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The paper presents an on-board estimation, navigation and control architecture for

multi-rotor drones �ying in urban environment. It consists of adaptive algorithms

to estimate vehicle's aerodynamic drag coe�cients with respect to still air and the

urban wind components along the �ight trajectory, with guaranteed fast and reliable

convergence to the true values; navigation algorithms to generate feasible trajectories

between given way-points that take into account the estimated wind; and of control

algorithms to track the generated trajectories as long as the vehicle retains su�cient

number of functioning rotors capable of compensating for the estimated wind. All

components of this on-board system are computationally e�ective and are intended for

a real time implementation. The algorithms were tested in simulations.

I. Introduction

Drones are becoming increasingly popular for research, commercial and military applications

due to their a�ordability resulting from their small size, low cost and simple hardware structure.

One of the critical aspects of these uses is the reliability of the drones while maintaining their
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simplicity in design. However, this type of design with the light weight structure and limited power

makes them vulnerable to wind disturbances, hence di�cult for accurate navigation and control

in outdoors, especially in urban environment where the wind �eld is more complex and has more

uncertainties.

One way of enabling reliable UAV operations in urban environment is to design a controller

capable of compensating for atmospheric disturbances, see for example [15], [1], [17], [12], [22],

[25], [7] and references therein. In [15], the wind e�ects are estimated by a nonlinear disturbance

observer and used to design a path following controller. In [1], a controller is presented to achieve

trajectory tracking for kinematic models of unmanned aerial vehicles. In [17], a linear observer

with integral action is used to stabilize a qudrotor at hover �ight taking into account only the wind

e�ects in roll and pitch angles. In [12], L1 adaptive control augmentation of the baseline outer-loop

controller is used for position tracking in the presence of wind disturbances. In [22], path-following

guidance method is presented in the presence of quasi-constant but unknown wind disturbances. A

quaternion-based adaptive attitude control for a quadrotor in the presence of external disturbances

is considered in [25].

Handling wind disturbances with control design is easy to implement, but may generate prob-

lems when the wind in the direction of prede�ned path/trajectory is strong enough to cause actuator

saturations or rapid discharge of batteries. In this case, the mission cannot be accomplished. How-

ever, it may be possible to rede�ne the trajectories incorporating the available or estimated wind

information and make the mission possible. That is the trajectory or path generation phase of the

UAS operations in urban environment should include the wind wield. However, the majority of

the existing trajectory generation algorithms do not take into account the atmospheric drag and

wind e�ects (see for example [19] and references therein). These algorithms can be related to two

main groups. First group incorporates only spacial variables in the design. That is, �rst a geo-

metric path is planned in space from a class of primitives such as lines, polynomials or splines,

then the path is parameterized in time in order to enforce the vehicle's dynamic constraints (see

for example [4, 6, 11]). A literature survey on path planning can be found in [13]. The second

group simultaneously incorporates spatial and temporal variables and designs trajectories based
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on solutions of some optimal control problems. Examples of such methods include minimum snap

trajectory generation [18], the minimization of a weighted sum of derivatives [21], a learning-based

model predictive control method for linear dynamics [3], a time-optimal control methods based on

Pontryagin's minimum principle [10] or numerical optimization [16]. To simplify the optimization

routines, the di�erential �atness of quadrotor dynamics can be exploited (see for example [19] and

references therein), which results in decoupled trajectory generations for the translational axes and

yaw angle, the latter is usually �xed at zero in the literature. This method can be used to generate

trajectories by minimizing the snap (forth order derivative of the position) [18], the time of �ight

[9], [2] or the jerk (third order derivative of the position) [19].

Trajectory generation problems in the wind �eld have received less attention. In [8], a time

optimal trajectory generation method in known constant in time and linear in space wind �eld is

presented for the kinematic model of quadrotors. In [28] and [24], minimum time algorithm and

trochoids are respectively used for path planning in known steady uniform wind �elds for �xed wing

UAVs. These approaches are not applicable in urban environment since the wind �eld may not be

uniform or known. For this reason wind estimation techniques have to be employed to accommodate

for the trajectory generation.

One way to estimate the wind components is using air data measurements from available onboard

sensors (see for example [5], [14] and references therein). While this approach may be suitable for

�xed wing UAVs, no reliable air data sensors have been reported for the multi-rotor UAVs in the

literature to our best knowledge. Therefore there is a need for wind estimation methods using only

inertial data.

This paper presents a uni�ed approach to autonomous �ights of multi-rotor vehicles in urban

environment without prior knowledge of the wind �eld, which is variable in time and in space.

It is assumed that the inertial position and velocity of the vehicle's center of mass, orientation

angles around the center of mass and the angular rates are available for feedback through on-board

sensor package. The approach includes a set of real-time algorithms to accurately estimate the

atmospheric drag forces and moments and the wind linear and angular velocities and accelerations,

generate minimum time trajectories trough the given set of way points, which take into account
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the estimated drag and wind, and a control design that produces proper input signals to individual

motors to reliably track the generated trajectories in the presence of the atmospheric disturbances.

