
ARTICLE

Genome wide association analysis in a mouse
advanced intercross line
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Abraham A. Palmer 8,9

The LG/J x SM/J advanced intercross line of mice (LG x SM AIL) is a multigenerational

outbred population. High minor allele frequencies, a simple genetic background, and the fully

sequenced LG and SM genomes make it a powerful population for genome-wide association

studies. Here we use 1,063 AIL mice to identify 126 significant associations for 50 traits

relevant to human health and disease. We also identify thousands of cis- and trans-eQTLs in

the hippocampus, striatum, and prefrontal cortex of ~200 mice. We replicate an association

between locomotor activity and Csmd1, which we identified in an earlier generation of this AIL,

and show that Csmd1 mutant mice recapitulate the locomotor phenotype. Our results

demonstrate the utility of the LG x SM AIL as a mapping population, identify numerous novel

associations, and shed light on the genetic architecture of mammalian behavior.
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Genome-wide association studies (GWAS) have revolutio-
nized psychiatric genetics; however, they have also pre-
sented numerous challenges. Some of these challenges can

be addressed by using model organisms. For example, human
GWAS are confounded by environmental variables, such as
childhood trauma, which can reduce power to detect genetic
associations. In model organisms, environmental variables can be
carefully controlled. Furthermore, it has become clear that phe-
notypic variation in humans is due to numerous common and
rare variants of small effect. In model organisms, genetic diversity
can be controlled such that all variants are common. In addition,
allelic effect sizes in model organisms are dramatically larger than
in humans1,2. Because the majority of associated loci are in
noncoding regions, expression quantitative trait loci (eQTLs) are
useful for elucidating underlying molecular mechanisms3,4.
However, it remains challenging to obtain large, high-quality
samples of human tissue, particularly from the brain. In contrast,
tissue for gene expression studies can be collected from model
organisms under optimal conditions. Finally, the genomes of
model organisms can be edited to assess the functional con-
sequences of specific mutations.

Unlike classical F2 crosses, outbred animals provide improved
mapping resolution for GWAS. This is because outbred popula-
tions have higher levels of recombination, meaning only markers
very close to the causal allele will be associated with the pheno-
type. However, there is a necessary tradeoff between mapping
resolution and statistical power, and this is further aggravated
when the causal allele is rare, which is sometimes the case in
commercially outbred mice5,6. In an effort to combine the reso-
lution afforded by an outbred population with the power of an F2
cross, we performed GWAS using an advanced intercross line
(AIL) of mice. Originally proposed by Darvasi and Soller7, AILs
are the simplest possible outbred population; they are produced
by intercrossing two inbred strains beyond the F2 generation.
Because each inbred strain contributes equally to an AIL, all
variants are common. This avoids the loss of power that results
from rare alleles and simplifies phasing and imputation. Each
successive generation of intercrossing further degrades linkage
disequilibrium (LD) between adjacent markers, which improves
mapping resolution relative to classical inbred crosses such as F2s.

An AIL derived from the LG/J (LG) and SM/J (SM) inbred
strains was initiated by Dr. James Cheverud at Washington
University in St. Louis8. In 2006, we established an independent
AIL colony with mice from generation 33 at the University of
Chicago (G33; Jmc:LG,SM-G33). Because the LG and SM founder
strains were independently selected for large and small body size,
this AIL has frequently been used to study body weight, muscu-
loskeletal, and other metabolic traits9–12. LG and SM also exhibit
a variety of behavioral differences, and previous studies from our
lab have used the LG × SM AIL to fine-map behavioral associa-
tions identified in F2 crosses between LG and SM13–15.

We recently used commercially available outbred CFW mice to
perform a GWAS5. In this paper, we apply a similar approach to
AIL mice, taking advantage of the more favorable allele fre-
quencies and the ability to impute founder haplotypes. Using
mice from AIL generations 50–56 (G50–56; Aap:LG,SM-
G50–56), we investigate novel behavioral traits, including con-
ditioned place preference for methamphetamine (CPP), as well as
other biomedically important traits including locomotor activity
following vehicle and methamphetamine administration, which
have been extensively studied for their relevance to drug abuse16,
and prepulse inhibition (PPI), which has been studied for several
decades as an endophenotype for schizophrenia17. We also
examine body weight and a constellation of musculoskeletal
phenotypes relevant to exercise physiology, which are known to
be heritable in this AIL10,11,18. In total, we report 52 associations

for 33 behavioral traits and 74 associations for 17 physiological
traits. We use RNA-sequencing (RNA-seq) to measure gene
expression in three brain regions of ~200 mice and identify
thousands of cis- and trans-eQTLs, which we use to identify
quantitative trait genes (QTGs). Finally, we use a mutant mouse
line to validate one of our strongest candidate QTGs. Our work
demonstrates that the LG × SM AIL is a powerful tool for genetic
analysis and provides a methodological framework for GWAS in
multigenerational outbred populations. The numerous associa-
tions described in this work benefit the complex trait community
by shedding light on the genetic architecture of complex traits in
a system with only two founders. Although we present only a
subset of our findings in detail, AIL genotype, phenotype and
gene expression data, complete with a suite of tools for per-
forming GWAS and related analyses, are publicly available on
GeneNetwork.org19.

Results
Genotyping by sequencing. We used genotyping by sequencing
(GBS) to genotype 1063 of the 1123 mice that were phenotyped
(60 were not successfully genotyped for technical reasons
described in the Supplementary Methods). After quality control,
GBS yielded 38,238 high-quality autosomal SNPs. Twenty-four
AIL mice were also genotyped using the Giga Mouse Universal
Genotyping Array20 (GigaMUGA), which yielded only 24,934
polymorphic markers (Supplementary Figure 1). LG and SM have
been re-sequenced21, which allowed us to use the GBS genotypes
to impute an additional 4.3 million SNPs (Fig. 1a). Consistent
with the expectation for an AIL, the average minor allele fre-
quency (MAF) was high (Fig. 1b). We also observed that the
decay of LD, which is critical to mapping resolution, has
increased since the 34th generation (Fig. 1c).

