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Why Nuclear Thermal Propulsion?

• For human Mars missions, first generation NTP can reduce crew time 
away from earth from >900 days to <500 days while still allowing ample 
time for surface exploration
– Reduce crew exposure to space radiation, microgravity, other hazards

• First generation NTP can enable abort modes not available with other 
architectures
– Potential to return to earth anytime within 3 months of earth departure burn, also to return 

immediately upon arrival at Mars

• First generation NTP is a stepping stone to fission power systems and 
highly advanced nuclear propulsion systems that could further improve 
crew safety and architectural robustness
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Basics of Nuclear Systems

Long history of use on Apollo and space science 
missions 

44 RTGs and hundreds of RHUs launched by U.S. 
since the 1960s

Heat produced from natural alpha (α) particle 
decay of Plutonium (Pu-238)

Used for both thermal management and electricity 
production
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Heat Energy = 0.023 MeV/nucleon (0.558 W/g Pu-238)
Natural decay rate (87.7-year half-life)

Heat Energy = 0.851 MeV/nucleon
Controllable reaction rate (variable power levels)

Used terrestrially for over 70 years
Fissioning 1 kg of uranium yields as much energy as 

burning 2,700,000 kg of coal
One US space reactor (SNAP-10A) flown (1965)

Former U.S.S.R. flew 33 space reactors
Heat produced from neutron-induced splitting of a 

nucleus (e.g. U-235)
At steady-state, 1 of the 2 to 3 neutrons released in the 

reaction causes a subsequent fission in a “chain 
reaction” process

Heat converted to electricity, or used directly to 
heat a propellant
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• Propellant heated directly by a nuclear reactor and thermally 
expanded/accelerated through a nozzle

• Low molecular weight propellant – typically Hydrogen
• Thrust directly related to thermal power of reactor:  100,000 N ≈ 

450 MWth at 900 sec.  (100,000 N ≈ 22,500 lbf)
• Specific Impulse directly related to exhaust temperature: 830 -

1000 sec (2300 - 3100K) for solid core, much higher for liquid 
or gas core

• NTP-derived systems could be used for high power / high 
performance production of electricity

Major Elements of a Nuclear Thermal Rocket
NERVA Nuclear Thermal Rocket 

Prototype

How Might Initial NTP Systems Work?



Base of LH2 Tank

Helium
Pressurization

Bottles

Structural
Supports

Radiation Shield

Reactor Reflector

Reactor Core

Propellant Feed Line

Nozzle

Nozzle Extension

Propellant Bleed
to Turbopump

Pressure Shell

Control Drum

Turbopump Exhaust
(Attitude Control)

Control Drum
Actuators

Housing for
Turbopumps

Cross Section

Control Drum

How Might Initial NTP Systems Work?

Reactor Core Fuel Elements Reactor Reflector

Note: Control drums rotate to control reactivity. Portion of circumference 
covered with neutron absorber and remainder is reflector. 5
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20 NTP Engines Designed, Built, and Tested During 
the Rover/NERVA Program (1955-1973)



Typical Sensor Usage in the NERVA Program
Challenges in Reactor Instrumentation

NERVA reactor ~10X power density of power reactor, much greater 
fuel temperatures.  Example sensor types:

NETS 2017
Courtesy David Coote Melick et al., IEEE Transactions on NS, Vol 13, Issue 1, Feb 1966

Vibration Transducers
o 0 – 500 Hz, 10 g
o Neutron flux ~ 1017 n/cm2 caused damage

Pressure Transducers
o <5 Hz, 0-1000 Hz freq response
o 400 deg F operating temp.
o 3-4 watts/gram gamma heating caused 

failures.  Moved to 0.5 W/g location.

High Temperature Thermocouples (reactor core)
o Design goal:  4,500 deg F, +/- 50 deg, usable 

life of one hour
o Obtained:  4,020 deg F, +/- 150 deg F for 

< 1 hour (sheath life limit)
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NTP Engine Assumptions: 
• 25,000 lbf thrust
• 28 lbm/s GH2 Flow.
• 3000 K Stagnation Temperature
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NTP Ground Testing 
Exhaust Capture Concept 

How it works:
• Hot hydrogen exhaust from the NTP engine flows through a water cooled diffuser that transitions the flow from supersonic to 

subsonic to enable stable burning with injected LO2

– Products include steam, excess O2 and  potentially, a small fraction of noble gases (e.g., xenon and krypton)
• Water spray and heat exchanger dissipates heat from steam/O2/noble gas mixture to lower the temperature and condense steam
• Water tank farm collects H20 and any radioactive particulates potentially present in flow.

– Drainage is filtered post test.
• Heat exchanger-cools residual gases to LN2 temperatures (freezes and collects noble gases) and condenses O2.

– LOX Dewar stores LO2, to be drained post test via boil-off

Strategy:
• Fully Contain engine exhaust
• Slowly drain containment 

vessels after test
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NTP Ground Test Exhaust Capture Concept
Conceptual System Design Layout

One Potential Option:  Stennis Space Center’s (SSC’s) A3 Test Stand
• Most of the infrastructure required by ground test facility (including exhaust capture) is already in place: 

• Tower, test cell, propellant, HPIW & data and controls infrastructure, the Test Control Center, electric power, etc. 
• Major modifications, procurements, and construction work will be required and are captured in the ROM estimate. 