The bene�ts of the approach have been demonstrated through the simulation for an octocopter

�ying in the cityscape with simulated wind �eld.

II. Drone's Dynamic Model

A. Equations of Motion

The dynamics of the multi-rotor vehicle's center of mass in the East-North-Up Earth (inertial)

frame (FE) are given by

ṙ(t) = v(t) (1)

mv̇(t) = RB/E(t)eB3 fT (t) + fD(t) +mg ,

where r(t) = [x(t) y(t) z(t)]> is the position of the center of mass in FE , v(t) = [vx(t) vy(t) vz(t)]
>

is the inertial velocity, m is the mass, fT (t) is the total thrust generated by the rotors, RB/E(t) is

the rotation matrix from the body frame FB (Forward-Left-Up) to FE , e
B
3 = [0 0 1]> is the third

unit vector of FB , fD(t) is the aerodynamic drag force and g = [0 0 −g]> is the gravity acceleration.

The vehicle's rotational dynamics about the center of mass are given in the frame FB as

ṘB/E(t) = RB/E(t)ω×(t) (2)

Jω̇(t) = −ω(t)× Jω(t) + Jmωm(t)ω̄(t) + τ (t) + τD(t) ,

where ω(t) = [p(t) q(t) r(t)]> is the angular rate of FB with respect to the inertial frame FE

expressed in FB , J = diag(J1, J2, J3) is the vehicle's inertia matrix (the body frame is aligned

with the principal axes of inertia), Jm is the rotor inertia about the axis of rotation (assuming

identical for all of them), ω̄(t) = [−q(t) p(t) 0]>, ωm(t) =
∑n
i=1(−1)iΩi(t), Ωi(t) is the i-th rotor

angular rate about its axis of rotation, τ (t) is the torque generated by the rotors, τD(t) is the

aerodynamic rotational drag torque.

It is assumed that all motors generate thrust in the positive z-direction in FB frame (eB3 ), and

fT (t) =
∑n
i=1 fi(t), where fi(t) is the thrust generated by the i-th rotor at time t.
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B. Aerodynamic Drag

In this paper, we adopt commonly used quadratic model D = − 1
2ρv

2
aSCD for the translational

drag (or drag force), where ρ is the air density, va is the speed of the body relative to air, S is the

cross sectional area, and CD is the drag coe�cient. We can reasonably assume that the air density

is constant at the altitude corresponding to the speci�c urban environment, however S and CD

depend on the body con�guration and orientation with respect to air speed. In other words, S and

CD are constants in the body frame. Therefore, the drag force can be modeled in the body frame

as fBD = [−vBax |v
B
ax |cDx

− vBay |v
B
ay |cDy

− vBaz |v
B
az |cDz

]>, where superscript B indicates body frame

quantities, vBax , v
B
ay , v

B
az are the components of the body relative to the air velocity in the body

frame, and the coe�cients cDi = 1
2ρSiCDi are constant for each axis i = x, y, z. The drag force

fBD needs to be translated to the inertial frame in order to apply to the translational dynamics (1).

That is fD = RB/Ef
B
D, which in the vector-matrix form can be written as

fD = RB/E


−vBax |v

B
ax |cDx

−vBay |v
B
ay |cDy

−vBaz |v
B
az |cDz

 = −RB/EΦ(vBa |vBa |)cD = −RB/EΦ(cD)vBa |vBa | , (3)

where we have introduced a notation Φ(b) = diag(bx, by, bz) for a vector b.

We adopt a similar model for the rotational drag (or drag torque) using the body angular

velocity ωa with respect to the air. In the body frame the rotational drag is expressed as τBD =

[−ωBax |ω
B
ax |cτx −ω

B
ay |ω

B
ay |cτy −ω

B
az |ω

B
az |cτz ]>, where ωBax , ω

B
ay , ω

B
az are the components of the relative

to the air angular velocity and cτx , cτy , cτz are rotational drag coe�cients, which are constant in

the body frame. In this case, there is no need to express the rotational drag in the inertial frame.