LOCO-LMM effectively reduces the type II error rate. Linear
mixed models (LMMs) are now commonly used to perform
GWAS in populations that include close relatives because they
can incorporate a genetic relationship matrix (GRM) that models
the covariance of genotypes and phenotypes in samples of related
individuals22. If SNP data are used to obtain the GRM, this can
lead to an inflation of the type II error rate due to proximal
contamination23,24. We have proposed using a leave-one-
chromosome-out LMM (LOCO-LMM) to address this issue23.
To demonstrate the appropriateness of a LOCO-LMM, we per-
formed a GWAS for albinism, which is known to be a recessive
Mendelian trait caused by the Tyrc allele, using all three
approaches: a simple linear model, an LMM, and a LOCO-LMM
(Fig. 2). GWAS using a LOCO-LMM for albinism yielded an
association on chromosome 7, which contains the Tyrc allele
(Fig. 2a). As expected, a quantile-quantile plot showed that p-
values from a genome-wide scan using a linear model, which does
not account for relatedness, appeared highly inflated (Fig. 2b).
This inflation was greatly reduced by fitting a standard LMM,
which included SNPs from chromosome 7 in both the fixed and
random terms (Fig. 2c). The LOCO-LMM, which does not
include SNPs from the chromosome being tested in the GRM,
showed an intermediate level of inflation (Fig. 2d). Was the
inflation observed in Fig. 2b–d due to true signal, or uncontrolled
population structure? To address this question, we repeated these
analyses after excluding SNPs on chromosome 7 from the fixed
effect (Fig. 2e–g). Even in the absence of the causal locus, the
simple linear model showed substantial inflation, which can only
be explained by population structure (Fig. 2e). The standard
LMM appeared overly conservative, which we attributed to
proximal contamination (Fig. 2f). The LOCO-LMM showed no
inflation, consistent with the absence of Tyrc and linked SNPs in

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07642-8

2 NATURE COMMUNICATIONS |          (2018) 9:5162 | DOI: 10.1038/s41467-018-07642-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


the fixed effect (Fig. 2g). These results demonstrate the appro-
priateness of a LOCO-LMM.

Genetic architecture of complex traits in the LG × SM AIL. We
used an LD-pruned set of 523,028 autosomal SNPs genotyped in
1,063 mice from LG × SM G50–56 to perform GWAS for 120
traits using a LOCO-LMM (Fig. 3a). Although our primary
interest was in behavior, we also measured a number of physio-
logical traits that we knew to be heritable in this AIL. We used
permutation to define a significance threshold of p= 8.06 × 10−6

at α= 0.05 (all p-values describing GWAS or eQTL results were
obtained using the likelihood ratio test in GEMMA). We did not
use a Bonferroni-corrected significance threshold because we
have previously shown that permutation adequately controls type
I and II error rates25. We identified 52 loci associated with 33
behavioral traits and 74 loci associated with 17 physiological traits
(Fig. 3a, Supplementary Data 1; Supplementary Figure 2).

In populations of related individuals, heritability (h2) estimates
may differ depending on whether pedigree data or genetic data is
used to calculate the GRM15,22,26. Pedigree data captures shared

environmental effects and epigenetic effects in addition to
additive genetic effects. We used GEMMA27 to estimate h2 using

a GRM calculated from the AIL pedigree ðĥ2PedÞ and compared
the results to h2 estimates obtained using a GRM calculated from

523,028 SNPs ðĥ2SNPÞ. Both methods produced higher estimates of
h2 for physiological traits than for behavioral traits (Supplemen-
tary Data 2), which is consistent with findings in other rodent
GWAS5,6,28. For behavioral traits (excluding CPP, locomotor
sensitization, and habituation to startle, which were not found to

have a genetic component), mean ĥ
2

Ped was 0.172 (s.e.m.= 0.066)

and mean ĥ
2

SNP was 0.168 (s.e.m.= 0.038). For physiological

traits, ĥ
2

Ped was 0.453 (s.e.m.= 0.088) and ĥ
2

SNP was 0.355 (s.e.m.

= 0.045). The lower standard error for ĥ
2

SNP indicates that it is a

more powerful estimator of h2 than ĥ
2

Ped. ĥ
2

SNP is displayed for a
subset of traits in Fig. 3b; a complete list of h2 estimates and their
standard errors are reported in Supplementary Data 2. In general,
traits with higher heritabilities yielded more associations
(Supplementary Figure 2). However, there was no relationship
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between MAF and the percent variance explained by individual
loci (Supplementary Figure 3).

We expected many of the traits measured in this study to be
correlated with one another (as explained in the Methods and
Supplementary Methods). Thus, we calculated Pearson correla-
tion coefficients for all pairwise combinations of traits measured
in this study (Supplementary Figure 4). We also used GEMMA to
estimate the proportion of genetic and environmental variance
shared by each pair of traits (Supplementary Figure 5, Supple-
mentary Data 3). As expected, behavioral trait correlations were
highest for traits measured on the same day, and correlations
among body size traits were also high, even for traits measured at
different time points. Trait pairs with high heritabilities shared a
larger proportion of genetic variance with one another than with
traits that had low heritabilities. Very little shared genetic
variance was observed for behavioral-physiological trait pairs,
consistent with their generally low trait correlations.

Identification of eQTLs using RNA-seq. For a subset of phe-
notyped and genotyped mice, we used RNA-seq to measure gene
expression in the hippocampus (HIP; n= 208), prefrontal cortex

(PFC; n= 185) and striatum (STR; n= 169) (Supplementary
Figure 6). We used this data to map local eQTLs (located up to
1Mb from the start and end of each gene), which we refer to as
cis-eQTLs. We identified 2902 cis-eQTLs in HIP, 2125 cis-eQTLs
in PFC and 2054 cis-eQTLs in STR; 1087 cis-eQTLs were sig-
nificant in all three tissues (FDR < 0.05; Supplementary Data 4,
Supplementary Figures 6–7).

We also mapped distal eQTLs (located on a separate
chromosome from the gene tested), which we refer to as trans-
eQTLs. We identified 723 HIP trans-eQTLs (p < 9.01 × 10−6), 626
PFC trans-eQTLs (p < 1.04 × 10−5) and 653 STR trans-eQTLs
(p < 8.68 × 10−6) at a genome-wide significance threshold of α=
0.05 after testing 49,642 genes across the three tissues (Supple-
mentary Figures 6–7; Supplementary Data 5). Because our
permutation corrects for all SNPs tested for a single gene, but
not all for all genes and tissues tested, we would expect 5% of tests
to be false positives. Quantile-quantile plots that included all SNPs
and all genes in each tissue revealed an excess of low p-values,
suggesting the presence of true positive results (Supplementary
Figure 8).

Previous studies in model organisms have identified trans-
eQTLs that regulate the expression of many genes4,29,30; we refer
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to these as master eQTLs (others have called them trans-bands).
We identified several master eQTLs, including one on chromo-
some 12 (70.19–73.72Mb) that was associated with the expres-
sion of 97 genes distributed throughout the genome
(Supplementary Figure 9; Supplementary Data 5). This locus
was present in HIP, but not in PFC or STR.

