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Abstract (English)

This thesis details the synthesis of three classes of chiral octahedral metal complexes and their
applications in asymmetric catalysis.

In the first section, two new octahedral chiral-at-metal iridium(l1l) and rhodium(lll) Lewis acid
complexes with modified ligands were synthesized to expand the family of previous complexes in our
group. While the newly synthesized complexes A/A-Ir/Rh(Se) did not demonstrate higher catalytic
activities than the existing ones, we believe that these Lewis acid catalysts might be applied to other
enantioselective reactions such as visible-light driven photocatalysis in the future.

In the second section, four new bis-cyclometalated rhodium(I1l) and iridium(lll) complexes were
synthesized in a diastereomerically and enantiomerically pure fashion by employing chiral
cyclometalating ligands. One of these complexes was identified to catalyze the enantioselective
alkynylation of 2-trifluoroacetyl imidazoles with different substituted alkynes to provide the propargyl
alcohols in good to excellent yields with excellent enantioselectivities (up to >99% ee). We found that
the asymmetric induction in the course of creating a new stereogenic center is controlled by the
metal-centered chirality not the chirality of the coordinating ligands. Moreover, the rhodium
complexes display higher catalytic reactivity than our previous catalysts and thus our chiral catalyst
library is further expanded. Importantly, the synthetic methodology provides a new strategy for the
straightforward synthesis of enantiomerically pure octahedral complexes with metal-centered chirality.

Lastly, the first example of an octahedral chiral-at-ruthenium complex bearing two
N-(2-pyridyl)-subsituted N-heterocyclic carbene (PyNHC) ligands was successfully developed. It was
demonstrated that the helically chiral catalyst catalyzes the enantioselective alkynylation of simple
trifluoromethyl ketones to provide the corresponding propargylic alcohols with high efficiency at
catalyst loading down to 0.2% and with excellent enantioselectivities of up to > 99% ee. A significant
application of our new catalyst is the enantioselective catalytic synthesis of two key chiral

intermediates of the anti-AlIDS drug efavirenz.
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Zusammenfassung (Deutsch)

Die vorliegende Arbeit beschreibt die Synthese von drei Klassen von chiralen oktaedrischen
Metallkomplexen und die Anwendung dieser Komplexe in asymmetrischer Katalyse.

Der erste Teil behandelt zwei neue oktaedrische Iridium(111)- und
Rhodium(l11)-Lewis-Séure-Komplexe, deren Strukturen durch Ligandmodifikationen von den
existierenden Komplexen entwickelt wurden, um das von der Gruppe MEGGERS entwickelte
Katalysatorsystems zu erweitern. Die Synthese und die Anwendung dieser neuen Komplexe in
asymmetrischer Katalyse wurde entwickelt. Obwohl die neuen Komplexe A/A-1r/Rh(Se) entgegen der
Erwartungen keine hchere Reaktivitd aufwiesen als die bereits vorhandenen Katalysatoren, glauben
wir, dass diese kinftig in anderen asymmetrischen Reaktionen wie z.B. in der Photokatalyse mit
sichtbarem Licht Anwendung finden k&nnten.

Teil zwei behandelt vier neue Rhodium(lll)- und Iridium(ll1)-Komplexe mit chiralen
cyclometallierenden Liganden. Die Komplexe wurden diastereomeren- und enantiomerenrein
synthetisiert und anschlief®nd als chirale Katalysatoren eingesetzt. Einer dieser Komplexe ist in der
Lage die enantioselektive Alkinylierung wvon 2-Trifluoroacetylimidazolen mit verschieden
substituierten Alkinen zu den entsprechenden Propargylalkoholen mit exzellenten Ausbeuten sowie
Enantioselektivitden (bis >99% ee) zu katalysieren. Interessanterweise wird die asymmetrische
Induktion bei der Erzeugung des neuen stereogenen Zentrums von der metallzentrierten Chiralit&
kontrolliert und nicht von der Chiralit& der Liganden. Dariber hinaus zeigen die Rhodium-Komplexe
eine hdhere katalytische Reaktivitd als vorhergehende Katalysatoren dieser Klasse, wodurch unsere
Bibliothek an verschiedenen chiralen Katalysatoren weiter bereichert wird. Zudem konnte eine
einfache Synthesestrategie fUr die Synthese von enantiomerenreinen chiralen oktaedrischen
Komplexen mit metallzentrierter Chiralit& entwickelt werden.

Der dritte Teil behandelt einen oktaedrischen Ruthenium(Il)-Komplex mit metallzentrierter
Chiralit&a.  Die Einfthrung von zwei  N-(2-Pyridyl)-substituierten  N-hetereocyclischen
Carben-Liganden (PyNHC) ist entscheidend fir die erfolgreiche Synthese dieses Komplexes. Der
Ruthenium(Il)-Komplex  katalysiert die enantioselektive  Alkinylierung von  einfachen

Trifluoromethylketonen zu den entsprechenden Propargylalkohlen mit hoher Effizienz
VII



(Katalysatorbeladung bis 0.2 mol%) und mit exzellenten Enantiomereniberschissen (bis zu >99% ee).
Der neue Katalysator ermcglicht einen Zugang zur enantioselektiven katalytischen Synthese von zwei

SchlUsselintermediaten des HIV-Medikamentes Efavirenz.
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Chapter 1: Theoretical Part

Chapter 1. Theoretical Part

1.1 Introduction

Research on enantiomerically pure chiral compounds has attracted a lot of attention, because of
their wide applications in pharmaceuticals, agrochemicals and the flavor industries.! The rapid growth
of the market for enantiopure compounds is due to the fact that the different enantiomers or
diastereomers of a molecule have quite different biological activities. Chemists have spent great efforts
in developing methods to synthesize enantiopure chiral compounds. A variety of strategies are
available to build enantiopure molecules, such as the classical resolution of racemates, however the
drawback of affording desired molecules with a maximum of 50% yield makes this method apparently
not attractive. Asymmetric synthesis by using stoichiometric amounts of chiral precursors from
Nature’s chiral pool is also limited by the availability of starting materials with a great resemblance to
the desired molecule. Asymmetric catalysis is therefore considered to be the most elegant and atom
economic strategy to introduce chirality into a molecule,” which is mainly realized by three kinds of
catalysts: organocatalysts, enzymatic catalysts and chiral transition metal catalysts.

The development of chiral transition metal catalysts has been one of the most important and
interesting research areas.’ In 2001, the Nobel prize was awarded to Knowles and Noyori for their
work on asymmetric catalytic hydrogenation,” and to Sharpless for his work on asymmetric catalytic
oxidation.” In all their catalytic systems, chiral transition metal complexes were employed as chiral
catalysts. For the most of chiral transition metal complexes, overall chirality originates from chiral
ligands that coordinate to the metal center.® Transition metal complexes can also derive their chirality
exclusively from stereogenic metal centers. The octahedral coordination geometry constitutes one of
the most popular coordination modes. Chiral octahedral complexes which feature a stereogenic metal
center can be mainly divided into two classes based on the types of coordinating ligands: one class are
chiral octahedral metal complexes with chiral ligands, in which the chiral ligands induce a stereogenic
metal center and also control the absolute configuration; another class are octahedral chiral-at-metal
complexes. “Chiral-at-metal” refers to chiral metal complexes in which the chirality origainates only

from a stereogenic metal center, all coordinating ligands being achiral.” Much less attention has been

1



Chapter 1: Theoretical Part

devoted to such octahedral chiral-at-metal complexes.? In the following, the synthesis and applications
of chiral octahedral metal complexes containing a stereogenic metal center for use in asymmetric

catalysis will be discussed.

1.2 Chiral Octahedral Metal Complexes with Chiral Ligands

The asymmetric synthesis of a chiral octahedral complex by transferring the chirality from a
stereogenic carbon to a metal center was first reported by Alexander P. Smirnoff in 1920.° From then
on, numerous chiral ligands such as the CHIRAGEN ligands'® and the chiral salen ligands™ were
empolyed to highly diastereoselective synthesis of chiral octahedral metal complexes which covered
by several excellent reviews.’> Some examples of chiral octahedral metal complexes were also
successfully applied to asymmetric catalytic reactions. These complexes can be classified into two
types: 1.) inert chiral octahedral metal complexes, in which the central metal serves as a structural
center, while catalysis is mediated through the organic ligand sphere; 2.) reactive chiral octahedral
metal complexes, in which the metal center activates a substrate to facilitate further transformation. In
this section, some representative examples of synthesis and applications of chiral octahedral

complexes with chiral ligands are discussed.

1.2.1 Inert chiral octahedral metal complexes bearing chiral ligands

The Belokon group reported a class of inert chiral octahedral metal complexes with two chiral
tridentate ligands.”®*'* These chiral Co(lll) complexes combine metal-centered chirality with
stereogenic carbons in the coordinating ligands. A high diastereomeric purity for these complexes can
be obtained from the reaction of Nas[Co(COs);] and two chiral Schiff base ligands, prepared from the
condensation of salicylaldehyde and deprotonated chiral o.-amino acids, followed by chromatographic

separation and ion-exchange chromatography (Scheme 1)."
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- +
Q ] Na
)
O/,,, / lon-exchange
>
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© o
Scheme 1 Asymmetric synthesis of inert chiral octahedral cobalt complexes.

These chiral complexes are used as catalysts for a variety of asymmetric reactions. The catalytic
properties of these complexes can be tuned by varying the amino acid side chain. For example, the
authors found that the chiral potassium cobaltate salt A-(S,S)-Co-1 can efficiently catalyze the
enantioselective trimethylsilylcyanation of benzaldehyde. In the presence of PPhs, the desired product
was obtained in 89% vyield with moderate enantioselectivity (77% ee) at room temperature (Figure 1).
Interestingly, the diastereomer A-(S,S)-Co-1, did not provide any enantioselectivity under the same
reaction conditions, which implied that the centrochirality was responsible for the asymmetric
induction in this transformation. The authors proposed that the carboxylate moieties in the chiral
ligand coordinate with a potassium ion, which itself serves as a Lewis acid to activate benzaldehyde
and the activated benzaldehyde can form a hydrogen bond with an indole NH group in the chiral
ligand. At the same time, trimethylsilylcyanide can be activated by the nucleophilic carboxylate
groups in the cobaltate anion.

They later reported that the related lithium cobaltate complex A-(S,S)-Co-2 can catalyze the
asymmetric Michael addition of diethyl malonate to 2-cyclohexen-1-one in the presence of a strong

base (PhOL.) in high yield and moderate enantioselectivity (69% ee).™
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O 0
(. J
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Figure 1 Asymmetric reactions catalyzed by inert chiral octahedral cobalt Schiff base complexes.
Ohkuma and co-workers introduced another class of inert chiral octahedral ruthenium complex in
which the chirality at the metal center was combined with chirality in the ligand sphere.™ In these
ruthenium(l1) complexes, in addition to chirality at the metal center, the axial chirality was provided
from one (S)-2,2'-bis(diphenylphosphino)-1,1’-binaphthyl ligand and chirality arising from stereogenic
carbons was provided by two a-amino acid ligands. In this unique system, the chiral ligands actually
control the diastereoselective asymmetric implementation of the configuration of the metal center.
Accordingly, the reaction of [RuCl{(S)-binap}(N,N-dimethylformamide)], (oligomeric form) with
three equivalents of (S)-phenylglycine sodium salt in a mixture of DMF/CH3;OH afforded A-(S,S,S)-Ru
in 74% vyield as a single diastereoisomer. This complex can be purified by regular silica gel
chromatography under an air atmosphere (Scheme 2). They also demonstrated that this new chiral

complex could be easily modified by changing the chiral o-amino acid ligands.*

0
Ph
Ce COLem Y
P .o NH2  DMF/MeOH P, I wNH;
RU(Cl),(DMF), + Na _— =
e n ~
P PR 25°C. 12 h, 74% /I NH2
Ph, o} Phy, O
3eq Ph
o)
oligomeric form A-(S,S,S)-Ru

Scheme 2 Asymmetric synthesis of chiral octahedral ruthenium complex.
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In the presence of Li,COs, A-(S,S,S)-Ru can act as a highly active and enantioselective catalyst in
the cyanosilylation of aldehydes (Figure 2). Mechanistic studies indicated that the bimetallic Ru-Li
intermediate was the real catalyst, which acted as a chiral Lewis acid catalyst in the transformation.
The combined catalytic system also showed high reactivity in the asymmetric hydrocyanation of
o,B-unsaturated ketones.!” Notably, the catalyst was so robust that it could be reused several times

without any loss in the enantioselectivity of the reaction.

cat. A-(S,S,S)-Ru

o cat. Li,COy, NG, OSiMe;
Ph)LH + Me,SiCN > Ph>\H

up to 99% vyield,
up to 98% ee
o cat. A-(S,S,S)-Ru

cat. L|2CO3 (@) CN
J\/\ + HCN >
Ph R Ph)l\/'\R

up to 99% vyield,
up to 98% ee

Figure 2 Asymmetric reactions catalyzed by an inert chiral octahedral ruthenium complex.

1.2.2 Reactive chiral octahedral metal complexes bearing a chiral ligand

Chiral tetradentate ligands are one of most explored motifs used in the diastereomeric synthesis of
chiral octahedral metal complexes. A complex bearing one chiral tetradentate ligand in a
cis-a-topology or a cis-p-topology possesses metal-centered chirality. The tetradentate ligand around
the octahedral coordination sphere allows for two labile sites to be available for substrate coordination
which then undergoes further transformation. Carefully tailored chiral tetradentate ligands have been
vigorously investigated in the asymmetric synthesis of reactive chiral octahedral metal complexes by
several research groups.

The “NOON” type of chiral tetradentate ligands have been explored in the asymmetric synthesis of
reactive chiral octahedral metal complexes. In 1999, Belokon and North reported that the chiral
(salen)TiCl, complex can induce the asymmetric addition of trimethylsilyl cyanide to aldehydes.'®
Interestingly, in their catalytic system, water had a significant influence on this reaction since under
rigorously anhydrous conditions a much lower ee was produced. During their studies, it was found that
the dimeric titanium oxo complex cis-B-A-Ti could be easily obtained upon the reaction of the chiral
(salen) TiCl, complex with water (Scheme 3). In the dimeric complex, the two bridging oxygen atoms

adopt a cis conformation whereby the salen ligands cannot adopt a planar conformation around the

5
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titanium center. Instead the salen ligands adopt a cis-B-A configuration around both titanium atoms.™®

e

py)
2

N/

.C,)\w\
R

L

\/

/-

Py

\OI/,,“ o »
)
®)

=NCIN=\  H,0 (1eq), EtsN (2 eq)
=\ 4
R Yaha @ DCM, r.t,, 3 h

Cl R

!
VA
b
/C‘)“\\\
S~
o
” ]
N

Scheme 3 Asymmetric synthesis of chiral dimeric titanium oxo complexes.

The authors demonstrated that the dimeric oxo complexes were the real catalyst precursors because
of its higher reactivity than the corresponding dichloride complex. Using cis-B-A-Ti-1 as a catalyst, the
desired cyanohydrin trimethylsilyl ethers could be obtained with up to 92% ee after less than 1 hour at

room temperature (Figure 3).

0 A-cis-B-Ti-1 (0.1 mol%)  OTMS
k

t t
.+ Tmsen > Buz J'B
Ar” °H rt. Ar)\CN ‘Bu 0z _lop'tBu
up to 92% ee —N’T"""N-

cis-B-A-Ti-1

Figure 3 Asymmetric trimethylsilylcyanation of aldehydes catalyzed by cis-p-A-Ti-1.