In what follows, we will use the following expressions for the translational and rotational drags

fD = −RB/EΦ(vBa |vBa |)cD = −RB/EΦ(cD)vBa |vBa | (4)

τD = −Φ(ωBa |ωBa |)cτ = −Φ(cτ )ωBa |ωBa | (5)

where cD and cτ are constant vectors of translational and rotational drag coe�cients respectively.
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III. Adaptive Estimation

A. Drag Estimation

First, we estimate the translational drag coe�cient cD, when the airspeed and the inertial

velocity are equal, that is when the drone �ies in the still air (or indoor). To this end, we use the

vehicle's inertial velocity and orientation angle measurements, available from the sensor package. In

addition we assume that the total thrust generated by the rotors is available from the rotor models

and spin rate measurements. Representing the translational dynamics (1) in the form

mv̇(t) = fT (t)RB/E(t)eB3 +mg −RB/E(t)Φ(vBa (t)|vBa (t)|)cD (6)

and following the steps from [26], we design a prediction model

m ˙̂v(t) = fT (t)RB/E(t)eB3 +mg −RB/E(t)Φ(vBa (t)|vBa (t)|)ĉD(t) + λlṽ(t) , (7)

where v̂(t) is the velocity prediction, ĉD(t) is the translational drag coe�cient's estimate, λl is the

error feedback gain and ṽ(t) = v(t) − v̂(t) is the prediction error. The adaptive law for ĉD(t) is

derived from the Lyapunov stability analysis for the prediction error dynamics

m ˙̃v(t) = −λlṽ(t)−RB/E(t)Φ(vBa (t)|vBa (t)|)c̃D(t) , (8)

where c̃D(t) = cD − ĉD(t) is the estimation error. The Lyapunov function is chosen as

L(t) =
m

2
ṽ>(t)ṽ(t) +

1

2γl
c̃>D(t)c̃D(t) , (9)

where γl > 0 is the adaptation rate. It is straightforward to see that

L̇(t) = −λlṽ>(t)ṽ(t) + c̃>D(t)

[
−Φ(vBa (t)|vBa (t)|)RE/B(t)ṽ(t) +

1

γl
˙̃cD(t)

]
, (10)

Therefore, de�ning the adaptive law as

˙̂cD(t) = −γlΦ(vBa (t)|vBa (t)|)RE/B(t)ṽ(t) (11)

renders L̇(t) negative semide�nite, implying that ṽ(t) and c̃D(t) are globally bounded. In addi-

tion, application of Barbalat's lemma ([23], p.19) insures that ṽ(t) → 0 as t → ∞ when v(t) is

bounded. Since (8) is an LTI system with the input RB/E(t)Φ(vBa (t)|vBa (t)|)cD(t), it follows that

RB/E(t)Φ(vBa (t)|vBa (t)|)c̃D(t) → 0 as t → ∞. Therefore, we conclude that c̃D(t) → 0 as t → ∞ if
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Φ(vBa (t)|vBa (t)|) is nonsingular, in other words, if the airspeed components vBx (t), vBy (t), vBz (t) are

nonzero. In fact, in this case the convergence is exponential (see for example [20] ).

Next, we estimate the rotational drag using the prediction of the angular rate dynamics

J ˙̂ω(t) = −ω(t)× Jω(t) + Jmωm(t)ω̄(t) + τ (t)− Φ(ωBa (t)|ωBa (t)|)ĉτ (t) + λrω̃(t) , (12)

where ω̂(t) is the prediction of the vehicle's angular rate, ĉτ (t) is the estimation of the rotational

drag coe�cient, λr > 0 is the error feedback gain and ω̃(t) is the prediction error. The adaptive

law for the estimate ĉτ (t) is given by

˙̂cτ (t) = −γrΦ(ωBa (t)|ωBa (t)|)ω̃(t) , (13)

which results in the error system

J ˙̃ω(t) = −λrω̃(t)− Φ(ωBa (t)|ωBa (t)|)c̃τ (t) (14)

˙̃cτ (t) = γrΦ(ωBa (t)|ωBa (t)|)ω̃(t) ,

As in the previous case, it can be shown that the error system (14) is globally stable, and ω̃(t)→ 0

as t→∞ when ω(t) is bounded. In addition, if all of the components of ω(t) are nonzero, c̃τ (t)→ 0

exponentially as t→∞. It should be noted that in the case of rotational drag partial convergence is

possible. That is, if not all components are nonzero, the rotational drag coe�cients corresponding

to nonzero components exponentially converge to the true values because the equations in (14) are

decoupled.

B. Wind Estimation

Once we have estimated both translational and rotational drag coe�cients, we can proceed with

the estimation of the wind velocities and accelerations. To this end we write the dynamic equations

as

v̇(t) =
fT (t)

m
RB/E(t)eB3 + g − 1

m
RB/E(t)Φ(cD)vBa (t)|vBa (t)|

ω̇(t) = −J−1ω(t)× Jω(t) + Jmωm(t)J−1ω̄(t) + J−1τ (t)− J−1Φ(cτ )ωBa (t)|ωBa (t)| , (15)
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where the airspeed vBa (t) = vB(t) − wB(t) includes also the wind velocity wB(t) expressed

in the body frame, and the relative angular rate ωBa (t) = ω(t) − ωBc (t) includes the air

mass circulation rate (or vorticity) ωBc (t) expressed in the body frame. We treat the terms