Integration of GWAS and eQTL results. The number of sig-
nificant associations precludes a detailed discussion of each locus.
Instead, we have chosen to present several examples that show
how we used various layers of complimentary data to parse
among the genes within implicated loci. Manhattan plots for all
traits are included in Supplementary Figure 2. In addition, all of
our data are available on GeneNetwork.org19, which is a website
that provides statistical tools and an interactive graphical user
interface, allowing the user to replicate our results and explore
additional results not presented in this paper.

Four loci associated with locomotor behavior mapped to the
same region on chromosome 17 (Supplementary Data 1;
Supplementary Figure 2). The narrowest association was for side
changes between 15–20 min on day 1 (D1) of the CPP test, after
mice received an injection of vehicle (p= 3.60 × 10−6). Other
genome-wide significant associations included total D1 side
changes (0–30 min), distance traveled on D1 (0–5 min), and
distance traveled after an injection of methamphetamine on D2
(15–20 min; Supplementary Data 1). The implicated locus
contains a single gene, Crim1 (cysteine-rich transmembrane
BMP regulator 1), which had a significant cis-eQTL in HIP.
Although Crim1 may appear to be the best candidate to explain
the associations with locomotor behavior, two nearby genes, Qpct
(glutaminyl-peptide cyclotransferase) and Vit (vitrin), though

physically located outside of the locus, also had cis-eQTLs within
the region associated with locomotor behavior (Supplementary
Data 4). The top SNP at this locus (rs108572120) is also a trans-
eQTL for Zfas1 expression in STR. Zfas1 is a noncoding RNA on
chromosome 2 of unknown significance. We therefore consider
all four genes candidates for mediating the association between
this locus and locomotor behavior.

One of the most significant loci we identified was associated
with startle response (p= 5.28 × 10−10; Fig. 3; Supplementary
Figure 2). The startle response is a motor reflex that is used to
assess neurobiological traits related to behavioral plasticity and
sensorimotor processing17,31. This result replicated a previous
association with startle response from our prior study using G34
AIL mice14. We examined GWAS p-values for the most
significantly associated startle SNP (rs33094557) across all traits
that we measured in this study (we refer to this as a phenome-
wide association analysis, or PheWAS32), which revealed that this
region pleiotropically affected multiple other traits, including
locomotor activity following saline and methamphetamine
administration (Supplementary Figure 10). This region was also
implicated in conditioned fear and anxiety in prior studies of G34
mice15, demonstrating that it has extensive pleiotropic effects on
behavior. Because the association with startle identifies a relatively
large haplotype that included over 25 genes with eQTLs, the
causal gene(s) is not clear, and we are not certain whether the
pleiotropic effects are due to one or several genes in this interval.
In this case, the mapping resolution we obtained was insufficient
to address these questions.

We also identified a 0.49-Mb locus on chromosome 8 that was
associated with the locomotor activity (Fig. 4a; Supplementary
Data 1); this region was nominally associated with PPI and
multiple other locomotor traits (Fig. 4b). The region identified in
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the present study (Fig. 4a–c) replicates a finding from our
previous study using G34 AIL mice13 (Fig. 4d). In both cases, the
SM allele conferred increased activity (Fig. 4c, d) and the
implicated locus contained only one gene: Csmd1 (CUB and sushi
multiple domains 1; Fig. 4b; Supplementary Data 2); furthermore,
the only cis-eQTL that mapped to this region was for Csmd1
(Supplementary Figure 11). We obtained mice in which the first
exon of Csmd1 was deleted to test the hypothesis that Csmd1 is
the QTG for this locus. Csmd1 mutant mice exhibited increased
activity compared to heterozygous and wild-type mice (Fig. 4e),
similar to the SM allele. Taken together, these data strongly
suggest that Csmd1 is the causal gene.

We identified seven overlapping loci for locomotor activity on
chromosome 4 (Supplementary Data 1; Supplementary Figure 2).
The strongest locus (D5 activity, 0–30min; p= 6.75 × 10−9)
spanned 2.31Mb and completely encompassed the narrowest
locus, which spanned 0.74Mb (D5 activity, 25–30 min; p=
4.66 × 10−8); therefore, we focused on the smaller region. Oprd1
(opioid receptor delta 1) had a cis-eQTL in all three brain regions;
the SM allele conferred an increase in locomotor activity and was
associated with decreased expression of Oprd1. Oprd1 knockout
mice have been reported to display increased activity relative to
wild-type mice33, suggesting that differential expression of Oprd1
could explain the locomotor effect at this locus. However, we note
that there are several other genes and eQTLs within this locus
that could also contribute to its behavioral effects.

Finally, we identified an association with D1 locomotor
behavior on chromosome 6 at rs108610974, which is located in
an intron of Itpr1 (inositol 1,4,5-trisphosphate receptor type 1;
Supplementary Figure 12). This locus contained three cis-eQTLs

and seven trans-eQTLs (Supplementary Figure 12). One of the
trans-eQTL genes targeted by the locus (Capn5; calpain 5) was
most strongly associated with rs108610974, and may be the QTG
(Supplementary Data 5). These results illustrate how knowledge
of both cis- and trans-eQTLs informed our search for QTGs.

Pleiotropic effects on physiological traits. Because LG and SM
were created by selective breeding for large and small body size,
this AIL is expected to segregate numerous body size alleles9,10.
We measured body weight at ten timepoints throughout devel-
opment and identified 46 associations, many of which converged
at the same loci (Supplementary Data 1, Supplementary Figure 2).
For example, eight body weight timepoints were associated with a
locus on chromosome 2. Counter to expectations, the LG allele at
this locus was associated with smaller body mass (Supplementary
Data 1; Supplementary Figure 2, Supplementary Figure 13). The
narrowest region spanned 0.08 Mb, and while it did not contain
any genes, it did contain a cis-eQTL for Nr4a2 (nuclear receptor
subfamily 4, group A, member 2) in PFC. Mice lacking Nr4a2 in
midbrain dopamine neurons exhibit a 40% reduction in body
weight34. Consistent with this, the LG allele was associated with
decreased expression of Nr4a2. Taken together, these data
strongly implicate Nr4a2 as the QTG for this locus.