The Yamamoto group used another chiral tetradentate ligand tethered bis(8-quinolinolato) to react
with CrCl,, followed by air oxidation, to give the cis-B-A-Cr complex in quantitative yield. The
complex was isolated as a single stereoisomer due to the rotational restriction of the chiral ligand

(Scheme 4).**



Chapter 1: Theoretical Part

Bu 1) crCl,, THF
2) air oxidation

99%

cis-B-A-Cr
Scheme 4 “NOON” tetradentate ligand controls of synthesis of reactive chiral octahedral chromium
complex.

The complex acted as an effective catalyst for a variety of asymmetric transformations including the
pinacol coupling reaction, Nozaki-Hiyama allylation, Pudovik reaction and Stecker reaction.”® Figure
4 shows one example in which the cis-B-A-Cr complex was used to catalyze the asymmetric pinacol

coupling reaction with enantioselectivities observed up to 98% ee.

o 1) TBOxCr(?I (3 mol%) OH OH
Py Mn, chlorosilane, r.t. - /krR + R/'\/R
R” H . R £
2)H OH OH
al meso
dl:meso 98:2

ee: up to 98%
Figure 4 Asymmetric pinacol coupling catalyzed by a reactive chiral octahedral chromium complex.
A “NNNN” type tetradentate chiral ligand has also been applied to efficiently control the relative
and absolute configurations upon metal complexation.?* For example, Que Jr. et al. reported that the
reaction of a bipyridinebipyrrolidine ligand with Fe(OTf), 2MeCN provided exclusively the iron
complex, cis-a-A-Fe, in 75% vyield, in which the chiral ligand coordinated on the iron center adopts a
cis-o. topology (Scheme 5).%

—

? M\

e(OTf),*2MeCN TfOmu,,,,,

I~ b
N
SN DCM, 75% Tfo/&)/

cis-a-A-Fe
Scheme 5 “NNNN” tetradentate ligand controls of synthesis of chiral octahedral iron complex.
The authors then demonstrated that the complex could catalyze the dihydroxylation reaction of
olefins using H,O, to give the corresponding cis-diol products with high selectivity and high

enantioselectivity (up to 97% ee) (Figure 5).
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2 cis-a-A-Fe (0.2 mol%) HO OH
R1/\/R '
H,0, R" R?

up to 97% ee
Figure 5 Oxidation of olefins with H,O, catalyzed by chiral octahedral iron complex.

1.3 Octahedral Chiral-at-Metal Complexes

Octahedral chiral-at-metal complexes in which the chirality is solely a consequence of a stereogenic
metal center are rare. These chiral complexes display structural simplicity because all the ligands are
achiral, while the metal-centered chirality is only derived from the asymmetric coordination of the
ligands around the metal center. These complexes have some attractive features, for example, without
chiral ligands, there are more options regarding the tuning of the electronic and steric effects of the
ligand sphere, and the metal-centered chirality is solely responsible for asymmetric induction without
any other interference. Several methods have been developed for the enantioselective synthesis of
chiral-at-metal complexes, including the resolution of racemic mixtures using chiral chromatography,
the resolution of diastereomers using chiral counterions or the use of chiral auxiliaries. The
applications of octahedral chiral-at-metal complexes are a very recent development. In this section, |
will focus on the synthesis of octahedral chiral-at-metal complexes, including inert complexes and

reactive complexes, and their applications in asymmetric synthesis.
1.3.1 Inert octahedral chiral-at-metal complexes

In 1911, the Nobel Prize winner Alfred Werner reported the resolution of the two enantiomers of
[Co(en),(NH3)X]** (X = Cl and Br; en = ethylene diamine) using (+)-3-bromo-camphor-9-sulphonate

as a chiral anion, which represented direct evidence of the existence of octahedral chiral-at-metal

complexes (Figure 6).%

(e}
NH, 12% 1 HNTY 12+ Br
H2N/l// l \\\\x i X’//, l \\‘\NHZ
ICo. : ICo]
N | SNH; | HNT | SNH, 00
(_NH, i HoN oy
X =ClorBr
A-Co A-Co Chiral anion

Figure 6 The resolution of octahedral chiral-at-cobalt complexes with a chiral anion.

Although the first example had already been reported for more than 100 years, the synthesis of
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chiral-at-metal complexes is still challenging. Perhaps for this reason, their applications in asymmetric
catalysis remain much less explored. In 2008, Gladysz et al. reported that the simple chiral-at-cobalt
Werner complex, A-[Co(1,2-ethylenediamine);]**, can serve as asymmetric H-bonding catalyst.?* This
complex combined with the large tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (BAr4F,4) counter ion
catalyzed the Michael addition of dimethyl malonate to 2-cyclopentene-1-one affording the Michael

addition product in 78% yield and 33% ee in the presence of EtsN (Figure 7).

N

0 f FsC CF,
Q NHH, [|F,C \©/ CF
[[ . <COOMeA-[Co(en)3]BAr4F24 9 rgol%)é HoN,, | N 3 ; 3

3 (Co. B
COOMe  EtsN, CHyClp J—COOMel | N | Y
-40°C,8h MeOOC 2 UNH, H2 FaC CF3
78% yield, 33% ee FsC CFs

A-[Co(en)s]BAr,F 4
Figure 7 Enantioselective Michael addition catalyzed by an inert chiral-at-cobalt complex.

The Fontecave group reported a new dinuclear ruthenium complex, in which the chiral octahedral
ruthenium complex served as a “metalloligand” for another reactive ruthenium center.”® Accordingly,
A-[(bpy).Ru(py)2][R] (R = O,0'-dibenzoyl-L-tartrate), which was prepared according to procedures
described in the literature,®® was reacted with bipyrimidine in hot ethylene glycol solution to give
A-[(bpy).Ru(bpym)][PF¢]. in 81% yield. The subsequent reaction of A-[(bpy).Ru(bpym)][PFe], with
[RuCl,(p-cymene)], followed by anion metathesis during the chromatographic purification step

provided A-[Ru(bpy),(bpym)RuCl(p-cymene)][NOs]s (A-[Ru][Ru][NOs]s) in 78% yield (Scheme 6).

2 — 2+ g2 @ 12+ 2PFg @ =13+ 3NOy
| A \N | A \N | AN \N
_N, L Ny, ~= [RuCly(p- Cymene)]2 2N, _
u, Rlu “,\D bipyrimidine /Ru;‘NI R | u,
l N HO(CH,),0H, 120 °C ¢~ | N N EtOH, 35 °C, 78% 4 N
' 5h, 81% N '
N | NS !
A-[(bpy)2Ru(py)I[R] A-{(bpy)zRu(bpym)][PFgl> A-[RU][RUJ[NO3];

R = 0,0'-dibenzyl-L-tartrate
Scheme 6 The synthesis of octahedral “metalloligands” ruthenium complex.

This complex can catalyze the asymmetric transfer hydrogenation of arylketones giving the
corresponding chiral alcohols with enantioselectivities up to 26% ee. It is worth noting that the
inefficient asymmetric induction was attributed to the large distance between the chiral and catalytic

metal centers (Figure 8).
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O A-[RuU][Ru][NOz]; (0.5 mol%) OH

HCOOH/HCOONa
'
24 h, 80 °C

78% conv., 26% ee

Figure 8 Asymmetric transfer hydrogenation catalyzed by octahedral “metalloligands” ruthenium
complex.

The Meggers group has recently made great contributions towards the synthesis of inert octahedral
chiral-at-metal complexes. These complexes can also be successfully applied for some asymmetric
transformations. In 2013, the Meggers group reported the synthesis of a series of highly sophisticated
octahedral chiral-at-metal iridium complexes.?” The reaction of IrCl; trihydrate with a cyclometalating
ligand affords the di-p-chloro-bridged dimer. The dimer reacts with the chiral phenol thiazoline (S)-2
as an auxiliary to provide two diastereomers, which can be separated using conventional silica gel
column chromatography. Then, substitution of the chiral auxiliary with a pyridylpyrazole ligand upon
protonation with NH4PFs and the subsequent introduction of the BAr,F»; counter ion gave the
enantiopure octahedral chiral-at-metal iridium complex with the retention of its configuration (Scheme
7).

R2 —|+ BAr,Faq”

‘N N—N

(N N »
Cu, ’ .0 NH,PFg, MeCN S
1 — Ee— Lirg
R3 OQR C/ \N/ S NaBArF,, | N

SN ] NI N '
(2-2.5 eq) N N’\ P .{) OH i

-2.0 €
a | oCl,, g2 | s

IrCl3:3H,0 — g Ir\ ,”
EtO(CH,),0H/H,0 c” [ a” ] "G EtN, EtOH, 95 °C

(3:1) N

=7

= 3,5-(CF3),CeH3
A-lIr

A-(S)-Ir

Scheme 7 Chiral auxiliary-mediated asymmetric synthesis of inert octahedral chiral-at-iridium
complex.

Reactivity studies showed that these complexes were highly efficient catalysts for the asymmetric
transfer hydrogenation of 3,3-disubstituted nitroalkenes in the presence of a Hantzsch ester used as the
reducing agent (Figure 9). It was demonstrated that A-Irl was a superior catalyst and could catalyze
the transformation delivering the reduced products in excellent yield (89%-96%) with excellent

enantioselectivity (93%-99% ee).
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_I + BAI“4F24)

tBuO,C CO,tBu
X
N

R ) R?
A-Ir1 (0.1-1 mol%
R1J\/No2 ( ) o R1)\/No2 0
Tol. r.t. CFs
89-96% yield
93-99% ee

Ar = 3,5-(CF3)2C6H3)

A-Ir1

Figure 9 Asymmetric transfer hydrogenation catalyzed by an octahedral chiral-at-iridium complex.
Encouraged by these results, the Meggers group continued to design and synthesize a series of
substitutionally inert octahedral chiral-at-metal complexes, which were applied as Brensted base
catalysts and enamine catalysts. These complexes can serve as highly effective chiral catalysts for the
Friedel-Crafts reaction, sulfa-Michael addition reaction, o-amination of aldehydes and Henry

reaction.?®

1.3.2 Reactive octahedral chiral-at-metal complexes

In 2003, Fontecave and co-workers demonstrated that the reactive octahedral chiral-at-metal
complexes, cis-[A-Ru(dmp),(CH3CN),][A-trisphat], or cis-[A-Ru(dmp),(CH;CN),][A-trisphat],, could
be selectively precipitated from the reaction of cis-[rac-Ru(dmp),(CH3;CN);]  with

[n-Bu;NH][A-trisphat] or [n-BusNH][A-trisphat], respectively (Scheme 8)."%

A-trisphat . ( (¢]] )
— = [A-Ru(dmp),(CH3CN),][A-trisphat], cl al
precipitate
Cl O Cl
RuMPl(CHCN) chiral trisphat Cl Ou,, | OO
rac-Ru(dmp),(CHsCN)y —— | p
CH,Cl, cl o l\o
Cl o Cl
A-trisphat Cl (¢]]
—— > [A-Ru(dmp),(CH3CN),][A-trisphat], C
precipitate >

chiral trisphat

Scheme 8 The resolution of octahedral chiral-at-ruthenium complex with a chiral anion.

The octahedral chiral-at-metal complex cis-[A-Ru(dmp),(CH;CN);] can catalyze the oxidation of
organic sulfides to sulfoxides with a maximal 18% ee. Although the obtained enantioselectivity was
disappointing, it was the first example in which chiral information could be transferred from an

octahedral chiral-at-metal complex during a catalytic asymmetric reaction (Figure 10).
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O
S\ A-Ru(dmp),(CH3CN), (2 mol% B e
@:\ (dmp)o(CH3CN), ( =)@[\ M MERY
H,O5, MeOH, r.t. S
Br 22 Br | P /N
100% conv, 18% ee€| ~ |

A—Ru(dmp)z(CH3CN)2
Figure 10 Asymmetric oxidation catalyzed by chiral-at-ruthenium complex.

In 2014, the Meggers group reported an example of a reactive octahedral chiral-at-metal complex.®
This new chiral Lewis acid was structurally quite simple as all the coordinating ligands were achiral. A
A-1r(O) or A-lIr(O) metal center was cyclometalated using two achiral bidentate ligands and two
labile acetonitrile ligands, which serve as the sole source of chirality. Accordingly, the reaction of
IrCl; trihydrate with the 5-tert-butyl-2-phenylbenzoxazole ligand afforded the corresponding
di-u-chloro-bridged dimers, which exist as mixtures of the AA- and AA-isomers, respectively.
Replacement of the two chlorides by introducing the chiral auxiliary (S)-2 results in pairs of
diastereomers, which can be separated using conventional silica gel column chromatography. The
auxiliary was then substituted by two acetonitrile molecules via protonation under acidic conditions

affording the A-isomer or A-isomer with a complete retention of configuration (Scheme 9).

(N NH,4PFs, MeCN
_§ - —>C/"" ! 0 —>50 R A-Iro
O Bu Zlrs -Ir
N S & 100%
/‘ N N N~"vip, Prt >99% ee
(2.1 €q) ¢, | wa, | ¢ oH A-(SHIr (48%)
IICl33H,0 g ™ |/ (S)-2
O o \ "y
EtO(CHp);0HH,0 $7 | e | C EtN, EtOH
(3:1) N N N—WNH4PFg, MeCN
reflux rac-Ir (86%) o l & 50°C,4h
W\
L T —— = AdrO

\N/
|j 99%

>99% ee
A-(S)-Ir (48%)
Scheme 9 Asymmetric synthesis of chiral-at-metal complexes A-1r(O) and A-Ir(O).
As shown in Figure 11, this newly developed enantiopure complex Ir(O) can serve as a highly
effective Lewis acid catalyst. The enantioselective Friedel-Crafts reaction of a variety of indoles to
o,B-unsaturated 2-acyl imidazoles was catalyzed using A- or A-1r(O) to afford the desired products in

high yield (up to 99% yield) and excellent enantioselectivity (up to 98% ee) at a low catalyst loading.
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A-Ir(O) or A-Ir(O)

7)k/\ m (0252 mol%)

1
~N
s |
up to 99% yield O\OtBu
up to 98% ee
(&

Ir(O)

Figure 11 Asymmetric Friedel-Crafts reaction catalyzed by chiral-at-metal Lewis acid catalyst 1r(O).

The Meggers group later reported another related complex, Ir(S), which was also synthesized using
the auxiliary-mediated strategy upon replacement of the cyclometalated 2-phenylbenzoxazole with
2-phenylbenzothiazole.®* They then tested this complex as the catalyst for a variety of asymmetric
reactions including the Friedel-Crafts alkylation reaction, Michael addition reaction using CH-acidic
compounds and a variety of cycloaddition reactions, and compared the catalytic properties of A-Ir(S)
with A-Ir(O).

Ir(S) turned out to be a more effective catalyst than Ir(O) in several asymmetric transformations
(Figure 12). Crystallographic studies show that the distance between the quaternary carbon atoms in
the tert-butyl group and the plane though the iridium center and two acetonitrile molecules in Ir(S)
was shorter than that in 1r(O), which may explains why Ir(S) gave higher asymmetric induction (see

Xiaodong Shen’s PhD thesis for details).
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N
| | N
rs Ir
VS
I\Nsc | \N\\\C
_N “Me _N “Me
2%

Friedel-Crafts reactions
(0]

NW 9
<\/N Me+ @ A-cat (1 mol%)
N

N
H

A-Ir(0): 24 h, 97% yield, 96% ee
A-Ir(S): 40 h, 94% vyield, 99% ee

Michael additi
ichael additions O Me

O H
N\W)K/\Me rCN A-cat (1 mol%) WCN
<\/ * >\ N CN
N CN AN

A-Ir(0): 16 h, 96% vyield, 88% ee
A-Ir(S): 24 h, 95% yield, 90% ee

Cycloadditions
O Me
0 N
N \j)v\Me B”\J,i,l\/o I cat (2 mol%) dk(\
+
.
\ NG H” Ph CHoCl PA B

mol. sieves

A-Ir(0): 36 h, 99% yield, 92% ee, endo:exo > 100:1
A-Ir(S): 72 h, 86% yield, 98% ee, endo:exo > 100:1

Figure 12 Asymmetric reactions catalyzed by octahedral chiral-at-metal Lewis acid complexes A-1r(O)
and A-1r(S).

