


National Aeronautics and Space Administration

Future of the North American Carbon Cycle A. Chatterjee^{1,2} Universities Space Research Association, US ²NASA Global Modeling and Assimilation Office, US 11 December, 2018 Washington, D.C.

D. N. Huntzinger, A. Chatterjee, et al. 2018. Chapter 19: Future of the North American carbon cycle. In Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report. U.S. Global Change Research Program, Washington, DC, USA, pp. 760-809, <u>https://doi.org/10.7930/SOCCR2.2018.Ch19</u>

Key Findings

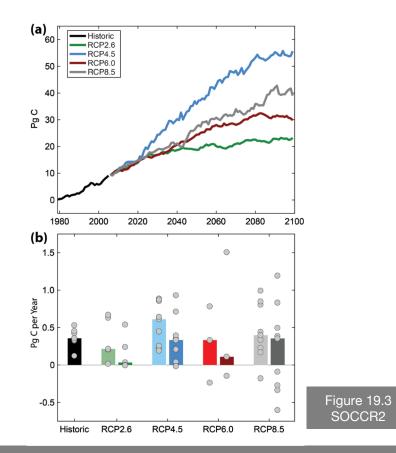
- primary contributor to carbon cycle change over North America is, and will continue to be, emissions from fossil fuel combustion and changes in land cover and land use
- projections suggest that natural carbon sinks of North America (land, ocean, coastal and freshwater systems) are diminishing in strength and many are at risk into the future
- accelerated warming in the Northern high-latitudes (Alaska and Canada) is making large stores of carbon in permafrost soils vulnerable to release to the atmosphere by the end of the century

Future emissions from fossil-fuel combustion

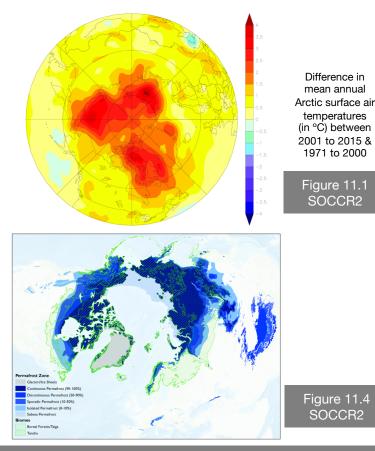
Adapted from Table 19.1 SOCCR2				
North America (Tg C)	2015	2020	2030	2040
High	1726	1740	1740	1777
Low	1726	1705	1549	1504

Projections are based on three sources -

- a) U.S. Department of Energy's Energy Information Administration (EIA 2017)
 - b) Environment and Climate Change Canada (ECCC 2016)
 - c) Organization for Economic Cooperation and Development's International Energy Agency (IEA 2016)


- energy sector and transportation continue to be the largest source of carbon emissions in North America
- □ by 2040, projections suggest total North American absolute fossil fuel carbon emissions could range from a ~13% decrease to a ~3% increase compared to 2015 levels
- □ uncertainties in projections → future energy decisions and developments, including policies, technologies, prices, economic growth, demand, and other difficult-to-predict variables

Projections of North American land carbon sink



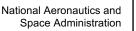
- by 2050, model projections of net land carbon sink strength range from a slight decrease to a doubling of the current sink strength
- by 2100, strength of the net land sink within North America is projected to either remain near current levels or decline significantly
- uncertainty in projections result from combined and uncertain effects of rising CO₂, climate change, emission scenarios and land-use management

Future changes in the Arctic and Boreal carbon cycle

- by 2100, soil carbon losses from the northern high-latitudes (5% to 15% of current soil carbon pool) will determine the trajectory of the carbon cycle
- models project that carbon offsets by vegetation may help regulate the net response of this region to warming
- □ knowledge gaps → limited measurements of deep permafrost soil carbon, understanding of abrupt permafrost thaw and response of plant growth/species distribution to multiple global change factors

Key Findings

- primary contributor to carbon cycle change over North America is, and will continue to be, emissions from fossil fuel combustion and changes in land cover and land use
- projections suggest that natural carbon sinks of North America (land, ocean, coastal and freshwater systems) are diminishing in strength and many are at risk into the future
- accelerated warming in the Northern high-latitudes (Alaska and Canada) is making large stores of carbon in permafrost soils vulnerable to release to the atmosphere by the end of the century


Acknowledgements

- Deborah N. Huntzinger, Northern Arizona University;
- David J. P. Moore, University of Arizona;
- Sara Ohrel, U.S. Environmental Protection Agency;
- Tristram O. West, DOE Office of Science;
- Benjamin Poulter, NASA Goddard Space Flight Center;
- Anthony P. Walker, Oak Ridge National Laboratory;
- John Dunne, NOAA Geophysical Fluid Dynamics Laboratory;
- Sarah R. Cooley, Ocean Conservancy;
- Anna M. Michalak, CIS and Stanford University;
- Maria Tzortziou, City University of New York;
- Lori Bruhwiler, NOAA Earth System Research Laboratory;
- Adam Rosenblatt, University of North Florida;
- Yiqi Luo, Northern Arizona University;
- Peter J. Marcotullio, City University of New York;
- Joellen Russell, University of Arizona

- Melanie A. Mayes, Oak Ridge National Laboratory;
- Tara Hudiburg, University of Idaho;
- Elisabeth Larson, NASA Goddard Space Flight Center, Science Systems and Applications Inc.;
- John Schade, National Science Foundation;
- Karina V.R. Schäfer, Rutgers University;
- Nancy Cavallaro, USDA National Institute of Food and Agriculture;
- **Zhiliang Zhu**, U.S. Geological Survey;
- Gyami Shrestha, U.S. Carbon Cycle Science Program Office Director; UCAR Cooperative Programs for the Advancement of Earth System Science
- Richard Birdsey, Woods Hole Research Center
- Raymond G. Najjar, The Pennsylvania State University
- Sasha C. Reed, U.S. Geological Survey
- Paty Romero-Lankao, National Center for Atmospheric Research (currently at National Renewable Energy Laboratory)

References

- Huntzinger, D. N., A. Chatterjee, *et al.*, 2018: Chapter 19: Future of the North American carbon cycle. In Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report. U.S. Global Change Research Program, Washington, DC, USA, pp. 760- 809, https://doi.org/10.7930/SOCCR2.2018.Ch19.
- Marcotullio, P. J., *et al.*, 2018: Chapter 3: Energy systems. In Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report. U.S. Global Change Research Program, Washington, DC, USA, pp. 110-188, https://doi.org/10.7930/SOCCR2.2018.Ch3
- Schuur, E. A. G., A. D. McGuire, V. Romanovsky, *et al.*, 2018: Chapter 11: Arctic and boreal carbon. In Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report. U.S. Global Change Research Program, Washington, DC, USA, pp. 428-468, https://doi.org/10.7930/ SOCCR2.2018.Ch11