−m−1RB/E(t)Φ(cD)vBa (t)|vBa (t)| and −J−1Φ(cτ )ωBa (t)|ωBa (t)| as external disturbance signals sv(t)

and sω(t) respectively, so the equations (15) take the form

v̇(t) =
1

m
fT (t)RB/E(t)eB3 + g + sv(t)

ω̇(t) = −J−1ω(t)× Jω(t) + Jmωm(t)J−1ω̄(t) + J−1τ (t) + sω(t) . (16)

Similar to the drag estimation case, we introduce the prediction model and adaptive law for the

translational dynamics as

˙̂v(t) =
1

m
fT (t)RB/E(t)eB3 + g + ŝv(t) + λvṽ(t)

˙̂sv(t) = γvṽ(t) , (17)

where λv > 0 and γv > 0 are design parameters, ṽ(t) = v(t)− v̂(t) is the inertial velocity prediction

error, ŝv(t) is the disturbance estimate, and for the rotational dynamics as

˙̂ω(t) = −J−1ω(t)× Jω(t) + Jmωm(t)J−1ω̄(t) + J−1τ (t) + ŝω(t) + λωω̃(t)

˙̂sω(t) = γωω̃(t) . (18)

where λω > 0 and γω > 0 are design parameters, ω̃(t) = ω(t)− ω̂(t) is the angular rate prediction

error, ŝω(t) is the disturbance estimate. Denoting the estimation errors as s̃v(t) = sv(t)− ŝv(t) and

s̃ω(t) = sω(t)− ŝω(t), we derive the error system

˙̃v(t) = −λvṽ(t) + s̃v(t)

˙̃sv(t) = −γvṽ(t) + ṡv(t) , (19)

for the translational dynamics and

˙̃ω(t) = −λωω̃(t) + s̃ω(t)

˙̃sω(t) = −γωω̃(t) + ṡω(t) . (20)

for the rotational dynamics.
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Obviously, the error system (19) and (20) are stable LTI systems with inputs ṡv(t) and ṡω(t)

respectively, therefore have bounded solutions if the signals ṡv(t) and ṡω(t) are essentially bounded,

that is bounded everywhere except for on the sets of measure zero. Assuming that the �ight control

system provides a bounded and continuous inertial velocity and angular rate, the proposed method

can produce valid estimates of any wind �eld, even if the wind components are abruptly changing

at countably many time instances.

To derive the upper bounds on the components of the estimation errors, we notice that the

equations (19) and (20) are decoupled. Therefore we introduce a generic system

ẋ1(t) = −λx1(t) + x2(t)

ẋ2(t) = −γx1(t) + f(t) , (21)

where x1(t) represents any component of the linear or angular velocity prediction errors ṽ(t) or

ω̃(t), x2(t) and f(t) represent the corresponding components of s̃v(t) or s̃ω(t) and ṡv(t) or ṡω(t)

respectively.

First of all, we notice that if f(t) ≡ 0, then x1(t) and x2(t) exponentially converge to zero from

all initial conditions, which means that translational and rotational drag estimates exponentially

converge to true values on any interval where the corresponding linear or angular drag components

are constant.

Next, ignoring the exponentially decaying e�ects of the initial errors, the rate of decay which is

given by the design parameters kv and kω, we represent the solution of (21) in the operator form as

x1(s) =
1

s2 + λs+ γ
f(s), x2(s) = − s+ λ

s2 + λs+ γ
f(s) (22)

Since

∥∥∥∥ 1

s2 + λs+ γ

∥∥∥∥
H∞

=
1

γ
,

∥∥∥∥ s+ λ

s2 + λs+ γ

∥∥∥∥
H∞

=
λ

γ

we conclude that

|x1(t)| ≤ 1

γ
ess sup |f[0,t]|, |x1(t)| ≤ λ

γ
ess sup |f[0,t]| ,

where ess sup |f[0,t]| denotes the essential supremum of |f(t)| on the [0, t] interval. It follows that the
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drag estimation errors s̃v(t) and s̃ω(t) can be decreased as desired by the proper choice of design

parameters γ and λ.

We will use the translational and rotational drag estimates ŝv(t) and ŝω(t) for the trajectory

generation and control design purposes. Their respective rate of change is generated according to

the corresponding adaptive laws.

The wind linear and angular velocities are computed from the equations

ŝv(t) = −m−1RB/E(t)Φ(cD)vBa (t)|vBa (t)| (23)

ŝω(t) = −J−1Φ(cτ )ωBa (t)|ωBa (t)| .