In 2015, the Meggers group developed an example of an octahedral chiral-at-rhodium complex,

which could be synthesized in an enantiopure fashion using proline-mediated synthesis and

diastereoselective precipitation (Scheme 10).%

NH4PFg,

_ ( N MeCN,
L-proline Cu, | \\\O O 50°C,12h
¢ —_—

4 A-Rh(0)
precipitation C/ \
O
O, .M i
N Bu ¢, , wCly,, | / A-(S)-Rh
RhCl3-3H,0 > Rn!, .
c” | ~ci” l nc | o T
N V ‘\\\\\C NH,PFg,
Dimer i / | 50M°(CaZC,1\l2 h
D-proline ; ( J A-Rh(O)

precipitation A-(R)-Rh

Scheme 10 Asymmetric synthesis of the enantiopure Lewis acid complexes A- and A-Rh(O).
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Catalytic reactivity studies indicated that the Rh(O) was often a better choice of catalyst than its
iridium congener in the Michael addition reaction and cascade reactions (Figure 13). The higher
reactivity of Rh(O) was mainly attributed to the higher lability of the two acetonitrile ligands, which

was confirmed using acetonitrile exchange experiments (see Chuanyong Wang’s PhD thesis for

details).
O Me O Me
N N MCN
i \ s
\_N <,N CN
Me NH Me
A-Ir(0) (1 mol%), 20 h, 97% yield, 96% ee A-Ir(0) (1 mol%), 16 h, 96% yield, 89% ee
A-Rh(O) (1 mol%), 40 h, 94% yield, 95% ee A-Rh(O) (1 mol%), 16 h, 96% yield, 92% ee
O Me O
N Me O Me
X 0 N CN
<\/N <\_/ H
Me ©O° O N _N CN
bz NHCbz
A-|I’(0) (1 mol%), 16 h, 99% yield, 68% ee A_"-(o) (2 mol%) 16 h. 0% yield
A-Rh(O) (1 mol%), 16 h, 99% yield, 85% ee A-Rh(O) (2 mol%), 16 h, 82% vield, 92% ee, 4:1 dr
O Me o O Me o
N N
C O
\ v O \_N

Me OtBu

A-Ir(0) (1 mol%), 96 h, 41% yield, 97% ee, 3:1 dr A-Ir(O) (1 mol%), 72 h, 89% yield, 97% ee, 10:1 dr
A-Rh(O) (1 mol%), 48 h, 83% yield, 99% ee, 4:1 dr A-Rh(O) (1 mol%), 20 h, 92% yield, 96% ee, 14:1 dr

Figure 13 Asymmetric reactions catalyzed by chiral-at-metal Lewis acid complexes A-1r(O) and
A-Rh(O).

The Meggers group was then intrigued to develop the Rh(O) derivative, Rh(S), with the hope that it
would display stronger Lewis acidity and better asymmetric induction.® After several chiral auxiliaries
were screened, fluorinated phenol oxazoline was employed in the resolution of the A- and A-isomers
giving the configurationally stable and highly enantiomerically pure catalysts. The improved
properties of the Rh(S) catalyst were confirmed by the results obtained from two asymmetric reactions.
In both the enantioselective Michael addition reaction and photo-excited enantioselective radical
reaction,®* the observed enantioselectivities were higher for the benzothiazole (Rh(S)) catalyst than the

benzoxazole (Rh(O)) catalyst (Figure 14).
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Michael addition

&W ﬁ B &Wk

A-Rh(O) (1 mol%), 99% yield, 85% ee
A-RRh(S) (1 mol%), 99% yield, 93% ee

Photoredox reaction

o Os__OMe
9 Q0 Ao 0
N Ph . N OMe cat (2 mol%) <
W ' o Me - O
N O,N NO 2,6-lutidine, r.t.
“oTol 2 2 blue LEDs, 2 h °T°'

A-Rh(0): 96% vyield, 97% ee
A-RRh(S): 96% yield, >99.5% ee

Figure 14 Comparison of catalytic performances of chiral-at-metal Lewis acid complexes Rh(O) and
Rh(S).

Recently, visible-light induced organic reactions have received a great deal of attention because they
use an inexpensive and abundant form of energy.* Bis-cyclometalated iridium complexes are well
known for their photophysical and photochemical properties,® and have also been used as photoredox
catalysts for some transformations. The Meggers group wondered whether our chiral
bis-cyclometalated iridium Lewis acid catalyst could also be used in visible-light-induced photoredox
reactions. In 2014, the Meggers group found that the Ir(S) could serve as a highly effective chiral
Lewis acid and at the same time as a photoredox catalyst for the visible-light induced enantioselective
a-alkylation of 2-acyl imidazoles using electron-deficient benzyl bromides or phenacyl bromides.*’
Figure 15 shows that the desired products could be delivered in high yield (up to 100%) and with
excellent enantioselectivity (up to 99% ee) in the presence of 2 mol% of A-1r(S) under visible-light

irradiation.

.
s@w

(e} N ,Me

o}
NW)K/RZ N /, ' \\
N A-Ir(S) (2 mol%) \j)\/\ g
Q\,N + B Ewe ———— Q)| : EWe
R

N, 2
Na,HPO, (1.1 eq) r1R |\
CFL, 40 °C 84-100% yield

90-99% ee

A-Ir(S)
Figure 15 Enantioselective a-alkylation of 2-acyl imidazoles catalyzed by A-Ir(S).

The Meggers group then demonstrated that this single catalyst was sufficient for many reactions
including the a-alkylation of 2-acyl imidazoles with perfluoroalkyl iodides,® the

a-trichoromethylation of 2-acyl imidazoles and 2-acyl pyridines, o-aminoalkylation® in air and
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radical/radical coupling reactions.** It was fascinating that these simple iridium complexes are able to
perform several functions and catalyze many asymmetric transformations.

Recently, the Grubbs group reported an example of a reactive octahedral chiral-at-ruthenium
complex.*? This ruthenium(11) complex could be resolved using a chiral auxiliary-mediated strategy.
Accordingly, the reaction of racemic iodide rac-Rul with chiral silver carboxylate
(S)-AgO,CCH(Ph)(OMe) gave a 1:1 mixture of diastereomers, A-Ru2 and A-Ru2. Chromatographic
separation of the mixture afforded enantiopure complex A-Ru2 in 45% yield and >95:5 dr. Subsequent
treatment of A-Ru2 with p-toluenesulfonic acid and sodium nitrate delivered A-Ru3 in 43% vyield

(Scheme 11).

N N‘Mes NN~ N_ _N
T s \r I\él)es b T ~Mes
W
”“"'RU\ — Iln,,,R‘u“‘\“C))\(oMe - "”"'Ru"“\\g\ _
i
O.

- \ | z N\, _N=0
4 Ph l
\’Pr \’Pr O\fpr
rac-Ru1 A-Ru2 A-Ru3
a: 1.(S)-AgO,CCH(Ph)(OMe), b: 1. p-TsOH H,O, THF, 5 min,
THF, 23 °C, 1.5 h, 97%. 2. NaNOj, THF/MeOH, 15 min, 43%.

2. Chromatographic resolution, 45%.

Scheme 11 Asymmetric synthesis of octahedral chiral-at-ruthenium complex.

The authors then demonstrated that this complex could act as an efficient catalyst for diastereo- and
enantioselective ring-opening/cross-metathesis. Figure 16 shows that the diene product can be
obtained in 64% yield with 95% Z selectivity and 93% ee in the presence of 1 mol% of A-Ru3. The

catalysis apparently occurred after dissociation of the nitrate ligand.

A-Ru3 (1 mol%) N
oBn + A~OAC > /7
OBn THF, 23 °C,1h BnO OAc
n BnO
64% yield

95:5 Z/E, 93% ee

Figure 16 Diastereo- and enantioselective ring-opening/cross-metathesis catalyzed by an octahedral
chiral-at-ruthenium complex.

1.4 Conclusions

Octahedral coordination geometry provides a unique structural opportunity for the synthesis of
chiral complexes bearing a stereogenic metal center. In the above-described examples, chiral
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octahedral complexes with chiral ligands can be simply and diastereoselectively synthesized though
the restricted coordination of chiral ligands. However, these complexes are typically combined with
carefully tailored chiral ligands for achieving high enantioselectivities in asymmetric catalysis.
Octahedral chiral-at-metal complexes, in which the coordinating ligands are all achiral, have been
given less attention. These complexes can be resolved by using chiral counterion-mediated asymmetric
synthesis or chiral auxiliary-mediated asymmetric synthesis. Only few examples with low to moderate
enantioselectivities have been reported in this area. Recently, the Meggers group has successfully
developed two classes of octahedral chiral-at-metal complexes by using chiral auxiliary-mediated
strategy. These complexes can achieve excellent enantioselectivities even with very low catalyst
loadings. It is promising to develop more examples of chiral octahedral metal complexes with different
ligands and metals, and then apply them in various asymmetric transformations. We believe that this

field will continue to grow rapidly.
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1) Expanding the family of bis-cyclometalated octahedral chiral-at-metal iridium and

rhodium complexes

Asymmetric catalysis as an elegant and atom economic strategy provides a powerful tool to
introduce chirality into a molecule in the field of asymmetric synthesis. Recently, our group developed
reactive octahedral chiral-at-metal iridium and rhodium complexes as Lewis acid catalysts which can
effectively catalyze a variety of different asymmetric reactions, such as, Friedel-Crafts reactions,’
Michael additions?, cycloadditions? and transfer hydrogenations®.

Our previous studies showed that 1r(S) is a somehow superior catalyst compared to Ir(O) in many
transformations,” and the Rh(S) gives a higher enantioselectivity over Rh(O) in many light-activated
reactions.” This is probably attributed to the increased length of the C-S bond over C-O bond which
further places the two tert-butyl groups closer to the two labile coordination sites and then provides a
higher asymmetric induction. Based on these results, we hypothesize that further increasing the length
of C-X bond might result in superior catalysts over Ir(S) and Rh(S) catalysts. Herein, we would like
to synthesize octahedral chiral-at-metal Ir(Se) and Rh(Se) complexes in which the two bidentate
ligands are replaced by two benzoselenazole ligands, and subsequently, investigate their catalytic

reactivities.

2) Introducing chiral cyclometalating ligands into chiral octahedral complexes and

investigation of their catalytic activity

Recently our group reported a new family of chiral-at-metal Lewis acid catalysts (A/A-1r/Rh(O/S))
in which the metal center is chiral resulting from the asymmetric coordination of achiral ligands. They
are synthetically accessible though auxiliary-mediated method which namely a chiral bidetate ligand is
temporarily incorporated into the metal center by exchanging the two labile acetonitrile ligands to
facilitate the resolution of racemic complexes by chromatography or precipitation. After protonation
by acid, the chiral-at-metal complexes can be obtained in an enantiomerically pure fashion.

However, all our developed Lewis acid catalysts are based on achiral ligands. So, the purposes of

this part of the work are: Firstly, how the chiral cyclometalating ligands can influnce the catalytic
23
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properties of chiral octahedral metal complexes, and secondly, we would like to simplify the synthetic

route of chiral complexes featuring metal-centered chirality by employing chiral ligands.

3) Exploring new chiral-at-ruthenium complexes

Our group recently has successfully developed the chiral auxiliary-mediated strategy for the
synthesis of octahedral chiral-at-metal Lewis acids iridium and rhodium catalysts. So, we were
wondering whether our strategy is applicable to chiral octahedral metal complexes of other elements
such as ruthenium. Although octahedral chiral-at-ruthenium complexes have already been investigated
as catalysts for asymmetric reactions, only few examples were reported by now.®> Herein, we wish to
apply our strategy to asymmetric synthesis of octahedral chiral-at-ruthenium complexes. Besides, the

cost of ruthenium is significantly cheaper than iridium and rhodium.
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3.1 Expanding the Family of Bis-Cyclometalated Octahedral

Chiral-at-Metal Iridium and Rhodium Catalysts

3.1.1 Design of catalysts

In recent years, the Meggers group has successfully developed a class of octahedral chiral-at-metal
Ir(0)Y, 1r(S)%, Rh(0)® and Rh(S)* complexes in which the metal center is cyclometalated by two
achiral bidentate ligands and two labile acetonitrile ligands in a propeller type fashion and thereby
provides the sole source of chirality. Our studies revealed that Ir(S) or Rh(S) is often superior over
Ir(0) or Rh(0), providing better enantioselectivities.”® We owed the better asymmetric induction to
the increased bond length of C-S over C-O, which places the two fert-butyl groups even closer to the
substrate coordination sites. Encouraged by theses results, we were wondering that by replacing the
C-S bond with longer C-Se bond might result in better chiral Lewis acid catalysts. Thus, we
synthesized the analogous complexes Ir(Se) and Rh(Se), and compared their catalytic properties with

our previous catalysts (Figure 17).

M(X) M = Ir/Rh, X = O/S M(Se), M =Ir/Rh
previous catalysts catalyst design

Figure 17 Catalyst design for octahedral chiral-at-metal complexes.

3.1.2 Synthesis of catalysts

The 5-(tert-butyl)-2-phenylbenzo[d][1,3]selenazole (1) was smoothly synthesized in three steps (see

5.2.1 for details). The complexes were prepared according to procedures similar to that used for the
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synthesis of Ir(S)’ and Rh(S)". Accordingly, IrCl; or RhCl; hydrate was reacted with
5-(tert-butyl)-2-phenylbenzo[d][1,3]selenazole (1) in a mixture of 2-ethoxyethanol and water under
reflux condition, followed by a treatment of 1.2 equivalents of AgPF¢ in CH;CN to provide the iridium
complex rac-Ir(Se) or rhodium complex rac-Rh(Se) respectively (Scheme 12, 13). The resolution of
rac-Ir(Se) was conducted under our established method’. As shown in Scheme 12, the reaction of
complex rac-Ir(Se) with chiral salicylthiazoline ligand (S)-2 afforded the two diastereomeric
complexes A-(S)-3 and A-(S)-3 as a mixture which can be separated by standard silica gel
chromatography. Upon protonation of A-(S)-3 or A-(S)-3 by NH,PF; in acetonitrile at 50 °C resulted in
a substitution of chiral auxiliary ligand by two acetonitrile ligands under complete retention of

configuration afforded the enantiomers A-Ir(Se) or A-Ir(Se), respectively.

[N NH,PFg, MeCN
Cu, l O 50°C, 4 h

Se Bu _|+ PFg” — /Ir\ —— > A-Ir(Se)
N S c | N=

N 4 ] u v \\g/ 98% yield

N ipr Pr
1(2.05 eq) l OH (5)2 A-(S)-3 (39%)
IrCl3-3H,0 \ -]
1.) EtO(CH,),0OH/H,0 (3:1) reflux | EtsN, EtOH
2.) AgPFg, CH3CN 60 °C, overnight N NH,PFg, MeCN

QO l 50°C, 4 h

1, ‘\\\

L ) \N/|\C —— Alr(Se)
\/K J

rac-Ir(Se) ! 97% yield

Pr
A(S)-3 (42%)

Scheme 12 Chiral auxiliary-mediated synthesis of the enantiopure iridium(I11) complexes A-Ir(Se) and
A-Ir(Se).