LO2H2OIPA

GN2

LO2

LH2

SSC A3 Test Facility

NETS 2017
Courtesy David Coote
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Sensor Needs for the Ground Test Complex

Instrumentation needs are standard pressures and temperatures 
with the following exceptions:

NETS 2017
Courtesy David CootePer conversation with SSC Test Manager David Coote on 11/20/18

Hydrogen monitoring
• In the exhaust duct
• Current technology is 

expensive, not real-time

Radiation monitoring
• New requirement!

Other
• Real-time health monitoring
• Plume diagnostics (current 

laser system is not real-time)
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A3

13,800 Acre
Fee Area/“Exclusion Area”

(20 mi2)

125,000 Acre
Buffer Zone/“Low-Population Zone”

(195 mi2)
“Buffer Zone” Avg. Radius ~ 7.9 mi

“Fee Area” Avg. Radius ~ 2.5 mi

SSC’s Acoustic Buffer Zone
Illustration of Comparable NRC-Designated Planning Zones 

PCD (Population Center Distance ~8 miles) > 1.333 x LPZ ~ 1.333 x 6 miles ~ 8.0 miles

•Slidell, LA 
•Population ~ 27,000
•PCD from A3 ~ 8 miles

=> LPZ < 6 miles

Ref.: NRC Regulatory Guide 4.7

Bunker Complex
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Boost Pumps Condition the Propellant

• Autogenous pressurization may 
not be able to maintain steady 
state pressure of the tank
– Analysis indicates a drop of ~12 

psia during longest burn
– Boost pump brings propellant 

back up to turbopump inlet 
conditions

– Allows some saturated vapor to 
exit from the main propellant tank 
(risk mitigation to nucleate 
boiling)

• Investigating electric or 
hydraulic options
– May have relatively small impact 

to system mass
– May add additional approach to 

engine control
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Introduction of a boost pump prior to main turbo pump allows for a wider range of propellant 
outlet conditions from the propellant tank.

Typical Main Pump

Typical Boost Pump



Can NTP systems using Low-Enriched 
Uranium (LEU) be Developed?
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• Directly reduce cost through savings related to safeguards and security

• Indirectly (and more significantly) reduced cost through enabling use of an 
optimal development approach and team

• Consistent with ongoing programs to convert operational Highly Enriched 
Uranium (HEU) systems to LEU

• Consistent with US policy. “The United States is committed to eliminating 
the use of HEU in all civilian applications, including in the production of 
medical radioisotopes, because of its direct significance for potential use 
in nuclear weapons, acts of nuclear terrorism, or other malevolent 
purposes.” (2012 White House “Fact Sheet”)

Initial LEU Conceptual Designs Very Promising



LEU Fission System Considerations

• Greatly reduced safeguards considerations if LEU is used.  US 
encourages use of LEU in nuclear programs around the world.

• No uniquely hazardous materials in fission systems prior to operation.  
LEU toxicity comparable to depleted uranium.  Depleted uranium used in 
shielding for industrial radiography cameras, trim weights in aircraft (up to 
1500 kg in Boeing 747-100), sailboat keels, ammunition, armor plating, 
etc.  Beryllium used in most modern spacecraft.  James Webb telescope 
contains ~300 lbs of beryllium.

• Primary potential hazard from space fission systems is inadvertent 
criticality while personnel are in very close proximity (i.e. ground 
processing).  Highly affected radius is < 10 m.  System design and 
procedures for precluding inadvertent criticality during ground processing 
can be made independent of launch vehicle specifics.

• For criticality (with significant fissions) to occur during a launch failure the 
system must remain geometrically intact while safety mechanisms are 
simultaneously removed.  
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Sensor Needs for Engine System Design

Instrumentation is needed for engine control and health monitoring:

NETS 2017
Courtesy David CooteDRAFT SBIR “Nuclear Thermal Propulsion” Subtopic:  Release ~January 2019

• High thermal temperatures and 
vibration levels

• Nuclear radiation composed of 
neutron fluxes and gamma rays

• Non-invasive sensor designs for:
o Neutron flux (outside reactor)
o Chamber temperature
o Operating pressure
o LH2 propellant flow rates

15



Fission Has Tremendous Growth Potential

• The first flight of a modern space fission 
system will be a tremendous first step 
towards the development and utilization of 
highly advanced space fission systems 
(analogous to DC-3 helping enable SR-71)

• Advanced fission systems include 
potential options for liquid, gas, or plasma 
core reactors (very high performance)

• Advanced NTP systems could potentially 
use any volatile as propellant

– Move asteroids or Kuiper Belt objects using 
volatiles from the object as propellant?

– Combination of NTP and gravity assists to 
relocate objects anywhere in solar system?

