	projection

3D	gray-value	stack

Artifacts	removal	
and	reconstruction
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Segmentation	
and	filtering

Visualization

200	µm
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Panerai et al., Int J Heat Mass Transfer (2016)



Supercomputing is key

NASA 
Pleiades

LBNL 
NERSC
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Courtesy of Google Earthwww.nas.nasa.gov

www.nersc.gov
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This	is	a	movie.	
Email:	
francesco.panerai@nasa.gov
for	info.

Panerai et al., Int J Heat Mass Transfer (2016)
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This	is	a	movie.	
Email:	
francesco.panerai@nasa.gov
for	info.

Panerai et al., Int J Heat Mass Transfer (2016)



Porous Materials Analysis (PuMA)
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This	is	a	movie.	Email:	francesco.panerai@nasa.gov for	info.



Effective thermal conductivity
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• Solve	Fourier	equation	with	finite	difference	method	and	periodic	BCs
• Compute	conductivity tensor	as	a	function	of	constituting	phases	

Panerai et al., International Journal of Heat and Mass Transfer (2016)



Effect of water on effective conductivity
C+ice

keff × 8.40keff × 3.13

C+H2O

keff × 1.51
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Direct simulation Monte Carlo
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1-5	microns	(high	T,	low	P)

• DSMC:	probabilistic	simulation	
method	to	solve	the	Boltzmann	
equation	for	finite	Kn

• Particles	motion	and	collisions	are	
decoupled

• Uses	cells	and	boundaries
• DSMC	code:	SPARTA	(Sandia)

Borner et al., Int J Heat Mass Transfer (2016), in press

Kn = Knudsen	number

𝜆	 = 	mean	free	path

𝑑3 	= 	mean	pore	diameter
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This	is	a	movie.	
Email:	
francesco.panerai@nasa.gov
for	info.



Porous media permeability
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This	is	a	movie.	
Email:	
francesco.panerai@nasa.gov
for	info.

Borner et al., Int J Heat Mass Transfer (2016), in press
Panerai et al., Int J Heat Mass Transfer 101 (2016) 267–273



Carbon fibers oxidation simulations
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• Particle-based oxidation method
• Diffusion simulated through random walks
• Collision detection with linear interpolation method
• Sticking probability method for material recession
• Verified against analytical solutions for single fiber

Ferguson et al., Carbon 96 (2016), 57-65
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This	is	a	movie.	
Email:	
francesco.panerai@nasa.gov
for	info.

Ferguson et al., Carbon 96 
(2016), 57-65
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This	is	a	movie.	
Email:	
francesco.panerai@nasa.gov
for	info.

Ferguson et al., Carbon 96 
(2016), 57-65



Concluding remarks
• Micro-tomography	and	simulations

§ Help	us	developing	TPS	response	modes
§ Enable	predictive	materials	modeling
§ Support	cheaper	and	faster	material	development
§ Impact	not	only	Entry-Descent-Landing,	but	also	other	NASA’s	grand	

challenges:
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