Similarly, the resolution of complex rac-Rh(Se) could be easily achieved by employing the
(R)-3-fluoro-2-(4-phenyl-4,5-dihydrooxazol-2-yl)phenol ((R)-2") as chiral auxiliary which was used
for the resolution of rac-Rh(S) (Scheme 13)*. Accordingly, the reaction of rac-Rh(Se) with (R)-2’ in
the presence of K,COs in EtOH at 70 °C afforded the mixture of complexes A-(R)-4 and A-(R)-4 which
can be separated by standard silica gel chromatography combined with washing procedure. Upon
protonation of A-(R)-4 and A-(R)-4 by TFA in acetonitrile at room temperature resulted in a substitution
of chiral auxiliary ligand by two acetonitrile ligands under complete retention of configuration,

affording the enantiomers A-Rh(Se) or A-Rh(Se), respectively.
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/N NH,PFg, MeCN
¢ | o 50°C, 4h
B PFe F = ERED — > A-Rn(Se
S\e@ u SthB:H 6 o _>C/Th\N/ . = (Se)
N N 98% yield
©/L N -Me \Nj\ N Ph)\/
N2 Ph

1(2.05 eq) OH (R)-2 A-(R)-4 (45%)

RhCl3-3H,0 TR
1)EtO(CH2)20H/H20 (3:1) reflux | \ K2CO3 F1OH, 70 C
2.) AgPFg, CH3CN, 60 °C, overnight \

FoN NH,4PFg, MeCN

o l 50°C,4h
L R Rh"‘\ ——» A-Rh(Se)
<N |

rac-Rh(Se) O\) J 98% yield

A-(R)-4 (42%)

Scheme 13 Chiral auxiliary-mediated synthesis of the enantiopure rhodium(l11) complexes A-Rh(Se)
and A-Rh(Se).

All these newly developed enantiopure complexes can also be purified by standard flash silica gel
chromatography and are configurationally stable under air and in the presence of moisture. These four
enantiopure complexes were verified by CD-spectroscopy (see appendices 6.6.2). A structure of
rac-1r(Se) was obtained by single crystal X-ray diffraction (Figure 18, right) which clearly shows that it
possesses almost identical structure compared with Ir(O) and Ir(S). The selected bond lengths and
bond angles for complexes 1r(O), Ir(S) and Ir(Se) are shown in Table 1. As expected, with the atom
radium of the X (X = O/S/Se) atoms increasing, the lengths of the bonds between the transition metal
iridium and N atoms from the cyclometalating ligands are increasing. The bonds to the N atoms from
the coordinated acetonitrile ligands are much longer in Ir(Se) than that of in Ir(O) and Ir(S), indicating
more exchange labile acetonitrile ligands in Ir(Se). Besides, the distance between the quaternary
carbon atoms of the tert-butyl groups and the plane formed by Ir atom and two N atoms from the
coordinated acetonitrile ligands in Ir(Se) (4.49 A) is shorter than that in 1r(O) (5.12 A) and Ir(S) (4.60

A) which indicates 1r(Se) might provide better asymmetric induction.

Figure 18 Crystal structures of 1r(O) (left), Ir(S) (middle) and Ir(Se) (right). The hexafluorophosphate
counteranion and hydrogen atoms are omitted for clarity.
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Table 1 Selected bond lengths (A) and bond angles (9 for complexes Ir(O), 1r(S) and 1r(Se).

Complex Ir(0) Ir(S) Ir(Se)

Bond lengths

Ir(1)-N(1) 2.044(7) 2.065(6) 2.074(4)
Ir(1)-N(20) 2.055(8) 2.072(7) 2.079(4)
Ir(1)-N(39) 2.101(8) 2.119(6) 2.126(5)
Ir(1)-N(42) 2.112(6) 2.123(7) 2.141(5)
Bond angles
N(1)- Ir(1)-N(20) 170.9(3) 169.6(3) 169.6(2)
N(L)- Ir(1)-N(39) 90.1(3) 86.9(2) 84.62(18)
N(1)- Ir(1)-N(42) 96.2(2) 101.4(3) 102.9(2)
N(20)- Ir(1)-N(39) 97.2(3) 100.4(2) 102.62(18)
N(20)- Ir(1)-N(42) 89.6(2) 86.2(3) 84.4(2)
N(39)- Ir(1)-N(42) 87.6(3) 88.7(3) 92.0(2)

3.1.3 Catalytic reactions

Next, we investigated several well established reactions in our lab to compare the catalytic ability of

homologous catalysts A-1r/Rh(O), A-1r/Rh(S) and A-1r/Rh(Se).

1) Asymmetric Michael addition

The Michael addition of 2-acyl imidazole 5 with malononitrile 6 was investigated firstly’. As shown
in Figure 19, the addition of malononitrile 6 to 2-acyl imidazole 5 catalyzed by 1 mol% A-Ir(O) in THF
at room temperature afforded the adduct product (S5)-7 in 96% yield with 88% ee. Our new A-Ir(Se)

resulted in the same ee but A-Ir(S) gave 2% higher.

(@]
N\\,)K/\Me A-cat (1 mol%)
L “SoN —»

N + NC
N THF(0.5 M),

3

5 (1.0 eq) 6 (1.2 eq) (S)-7

A-Ir(0), 16 h, 96% yield, 88% ee
A-Ir(S), 24 h, 95% yield, 90% ee
A-Ir(Se), 24 h, 95% yield, 88% ee

Figure 19 Asymmetric Michael addition of malononitrile.
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2) Asymmetric photoredox catalysis

Several visible-light-induced reactions were also examined. Photoinduced enantioselective
a-alkylation of 2-acyl imidazoles was investigated firstly.> As shown in Figure 20, under visible-light
irradiation, when A-Ir(S) (2 mol%) was used as catalyst, the enantioselective a-alkylation of 2-acyl
imidazole 8a with phenacyl bromide 9 provided the desired product (R)-10 in 91% yield and with 90%
ee within 6 hours at 40 °C. However, when A-Ir(Se) was employed as catalyst, the reaction became
slower under the same conditions and the conversion was very low after 6 hours. Prolonging the

reaction time to 22 hours gave 82% yield with only 78% ee.

Cat. 2 mol% 0
Oz NazHPO4 (11eq) Ny Ph NO
[ >_/<_ \_N
CH OH/THF=4:1 ipr
40°C, 14 W CFL o)
8a (3.0 eq) 9(1.0eq) (R)-10

A-Ir(S): 6 h, 91% yield, 90% ee
A-lr(Se): 22 h, 82% yield, 78% ee

Figure 20 Asymmetric photoactivated a-alkylation of 2-acyl imidazole.

As shown in Figure 21, visible light activated asymmetric aminoalkylation of 2-trifluoroacetyl
imidazoles was also investigated.® A-Ir(S) (2 mol%) was able to catalyze the reaction of
2-trifluoroacetyl imidazole 11a and tertiary amine 12 to give the adduct product (S)-13 in 75% yield
and with high enantioselectivity of 95% ee under optimized conditions. However, by using A-Ir(Se)
as catalyst under the same reaction conditions, the reaction was much slower and the product was

obtained only in 37% yield with identical enantioselectivity after 21 hours.

0 |
N\W)J\CF N Cat. 3 mol% %
<\/ 3+ > >_£ .
N‘Ph By N(p-‘BuAr),

‘Bu CHCIj, r.t., 23 W CFL

11a (1.0 eq) 12 (3.0 eq) (S)-13

A-Ir(S): 30 h, 75% yield, 95% ee
A-Ir(Se): 21 h, 37% yield, 95% e

Figure 21 Asymmetric photoactivated aminoalkylation of 2-trifluoroacetyl imidazole.

Photoexcited asymmetric a-amination of 2-acyl imidazoles was also examined as shown in Figure
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22.° Our previous study showed that A-Rh(S) was a better catalyst than A-Rh(O). The
enantioselective radical amination of 2-acyl imidazole 8b with ODN-carbamate 14 could provide the
corresponding product 15 in 96% vyield and with >99.5% ee in the presence of A-Rh(S). When
A-Rh(Se) was used as a catalyst, the target product 15 was obtained only in 82% yield and with 97%

ee.

O

0 O\O J]\ OOY
*N\

VoS

S, N~ "OMe
N\W)I\/Ph N \b |\I/|e Cat. 2 mol% - N\j)kr Me
\_1l \

OMe

2,6-lutidine, r.t. N Ph
“oTol O:N NO. blue LEDs. 2 h YoTol
8b 14 15

A-Rh(O): 96% yield, 97% ee
A-Rh(S): 96% yield, >99.5% ee
A-Rh(Se): 82% yield, 97% ee

Figure 22 Asymmetric photoactivated a-amination of 2-acyl imidazole.
In the above-described examples, all the results indicated that the benzoselenazole complexes 1r(Se)
and Rh(Se) are not better asymmetric catalysts compared to our previous benzoxazole and

benzothiazole complexes.
3.1.4 Conclusions

In conclusion, we successfully synthesized new octahedral chiral-at-metal benzoselenazole
complexes A/A-Ir/Rh(Se) by following our established method. This work not only expanded the
family of bis-cyclometalated iridium(lI1) and rhodium(l11) complexes but also demonstrated that our
methodology for the synthesis and resolution of racemic octahedral complexes are quite general and
robust. Unfortunately, the new complexes A/A-Ir/Rh(Se) did not show better catalytic activity
compared to benzoxazole complexes A/A-1r/Rh(O) and benzothiazole complexes A/A-1r/Rh(S) when
applying them in asymmetric catalysis. The worse reactivity might be attributed to the sluggish

coordination of substrate to catalyst.
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3.2 Synthesis, Characterization and Reactivity of Bis-Cyclometalated
Iridium(l111)/Rhodium(l1l) Complexes Containing Pinene-Derived

Ligands

3.2.1 Design of catalysts

Recently, our group introduced a new class of chiral Lewis acids in which a central iridium(lI1) or
rhodium(lll) is cyclometalated by two achiral ligands, thereby generating a propeller-type
C,-symmetry with metal-centered chirality™? which constitutes the exclusive source of chirality
(Figure 23).%* This structural element displays high constitutional and configurational stability, while
two additional acetonitrile ligands are labile and provide coordinative access for substrates to
coordinate to the Lewis acidic metal center. These complexes are powerful chiral Lewis acid catalysts
for a variety of transformations, some activated by visible light. However, all so far synthesized
catalysts (A- and A-configured Ir(O/S/Se) and Rh(O/S/Se)) are limited to achiral ligands as
cyclometalating components. Our objective for this part of work was therefore twofold: Firstly, we
wanted to investigate how the catalytic properties of these cyclometalated complexes depend on the
the nature of the cyclometalating unit, and secondly, we were interested in simplifying the synthesis of
these chiral complexes by employing chiral cyclometalating ligands instead of achiral ones, thereby
drawing from a large body of work regarding diastereoselective coordination chemistry with chiral
ligands and the resolution of diastereomeric mixtures of chiral metal complexes.® After doing some
literature research, we decided to use chiral arylpyridine as an adequate candidate, because it can be
readily synthesized from natural product and be widely used in asymmetric transformations (Figure

23).%°
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Figure 23 New design for the metal-centered chirality complexes with chiral ligands.

3.2.2 Synthesis of catalysts

The work was started by using readily available pinene-modified chiral pyridine ligands which
were developed by von Zelewsky and others.”® Accordingly, the reaction of
2-phenyl-5,6-(S,S)-pinenopyridine” with RhCl;  hydrate or IrCl; hydrate in a mixture of
2-ethoxyethanol/water (3:1) at 125 °C for 36 hours afforded the respective chloro-bridged
dimers AA/AA-2g, or AA/AA-2;,’ as mixtures of diastereomers (Scheme 14). Consistent with related
studies using cyclometalating pinene-derived pryridine ligands, the dinuclear complexes are mainly
formed as the homochiral AA-and AA-diastereomers and within the coordination sphere the kinetically
favored trans arrangement of the pyridine ligands is observed exclusively.® The assigned absolute
configurations were confirmed by the crystal structures of bis-acetontrile complexes which were
obtained from the corresponding dimers and also verified by CD-spectroscopies. The
diastereomers AA-2g;, and AA-2;,. were formed in slight excess of their AA-counterparts according to
the crude '"H NMR. Conveniently, the diastereomeric dimers could be easily seperated by standard
silica gel chromatography using ethyl acetate/n-hexane (v/v = 1:20) as the mobile phase. The
subsequent reaction of the individual diastereomers with AgPF¢in CH3CN at 40 °C converted the
chloro-bridged dimers into the individual monomeric bis-acetonitrile

complexes A-RhPP, A-RhPP, A-IrPP and A-IrPP. The high diastereomeric purity (>99% dr) of these
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complexes was confirmed by 'H NMR and was verified by CD-spectroscopy (Figtures 24-27). Single
crystals of all four complexes suitable for X-ray diffraction could be easily obtained by slow diffusion
of n-hexane into CH,Cl, solution and their crystal stuctures are shown in Figures 28-31, which
confirm their relative and absolute configurations and reveal the propeller-type ligand arrangement
with a combination of metal-centered and ligand-derived chirality. All complexes display high
constitutional and configurational stability without any significant decomposition or isomerization
upon leaving the complexes dissolved in CH,Cl, on the benchtop for several weeks or stored in

refrigerator for several months.

chromatographic
resolution

., 1,

>
N
N

~
WCl
(S,S)-PP e
MCl; - 3 H,0 | N/
EtO(CH,),OH/H,0 (3:1)
125 °C, 36 h

AA-ZRh (M = Rh) 23% AA-ZRh (M = Rh) 31%
AA-2, M =1r):29%  AA-2, (M = Ir): 37%

AgPFe, CH3CN
40 °C, overnight

A-RhPP (M =Rh),96%  A-RhPP (M = Rh), 96%
A-IFPP (M = Ir), 96% AIFPP (M = Ir), 98%

Scheme 14 Two steps synthesis of chiral octahedral iridium(111) and rhodium(I11) complexes.
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Figure 24 CD spectra of complexes AA-2gpand AA-2gy, recorded in CH;OH (0.2 mM).
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Figure 25 CD spectra of complexes AA-2,,and AA-2,, recorded in CHzOH (0.2 mM).
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Figure 26 CD spectra of complexes A-RhPP and A-RhPP recorded in CH;OH (0.2 mM).
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Figure 27 CD spectra of complexes A-IrPP and A-IrPP recorded in CH;0OH (0.2 mM).
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Figure 28 Crystal structure of A-RhPP. ORTEP drawing with 50% probability thermal ellipsoids. The
hexafluorophosphate counteranion is omitted for clarity.

Figure 29 Crystal structure of A-RhPP. ORTEP drawing with 50% probability thermal ellipsoids. The
hexafluorophosphate counteranion is omitted for clarity.
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Figure 30 Crystal structure of A-IrPP. ORTEP drawing with 50% probability thermal ellipsoids. The
hexafluorophosphate counteranion is omitted for clarity.

Figure 31 Crystal structure of A-IrPP. ORTEP drawing with 50% probability thermal ellipsoids. The
hexafluorophosphate counteranion is omitted for clarity.
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3.2.3 Catalytic reactions

With the four diastereomerically and enantiomerically pure transition metal complexes in hand, we
next investigated their catalytic ability by testing several reactions. Firstly, the Friedel-Crafts addition
of 2-acyl imidazole with indole was examined as shown in Figure 32.°° The new catalyst A-IrPP can
catalyze the addition of indole to a,B-unsaturated 2-acyl imidazole S5 affording the Friedel-Crafts
product (S)-16 in only 38% yield and 35% ee after 24 h, This result was quite disappointing compared to

the previous results (A-Ir(S) as catalyst, 40 h, 94% yield and 99% ee).

o
H Cat. (1 mol%) N
N = -
X Me+ / NH
\ W

o
n
[0]

THF (1 M),

5(1.0eq) indole (2.5 eq) (S)-16

A-Ir(S): 40 h, 94% yield, 99% ee
A-IrPP: 24 h, 38% vyield, 35% ee

Figure 32 Comparison of different Lewis acid catalysts A-1r(S) and A-1rPP for asymmetric conjugate
addition.