– Refueling depots?  Terraforming?
16
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• Small and simple approach for long-duration, sun-
independent electric power for space or extra-terrestrial 
surfaces
– Produces from 1 to 10 kilowatts, continuously for 10 years or 

more
– Weighs about 400 kg at 1 kW or 1500 kg at 10 kW, for 

complete system
– Uses solid, cast uranium-235 reactor core, about the size of a 

paper towel roll
– Transfers reactor heat with passive sodium heat pipes
– Converts heat to electricity with high efficiency Stirling engines
– Leverages current DOE fuel production processes and 

abundant material supply from dismantled nuclear weapons
– Launches as a radiologically benign, non-operating (cold) 

payload

• Represents NASA’s first attempt at building and testing a 
REAL space reactor since the 1960s SNAP Program

What is Kilopower?

Chart courtesy Lee Mason, NASA GRC



Nuclear Test Assembly

1Chart courtesy Lee Mason, NASA GRC



Landed Configuration
Dedicated Lander

Above-Grade, Shaped 4-Pi Shield
<5 rem/yr at 1 km (Habitat Area)
<50 rem/yr at 1 km (Non-Habitat)

Boom Deployed Radiator
2 kV Power Transmission

Reactor

Power
Conversion

4-Pi
Shield

Radiator
Panels

Lander

Option

Emplaced Configuration
Off-Loaded from Lander

Below-Grade, Axial Shield
Augmented by Lunar Regolith

<5 rem/yr at 100 m (360°)
Boom Deployed Radiator

400 V Power Transmission

Ref.

Design Configuration & Shielding

Reactor

Power
Conversion Radiator

PanelsAxial Plug
Shield

The Emplaced option uses regolith shielding to reduce mass and permit near outpost 
siting.  The Landed option reduces the reliance on crew and equipment for installation.

Chart courtesy Lee Mason, NASA GRC 19



Shielding Comparison

Outpost
(~200 m dia.)

Grade

1 km

Landed Configuration
<50 rem/yr

<50 rem/yr

<5 rem/yr
(~10°)

Above-Grade, Shaped
4-Pi Shield

Emplaced Configuration

100 m

Below-Grade Axial
Shield w/Regolith

<5 rem/yr
(360°)

~2 m

Chart courtesy Lee Mason, NASA GRC
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1. Site Selection 2. Excavation 3. Delivery

4. Emplacement 5. Back-filling 6. Startup

Fission Surface Power System Installation
(Lunar Architecture Team)

Chart courtesy Lee Mason, NASA GRC 21



Conclusions

• Space fission power and propulsion systems are game changing 
technologies for space exploration.

• First generation NTP systems could provide significant benefits to sustained 
human Mars exploration and other missions.
– Potential for Earth-Mars transit times of 120 days; 540 day total Mars mission 

times; reduced crew health effects from cosmic radiation and exposure to 
microgravity; robust Mars architectures including abort capability.

– Faster response times, improved capability, and reduced cost for cis-lunar 
operations.  NTP derivatives could enable very high power systems on lunar 
surface (ISRU) and in space. 

• Advanced space fission power and propulsion systems could enable 
extremely ambitious space exploration and development.

• New sensor technology will be needed for ground test and flight systems!

22



23

Nuclear Thermal Propulsion (NTP)

STMD (GCD) Nuclear Thermal Propulsion Video

https://www.youtube.com/watch?feature=youtu.be&v=miy2mbs2zAQ&app=desktop

https://m.youtube.com/watch?feature=youtu.be&v=miy2mbs2zAQ


Backup
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Space Technology Mission Directorate (STMD)
Game Changing Development (GCD) Program

Nuclear Thermal Propulsion (NTP) Project Overview

Project Objective:
Determine the feasibility and affordability of a Low Enriched Uranium 
(LEU)-based NTP engine with solid cost and schedule confidence

Approach:
• Evaluate the implications of using LEU fuel on NTP engine design
• Fuel element, reactor, and engine conceptual designs and feasibility 

analyses
• Mature critical technologies associated with LEU fuel element 

materials & manufacturing
• Develop an exhaust capture method to facilitate ground testing
• Develop relevant cryogenic propellant management technologies

Roles and Responsibilities
• MSFC: PM, SE & Analysis Lead, Cryo ConOps Lead, FE Testing

• GRC: Cryocooler Testing, Cryo ConOps Support, Sys. Analysis 
Support

• SSC: Rocket Exhaust Capture System Subscale (RECSS)

• KSC: Ground Processing ConOps / Propellant Densification

• Aerojet Rocketdyne: LEU Engine Analysis

• AMA: Engine Cost Lead

• Aerospace: Engine Cost Independent Review

• BWXT: Fuel Element (FE) / Reactor Design/Fabrication

• DOE: FE / Reactor Design and Fabrication Support

Project Manager:  Sonny 
Mitchell, NASA MSFC



CFEET Segment Test 

• Completed successful test of the first fuel element (FE) specimen, C0, in the 
MSFC Compact Fuel Element Environmental Tester (CFEET) on 8/9/18
– C0 specimen was a pathfinder for FE fabrication techniques
– C0 was a 0.75 inch hexagonal “can” with solid laser-welded end caps filled with a 

surrogate powder
– Reached the specimen target temperature of 2200K with a hold time of 20 minutes.
– Next test of the specimen is planned to reach a temperature of 2400K
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