LG and SM also exhibit differences in fat and muscle weight,
bone density, and other morphometric traits9–11,35. Therefore, we
measured the weight of five hindlimb muscles, tibia length, and
tail length (Methods). We identified 22 associations for muscle
weight and five for bone length (Supplementary Data 1). Six
muscle weight loci and one tibia length locus overlapped with
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associations for body weight. Since body weight, muscle weight,
and bone length are interdependent traits, it is difficult to know
whether this overlap is due to these traits being correlated
(Supplementary Figures 4–5, Supplementary Data 3) or if the
causal SNP(s) affect these traits through independent mechan-
isms. Thus, we use the term pleiotropy to describe these loci
instead of claiming a causal relationship. For example, associa-
tions for tibialis anterior (TA), gastrocnemius, and plantaris
weight overlapped a region on chromosome 7 that was associated
with all body weight timepoints that we measured (Supplemen-
tary Figure 2, Supplementary Figure 14, Supplementary Data 1).
Although the most significant SNP associated with muscle weight
was ~5Mb downstream of the top body weight SNP, the LG allele
was associated with greater weight at both loci (Supplementary
Data 1). For eight out of ten body weight timepoints, the most
significant association fell within Tpp1 (tripeptidyl peptidase 1),
which was a cis-eQTL gene in all tissues and a trans-eQTL gene
targeted by the master HIP eQTL on chromosome 12
(Supplementary Figure 9). To our knowledge, Tpp1 has not been
shown to affect body size in mice or humans; however, four other
cis-eQTL genes in the region have been associated with human
body mass index (Rpl27a, Stk33, Trim66, and Tub)36,37.
Dysfunction of Tub (tubby bipartite transcription factor) causes
late-onset obesity in mice, perhaps due to Tub’s role in insulin
signaling38. In addition, several trans-eQTL genes map to this
interval, including Gnb1 (G protein subunit beta 1), which forms
a complex with Tub39. Another trans-eQTL gene associated with
this interval, Crebbp (CREB binding protein), has been associated
with juvenile obesity in human GWAS34.

The strongest association we identified in this study was for
EDL weight (p= 2.03 × 10−13) on chromosome 13 (Fig. 3a,
Supplementary Data 1; Supplementary Figure 15). An association
with gastrocnemius weight provided additional support for the
region (p= 2.56 × 10−7; Supplementary Figure 2, Supplementary
Figure 15) and in both cases, the SM allele was associated with
increased muscle mass. Each locus spanned less than 0.5 Mb and
was flanked by regions of low polymorphism between LG and SM
(Supplementary Figure 15, Supplementary Data 1). A cis-eQTL
gene within this region, Nln (neurolysin), is differentially
expressed in LG and SM soleus muscle12,18, with LG exhibiting
greater expression. Nln has been shown to play a role in mouse
skeletal muscle40.

Finally, we identified an association with EDL, plantaris, and
TA weight at another locus on chromosome 4 (Supplementary
Data 1; Supplementary Figure 16). In all cases, the LG allele was
associated with greater muscle weight. The loci for EDL and
plantaris spanned ~0.5 Mb, defining a region that contained six
genes (Supplementary Data 1). The top SNPs for EDL
(rs239008301; p= 7.88 × 10−13) and plantaris (rs246489756; p
= 2.25 × 10−6) were located in an intron of Astn2 (astrotactin 2),
which is differentially expressed in LG and SM soleus12. SM,
which exhibits lower expression of Astn2 in soleus relative to
LG12, has a 16 bp insertion in an enhancer region 6.6 kb upstream
of Astn2 (ENSMUSR00000192783)21. Two other genes in this
region have been associated with muscle or bone phenotypes
traits in the mouse: Tlr4 (toll-like receptor 4), which harbors one
synonymous coding mutation on the SM background
(rs13489095) and Trim32 (tripartite motif-containing 32), which
contains no coding polymorphisms between the LG and SM
strains.

Discussion
Crosses among well-characterized inbred strains are a mainstay of
model organism genetics. However, F2 and similar crosses pro-
vide poor mapping resolution because the ancestral chromosomes

persist as extremely long haplotypes2,22. To address this limita-
tion, we and others have used various multigenerational inter-
crosses, including AILs. Using 1063 male and female mice from
LG × SM G50–56, we confirmed that most variants in the LG ×
SM AIL had high frequencies and that LD has continued to decay
between G34 and G50–56 (Fig. 1). We identified 126 loci for traits
selected for their relevance to human psychiatric and metabolic
diseases9,16,17 (Fig. 3; Supplementary Data 1; Supplementary
Figure 2). These results implicated several specific genes that are
corroborated by extant human and mouse genetic data. In par-
ticular, we replicated a locus on chromosome 8 that was asso-
ciated with locomotor activity in the G34 study13 (Fig. 4). We
showed that the chromosome 8 locus contained a cis-eQTL for
Csmd1 (Supplementary Figure 11), which is the only annotated
gene within that locus. Finally, we showed that a genetically
engineered Csmd1 mutant mouse recapitulates the locomotor
phenotype, strongly suggesting that Csmd1 is the QTG.

Our previous work with this AIL used mice from LG × SM G34
to fine-map loci identified in an F2 cross between LG and SM;
however, the mapping resolution in those studies was limited by a
lower number of generations, fewer markers (~3000 SNPs), a
smaller sample size, and a higher proportion of first-degree
relatives10,12–14,18. In the present study, we addressed these lim-
itations. The number of SNPs used in our prior studies was
increased by several orders of magnitude by using GBS41,42 fol-
lowed by imputation from the sequenced founders21. Unlike our
previous studies using the G34 AIL, in this study we did not use
AIL mice to fine map loci identified in an F2 cross, but instead
used them as both a discovery and fine mapping population.

The strategies we used to perform GWAS in the LG × SM AIL
were also informed by recent GWAS using outbred CFW mice5,6.
Although our approach to the AIL was similar to the CFW stu-
dies, certain practical considerations, along with the AIL’s simpler
genetic background, affected the design of this study and its
outcomes in important ways. For example, non-sibling CFW
mice can be obtained from a commercial vendor, which avoids
the expenses of maintaining an AIL colony and reduces the
complicating effects that can occur when close relatives are used
in GWAS. However, haplotype data from the CFW founders are
not available, and many CFW alleles exist at low frequencies,
limiting power and introducing genetic noise5,6. In contrast, the
LG and SM founder strains have been fully sequenced21 and AIL
SNPs have high MAFs, which simplifies imputation of SNPs and
founder haplotypes and enhances statistical power22. Parker et al.
demonstrated that GBS is a cost-effective strategy for genotyping
CFW mice5; however, in the present study, we took advantage of
the fact that in the LG × SM AIL, all alleles that are identical by
state are also identical by descent. This allowed us to use impu-
tation to obtain 4.3 million SNPs despite using only about half the
sequencing depth that was necessary for CFW mice (Fig. 1a).
Even before imputation, GBS yielded nearly 50% more infor-
mative SNPs compared to the best available SNP genotyping
chip20 at about half the cost (Supplementary Figure 1). Thus, we
have shown that the use of GBS in a population with sequenced
founders is even more powerful than the analogous approach in
CFW mice.