The Michael addition of 2-acyl imidazole with malononitrile was next investigated.” Figure 33
shows that the addition of malononitrile 6 to substrate 5 catalyzed by 1 mol% A-Ir(S) in THF at room
temperature afforded the adduct 7 with 95% yield and 90% ee after 24 hours. Although our new
catalysts only provided 78% ee (by A-IrPP) and less than 10% ee (by A-IrPP) respectively, we gladly
found that the reactions were much faster. The substrate 5 was completely consumed only within one

hour. That probably means that the rate of ligand exchange in IrPP is much faster than that in Ir(S).

(e} Me
</\’)J\A Cat. (1 mol%) MCN

kTl
THF (0.5 M), r.t. N

5(1.0 eq) 6 (1.2 eq) 7

A-Ir(S): 24 h, 95% vyield, 90% ee
A-IrPP: 1 h, 98% yield, 78% ee
A-IrPP: 1 h, 97% yield, <10% ee

Figure 33 Comparison of different Lewis acid catalysts for asymmetric conjugate additions.

We therefore tried two following reactions regarding weak coordinating substrates (Figure 34). For
the addition of malononitrile to the substrate 17, no desired product was observed even after 48 hours

at room temperature. Surprisingly, for the alkynylation of trifluoropyruvates 18 with phenylacetylene,
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14% isolated yield of product 19 was obtained in the presence of 3 mol% rac-RhPP and KOAc (3 eq).
After intensive screening of reaction parameters such as different bases, solvents, concentrations and
temperatures and so on, the best results we can achieve were 41% yield and 38% ee with 3 mol%

A-RhPP as a catalyst.

i\\ j)\/\ CN rac-IrPP (5 mol% 3)\\ Me
o N Me+ [ > o NJK/K(
] NC DCM, r.t., 48 h \__]
17 6
FsC OH
0 H  rac-RhPP (3 mol%) /S(
OEt G
F3C)kﬂ/ ‘o =z KOAG (3.0 eq)
o DCM, r.t.,, 48 h, 14% y|eId
18 19

Figure 34 Two reactions with weak coordinating substrates.

When 1-phenyl-2-trifluoroacetyl imidazole (11a) was chosen as substrate instead of
trifluoropyruvate 18, as shown in Table 2, we found that RhPP can serve as an excellent catalyst for the
enantioselective alkynylation of 1-phenyl-2-trifluoroacetyl imidazole (11a).'""

The reaction of ketone 11a with phenylacetylene at room temperature for 24 hours provided the
propargyl alcohol (R)-20a in 89% yield and with 95% ee by using 3 mol% of A-RhPP in the presence of
1.2 equivalents of Et;N (Table 2, entry 1). Replacing the N-phenyl substituent with an isopropyl group
(11b) improved the yield of (R)-20b to 94% and enantioselectivity to 97% ee (entry 2). The best results
were achieved with 1-phenyl-2-trifluorocetyl imidazole (11¢), providing the propargyl alcohol (R)-20¢
in 92% yield and with 99% ee (entry 3). It is noteworthy that using the diastereomeric catalyst A-RhPP
afforded the mirror-imaged product (S)-20c¢ with an identical enantioselectivity of 99% ee and only with
a slightly reduced yield of 90% (entry 4). This comparison of A-RhPP with A-RhPP unambiguously
demonstrates that the asymmetric induction in the course of the catalysis is mainly controlled by the
metal-centered chirality and not the chirality of the ligand. Notably control experiments confirmed that
both the catalyst and a base were necessary for achieving a conversion (entries 5 and 6). Reduced
loadings of A-RhPP (entries 7 and 8) and the base triethylamine (entry 9) did not affect the
enantioselectivity but the reaction rate. Conveniently, the catalytic reaction can even be performed in an

open flask since it is not sensitive to air or small amount of water (entries 10 and 11). For comparison,

the iridium-congeners A- and A-IrPP (entries 12 and 13) provided inferior results whereas our
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previously developed catalysts Rh(O), Ir(O) or Ir(S) were not able to catalyze the transformation at all

(entries 14-16). Thus, although the absolute configuration at the ligand does not affect the rate and

degree of asymmetric induction, the nature of the ligand is obviously crucial for an effective catalysis as

cyclometalated phenylbenzoxazoles (Rh(O) and Ir(QO)) or phenylbenzothiazoles (Ir(S)) do not provide

active catalysts.

Table 2 Initial Experiments™

(0]
N\W)J\CQ + =
<\/N
R

11a-c

- M
—_— NS \
THF, rt. <\,N\ g
R

HO_ CF,

20 a-c

R = Ph (11a, 20a), ‘Pr (11b, 20b), Me (11c, 20c)

Yield

Entry Catalyst™ Substrate Base Conditions 7T (h) (%)l ee (%)
1 A-RhPP (3.0) 11a Et;N (1.2 eq) nitrogen 24 89 95 (R)
2 A-RhPP (3.0) 11b EtN (1.2 eq) nitrogen 24 94 98 (R)
3 A-RhPP (3.0) 11c Et;N (1.2 eq) nitrogen 24 92 99 (R)
4 A-RhPP (3.0) 11c Et;N (1.2 eq) nitrogen 24 90 99 (S)
5 A-RhPP (3.0) 11c none nitrogen 24 0 n.a.
6 none 11c Et;N (1.2 eq) nitrogen 24 0 n.a.
7 A-RhPP (2.0) 11c Et;N (1.2 eq) nitrogen 24 80 99 (R)
8 A-RhPP (1.0) 11c Et;N (1.2 eq) nitrogen 24 51 99 (R)
9 A-RhPP (3.0) 11c Et;N (0.3 eq) nitrogen 24 60 99 (R)
10 A-RhPP (3.0) 11c Et;N (1.2 eq) air 24 93 99 (R)
11 A-RhPP (3.0) 11c Et;N (1.2 eq) air, 1% H,O 24 88 99 (R)
12 A-IrPP (3.0) 11c Et;N (1.2 eq) nitrogen 24 37 29 (R)
13 A-IrPP (3.0) 11c Et;N (1.2 eq) nitrogen 24 84 15 (S)
14  A/A-Rh(O) (3.0) 11c Et;N (1.2 eq) nitrogen 24 0 n.a.
15 ANA-Ir(O) (3.0) 11c Et;N (1.2 eq) nitrogen 24 0 n.a.
16 AN/A-Ir(S) (3.0) 11c Et;N (1.2 eq) nitrogen 24 0 n.a
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LlConditions: trifluoromethyl ketone (0.20 mmol), phenylacetylene (0.60 mmol) and catalyst (3.0
mol%) in THF (0.2 mL) were stirred at room temperature for 24 hours. !Catalyst loading in mol%
provided in brackets. “Isolated yields. !Chiral HPLC analysis. n.a. = not applicable.

After these promising initial results regarding the enantioselective alkynylation with A-RhPP, we
performed a substrate scope evaluation under optimized conditions with the trifluoroketone 11¢ and a
variety of arylacetylenes. As shown in Figure 35, our method tolerates a variety of substituted
phenylacetylenes, containing alkyl and aryl with electron-donating and -electron-withdrawing
substituents. Heteroarylacetylenes such as 2-pyridylacetylene and 3-thiophenylacetylene are also
suitable substrates for this asymmetric transformation. Overall, yields range from 79—99% and

enantioselectivities from 97—99% ee for the propargyl alcohols (R)-20c-p.

% A-RhPP (3 mol%) HO,,, CF,
N\j)I\CFs Et3N (1.2 eq) \(\
9 + =—Ar

N, =
Me
11c 20c-p
HO, ,CF HO, ,CF
N > \3 N ~» 3 Me
<\/N\ S <\,
Me )
20c, 24 hatrt. 20d,24hatrt. . Me 20e 15hat40°C 20f, 15 h at 40 °C
92% vyield, 99.6% ee 95% vyield, 99.4% ee 95% yield, 99% ee 98% yield, 99.4% ee
NHOI., CF3 NHO,," CF3 NHO," CF HO, ,CFs
N
S A N N X
<\/N\ S <\/ <\/N N
Me ; \Me
20g,15hat40°C  °Y  20n 48hat40°c " 20i,15hat40°C  OMe20j 24 hatrt. F
99% yield, 99% ee 93% yield, 99% ee 96% yield, 99% ee 79% yield, 99% ee
NH% CF, HO, ,CFs NH% CFs NH% CF,
N %,
DS N X
<\/N\ <\, <\,N\ N <\/ CFs
Me ‘Me Me
20k, 24 hatrt > >Cl 201, 24hatrt. Br  20m,15hat40°C  20nm,24hatr.t.
97% yield, 99% ee 97% yield, 9% ee 99% yield, 97% ce 9% yield, 9% eeC
HO, ,CF3 HO, ,CF3
‘ N
S
200, 28 h at 40 °C 20p, 15 h at 40 °C
82% yield, 99% ee 94% yield, 99% ee

Figure 35 Substrate scope with respect to arylacetylenes.
A-RhPP also catalyzes the reaction of trifluoroketone 11¢ with aliphatic acetylenes as shown in

Figure 36 to provide the propargyl alcohols (R)-20q-v in satisfactory yields (55—88%) and with
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excellent enantioselectivities (94—99% ee). Next several other substrates with respect to the imidazole

substrates are also investigated under the same or some modified conditions (Figure 37).

0 A-RhPP (6 mol%) HO, ,CF,
N\HJ\ Et;N (1.2 N
DS CF3 3 ( - eq) J A
=R A
\_N, * > <\/N\ R
Me Me
11c 20g-v
J N %
B X ~N N
R
<\/N‘ nPent <\,N\ S
Me Me
20qg, 48 hat 60 °C 20r, 48 h at 60 °C, 20s,24 hat40°C
88% yield, 97% ee 68% vyield, 94% ee 84% vyield, 94% ee
HO, ,CF3 HO, ,CF3 NH(),,,, CF3
N N
X X X N X
R
<\/N‘ Bn <\,N\ S SiMe; <\/N‘
Me Me Me
20t, 48 hat40 °C 20u, 24 h at 60 °C 20v, 24 h at60 °C
55% yield, 99% ee 64% yield, 99% ee 87% vyield, 97% ee

Figure 36 Substrate scope with respect to alkylacetylenes and trimethylsilylacethylene.

The benzimidazole substrate 11d can also react with phenylacetylene to give the corresponding
alcohol 20w in moderate yield and with excellent enantioselectivity (99% ee). The substrate 11e with
methoxyphenyl group on imidazole moiety can provide satisfying results (95% yield, 94% ee).
Importantly, the CF; group can be replaced by a CF,CF; group, affording the expected product 20y in

good yield and with excellent enantioselectivity (97% ee) by prolonging the reaction time to 48 h and

at the same time increasing the temperature to 60 °C.

. Q A-RhPP (3 mol%) NHO,," CFonet

NS EtN(12eq) \W/X
7NN, ro=Ph > &N\R Ph

o 11d-f T 20wy

HO, ,CFs N% HO, ,CF,CF;
N TS N

A Y A =~ X

A \
3 oh <,N Ph Q\/N\ ph
Me Ph
OMe

20w, 24 h atr.t. 20x, 24 h atr.t. 20y, 48 h at 60 °C

73% yield, 99% ee 95% yield, 94% ee 81% vyield, 97% ee

Figure 37 Substrate scope with respect to other 2-fluoroacetyl imidazoles.

However, it is important to note that satisfactory yields and excellent enantioselectivities of this

reaction are limited to ketones which contain both the CF; group as well as the imidazole moiety. For
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example, replacing the imidazole moiety with a phenyl or ethylcarboxylate or benzoyl leads to get no or
low yield and enantioselectivity, while changing the CF; group with an ethyl group completely
abolishes the conversion (Figure 38). These results imply that a successful catalysis relies on a strong
electronic activation of the carbonyl group by a neighboring CF; in combination with the efficient

coordination of the substrate to the rhodium catalyst.

(0]
OMe

O

no reaction O

EtO
@)LH no CF3
N\M no imidazole A-RhPP .(3 mol%), 24h,
e 41% yield, 38% ee
no reaction (0] .
no CF, \ no imidazole .
< A CF3
o) <\/N\ but weak coordinate site
N - i
= CF
<\/N ’
‘Me HO OH
no imidazole
no reaction A-RhPP (3 mol%), 4R Molecular sieve,
17h, 90% vyield, 64% ee

0

©)J\CF3

no reaction

Figure 38 Control experiments with other substrates.

Since our previously developed chiral-at-metal complexes Ir(O) and Ir(S) had been proven as
multi-function catalysts for photoredox catalysis, we wondered whether our new IrPP could perform
the same properties or not. Two light-activated asymmetric reactions which had been well established
in our group were investigated as shown in Figure 39. Firstly, the enantioselective a-alkylation of
2-acyl imidazole 8c with benzyl bromide 21 catalyzed by the complex A-1r(S) (2 mol%), under
visible-light irradiation, provided the desired product (R)-22 in 98% yield and with 99% ee within 2
hours at 40 °C.** However, the reaction became very slow when A-IrPP was employed as a catalyst.

The reaction did not finish after 2 hours and only 30% ee was obtained.
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0 NO, Cat.2mol% ) COOMe
N Ph Na,HPO, (1.1 eq) N
= n S
\_N, CH3OH/THF=4:1 N,
Me COOMe  40°C, 14 W CFL
8c (3.0 eq) 21 (1.0eq)

A-Ir(0): 2 h, 98% vyield, 99% ee
A-IrPP: 2 h, incomplete, 30% ee

Figure 39 Comparison of A-1r(O) and A-IrPP for enantioselective a-alkylation of 2-acyl imidazole
with benzyl bromide.

Secondly, visible light induced asymmetric o-aminoalkylation of 2-acyl imidazole was also
examined (Figure 40).”° The reaction of 2-acyl imidazole 8d and silyl amine 23 gave the addition
product (R)-24 in 92% yield and with high enantioselectivity of 97% ee within 6.5 hours when A-Ir(O)
(2 mol%) was employed as catalyst. However, employing A-IrPP as catalyst, the reaction became
very sluggish. Prolonging the reaction time to 21 hours, the product was only obtained in 17% yield

and with very low enantioselectivity (7% ee) under the same reaction conditions.

0 O
Ph Cat. 2 mol% N
M +  NPhy” SiMes ’ W NPh,
\ N, DCM (0.4 M) N_  Ph
Ph 14 W CFL, r.t. P
8d (1.0 eq) 23 (3.0 eq) (R)-24

A-Ir(0): 6.5h, 92% yield, 97% ee
A-IrPP: 23h, 17% yield, 7% ee

Figure 40 Comparison of A-l1r(O) and A-1rPP for asymmetric a-aminoalkylation of 2-acyl imidazole.