Since ŝv(t) is in the inertial frame, �rst we translate it to the body frame ŝBv (t) = RE/B(t)ŝv(t), then

notice that the components of sBv (t) have signs opposite to that of the corresponding components

of vBa (t) in the body frame. Therefore, we can write the equations

cDx|vBax(t)|2 = m|ŝBvx(t)| (24)

cDy|vBay(t)|2 = m|ŝBvy(t)|

cDz|vBaz(t)|2 = m|ŝBvz(t)| ,

solving which for the wind components in the body frame we obtain

ŵBx (t) = vBx (t)− sign(ŝBvx(t))

√
m

cDx
|ŝBvx(t)| (25)

ŵBy (t) = vBy (t)− sign(ŝBvy(t))

√
m

cDy
|ŝBvy(t)|

ŵBz (t) = vBz (t)− sign(ŝBvz(t))

√
m

cDz
|ŝBvz(t)| ,

The wind angular velocity components are found similarly

ω̂Bcx(t) = p(t)− sign(ŝBωx(t))

√
J1

cτx
|ŝBωx(t)| (26)

ω̂Bcy(t) = q(t)− sign(ŝBωy(t))

√
J2

cτy
|ŝBωy(t)|

ω̂Bcz(t) = r(t)− sign(ŝBωz(t))

√
J3

cτz
|ŝBωz(t)| .

Next we compute the wind linear and angular accelerations using ˙̂sv(t) and ˙̂sω(t) from the prediction
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models (17) and (18). Di�erentiating equations (23) with respect to time we obtain

˙̂sv(t) = −m−1RB/E(t)ω×(t)Φ(cD)vBa (t)|vBa (t)| − 2m−1RB/E(t)Φ(cD)v̇Ba (t)|vBa (t)| (27)

ŝω(t) = −2J−1Φ(cτ )ω̇Ba (t)|ωBa (t)| .

Taking into account v̇Ba (t) = v̇B(t)− ẇB(t) and ω̇Ba (t) = ω̇B(t)− ω̇Bc (t) we can write

˙̂wB(t) =
˙̂sv(t) +m−1RB/E(t)ω×(t)Φ(cD)vBa (t)|vBa (t)|+ 2m−1RB/E(t)Φ(cD)v̇B(t)|vBa (t)|

2m−1RB/E(t)Φ(cD)|vBa (t)|

˙̂ωBc (t) =
ŝω(t) + 2J−1Φ(cτ )ω̇B(t)|ωBa (t)|

2J−1Φ(cτ )|ωBa (t)|
, (28)

where the division is understood component-wise. We notice that the wind accelerations estimates

involve the vehicle's inertial linear and angular accelerations expressed in body frame.

IV. Trajectory Generation

In this section we present a trajectory generation algorithm that takes into account the at-

mospheric e�ects in multi-copters dynamics using the estimates ŵ(t), ω̂c(t), ŝv(t) and ŝω(t) and

their derivatives from the previous section. For this purpose, we consider the simpli�ed equation of

motion

v̇(t) = f̄(t)RB/E(t)eB3 + g + ŝv(t) , (29)

where the rotation matrix RB/E(t) evolves according to equation

ṘB/E(t) = RB/E(t)ω×(t) , (30)

and the mass-normalized total thrust f̄(t) = fT (t)
m and the angular rate ω(t) are viewed as control

inputs. The justi�cation of this simpli�cation is that the controller designed for the angular rate

dynamics

ω̇(t) = −J−1ω(t)× Jω(t) + Jmωm(t)J−1ω̄(t) + J−1τ (t) + ŝω(t) (31)

can provide fast and accurate tracking of the angular rate commands in the presence of rotational

drag with or without wind. The design of this controller is presented in the next section.

To generate trajectories we modify the jerk minimization approach of [19] so that the estimate

ŝv(t) of the aerodynamic drag can be directly taken into account. For the given trajectory r(t) =
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[x(t) y(t) z(t)]>, the required mass-normalized thrust vector T (t) = f̄(t)RB/E(t)eB3 can be expressed

as

T (t) = r̈(t)− g − ŝv(t) , (32)

which implies that

‖T (t)‖ = ‖r̈(t)− g − ŝv(t)‖ = f̄(t) , (33)

That is the mass-normalized total thrust magnitude necessary to traverse the given trajectory is

de�ned by (33). The orientation of the thrust vector is de�ned by the roll and pitch angles, the rate

of change of which is related to the jerk (third derivative of the position) of the given trajectory

through the equations (29) and (30). Di�erentiating (29) and (33) we obtain

...
r (t) = ˙̄f(t)RB/E(t)eB3 + f̄(t)RB/E(t)ω×(t)eB3 + ˙̂sv(t) (34)

˙̄f(t) = (eB3 )>RE/B(t)
(
...
r (t)− ˙̂sv(t)

)
, (35)

solving which for angular rates results in
ωy(t)

−ωx(t)

0

 =
1

f̄(t)


1 0 0

0 1 0

0 0 0

RE/B(t)
(
...
r (t)− ˙̂sv(t)

)
, (36)

which implies that

√
ω2
x(t) + ω2

y(t) ≤ 1

f̄(t)

∥∥∥...r (t)− ˙̂sv(t)
∥∥∥ . (37)

Equation (36) de�nes the angular rates ωx and ωy necessary to traverse the given trajectory. Ob-

viously, a given trajectory can be traversed using the control inputs f̄ , ωx and ωy. That is, only

these three control inputs are needed to generate a 3D trajectory. Then, ωz can be used by the

user to control the on-board sensor direction (the rotation of the vehicle around the trust vector)

for surveillance, mapping, etc. In this paper, we assume ωz = 0.