The primary goal of this study was to identify the genes that are
responsible for the loci implicated in behavioral and physiological
traits. We were particularly interested in uncovering genetic
factors that influence CPP, which is a well-validated measure of
the reinforcing effects of drugs43. However, the heritability of
CPP in LG × SM G50–56 was not significantly different from zero
(Fig. 3b). This was unexpected, since panels of inbred strains and
genetically engineered mutant alleles have been shown to exhibit
heritable differences in CPP43–45. However, the lack of heritability
of CPP was partially consistent with our prior study, which used a
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higher dose of methamphetamine (2 vs. the 1 mg kg−1 used in the
present study)46. We conclude that the low heritability of CPP
likely reflects a lack of relevant genetic variation in this specific
population. It is possible that even lower doses of methamphe-
tamine, which might fall on the ascending portion of the dose-
response function, would have resulted in higher heritability.
Responses to other drugs or different CPP methodology may also
have resulted in higher heritability. It is also possible that testing
for non-additive genetic effects would have increased the herit-
ability of CPP.

In general, trait heritability in the LG × SM AIL (Fig. 3b,
Supplementary Data 2) was lower than what has been reported in
studies that use panels of inbred mouse strains to estimate her-
itability47–49. This was expected because environmental effects
can be shared within but not between inbred strains, which will
produce higher estimates of heritability26. In addition, epistatic
interactions can contribute to heritability in inbred panels, which
leads to higher estimates of heritability50. These observations
share many similarities with the higher heritabilities obtained
using twins compared to chip heritabilities in human studies26.

A subset of traits was measured in both this AIL and our prior
CFW study (PPI, startle, and body size). Heritability estimates
were very similar between those two populations5. Despite this,
we identified many more genome-wide significant loci in the
current study (126 associations in the AIL compared to 17 in
CFW at α= 0.05). The greater number of significant associations
generated in this study may be due to enhanced power that comes
with the more favorable distribution of MAFs in the AIL (Sup-
plementary Figure 3). Differences in genetic background and the
rate of LD decay, which also affect power, may also have con-
tributed to these observations and could account for the lack of
overlap among loci associated with PPI, startle and body size in
the two populations.

Our ability to identify QTGs was critically dependent on
mapping resolution in the LG × SM AIL (Fig. 1c). However,
proximity of a gene to the associated SNP is insufficient to
establish causality4. Therefore, we used RNA-seq to quantify
mRNA abundance in three brain regions that are strongly
implicated in the behavioral traits that we measured: HIP, PFC,
and STR. We used these data to identify 7081 cis-eQTLs (FDR <
0.05) and 2002 trans-eQTLs (α= 0.05 for a single gene test)
(Supplementary Figures 6–9, Supplementary Data 4–5). In a few
cases, loci contained only a single eQTL, but in most cases,
multiple cis-eQTLs and trans-eQTLs mapped to the implicated
loci. This highlights an important distinction between GWAS
using AILs and GWAS using humans. The ability to identify
QTLs and eQTLs depends on genetic diversity, LD decay, and
MAFs within the sample, which affect power by increasing or
reducing the multiple testing burden. Compared to unrelated
human populations, AILs have fewer SNPs, higher levels of LD,
and higher MAFs (Fig. 1), all of which enhance power. We
expected the increase in power conferred by an AIL to be less
dramatic for cis-eQTLs than for trans-eQTLs due to the lower
number of SNPs tested. This is because unlike human popula-
tions, which segregate far more variants (and thus, many more
potential eQTLs), genetic diversity in an AIL is limited to variants
segregating in the founder strains. Still, the proportion of eQTLs
that were significant in all three brain regions was smaller for
trans-eQTLs versus cis-eQTLs (Supplementary Figure 10), con-
sistent with a larger proportion of the trans-eQTLs being false
positives. Conversely, this observation could be explained by a
high rate of false negatives due to the burden of testing all SNPs
(trans-eQTLs) versus testing only nearby SNPs (cis-eQTLs).
Thus, in addition to integrating QTLs with eQTLs, we incorpo-
rated data about gene expression in other tissues12,18, coding
SNPs, mutant mice, and human genetic studies to parse among

the implicated genes. Although that was broadly similar to the
approach we applied to CFW mice, the eQTL sample in this study
was more than two times greater. Indeed, to our knowledge, this
is the largest eQTL analysis that has been performed in outbred
mice.

We also used PheWAS to identify pleiotropic effects of several
loci identified in this study. In many cases, pleiotropy involved
highly correlated traits such as body weight on different days or
behavior at different time points within a single day (Supple-
mentary Figures 13–14, Supplementary Figure 16; Supplementary
Data 1). We also observed unexpected examples of pleiotropy, for
example, between locomotor activity and gastrocnemius mass on
chromosome 4 (Supplementary Figure 17) and between loco-
motor activity and the startle response on chromosome 12
(Supplementary Figure 18). We observed extensive pleiotropy on
chromosome 17 at ~26–30Mb (Supplementary Data 1). In the
current study we found that this locus influenced saline- and
methamphetamine-induced locomotor activity and startle
response (Supplementary Figure 10), and this same region was
implicated in anxiety-like behavior15, contextual and conditioned
fear15, and startle response14 in previous studies of LG x SM G34,
suggesting that the locus has a broad impact on many behavioral
traits. These results support the idea that pleiotropy is a pervasive
feature in model organisms and provides further evidence of the
replicability of the loci identified by this and prior GWAS.

Discoveries from human GWAS are often considered pre-
liminary until they are replicated in an independent cohort. There
were several associations identified in LG × SM G34 mice that we
replicated in G50–5610–12,14,18, however, other findings from G34
did not replicate in G50–56. Replication of GWAS findings is a
complex issue in both human and model organism genetics.
Failures to replicate prior results in the current study could be due
to methodological differences, as previous studies used slightly
different statistical models and used data from both F2 and F34
populations. Alternatively, the failure of some loci to replicate
could imply that some of our prior findings, while real, did not
explain as much of the variance as we estimated due to a winner’s
curse. Indeed, even if the effect sizes of the earlier findings were
correct, we would still not expect to replicate all of them, since
power to replicate is seldom 100%.