3.2.4 Conclusions

In conclusion, we developed four new bis-cyclometalated rhodium(Il) and iridium(l1l) complexes
and found that the rhodium complex could serve as a highly effective catalyst for the catalytic
enantioselective alkynylation of 2-trifluoroacetyl imidazoles. The rhodium complex contains
pinene-derived chiral ligands that permit the straightforward synthesis of the complexes as
enantiomerically pure single diastereomers. Interestingly, although the asymmetric induction over the
course of the catalysis is mainly controlled by the metal-centered chirality, the synthesized rhodium
complexes feature a catalytic activity that is surprisingly distinct from our previous benzoxazole- and

benzothiazole-based catalysts.
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3.3 Octahedral Chiral-at-Ruthenium Complexes for Asymmetric Catalysis

3.3.1 Design of catalysts

Transition metal complexes represent one of the most powerful and versatile classes of homogeneous
catalysts. Applied to asymmetric catalysis, metal ions are typically combined with carefully tailored
chiral ligands." In a more simplistic design, only achiral ligands are employed but their assembly around
the central metal creates metal-centered chirality” which is then responsible for the asymmetric
induction during catalysis.®> Our group recently realized this approach with the design of
bis-cyclometalated iridium* and rhodium® complexes as chiral Lewis acids which provide excellent
enantioselectivities and high turnover numbers for a variety of reactions. However, at the onset of this
work it was unclear to what extend this design principle is general and applicable to chiral octahedral
metal complexes of other elements. In pioneering work, Fontecave and co-workers reported that A- and
A-[Ru(2,9-dimethyl-1,10-phenanthroline)(MeCN),]** catalyzed the oxidation of organic sulfides to
their sulfoxides, albeit with a maximum of just 18% ee.®* Much higher enantioselectivities for the
synthesis of sulfoxides were achieved by Ye using chiral-at-metal A- and
A-[Ru(2,2’-bipyridine),(py).]** as recyclable chiral auxiliaries.® Hartung and Grubbs reported a
chiral-at-ruthenium catalyst for diastereo- and enantioselective ring-opening/cross-metathesis. The
complex contains additional carbon-centered stereogenicity and catalysis is supposed to occur via a
trigonal bipyramidal intermediate.” After a period of efforts, we finally chose the inert and strong
o-donating N-heterocyclic carbenes (NHCs) as ligands which might make the ruthenium complex is
configurationally stable and has more labile acetonitrile ligands due to its strong trans-effect (Figure

41).
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M = Ir/Rh, X = O/S/Se NHC ligand:
configurationlly inert ligand

Strong o—donating ligand

Figure 41 Design of octahedral chiral-at-ruthenium catalysts.

3.3.2 Synthesis of catalysts

The racemic complex rac-Rul was synthesized according to the procedure reported by Hahn and
co-workers with some modifications.® Accordingly, the octahedral ruthenium complex rac-Rul was
synthesized by reacting RuCl; hydrate with the N-(2-pyridyl)-imidazolium salt 25 in ethylene glycol at
200 °C, followed by treatment with AgPF¢ to afford the racemic complex rac-Rul in 92% yield
(Scheme 15). The single crystals of rac-Rul suitable for X-ray were obtained by diffusion of hexane in
CH,CI; solution at room temperature (Figure 42). This racemic mixture was then reacted with the chiral
salicyloxazoline ligand (S5)-2"" to provide A-(S)-Rul as a single diastercomer in 36% yield after the
standard chromatography. In analogy, using the auxiliary (R)-2"" instead, the complex A-(R)-Rul was
obtained. The individual diastereomerically pure complexes were next treated with TFA in CH3;CN to
generate Rul as individual A- and A-enantiomer. A-Ru2 and A- Ru2 can be obtained by the same
protocol (see chapter 5.3 for details). CD spectra of A-Rul and A- Rul are shown in Figure 44 and
were used to assign the absolute configuration by comparison with related enantiopure ruthenium

complexes,® and confirmed by an X-ray crystal structure of a derivative of A-Ru2 (Figure 43).
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Figure 42 Crystal structure of rac-Rul. ORTEP drawing with 50% probability thermal ellipsoids. The
hexafluorophosphate counteranion and all hydrogens are omitted for clarity.

51



Chapter 3: Results and Discussion

Figure 43 Crystal structure of A-Ru2-DPPE. ORTEP drawing with 50% probability thermal ellipsoids.
The hexafluorophosphate counteranion and all hydrogens are omitted for clarity.

—— A-Rut
80 - - - - A-Ru1

200 I 3CI)O I 4CI)0 I 5CI)0
A (nm)
Figure 44 CD spectra of A- and A-Ru1(0.2 mM in CH;0H).
Importantly, we found that the enantiopure complexes are constitutionally and configurationally
surprisingly stable. For example, a solution of A-Rul (20 mg) in 3 mL THF was stirred at 60 °C for 3
days. After cooling to room temperature, 2 drops of CH3;CN were added, and the solvent was removed,

then the residue was analyzed by *H NMR which shows no obvious change (Figure 45). The resulting
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complex was also used to catalyze the model reaction (see 3.3.4 for details) under the same conditions,

giving the almost identical results (94% yield, 99% ee).

After 3 days in THF at 60°C

‘A_X_J_JL_JL‘LA L . J\J

NMR spectrum of A-Rul in CD,Cl,

11,

T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T

9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0
f1 (ppm)

Figure 45 'H NMR spectra of A-Rul recorded in CD,Cl, (fresh and 3 days in CD,Cl,).

3.3.3 Studies of the trans-effect in the ruthenium complexes

The trans-effect of the NHC-ligands in the catalysts Rul and Ru2 was investigated by comparison with

the related complex [Ru(2,2’-bipyridine),(MeCN),]*".

T2+ 2X QR 12+ 2 PFg
o (\)\ | \\\\N N

MeS
U
S R

Ru\ MesN
\C‘Me (/
- Ru1 (R = 3,5-Me,Ph)
[Ru(bpy)>(MeCN),] Ru2 (R = H)

Figure 46 The structures of ruthenium complexes.
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a.) Structural trans-effect
We determined the X-ray crystal structure of the racemic catalyst rac-Rul (see 3.3.1). Several X-ray
crystal structures are available for the complex [Ru(bpy).(MeCN),]** with different counterions as listed
in Table 3.2" The comparison demonstrates that the Ru-N coordinative bonds with the MeCN ligands in
[Ru(bpy).(MeCN),]** are in the range of 2.012-2.049 A and thereby significantly shorter compared to the
Ru-N (MeCN) bonds in rac-Ru1l (2.098 A). This is clear evidence of the structural trans-effect exerted by
the two NHC-ligands in trans to the two MeCN ligands.

Table 3 Investigation of the structural trans-effect by comparison of the Ru-N bond lengths of the
coordinated MeCN ligands.

Complexes Ru-N bonds to MeCN (A) References
[Ru(bpy)»(MeCN),](PFs). 2.033,2.033 Heeg, et al.,'
[Ru(bpy)2(MeCN),](PFe), 2.012, 2.012 Xu, etal.,”
[Ru(bpy)(MeCN),](BF,), 2.042, 2.049 Wang, et al.,*?
[Ru(bpy)»(MeCN),](CIO.), 2.0397, 2.0447 Chattopydhyay, et al.,*®

rac-Rul 2.098, 2.098 Our work

b.) Kinetic trans-effect

We compared rac-Ru?2 and [Ru(bpy).(MeCN),]** with respect to the rate of replacing the MeCN
ligands with the bidentate ligand 2,2’-bipyridine. For this, a mixture of [Ru(bpy).(MeCN),](PF¢), or
rac-Ru2 (20.0 mg), and 2,2'-bipyridine (1.75 eq) in CD,Cl, (1.0 mL or 0.8 mL) was stirred at room
temperature and then analyzed by *H NMR spectroscopy after 0.5 h, 3 h, 8 h, and 24 h, respectively. As
shown in Figure 47, there is no ligand replacement of the coordinated MeCN ligands by 2,2’-bipyridine
can be monitored at room temperature for [Ru(bpy).(MeCN),](PFs), even after 24 hours, whereas the
complex rac-Ru2 under the same conditions displays a significant conversion already after 30 min. This
much higher lability of the CH3;CN ligands in rac-Ru2 can be attributed to the kinetic trans-effect of the

NHC ligands in rac-Ru2.
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Figure 47 The acetonitrile exchange experiments in the presence of bipyridine.

® rac-Ru2

~
o
1

= Ru(bpy),(MeCN),(PF,),

Conversion (%)

N w B al (o2}
o o o o o
1 1 1 1 1

[

o
1
°

o
1
u
u
u
u

o
o
=
o
=
a
N
o
N
al

Time (h)

Figure 48 Investigation of kinetic trans-effect.

3.3.4 Catalytic reactions

With the chiral catalysts in hand, we firstly tested the reaction of 2-trifluoroacetly imidazole 11c

with phenylacetylene. However, the reaction cannot give any traces of desired product 20c under our

optimal conditions.

i Rut 3 mol%) N oS3
N\\,)kCF\o, - <:> rac-Ru1 (3 mol%) NQ[)X
<\,N\ EtsN (1.2 eq), <\,N,
Me THF, r.t.,, 16 h Me
11c 20c
Not detected

Figure 49 Alkynylation of 2-trifluoroacetyl imidazole catalyzed by rac-Rul.
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Since our new catalysts have very strong trans-effect that means they might active more general

substrates. Therefore, trifluoroacetophenone 25a was employed to examine. To our delight, we found
that Rul is an excellent catalyst for the enantioselective alkynylation of trifluoromethyl ketones.™***

Table 4 Initial Catalysis Experiments!

/mR T2+ 2PFg
7

7/ N N Me

Ph _C’
0 cat. Ho A NJ “, I N
H > MesN

CF3 Et;N (0.2 eq) Ph™ “CF; E Q:( , \

25a THF, 60 °C 26a U
Z R

A-Ru1: R = 3,5-Me,Ph

A-Ru2: R=H
Entry Catalyst Loading (mol%)  Time (h) Yield (%)™  ee (%)
1 A-Rul 3 16 97 99 (S)
2 A-Rul 1 16 93 99 (S)
3 A-Rul 0.5 16 95 99 (S)
4 A-Rul 0.2 30 98 99(S)
5 A- Rul 0.5 16 95 99 (R)
6 A-Ru2 0.5 16 93 97 ()
7 A-IK(S) 3 20 15 15 (R)
8 A-Rh(S) 3 20 28 93 (R)

ElConditions: 25a (0.20 mmol), phenylacetylene (0.60 mmol) with catalyst (0.2-3.0 mol%) and
Et;N (20 mol%) in THF (0.4 mL) were stirred at 60 °C. Isolated yields. !/Chiral HPLC analysis.

As shown in Table 4, the reaction of trifluoroacetophenone (25a) with phenylacetylene in the
presence of EtzN (0.2 eq) and 3.0 mol% A-Rul provides the propargyl alcohol (S)-26a in 97% vyield
and with 99% ee (entry 1). The catalyst loading can be reduced down to 0.2 mol% without any loss in
yield or enantioselectivity (entries 2-4). As to be expected, mirror-imaged A-Rul provides the
mirror-imaged product (R)-26a with otherwise identical performance (entry 5). The catalyst devoid of
the 3,5-Me,Ph substituents (A-Ru2) leads to a reduced enantioselectivity of 97% ee (entry 6),

confirming the steric role of the substituents at the pyridine ligands. Interestingly, previously reported
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chiral-at-metal iridium and rhodium catalysts only display very sluggish reactivity for the alkynylation
of trifluoromethyl ketones and a diminished enantioselectivity even at catalyst loadings of 3.0 mol%
(entries 7 and 8).

A substrate scope with respect to terminal alkynes is shown in Figure 50, providing the
propargylalcohols (S)-26b-m in vyields of 66-99% and with outstanding enantioselectivities of 96
to >99% ee. The catalyst tolerates equally well phenylacetylenes with substituents in the phenyl
moiety, 2-ethynylthiophene, the conjugated alkenyl acetylene 1-ethynylcyclohexene, aliphatic
acetylenes, and trimethylsilylacetylene. Typically, catalyst loadings of just 0.5 mol% A-Rul are
sufficient except for ortho-substituted phenylacetylenes which react more sluggish, presumably due to

steric reasons.

0 A-RW 05ml%) o A
R—H » S
Ph™ “CF3 (3.0 eq) Et3N (0.2 eq) Ph” CF,4
24a THF, 60 °C 26b-m
HQ, CF HQ, CF3 HQ, CF3 HQ, C,:3
s ® I ® S )
Me O OMe
26b 26c € 2642 26e
99% yield, 99% ee 99% yield, 99% ee 97% yield, 99% ee 99% yield, 99% ee
‘Hga‘\ HQ, CF3 &O HQ, CF3
26f 26h 26i
75% yield, 97% ee 66% yleld 99% ee 88% yield, 96% ee 98% yield, 99% ee
HO, CF3 HO, OF HQ, CF HO, CF s
\ R X
\ S NsiMe,
26j 26k 26l 26m
96% yield, 99% ee 97% vield, 97% ee 98% vield, 99% ee 77% yield, >99% ee

Figure 50 Substrate scope with respect to terminal alkynes. 1.0 mol% catalyst loading instead.

The scope of this reaction with respect to trifluoromethyl ketones is outlined in Figure 51.
Trifluoroacetophenone with different substituents in the phenyl moiety provided the corresponding
propargyl alcohols in high yields and with almost perfect enantioselectivity except for ortho-methyl
trifluoroacetophenone which reacts sluggish, reinforcing that the catalyst is sensitive to steric effects.

It is also noteworthy that an aliphatic trifluoromethyl ketone and ethyl trifluoropyruvate are not
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suitable substrate for this catalysis. However, replacing one fluorine of the trifluormethyl group with
chlorine by using 2-chloro-2,2-difluoroacetophenone as the substrate yields the corresponding

propargyl alcohol in 99% yield and 99% ee.

0 A-Rut (0.5 mol%) HO, ,CFs
J\ + Ph———H > Rx

R™ "CFs3 (30eq)  FEtaN(0-2eq) Ph
25 THF, 60 c’C 26n-x
HO,, CF3 " HO, ,CF3 HO,II‘ CF3 HO,% CF3
e 3
mPh %Ph %Ph mph
Me Me MeO
26n 260 26p? 26q
93% yield, 98% ee 96% yield, 99% ee  279% yield, 91% ee 90% yield, 99% ee
HO, ,CF3 . HO, ,CF3 HO, ,CF3 HO, CF3
I . ”
O~ "ON OS, OOS
Br Ph F4C Ph Ph
26r 26s 26t 26u
99% vyield, 99% ee 99% vyield, 99% ee 99% vyield, 99% ee 96% vyield, 99% ee
HQ% CF3 H% CF3 HO, ,CF:CI
N Etooc/x N
Ph Ph Ph
26v 26w 26x
44% yield, 62% ee 70% yield, 7% ee 99% vyield, 99% ee

Figure 51 Substrate scope with respect to trifluoromethyl ketones. *1.0 mol% catalyst loading instead.

3.3.5 Applications

After getting these exciting results, we turned our attention to search for some applications. The
synthetic methodology we developed here is very valuable because propargylic alcohols constitute
highly versatile synthetic building blocks®®; furthermore, fluorinated compounds play an increasingly
important role in drug development. For example, efavirenz'’, containing a quaternary stereocenter
bearing a CF3 and alkynyl group, is a potent HIV reverse transcriptase inhibitor and a key drug for the
treatment of AIDS. So, we decided to pursue this direction.

