Three-Dimensional Sensor Forward Modeling of Clouds and Precipitation in the Multi-Instrument Inverse Solver Testbed (MIIST)

Ian S. Adams, S. Joseph Munchak, Kuo-Sen Kuo*, Craig Pelissier⁺, Thomas Clune, and Rachael Kroodsma*

NASA Goddard Space Flight Center *Earth System Science Interdisciplinary Center, University of Maryland +Science Systems and Applications, Inc.

MIIST 3D Forward Model

The Multi-Instrument Inverse Solver Testbed (MIIST) uses the Atmospheric Radiative Transfer Simulator (ARTS) for solving the vector radiative transfer (RT) equation in up to three spatial dimensions within a spherical geometry

- Gas absorption
 - Line-by-line calculations
 - Fast transmittance tables
- Hydrometeor scattering solvers
 - Discrete ordinate
 - o RT4 (Evans, 1D)
 - Radar Single Scattering (1D or 3D)
 - Monte Carlo (3D)

TRMM Overpass of Tropical Cyclone Asma

Scattering Tables

High-fidelity hydrometeor scattering tables are necessary for accurate and consistent forward modeling of multi-frequency observations

- Requires full Stokes matrices
 - $_{\circ}$ $\,$ And absorption vector $\,$
- Randomly oriented particles
 - Discrete Dipole Approximation
 - Characteristic Basis Function Method (coming soon)
- Horizontally-oriented plates
 - Invariant Imbedding T-matrix Method

https://storm.pps.eosdis.nasa.gov/storm/OpenSSP.jsp

Cloud Resolving Simulations

Cloud resolving simulations (e.g., NU-WRF) supply output consistent with ARTS needs

- Atmospheric Information
 - Temperature
 - Pressure / height
 - o Water vapor
- Hydrometeor Profiles
 - ARTS architecture ripe for explicit bin microphysics
- Examples use Morrison 2M scheme

Cloud Liquid

Radar Simulations: MC3E (20 May 2011, 0600 UTC)

Spaceborne Radar Simulations (CloudSat-Like Sensor)

Multiple Scattering Corresponds to Graupel

2018.11.08

Radiometer Simulations: MC3E (20 May 2011, 2300 UTC)

GMI-Like 166 GHz Polarization Difference

2018.11.08

Shallow System: CAPRICORN (06 April 2016, 0200 UTC)

Airborne versus Spaceborne

Simulations from Observations: OLYMPEX

Simulate sensor response using geophysical retrievals as input

- Single frequency radar retrievals
- Multiple scattering enhancement apparent at W band
- Spatially dependent phenomenon

Sensitivity Study (CoSMIR in OLYMPEX)

2018.11.08

Future Work

- OLYMPEX cases
 - Interesting microphysics
 - Riming
 - Polycrystals
- Incorporate Inversions

 3D Estimation
- Melting particles
- More aligned ice

 Scattering using IITM
- Other domains and campaigns
 - IPHEx
 - Arctic