In model organisms, it is also possible to replicate an asso-
ciation by directly manipulating the implicated gene. We repli-
cated one behavioral locus identified in this study using the
criteria of both human and model organism genetics. We had
identified an association with locomotor activity on chromosome
8 using G34 of this AIL13, which was replicated in the present
study (Fig. 4). In both cases, the SM allele was associated with the
lower activity (Fig. 4c, d). We also identified a locus for PPI (76
dB) in this region (Fig. 4a; Supplementary Data 1, Supplementary
Figure 2). The loci identified in both G34 and in G50–56 were
small and contained just one gene: Csmd1 (Fig. 4b). In the present
study, we also identified a cis-eQTL for Csmd1 in HIP (Supple-
mentary Figure 11). Finally, we obtained Csmd1 mutant mice51

that also exhibited altered locomotor activity (Fig. 4e). Thus, we
have demonstrated replication both by performing an indepen-
dent GWAS and by performing an experimental manipulation
that recapitulates the phenotype.

In summary, we have shown that LG x SM AIL mice are a
powerful multigenerational intercross population that can be used
for GWAS. The simple genetic background of an AIL makes it an
appealing alternative to other multigenerational mouse popula-
tions, such as the Diversity Outcross52. We have identified
numerous genome-wide significant loci for a variety of biome-
dically significant phenotypes. We also made use of eQTL data to
parse among the genes implicated in particular loci. In the case of
Csmd1, we showed replication in a second mapping population
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and by directly manipulating the implicated gene, which pro-
duced a similar phenotype.

Methods
Genetic background. The LG and SM inbred mouse strains (Mus musculus
domesticus) were independently selected for high and low body weight at 60 days53.
The LG × SM AIL was derived from an F1 intercross of SM females and LG males
initiated by Dr. James Cheverud at Washington University in St. Louis8. Sub-
sequent AIL generations were maintained using at least 65 breeder pairs selected by
pseudo-random mating54. In 2006, we established an independent AIL colony
using 140 G33 mice obtained from Dr. Cheverud (Jmc:LG,SM-G33). Since 2009,
we have selected breeders using an R script that leverages pairwise kinship coef-
ficients estimated from the AIL pedigree to select the most unrelated pairs while
also attempting to minimize mean kinship among individuals in the incipient
generation (the full pedigree is included in Supplementary Data 6 and a link to the
R script is in the Supplementary Note 1). We maintained ~100 breeder pairs in
G49–55 to produce the mice for this study. In each generation, we used one male
and one female from each nuclear family for phenotyping and reserved up to three
of their siblings for breeding the next generation.

Phenotypes. We subjected 1123 AIL mice (562 female, 561 male; Aap:LG,SM-
G50–56) to a four-week battery of tests over the course of two years. 1063 of these
mice (530 female, 533 male) had high-quality GBS data; therefore, we restricted our
analysis to these individuals. This sample size was based on an analysis suggesting that
1000 mice would provide 80% power to detect associations explaining 3% of the
phenotypic variance (Supplementary Figure 19). We measured CPP for 1mg kg−1

methamphetamine, locomotor behavior, PPI, startle, body weight, muscle mass, bone
length, and other related traits (Supplementary Data 2). We tested mice during the
light phase of a 12:12 h light–dark cycle in 22 batches comprised of 24–71 individuals
(median= 53.5). Median age was 54 days (mean= 55.09, range= 35–101) at the start
of testing and 83 days (mean= 84.4, range= 64–129) at death. Mice were housed in
same-sex cages, with 2–4 mice per cage. Standard lab chow and water were available
ad libitum, except during testing. Testing was performed during the light phase,
starting one hour after lights on and ending one hour before lights off. No envir-
onmental enrichment was provided. All procedures were approved by the Institu-
tional Animal Care and Use Committee at the University of Chicago. Traits are
summarized briefly below; detailed descriptions are provided in the Supplementary
Methods.

CPP and locomotor behavior: CPP is an associative learning paradigm that has
been used to measure the motivational properties of drugs in humans55 and
rodents43. We defined CPP as the number of seconds spent in a drug-associated
environment relative to a neutral environment over the course of 30 min. The full
procedure takes eight days, which we refer to as D1–D8. We measured baseline
preference after administration of vehicle (0.9% saline, i.p.) on D1. On D2 and D4,
mice were administered methamphetamine (1 mg kg−1, i.p.) and restricted to one
visually and tactically distinct environment; on D3 and D5 mice were administered
vehicle and restricted to the other, contrasting environment. No testing occurs on
D6 and D7. On D8, mice were allowed to choose between the two environments
after administration of vehicle; we measured CPP at this time. Other variables
measured during the CPP test include the distance traveled (cm) on all testing days,
the number of side changes on D1 and D8, and locomotor sensitization to
methamphetamine (the increase in activity on D4 relative to D2). We measured
CPP and locomotor traits across six five-minute intervals and summed them to
generate a total phenotype for each day.

PPI and startle: PPI is the reduction of the acoustic startle response when a loud
noise is immediately preceded by a low decibel (dB) prepulse56. PPI and startle are
measured across multiple trials that occur over four consecutive blocks of time14.
The primary startle trait is the mean startle amplitude across all pulse-alone trials
in blocks 1–4. Habituation to startle is the difference between the mean startle
response at the start of the test (block 1) and the end of the test (block 4). PPI,
which we measured at three prepulse intensities (3, 6, and 12 dB above 70 dB
background noise), is the mean startle response during pulse-alone trials in blocks
2–3 normalized by the mean startle response during prepulse trials in blocks 2–3.
Mice that exhibited a startle response in the absence of a pulse were excluded from
GWAS, as were mice that did not exhibit a startle response during the first block of
startle pulses (Supplementary Methods, Supplementary Figure 20).

Physiological traits: We measured body weight (g) on each testing day and at
the time of death. One week after PPI, we measured blood glucose levels (mg/dL)
after a four-hour fast. One week after glucose testing, we killed the mice, and
measured tail length (cm from base to tip of the tail). We stored spleens in a 1.5 mL
solution of 0.9% saline at −80 °C until DNA extraction. We removed the left hind
limb of each mouse just below the pelvis; hind limbs were stored at −80 °C. Frozen
hind limbs were phenotyped in the laboratory of Dr. Arimantas Lionikas at the
University of Aberdeen. Phenotyped muscles include two dorsiflexors, TA and
EDL, and three plantar flexors: gastrocnemius, plantaris, and soleus. We isolated
individual muscles under a dissection microscope and weighed them to 0.1 mg
precision on a Pioneer balance (Ohaus, Parsippany, NJ, USA). After removing soft
tissue from the length of tibia, we measured its length to 0.01 mm precision with a
Z22855 digital caliper (OWIM GmbH & Co., Neckarsulm, GER).