Initially, we identified the reaction of 1-(2-amino-5-chlorophenyl)-2,2,2-trifluoroethanone (27a)
with cyclopropylacetylene in the presence of Et;N (0.2 eq) in THF (0.5 M) at 60 °C for 48 h catalyzed
by chiral-at-metal A-Rul (3 mol%) provided the Merck intermediate (S)-28a with 58% yield and 91.6%

ee (Table 5, entry 1). Although this method provides a convenient catalytic, enantioselective access to
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the key Merck intermediate (S)-28a, the yield and the enantioselectivity are only modest and we were
not able to significantly improve these results. Unexpectedly, excellent enantioselectivity (99.0% ee)
was obtained when A-Ru2 was employed as catalyst under the same reaction conditions, although the
yield was disappointingly very low (entry 2). We therefore switched our attention to a related substrate
in which the electron donating amino group (27a) is replaced with an electron withdrawing nitro group
(27b), with the expectation that this modification would accelerate the alkynylation 27b—(S)-28b and
a straightforward iron-based reduction of (S)-28b to (S)-28a has been reported.*® Gratifyingly, using
just 0.5 mol% A-Rul, the propargylic alcohol (S)-2c was obtained in a yield of 93% with 99.6% ee
after 16 hours at 60 <C (entry 3). Interestingly, using a simplified catalyst devoid of the two
3,5-dimethylphenyl moieties (A-Ru2), almost unchanged yield and enantioselectivity were observed
(entry 4). Since the synthesis of A-Ru2 is less time consuming and less expensive compared to A-Rul,
the simplified catalyst A-Ru?2 is apparently the catalyst of choice for the conversion 27b—(S)-28b.
Even at a reduced catalyst loading of 0.2 mol%, a yield of 95% with 99.4% ee was obtained (entry 5),
while at a further reduced catalyst loading of 0.1 mol% the yield deteriorated (entry 6). Interestingly
for practical reasons, at a catalyst loading of 0.5 mol% A-Ru2, the reaction can be executed at room
temperature to afford (S)-2c with 96% yield and 99.4% ee after 16 hours (entry 7). A lower catalyst
loading of 0.2 mol% leads to a decreased yield (entry 8). The reaction is sensitive to air (entry 9) but

not to the presence of small amounts of water (entry 10).

Rf]\ ]2+ 2 PFg

N

M N” °N
e\C$N , | “\\\\I:'\\k/les
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A-Ru1: R = 3,5-Me,Ph

A-Ru2: R=H
Q F4C. /
= H (3.0 N
CI\@\)kCF:‘; % ( e‘i CI\@f\OH

X EtsN (20 mol%) X
27a (X = NH,) (S)-28a (X = NH,)
27b (X = NO,) (S)-28b (X = NO,)
27¢ (X = Cl) (S)-28¢ (X = Cl)

Scheme 16 The synthesis of intermediates of the drug efavirenz with chiral-at-ruthenium complexes.
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Table 5 Optimization of the reaction conditions with substrates 27a and 27b®

Entry Catalyst™ X T (@) t (h) Yield (%) ee (%)
1" A-Rul (3.0) NH, 60 48 58 91.6
2F] A-Ru2 (3.0) NH, 60 48 25 99.0

3 A-Rul (0.5) NO, 60 16 93 99.6
4 A-Ru2 (0.5) NO, 60 16 92 99.4
5 A-Ru2 (0.2) NO, 60 16 95 99.4
6 A-Ru2 (0.1) NO, 60 64 42 99.2
7 A-Ru2 (0.5) NO, r.t. 16 96 99.4
8 A-Ru2 (0.2) NO, r.t. 48 55 99.4
gl A-Ru2 (0.2) NO, 60 16 21 98.2
100 A-Ru2 (0.2) NO, 60 16 96 99.0

[IReaction conditions: 27a or 27b (0.20 mmol), cyclopropylacetylene (0.60 mmol), catalyst, and
Et;N (20 mol%) in THF (0.4 mL, 0.5 M). PlCatalyst loadings in mol% provided in brackets.
Clisolated yields. “Determined by HPLC on a chiral stationary phase. 2 mmol
cyclopropylacetylene was used instead. "Performed under air. Performed in the presence of 1%
H,0.

Lonza intermediate is also an important intermediate which can be converted to efavirenz in one
step™. So we next investigated the catalytic, enantioselective alkynylation of the chlorinated Lonza
intermediate 27¢ with cyclopropylacetylene. Accordingly, with A-Rul at 0.5 mol% catalyst loading,
the reaction of 27¢ with cyclopropylacetylene at 60 <C provided the propargylic alcohol (S)-28¢ in 99%
yield and with 90% ee (Table 6, entry 1). Interestingly, same as for the nitro substrate 27b, the
simplified catalyst A-Ru2 provides superior results (entries 2—6). With a catalyst loading of just 0.2
mol% at room temperature, (S)-28¢ provided in 95% vyield and with 95% ee (entry 5). Attempts to
lower the catalyst loading to 0.1 mol% led to a decreased yield, even after prolonging the reaction time
to 64 hours (entry 6). Control experiments reveal that the reaction is sensitive to air (entry 7) but not to

small amounts of water (entry 8) which means that the reaction must be performed under inert gas

conditions but the solvents do not need to be dry.
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Table 6 Optimization of the reaction conditions with substrate 27c!

Entry Catalyst™ T (<€) t (h) Yield (%)™ ee (%)
1 A-Rul (0.5) 60 16 99 90.2
2 A-Ru2 (0.5) 60 16 99 93.8
3 A-Ru2 (0.2) 60 24 93 93.7
4 A-Ru2 (0.5) rt. 16 99 95.2
5 A-Ru2 (0.2) rt. 16 95 95.0
6 A-Ru2 (0.1) rt. 64 71 95.0
7] A-Ru2 (0.2) r.t. 16 1100 nd.
gl A-Ru2 (0.2) r.t. 16 96 95.2

LlReaction conditions: 27¢ (0.20 mmol), cyclopropylacetylene (0.60 mmol), catalyst, and Et;N (20
mol%) in THF (0.4 mL, 0.5 M) were stirred at indicated temperature for the indicated time. "!Catalyst
loadings in mol% provided in brackets. “lsolated yields. !'Determined by HPLC on a chiral stationary
phase. FlPerformed under air. [INMR yield with tetrachloroethane as internal standard. “Not
determined. "Performed in the presence of 1mol% H,0.

Two gram-scale reactions were carried out to highlight the practical utility of this protocol. As
shown in Figure 52, employing 27b or 27¢ as substrate under the optimal conditions, respectively, the

reaction exhibited excellent efficiency, providing the propargylic alcohol products in high isolated

yield without any loss of enantioselectivity.

0 Vi
— F3C &
Cl [>TH (3.0 eq) Cl S
CF3 - OH
NO, Et3N (20 mol%) NO,

27b A-Ru2 (0.2 mol%) (S)-28b

5 mmol scale THF, 60 °C, 16 h 1.56 g
97% yield, 99% ee

0 Y
_ F3C,
cl DTH (3.0eq) ¢ 3
CF, - OH
Cl EtsN (20 mol%) Cl
27¢ A-Ru2 (0.2 mol%) (S)-28¢
1229

4 I |
mmol scale THF, rt., 16 h 99% yield, 95% ee

Figure 52 Gram-scale reactions under optimized reaction conditions.
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3.3.6 Proposed mechanism

Mechanistically, we propose that the reaction proceeds through an intermediate ruthenium acetylide
which then tranfers the acetylide to the presumable ruthenium-coordinated trifluoroketone (Figure
53).1% The observed excellent asymmetric induction suggests that the trifluoromethyl ketone substrate
coordinates to the ruthenium ahead of the acetylide transfer. During this transfer, the metal-centered
chirality provides a suprisingly high asymmetric induction, thus reinforcing our catalyst design
strategy. The rigidity of the propeller-type coordination sphere most likely contributes to the observed
excellent enantioselectivities but is also responsible for sensitivity to steric effects. It is worth noting

that catalytic amounts of base are necessary in this reaction, which apparently serves as a proton

shuttle.
(N
Et;NH* CA |+\\\|:1
(@]
I
N \ A
H——R"'+ E{3N R 3
(N R2
(N Ne)
C~ |2't\\D C“ |+\\ #

Ru. - CF3

N
A
Et;NH*

Figure 53 Proposed mechanism. [0 = vacant coordination site.

3.3.7 Conclusions

In summary, the first example of an octahedral chiral-at-metal ruthenium complex with high
catalytic activity and excellent enantioselectivity was presented. Key components of this new class of
asymmetric catalysts are the two N-(2-pyridyl)-subsituted N-heterocyclic carbene (PyNHC) chelate
ligands.?®* First, the PyNHC ligands are tightly coordinating ligands which provide a strong ligand
field important for the constitutional and configurational stability of the bis-(PyNHC)Ru unit. Second,
the propeller shape and high rigidity of the bis-(PyNHC)Ru provides an excellent asymmetric

induction. And third, the strong c-donating NHC-ligands* in trans to the coordinated acetonitrile
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ligands are crucial for labilizing the coordinated acetonitrile ligands (trans-effect) thereby ensuring a
high catalytic activity. We also demonstrated that highly efficient catalytic enantioselective synthesis
of key chiral propargylic alcohol intermediates toward enantiomerically pure efavirenz. The Merck
propargylic alcohol intermediate (S)-28a can be obtained indirectly after reduction of the
nitro-derivative (S)-28b, which itself is formed through a catalytic, enantioselective alkynylation in 97%
yield and with 99% ee. The Lonza propargylic alcohol intermediate (S)-28c can be accessed through a
catalytic, enantioselective alkynylation in 99% vyield and with 95% ee with a turnover number
reaching almost 500 and relying only on the addition of catalytic amounts of the base triethylamine.
These synthetic routes might constitute significant improvements over existing protocols and could

contribute to lowering the cost for the production of the important anti-HIV drug efavirenz.
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4.1 Summary

1) Expanding the family of bis-cyclometalated octahedral chiral-at-metal iridium and

rhodium catalysts

Several octahedral chiral-at-metal complexes Ir(Se) and Rh(Se) were successfully synthesized for
expanding our previously developed Lewis acid catalysts based on our established procedures.
Accordingly, the chiral Lewis acid complexes A/A-1r(Se) and A/A-Rh(Se) were synthesized though
the chiral auxiliary-mediated strategy which was developed by our group. The reaction of rac-1r(Se)
or rac-Rh(Se) with the appropriate chiral auxiliary afforded the corresponding auxiliary complexes
A-(S)-3 and A-(S)-3 or A-(R)-4 and A-(R)-4 as a mixture of diastereomers, respectively. The generated
diastereomeric complexes could be resolved by standard silica gel chromatography. Then the

individual enantiomers A/A-Ir(Se) and A/A-Rh(Se) were generated after the protonation by acid.

Increasing the atomic radius

Ir(O)/Rh(O) Ir(S)/Rh(S) Ir(Se)/Rh(Se)

Previous catalysts Previous catalysts New catalysts

Figure 54 Expansion of catalysts library.
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Scheme 17 Chiral auxiliary-mediated asymmetric synthesis of the enantiopure chiral-at-metal
complexes.

We then investigated some reactions to compare their catalytic reactivity with the previous ones.
Michael addition reaction and three photo-induced reactions were tested as summarized below.
Unfortunately, the new catalysts did not have better or even similar performance. Except for Michael
addition reaction, A-Ir(Se) or A-Rh(Se) showed worse activity. We assumed that maybe the

coordination of substrate with Ir(Se) or Rh(Se) is more difficult than its congeners due to higher steric

hinderance.
0
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<\,N CN ipr
\ Y, o

)
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Figure 55 Comparison of catalytic reactions catalyzed by Lewis acid catalysts.
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2)  Synthesis, characterization and reactivity of bis-cyclometalated iridium(l11)/rhodium(l1I)

complexes containing pinene-derived ligands

Chiral ligands mediated four new bis-cyclometalated rhodium(I11) and iridium(l11) complexes were
firstly synthesized in a diastereomerically and enantiomerically pure fashion in our group. Reactivity
studies demonstrated that the rhodium complex contains pinene-derived chiral ligands can serve as a
highly effective catalyst to catalyze the enantioselective alkynylation of 2-trifluoroacetly imidazoles.
The propargy! alcohols were obtained in 55-99% yields with excellent enantioselectivities (94—>99%
ee). Interestingly, the asymmetric induction is mainly controlled by the metal-centered chirality not the
chirality of ligands during the catalytic cycle, and at the same time the rhodium complexes show
higher catalytic activity compared to our previous achiral ligand-based catalysts. Besides, the

introduction of chiral ligand shortens the asymmetric synthesis of chiral octahedral complexes.

>
N
>

N AgPFg, MeCN
v, l Cl 40 °C, overnight
—» M\ N
Y ™
\N I any
MCl; - 3 H,0 chromatographic
resolution
EtO(CH,),0OH/H,0 (3:1) 2
125°C, 36 h

IrPP (M = Ir), RhPP (M = Rh)

Scheme 18 Synthesis of chiral octahedral iridium(111) and rhodium(111) complexes with chiral ligands.
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Figure 56 Selected examples of asymmetric alkynylation of 2-trifluoroacetly imidazoles.
3) Octahedral chiral-at-ruthenium complexes for highly effective asymmetric catalysis

The first example of an octahedral chiral-at-metal ruthenium complex with stable constitution and
configuration was introduced here. The success of the synthesis of these new catalysts is attributed to
the introduction of two PyNHC ligands. On the one hand, the PyNHC ligands as rigid coordinating
ligands provide a suitable environment for the formation of the stable bis-(PyNHC)Ru complex. On
the other hand, the strong o-donating NHC-ligands make the coordinated acetonitrile ligands labile
enough to accelerate the ligand exchange through the trans-effect. As a result, we found that the new
class of catalysts can efficiently catalyze the enantioselective alkynylation of trifluoromethyl ketones
to provide the propargylic alcohols in high yields (up to 99% yield) with excellent enantioselectivities
(up to > 99% ee). Importantly, our new catalysts can be applied to access two kinds of propargylic
alcohol intermediates which can convert to enantiomerically anti-HIV drug efavirenz easily. The
Merck intermediate and the Lonza intermediate were obtained in high yields and with high
enantioselectivities. The gram-scale reactions indicated that the synthetic routes might contribute to

lowering the cost for the production of the important anti-HIV drug efavirenz.
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Figure 57 Selected examples of asymmetric alkynylation of trifluoroacetly ketones.
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Figure 58 Gram-scale synthesis of key intermediates of the anti-HIV drug efavirenz.
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4.2 Outlook

My thesis work mainly focused on the development of new octahedral metal complexes with
metal-centered chirality and their applications in asymmetric catalysis. Several further

investigations can be considered as follows:

1) Explore C(sp®)-H activation reactions catalyzed by octahedral chiral-at-ruthenium
complexes: Asymmetric C(sp®)-H activation is one of the most attractive and promising projects
in organic catalysis nowadays. Ruthenium imido complexes and ruthemium oxo complexes as
high reactivity intermediates responsible for C(sp®)-H activation. Since our newly developed
chiral-at-ruthenium complexes show highly strong trans-effect, it is promising to try some
chiral-at-ruthenium involved asymmetric C(sp®)-H activation reactions.

2) Explore asymmetric photoreactions catalyzed by octahedral chiral-at-ruthenium
complexes: Ru(bpy);** has been widely used as photoredox catalyst and combined with an
asymmetric catalyst, such as organocatalysts or metal-based complexes, to provide the required
stereocontrol and the activation of one substrate in asymmetric photoreactions. It is worthy to
investigate the coordination behaviors of octahedral chiral-at-ruthenium complexes and measure
the redox potentials of ruthenium-based complexes, including the substrate-coordinated
complexes. Then we can adjust the redox potential of them through introducing electron rich or
deficient groups at the fixed position of achiral ligand. And finally, our chiral-at-ruthenium
complexes might serve as a single catalyst to catalyze some asymmetric photoreactions.

3) Explore octahedral base-metal centered catalysts: Recently, the development of first-row
transition metals catalysts became more attractive topic because they are nontoxic, inexpensive
and earth-abundant. Despite the fact that many base-metal catalysts display high reactivity and
selectivity, chiral octahedral complexes of base metals such as iron, cobalt and nickel which
furnish asymmetric catalysis is far less studied. Based on our experiences on asymmetric
synthesis of octahedral chiral-at-metal complexes, it is promising to apply our strategies for the

synthesis of base-metal centered complexes and then inverstigate their properties.
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Chapter 5. Experimental Part

5.1 Materials and Methods

All reactions were carried out under an atmosphere of nitrogen with magnetic stirring unless indicated

otherwise. The catalytic reactions were performed in Schlenk tube.