The total thrust generated by the motors satis�es the physical constraint

0 ≤ fmin ≤ f̄(t) ≤ fmax , (38)

12



and the angular rate input is bounded due to sensor limitations as

−ωmax ≤ ωBa (t) ≤ ωmax , (39)

which directly takes into account the estimate of the wind vorticity ω̂Bc (t).

Following the steps of [19], we generate a single axis motion primitives using a third order system

...
s j(t) = uj(t) (40)

with performance index

J =

∫ tf

0

u2
j (τ)dτ , (41)

initial conditions sj(0), ṡj(0), s̈j(0) and �nal conditions sj(tf ), ṡj(tf ), s̈j(tf ) for each j = x, y, z,

where tf is the time to traverse. The resulting closed form solution sj is a 5th order polynomial

in time, the coe�cients of which depend on �nal time tf and initial and �nal conditions (we refer

the interested reader to [19] for details). Therefore, to fully de�ne s(t) = [sx(t) sy(t) sz(t)]
> one

needs to select the initial state s(0), ṡ(0), s̈(0), which we assume to be coincident with the vehicle's

current state r(t),v(t),a(t) (assuming all measurements are available), the �nal time tf and the

�nal state (fully or partially de�ned) s(tf ), ṡ(tf ), s̈(tf ).

In this paper, we propose the following algorithm for trajectory generation. Let a series of

waypoints pj , j = 1, . . . , Np be provided by some type of planner (not included in the paper), and

let p0 = r(t), where r(t) is the vehicle's position at current time t. For each portion of trajectory

between two way points, we compute minimum possible time-to-go by dividing the distance between

way points by the maximum possible velocity Vmax. If Vmax is not available from the vehicle's

speci�cations, we solve the equation

fmaxe
B
3 + maxRE/B(t)g = Φ(cD)(vB(t)− ŵB(t))|vB(t)− ŵB(t)| (42)

for vB(t) and set Vmax = ‖vB(t)‖, using the available wind velocity estimate ŵB(t). The resulting

time-to-go tgo is used as a �rst iteration for �nal time tf1 = tgo.

First, we generate a trajectory s(η) on the interval t ≤ η ≤ tf1 according to the optimal control

problem (40) and (41).
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Next, we compute the mass-normalized thrust vector T (η) required to traverse the trajectory

s(η) component-wise using the equations

Tx(η) = s̈x(η)− ŝ∗vx(t) (43)

Ty(η) = s̈y(η)− ŝ∗vy(t) (44)

Tz(η) = s̈z(η)− ŝ∗vz(t) + g . (45)

where s∗v(t) is the worst case prediction of the maximum drag force, since the estimates of the drag

force ŝ(t) and the wind velocity ŵ(t) are available only at current time t. This prediction can be

computed as s∗v(t) = ŝv(t) + η ˙̂sv(t), assuming a constant ˙̂sv(t) on the interval t ≤ η ≤ tf1 . The

total mass-normalized thrust is computed as f̄(η) =
√
T 2
x (η) + T 2

y (η) + T 2
z (η) and the minimum

and maximum values of it f̄min and f̄max are numerically computed on the interval t ≤ η ≤ tf1 .

Then, we check the thrust feasibility condition (38) for f̄max and f̄min. If the conditions are satis-

�ed, we compute χ(t, tf1) = maxt≤η≤tf1

√
[
...
s x(η)− ˙̂svx(t)]2 + [

...
s y(η)− ˙̂svy(t)]2 + [

...
s z(η)− ˙̂svz(t)]2

assuming that ˙̂sv(t) is constant on the interval t ≤ η ≤ tf1 , and check the rate feasibility (39). If it

is satis�ed the trajectory s(η), t ≤ η ≤ tf1 is marked as feasible trajectory between waypoints p0

and p1, and the algorithm is advanced to the next way point taking the s(tf1), ṡ(tf1), s̈(tf1) as the

initial state of the next portion of the trajectory.

If any of the checks fail, we set tf = tf + i∆t for some time step ∆t and i = 1, . . . , N and return

to the �rst step. The iteration is continued until preset reasonable number N is reached, after which

the algorithm exits with no feasible trajectory generated for the corresponding waypoint. In this

case, the algorithm waits for the planner to provide new set of waypoints. Meantime, the drone can

execute the generated portion of the trajectory (if there exists one) or hover (in not) or land (if not

enough battery power remains).