Brain tissue: We collected HIP, PFC, and STR for RNA-seq from the brain of
one mouse per cage. This allowed us to dissect each brain within five minutes of
removing a cage from the colony room (rapid tissue collection was intended to
limit stress-induced changes in gene expression). We preselected brain donors to
prevent biased sampling of docile (easily caught) mice and to avoid sampling full
siblings, which would reduce our power to detect eQTLs. Intact brains were
extracted and submerged in chilled RNALater (Ambion, Carlsbad, CA, USA) for
one minute before dissection. Individual tissues were stored separately in chilled
0.5-mL tubes of RNALater. All brain tissue was dissected by the same experimenter
and subsequently stored at −80 °C until extraction.

GBS variant calling and imputation. GBS is a reduced-representation genotyping
method41,57 that we have adapted for use in mice and rats5,42. We extracted DNA
from spleen using a standard salting-out protocol and prepared GBS libraries by
digesting DNA with the restriction enzyme PstI. We sequenced 24 uniquely bar-
coded samples per lane of an Illumina HiSeq 2500 using single-end, 100 bp reads.
We aligned 1110 GBS libraries to the mm10 reference genome before using
GATK58 to realign reads around known indels in LG and SM21 (Supplementary
Methods). We obtained an average of 3.2 million reads per sample. We discarded
32 samples with <1 million reads aligned to the main chromosome contigs (1–19,
X, Y) or with a primary alignment rate <77% (i.e., three s.d. below the mean of
97.4%; Supplementary Figure 21).

We used ANGSD59 to obtain genotype likelihoods for the remaining 1078 mice
and used Beagle60,61 for variant calling, which we performed in two stages. We
used first-pass variant calls as input for IBDLD62,63, which we used to estimate
kinship coefficients for the mice in our sample. Because our sample contained
opposite-sex siblings, we were able to identify and resolve sample mix-ups by
comparing genetic kinship estimates to kinship estimated from the LG × SM
pedigree (Supplementary Data 6, Supplementary Note 1). In addition, we re-
genotyped 24 mice on the GigaMUGA20 to evaluate GBS variant calls
(Supplementary Table 1 lists concordance rates at various stages of our pipeline; see
Supplementary Methods for details).

After identifying and correcting sample mix-ups, we discarded 15 samples
whose identities could not be resolved (Supplementary Methods). Next, we used
Beagle60,61, in conjunction with LG and SM haplotypes obtained from whole-
genome sequencing data21 to impute 4.3 million additional SNPs into the final
sample of 1063 mice. We excluded X chromosome SNPs to avoid potential
problems with genotyping accuracy, statistical power, and other complications that
have been discussed elsewhere64. We removed SNPs with low MAFs (<0.1), SNPs
with Hardy–Weinberg Equilibrium (HWE) violations (p ≤ 7.62 × 10–6, Chi-squared
test), determined from gene-dropping simulations as described in the
Supplementary Methods), and SNPs with low imputation quality (dosage r2,
DR2<0.9). We then pruned variants in high LD (r2 > 0.95) to obtain the 523,028
SNPs that we used for GWAS.

LD Decay. We used PLINK65 to calculate r2 for all pairs of autosomal GWAS SNPs
typed in G50–56 (parameters are listed in Supplementary Note 1). We repeated the
procedure for 3,054 SNPs that were genotyped in G34 mice13. Next, we randomly
sampled r2 values calculated for ~40,000 SNP pairs from each population and used
the data to visualize the rate of LD decay (Fig. 1c).

GWAS. We used a leave one chromosome out LMM (LOCO-LMM) implemented
in GEMMA27 to perform GWAS. An LMM accounts for relatedness by modeling
the covariance between phenotypes and genotypes as a random, polygenic effect,
which we also refer to as a genetic relationship matrix (GRM). Power to detect
associations is reduced when the locus being tested is also included in the GRM
because the effect of the locus is represented in both the fixed and random
terms13,24. To address this issue, we calculated 19 separate GRMs, each one
excluding a different chromosome. When testing SNPs on a given chromosome, we
used the GRM that did not include markers from that chromosome as the poly-
genic effect in the model. Fixed covariates for each trait are listed in Supplementary
Data 2.

We used a permutation-based approach implemented in MultiTrans66 and
SLIDE67 to obtain a genome-wide significance threshold that accounts for LD
between nearby markers (Supplementary Methods). We obtained a significance
threshold of p= 8.06 × 10−6 (α= 0.05) from 2.5 million samplings. Because the
phenotypic data were quantile-normalized, we applied the same threshold to all
traits. We converted p-values to LOD scores and used a 1.5-LOD support interval
to approximate a critical region around each associated region, which enabled us to
systematically identify overlap with eQTLs.

Trait correlations and heritability. We calculated the Pearson correlation coef-
ficients and their p-values for all pairs of traits measured in this study. Only mice
with non-missing data for both traits in a pair were used to calculate the corre-
lation. We also decomposed the trait covariance into genetic and environmental
covariances using a multivariate LOCO-LMM in GEMMA68. This allowed us to
evaluate the contribution of genetic and environmental factors to each pair of traits
(Supplementary Figure 5, Supplementary Data 3).
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We estimated the proportion of phenotypic variance explained by the additive
effects of 523,028 LD-pruned SNPs using the restricted maximum likelihood
algorithm in GEMMA27. Specifically, we ran a second genome-wide scan for each
trait, this time dropping the fixed effect of dosage and including the complete GRM
estimated from SNPs on all 19 autosomes. We refer to this estimate as SNP

heritability ĥ
2

SNP

� �
. For comparison, we also estimated heritability using pedigree

data ĥ
2

Ped

� �
. We used the same method described above, only the GRM was

replaced with a kinship matrix estimated from the AIL pedigree (Supplementary
Data 2, Supplementary Note 1, Supplementary Data 6). To estimate effect sizes for

trait-associated SNPs, we repeated the procedure for ĥ
2

SNP using dosage at the most
significant SNP as a covariate for each trait (Supplementary Data 1). We
interpreted the difference between the two estimates as the effect size of that locus.