When the algorithm exits with a feasible trajectory, it is a sub-minimum time trajectory. That

is, for each portion of the trajectory, the time to traverse is within ∆t margin of a true minimum

time trajectory, which also minimizes the aggressiveness of the traverse (see [19] for the explanation

of the aggressiveness).

A remark on the �nal state s(tfi), ṡ(tfi), s̈(tfi) selection in the optimal control problem for-
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mulation (40) and (41) is in order. The �rst state (position) sj(tfi) i = 1, . . . Np in each direction

j = x, y, z is set to corresponding waypoint pi = [xi yi zi]
> provided by the planner. The third (ac-

celeration) state ṡ(tfi) is set to zero for all way points. The second (velocity) state ṡ(tfi) is selected

as follows. We set ṡ(tfNp
) = 0 and s̈(tfNp

) = 0 at �nal waypoint pNp
(arriving to-rest). For all other

waypoints we set ṡx(tfi) = 0 if |xi+1 − xi| ≤ εx and leave ṡx(tfi) = 0 free (unspeci�ed) otherwise.

Here, ε > 0 is a design parameter that the designer can choose according to the scale of the distance

to be traveled in x direction. For remaining two directions the way point velocity is similarly set.

This setup enables the vehicle to travel along the straight (or approximately straight) trajectories

with maximal speed without slowing down at way points and excessive cross-track maneuvers.

V. Trajectory Tracking Control Design

In this section we design a controller for the multi-rotor to track the 3D trajectory rcom(t) =

[xcom(t) ycom(t) zcom(t)]> and the heading angle (ψcom(t)) commands generated in the previous

section.

A. Center of Gravity (CG) Control

The motion of drone's CG is controlled by the thrust vector f̄(t)RB/E(t)e3 or by the magnitude

of total thrust f̄(t) and the orientation angles φ(t) and θ(t) according the force equation (29),

which are designed from the perspective of tracking the trajectory command rcom(t) or velocity

command vcom(t) depending ot the users preferences. When the objective is to track rcom(t), the

corresponding vcom(t) is generated using backstepping approach as

vcom(t) = c1[rcom(t)− r(t)] + ṙcom(t) , (46)

where c1 > 0 is a design parameter, otherwise

vcom(t) = ṙcom(t) . (47)

The control law is de�ned according to equation

f̄(t)RB/E(t)e3 = −ŝv(t)− g + c2 [vcom(t)− v(t)] + v̇com(t) , (48)
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where c2 > 0 is a design parameter, and v̇com(t) is computed respectively from (46) or (47). Sub-

stituting the control law in (29) results in the exponentially stable error dynamics

ėv(t) = −c2ev(t) , (49)

for the tracking error ev(t) = v(t)− vcom(t).

The required total thrust and orientation angle commands are obtained from (48) assuming

that −π/2 < φ, θ < π/2, that is there are no �ip-over maneuvers. This assumption ensures that the

functions cosφ and cos θ are nonzero, and the sinφ and sin θ are one-to-one invertible. It follows

from the equation (48) written component-wise

f̄(t) [cosφ(t) sin θ(t) cosψ(t) + sinφ(t) sinψ(t)] = −ŝvx(t)− c1ėx(t)− c2ex(t) + ẍref (t)
∆
= κx(t)

f̄(t) [cosφ(t) sin θ(t) sinψ(t)− sinφ(t) cosψ(t)] = −ŝvy(t)− c1ėy(t)− c2ey(t) + ÿref (t)
∆
= κy(t)

f̄(t) cosφ(t) cos θ(t) = g − ŝvz(t)− c1ėz(t)− c2ez(t) + z̈ref (t)
∆
= κz(t) (50)

that the total thrust is readily obtained from the third equation as

fT (t) = m
κz(t)

cosφ(t) cos θ(t)
. (51)

which basically controls the drone's altitude or vertical speed. Next, multiplying the �rst equation

by cosψ(t), the second one by sinψ(t), then adding and subtracting them we obtain

φcom(t) = sin−1

(
κx(t) sinψ(t)− κy(t) cosψ(t)

fT (t)

)
(52)

θcom(t) = sin−1

(
κx(t) cosψ(t) + κy(t) sinψ(t)

fT (t) cosφ(t)

)
.

B. Attitude Control

Now, we derive the control torque for the rotational dynamics such that the Euler angle E(t)

tracks the reference signal Eref (t) generated through the dynamics

Ėref (t) = −cE [Eref (t)−Ecom(t)] , (53)

where cφ > 0 is a design constant and Ecom(t) = [φcom(t) θcom(t) ψcom(t)]> is the combination

of roll and pitch angles commands obtained from the perspective of the position tracking and yow
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angle command provided by the trajectory generation algorithm. Using time scale separation and

dynamic inversion techniques, we �rst derive an expression for the desired angular rates

ωcom(t) = H−1(t)[−cωeE(t) + Ėref (t)] , (54)

where eE(t) = E(t)−Eref (t) is the attitude angles tracking error, cE > 0 is the control gain, and

H−1(t) is the inverse of the matrix H(t) given by

H−1(t) =


1 0 − sin θ(t)

0 cosφ(t) sinφ(t) cos θ(t)

0 − sinφ(t) cosφ(t) cos θ(t)

 .

then we derive the required control torque using equation (31)

τ (t) = ω(t)× Jω(t)− Jr3Ω(t)ω̄(t)− ŝω(t) + J [−cωeω(t) + ω̇ref (t)] , (55)

where cω > 0 is the control gain, eω(t) = ω(t) − ωref (t) is the angular rate tracking error, which

satis�es the exponentially stable dynamics

ėω(t) = −cωeω(t) , (56)

and the signal ωref (t) is generated through the reference dynamics

ω̇ref (t) = −cω [ωref (t)− ωcom(t)] . (57)

The individual motor inputs are obtained by solving the control allocation equation

fT

τ1

τ2

τ3


=



1 1 . . . 1

b11 b12 . . . b1n

b21 b22 . . . b2n

b31 b32 . . . b3n





f1

f2

...

fn


, (58)

where the coe�cients bij , i = 1, 2, j = 1, . . . , n are easily derived from the geometry of the drone,

and b3j = (−1)jd, j = 1, . . . , n, where d is the ratio between the drag and the thrust coe�cients of

the propeller blade, for fi, i = 1, . . . , n following the steps from [27].

VI. Simulation Results

The performance of the presented algorithms are demonstrated in simulations using the dynamic

model of DJI S1000 octocopter. Waypoints are generated by means of A∗ path planning algorithm
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for a digital cityscape assuming that information about dynamic obstacles (city transportation)

is provided by on-board sensors (for example LIDAR). Initially, we generate a trajectory through

way points using the presented algorithm which takes less than a millisecond using Matlab on a

conventional laptop computer. We then we re-plan the trajectory every 5 sec, which corresponds

to time interval required by the sensor information processing and way points generation. The

octocopter camera direction is commanded to periodically sweep the �eld of view from −60deg to

60deg. Figure 1 displays the generated 3D trajectory with corresponding waypoints.
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Fig. 1 Generated 3D trajectory and corresponding waypoints.

We introduce wind �eld with variable linear and angular velocities in all directions. The wind

maximum velocity reaches 6m/s, and the maximum vorticity reaches 1.7rad/sec. The wind pro�le

along the trajectory is displayed in Figure 2.

The wind estimates are computed from the on-line estimation of resulting linear and rotational

drag force and torque according to the presented algorithm. Figures 3 and 4 display the performance
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Fig. 2 Wind �eld pro�le along the trajectory.

of the adaptive estimation algorithms for linear and rotational drag respectively. It can be seen that

a good convergence is achieved in all drag components.
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Fig. 3 Drag force estimation.

Figures 5 and 6 display the estimated and actual wind linear and angular velocity components
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Fig. 4 Drag torque estimation.

along the trajectory of �ight. In the computation of these components the sign function is used,

which in some cases (frequent zero crossing because of numerical errors in computations) results in

errors (spikes in wz are most visible). Further analysis are required to resolve these numeric issues.

The estimated wind linear and angular velocities current at time are used in trajectory re-

planning. The controller uses the estimated drag force and torque to generate required total thrust

and three-axis torques, which is distributed to the individual motors trough the control allocation

technique from [27].

Figure 7 displays the trajectory commands and the controller's tracking performance in three-

axis directions. It can be observed that the close tracking is achieved despite severe wind condition,

which is presented in Fig. 2. Figure 8 presents the generated velocity command tracking perfor-

mance. It can be observed that the close tracking is achieved although the objective is to track

the position and heading angle commands. Figure 9 displays the octocopter roll and pitch angle
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Fig. 5 Wind linear velocity estimation.

time histories and yaw angle tracking performance. It can be observed that during the tracking of

the generated trajectories the roll and pitch angles do not exceed angle limits of 45deg set in the

trajectory generation algorithm.

VII. Conclusion

We have presented a uni�ed estimation, navigation and control approach for multi-rotor drones

�ying in urban environment. The enclosed adaptive algorithms provide capabilities for the fast and

reliable estimation of the drone's aerodynamic drag coe�cients in zero wind conditions, and the

wind components along the �ight trajectory. The navigation algorithms generate sub-minimum time

and minimum jerk trajectories between given way-points taking into account the estimated wind.

These algorithms are very fast and rely on the analytic solutions of the single axis optimal control

problem, the feasibility of which is checked with respect to drone's dynamics, which include the
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Fig. 6 Wind angular velocity estimation.

real time estimate of aerodynamic drag. The control algorithms are designed to track the generated

trajectories as long as the vehicle retains controllability. All algorithms are computationally e�ective

and can be easily implemented in real time using on-board computing power. The bene�ts of the

algorithms were tested in simulations.
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