RNA-sequencing and quality control. We extracted RNA from HIP, PFC, and
STR using a standard phenol-chloroform procedure and prepared cDNA libraries
from 741 samples with RNA integrity scores ≥8.0 (265 HIP; 240 PFC; 236 STR)69

as measured on a Bioanalyzer (Agilent, Wilmington, DE, USA). We used Quant-iT
kits to quantify RNA (Ribogreen) and cDNA (Picogreen; Fisher Scientific, Pitts-
burgh, PA, USA). Barcoded sequencing libraries were prepared with the TruSeq
RNA Kit (Illumina, San Diego, USA), pooled in sets of 24, and sequenced on two
lanes of an Illumina HiSeq 2500 using 100 bp, single-end reads.

Because mapping quality tends to be higher for reads that closely match the
reference genome70, read mapping in an AIL may be biased toward the reference
strain (C57BL/6J)71. We addressed this concern by aligning RNA-seq reads to
custom genomes created from LG and SM using whole-genome sequence data21.
We used default parameters in HISAT72 for alignment and GenomicAlignments73

for assembly, assigning each read to a gene as defined by Ensembl (Mus_musculus.
GRCm38.85)74. We required that each read overlap one unique disjoint region of
the gene. If a read contained a region overlapping multiple genes, genes were split
into disjoint intervals, and any shared regions between them were hidden. If the
read overlapped one of the remaining intervals, it was assigned to the gene that the
interval originated from; otherwise, it was discarded. Next, we reassigned the
mapping position and CIGAR strings for each read to match mm10 genome
coordinates and combined the LG and SM alignment files for each sample by
choosing the best mapping. Only uniquely mapped reads were included in the final
alignment files. We then used DESeq75 to obtain normalized read counts for each
gene in HIP, PFC, and STR. We excluded genes detected in <95% of samples within
each tissue. We retained a total of 16,533 genes in HIP, 16,249 genes in PFC, and
16,860 genes in STR.

We also excluded 30 samples with <5M mapped reads or with an alignment
rate <91.48% (i.e., less than 1 s.d. below the mean number of reads or the mean
alignment rate across all samples and tissues; Supplementary Figure 22). We
merged expression data from HIP, PFC, and STR and plotted the first two principal
components (PCs) of the data to identify potential tissue swaps. Most samples
clustered into distinct groups based on tissue. We reassigned 12 mismatched
samples to new tissues and removed 35 apparently contaminated samples that did
not cluster with the rest of the data (Supplementary Figure 23). We also used
agreement among GBS genotypes and genotypes called from RNA-seq data in the
same individuals to identify and resolve mixed-up samples, as detailed in the
Supplementary Methods. We discarded 108 sample mix-ups that we were not able
to resolve, 29 samples with low-quality GBS data, and 12 outliers (details are
provided in the Supplementary Methods). A total of 208 HIP, 185 PFC, and 169
STR samples were retained for further analyses.

eQTL mapping. Prior to eQTL mapping, we quantile-normalized gene expression
data and used principal components analysis to remove the effects of unknown
confounding variables76. For each tissue, we calculated the first 100 PCs of the gene
expression matrix. We quantile-normalized PCs and used GEMMA27 to test for
association with SNPs using sex and batch as covariates. We evaluated significance
with the same permutation-based threshold used for GWAS. We retained PCs that
showed evidence of association with a SNP in order to avoid removing trans-eQTL
effects. We then used linear regression to remove the effects of the remaining PCs
(Supplementary Figure 24) and quantile-normalized the residuals.

We then mapped cis- and trans-eQTLs using a LOCO-LMM implemented in
GEMMA27. We considered intergenic SNPs and SNPs 1Mb upstream or
downstream of the gene as potential cis-eQTLs and excluded 2143 genes that had
no SNPs within their cis-regions. We used eigenMT77 to obtain a gene-based p-
value adjusted for the number of independent SNPs in each cis region. We declared
cis-eQTLs significant at an FDR < 0.05 (Supplementary Data 4).

SNPs on chromosomes that did not contain the gene being tested were
considered potential trans-eQTLs. We determined significance thresholds for
trans-eQTLs by permuting the data 1000 times. Since expression data were
quantile-normalized, we permuted one randomly chosen gene per tissue. The
significance threshold for trans-eQTLs was p= 8.68 × 10−6 in STR, p= 9.01 × 10−6

in HIP, and p= 1.04 × 10−5 in PFC (α= 0.05). We used all SNPs for permutation;
therefore, we expect these thresholds to be slightly conservative. We define master
eQTLs as 5Mb regions that contain ten or more trans-eQTLs. To identify master

eQTLs, we divided chromosomes into 5Mb bins and assigned each trans-eQTL
gene to the bin containing its most significant eQTL SNP.

Csmd1 mutant mice. Csmd1 mutants were created by Lexicon Genetics by
inserting a Neomycin cassette into the first exon of Csmd1 using embryonic stem
cells derived from 129S5 mice78. The mice we used were the result of a C57BL/
6×129S5 intercross designated B6;129S5-Csmd1tm1Lex/Mmucd (the exact C57BL/
6 substrain is unknown). We bred heterozygous males and females and tested
littermate offspring to account for their mixed genetic background. Csmd1 spans
1.6 Mb and has 70 exons. Its four major transcripts, termed Csmd1-1 to Csmd1-4,
are expressed in the central nervous system51. Distler et al. (ref. 51) demonstrated
that Csmd1 homozygous mutant mice express <30% of wild-type Csmd1 levels in
the brain, and heterozygous mice show a 54% reduction in Csmd1 expression.
Residual expression of Csmd1 in homozygous mutant mice is derived from Csmd1-
4, the only transcript that does not include the first exon. We analyzed locomotor
behavior on two days following a saline injection in 31 wild-type, 59 heterozygous,
and 48 mutant mice.

Code availability. Example code for running the analyses in this study are pro-
vided in Supplementary Note 1. We also list the software used for these analyses
(including version numbers) in the Supplementary Methods.

Data availability
LG × SM G50–56 genotypes (hard calls and dosages), phenotypes (raw and
quantile-normalized), and gene expression data (log2-normalized read counts and
quantile-normalized data with PCs regressed out) are freely and publicly available
on http://palmerlab.org/protocols-data/ and on http://genenetwork.org/ (Study ID
272). GeneNetwork accession codes are GN844–846 for RNAseq data (log2-nor-
malized counts) and GN653 for phenotype data (raw), an accession code for
genotype data is pending. All other relevant data is available upon request. Mouse
phenotype and genotype data plotted in Fig. 4 is provided as a Source Data File.
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