Solvents and Reagents

Solvents were distilled under nitrogen from calcium hydride (CHCI;, CH,Cl;, CH;CN and DMF),
magnesium turnings/iodine (MeOH) or sodium/benzophenone (Et,O, THF and toluene). HPLC grade
solvents, such as 2-methoxyethanol, ethanol, ethylene glycol and DMSO are used directly without
further drying. All reagents were purchased from Acros, Alfa aesar, Sigma Aldrich, TCI, ChemPur and

Fluorochem and used without further purification.

Chromatographic Methods
The course of the reactions and the column chromatographic elution were monitored by thin layer
chromatography (TLC) [Macherey-Nagel (ALUGRAM®Xtra Sil G/UV254)]. Flash column

chromatography was performed with silica gel from Merck (particle size 0.040-0.063 mm).

Nuclear Magnetic Resonance Spectroscopy (NMR)

'H NMR, proton decoupled *C NMR, and proton coupled **F NMR spectra were recorded on Bruker
Avance 300 system (‘*H NMR: 300 MHz, **C NMR: 75 MHz, *F NMR: 282 MHz) spectrometers at
ambient temperature. Chemical shifts are given in ppm on the ¢ scale, and were determined after
calibration to the residual signals of the solvents, which were used as an internal standard. NMR
standards were used are as follows: 'H NMR spectroscopy: 6 = 7.26 ppm (CDCl;), § = 5.32 ppm
(CD,Cl), § = 3.31 ppm (CD;0D); **C NMR spectroscopy: ¢ = 77.0 ppm (CDCls), 6 = 54.0 ppm
(CD.,Cl,), 6 = 118.26, 1.32 ppm (CD3CN), 6 = 49.0 ppm (CD;0D). *°F NMR spectroscopy: d = 0 ppm
(CFCl3). The characteristic signals were specified from the low field to high field with the chemical
shifts (6 in ppm). "H NMR spectra peak multiplicities indicated as singlet (s), doublet (d), doublet of

doublet (dd), doublet of doublet of doublet (ddd), triplet (t), doublet of triplet (dt), quartet (q),
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multiplet (m). The coupling constant J indicated in hertz (Hz).

High-Performance Liquid Chromatography (HPLC)
Chiral HPLC was performed with an Agilent 1200 Series or Agilent 1260 Series HPLC System. All
the HPLC conditions were detailed in the individual procedures. The type of the columns, mobile

phase and the flow rate were specified in the individual procedures.

Infrared Spectroscopy (IR)
IR measurements were recorded on a Bruker Alpha-P FT-IR spectrometer. The absorption bands were

indicated a wave numbers v (cm™?). All substances were measured as films or solids.

Mass Spectrometry (MS)
High-resolution mass spectra were recorded on a Bruker En Apex Ultra 7.0 TFT-MS instrument using
ESI or APCI or FD technique. lonic masses are given in units of m/z for the isotopes with the highest

natural abundance.

Circular Dichroism Spectroscopy (CD)

CD spectra were recorded on a JASCO J-810 CD spectropolarimeter. The parameters we used as
follows: from 600 nm to 200 nm; data pitch (0.5 nm); band with (1 nm); response (1 second);
sensitivity (standard); scanning speed (50 nm/min); accumulation (3 times). The concentration of the

compounds for the measurements was 0.2 mM. The formula for converting 0 to € is shown as below.

. — &[mdeg]
32980x c(mol/L)xL(cm)

¢ = concentration of the sample; L = thickness of the measurement vessel

Crystal Structure Analysis

Crystal X-ray measurements and the crystal structure analysis were carried out by Dr. Klaus Harms
(Chemistry Department, Philipps University of Marburg). X-ray data were collected with a Bruker 3
circuit D8 Quest diffractometer with MoKa radiation (microfocus tube with multilayer optics) and

Photon 100 CMOS detector. Scaling and absorption correction was performed by using the SADABS"
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software package of Bruker. Structures were solved using direct methods in SHELXS? and refined
using the full matrix least squares procedure in SHELXL-2013® or SHELXL-2014*. The Flack
parameter is a factor used to estimate the absolute configuration of the coumounds.® The hydrogen
atoms were placed in calculated positions and refined as riding on their respective C atom, and Uiso(H)
was set at 1.2 Ueq(Csp?) and 1.5 Ueq(Csp®). Disorder of PFs ions, solvent molecules or methylene

groups were refined using restraints for both the geometry and the anisotropic displacement factors.

Optical Rotation Polarimeter
Optical rotations were measured on a Kriss P8000-T or Perkin-Elmer 241 polarimeter with [a]p®

values reported in degrees with concentrations reported in g/100 mL.
Melting Point determination Apparatus

The uncorrected melting points were determined on a Mettler Toledo MP 70 using one end closed

capillary tubes.
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5.2 Expanding the Family of Bis-Cyclometalated Chiral-at-Metal Iridium

and Rhodium Catalysts

1) Synthesis of benzoselenazole ligand

5-(tert-butyl)-2-phenylbenzo[d][1,3]selenazole (1)

‘Bu
Yk, NaN02 /@/ Fe, AcOH /@/ PhCHO, Se g,
— <0
HoN I 88% yield 80 °C, 30 mins, Cu (10 mol%), KOH
2 02 71% M2 DMSO0,120 °C, 24 h,
s1) s2) 72% A1)

The compound S1 was synthesized following a published procedure with slight modifications.® To a
solution of p-TSOHH,O0 (7.70 g, 447 mmol) in CHCN (60 mL) was added
4-(tert-butyl)-2-nitroaniline (2.894 g, 14.7 mmol). The resulting suspension of amine salt was cooled
to 10-15 <C and to this was added, gradually, a solution of NaNO, (2.06 g, 29.8 mmol) and Kl (6.18 g,
37.2 mmol) in H,O (9 mL). The reaction mixture was stirred at room temperature and monitored by
TLC until the starting material was completely consumed. The reaction mixture was then poured into
H,0O. Saturated aqueous solution of NaHCO; was added until pH reached 9-10. Then the mixture was
treated with Na,S,03 (2 M, 30 mL).The resulted mixture was extracted with CH,CI, and purified by
flash chromatography to obtain the product S1 (4.023 g, 13.2 mmol, yield: 88%, Ry = 0.85,
EtOAc/n-hexane = 1:5) as a yellow oil.

'H NMR (300 MHz, CDCl3) ¢ 7.92 (d, J = 8.3 Hz, 1H), 7.84 (d, J = 2.3 Hz, 1H), 7.28 (dd, J = 4.9, 2.5
Hz, 1H), 1.33 (s, 1H).

3C NMR (75 MHz, CDCl;) ¢ 153.6, 153.1, 141.5, 131.0, 122.8, 82.4, 35.1, 31.0.

IR (film): v (cm™®) 2962, 2871, 1526, 1471, 1349, 1283, 1254, 1115, 1016, 892, 828, 749, 699, 663,
516.

HRMS (ESI, m/z) calcd for CyH1,INO,Na; [M+Na]*: 327.9805, found: 327.9805.

The compound S2 was synthesized following a published procedure with slight modifications.” AcOH
(46 mL) was added to the mixture of S1 (3.27 g, 10.8 mmol) and Fe power (3.2 g, 57.3 mmol) in
EtOH (46 mL). The mixture was degassed for 15 min, and then heated at 100 °C for 40 min. The

reaction mixture was diluted with 100 mL water and extracted with CH,CI, and purified by flash
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chromatography to obtain the product S2 (2.089 g, 7.59 mmol, yield: 70%, R¢ = 0.8, EtOAc/n-hexane
= 1:5) as a white solid.

'H NMR (300 MHz, CDCls) 6 7.58-7.52 (m, 1H), 6.79 (d, J = 2.2 Hz, 1H), 6.54 (dd, J = 8.4, 2.3 Hz,
1H), 4.04 (s, 2H), 1.28 (s, 9H).

3C NMR (75 MHz, CDCl,) ¢ 153.2, 146.5, 138.6, 117.9, 112.3, 80.7, 34.6, 31.3.

IR (film): v (cm™) 3463, 3369, 2958, 2867, 1604, 1558, 1478, 1404, 1363, 1310, 1238, 1202, 1155,
1114, 1074, 1005, 930, 862, 800, 698, 641, 586, 546, 455.

HRMS (ESI, m/z) calcd for CyoH;sIN [M+1]": 276.0244, 277.0276, found: 276.0248, 277.0282.

The compound 1 was synthesized following a published procedure with slight modifications.® To a
solution of S2 (1.376 g, 5.0 mmol) and benzaldehyde (0.637mg, 6 mmol) in dry DMSO (15 mL), Se
power (1.18g, 15 mmol), Cu power (31.8 mg, 0.5 mmol) and KOH (0.561 mg, 10.0 mmol) were added.
The resulting was degassed for 15 min and stirred at 120 °C for 24 h under N, atmosphere. The
reaction mixture was cooled to room temperature and diluted with saturated agq. NH4Cl and extracted
with CH,Cl,. The organic layer was dried over Na,SO, and the solvent was removed under reduced
pressure. The residue was purified by flash chromatography to obtain the product 1 (1.136 g, 3.6 mmol,
yield: 72%, R¢ = 0.9, EtOAc/n-hexane = 1:5) as a yellow solid.

'H NMR (300 MHz, CDCly) 6 8.19 (d, J = 1.9 Hz, 1H), 8.08-7.98 (m, 2H), 7.86 (d, J = 8.4 Hz, 1H),
7.53-7.45 (m, 3H), 7.40 (dd, J = 8.4, 2.0 Hz, 1H), 1.44 (s, 9H).

C NMR (75 MHz, CDCls) 6 172.5, 156.2, 150.1, 136.4, 135.0, 130.9, 129.1, 127.9, 124.2, 123.4,
121.5, 34.9, 31.6.

IR (film): v (cm_l) 2957, 2865, 1540, 1511, 1475, 1448, 1400, 1361, 1307, 1281, 1248, 1207, 1159,
1098, 1074, 1045, 1024, 945, 914, 882, 847, 814, 761, 722, 685, 652, 614, 583, 476.

HRMS (ESI, m/z) calcd for Cy;H1gN;Se; [M+1]": 316.0600, found: 316.0604.

2) Synthesis of benzoselenazole iridium and rhodium complexes rac-1r(Se) and rac-Rh(Se)

rac-1r(Se): The new complex rac-Ir(Se) was synthesized according to a procedure reported by our
group with slight modification.® Accordingly, 5-tert-butyl-2-phenylbenzo[d]selenazole 1 (100 mg,
0.318 mmol) was added to IrClz*3H,0 (54.8 mg, 0.155 mmol) in a mixture of 2-ethoxyethanol and

water (3:1, 6.88 mL). The reaction mixture was heated at 120 <C for 24 h under an atmosphere of
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nitrogen. The resulting precipitate was collected by centrifugation, washed with methanol and dried to
obtain a mixture as a pale orange solid. To the orange solid in CH;CN (20 mL) was added AgPFg (59
mg, 0.233 mmol) in one portion, and then stirred at 60 <C overnight. After cooling to room
temperature, the mixture was filtered. The filtrate was collected, evaporated to dryness and purified by
column chromatograph on silica gel (CH,CI,/CH3;CN = 100:1 to 20:1) to give rac-Ir(Se) (55.1 mg,
0.053 mmol, 34% vyield for two steps, R = 0.4, CH;CN/CH,CI, = 1:10) as an orange solid.

'H NMR (300 MHz, CD,Cl,) ¢ 8.51 (d, J = 1.8 Hz, 2H), 8.04 (d, J = 8.5 Hz, 2H), 7.70-7.61 (m, 4H),
6.96 (td, J = 7.5, 1.0 Hz, 2H), 6.75 (td, J = 7.6, 1.3 Hz, 2H), 6.26 (d, J = 7.6 Hz, 2H), 2.31 (s, 6H),
1.46 (s, 18H).

BC NMR (75 MHz, CD,Cl,) 6 187.4, 152.9, 151.7, 144.5, 142.1, 133.1, 131.8, 130.1, 127.3, 126.3,
125.4,124.0,122.1, 119.1, 35.7, 31.9, 4.2.

F NMR (282 MHz, CD,Cl,) § —71.7, -74.2.

IR (film): v (cm™) 3053, 2957, 2868, 1618, 1580, 1551, 1441, 1410, 1364, 1286, 1249, 1159, 1100,
1024, 982, 927, 833, 759, 731, 717, 662, 553, 460.

HRMS (ESI, m/z) calcd for Cq4Ha,IrN,Se, [M]*: 819.0524, found: 819.0528.

rac-Rh(Se): The metal complex rac-Rh(Se) was synthesized according to a procedure reported by our
group with some modification.’® Accordingly, 5-tert-butyl-2-phenylbenzo[d]selenazole 1 (213 mg,
0.678 mmol) was added to RhCl3*3H,0 (69 mg, 0.331 mmol) in a mixture of 2-ethoxyethanol and
water (3:1). The reaction mixture was heated at 110 < for 24 h under an atmosphere of nitrogen.
Cooling to room temperatue and water was added. The resulting precipitate was collected by
centrifugation, dried to obtain a mixture as a pale brown solid. To the brown solid in CH3CN (5 mL)
was added AgPF¢(125.6 mg, 0.496 mmol) in one portion, and then stirred at 60 <C overnight. After
cooling to room temperature, the mixture was filtered. The filtrate was collected, evaporated to
dryness and purified by column chromatograph on silica gel (CH,CI,/CHsCN = 20:1) to give
rac-Rh(Se) (92 mg, 0.113 mmol, 34% yield for two steps, R = 0.4, CH;CN/CH,Cl, = 1:10) as a pale
yellow solid.

'H NMR (300 MHz, CD,Cl,) 6 8.62 (s, 2H), 8.04 (d, J = 8.5 Hz, 2H), 7.71-7.59 (m, 4H), 7.03 (td, J =
7.5,0.9 Hz, 2H), 6.85 (td, J = 7.7, 1.4 Hz, 2H), 6.29 (d, J = 7.8 Hz, 2H), 2.15 (s, 6H), 1.44 (s, 18H).

C NMR (75 MHz, CD,Cl,) ¢ 182.7, 152.9, 151.5, 143.7, 133.9, 131.4, 130.8, 127.6, 126.0, 125.5,
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125.0, 122.6, 122.5, 119.4, 35.7, 31.8, 3.7.

E NMR (282 MHz, CD,Cl,) 6 -71.6, ~74.1.

HRMS (ESI, m/z) calcd for Cs4H3,N,RhSe* [M—PF¢]*: 730.9945, found: 730.9952.

IR (film): v (Cmfl) 3573, 2958, 2867, 1618, 1577, 1468, 1436, 1364, 1289, 1253, 1160, 1102, 1025,
979, 926, 836, 755, 712, 660, 554, 456.

3) Iridium auxiliary complexes A-(S)-3 and A-(S)-3

+ PRy
SthB—ul 6 S tBu ’BUQSe
sSgacs
N Me N 'I'Pr
OH \“\O QO“,’H | \\\\
(I'\N\ DCM, Et3N, r.t., overnight (:gl =N ;i)
g

rac-lr(Se) A~(S)-3 (39%) A-(S)-3 (42%)

7, /,/

C/
//,, ., @ \\\
Y

N
N
\\

The new iridium auxiliary complexes A-(S)-3 and A-(S)-3 were synthesized according to our reported
method with some modification.® To a solution of rac-Ir(Se) (164 mg, 0.16 mmol) in CH,Cl, (8.0 mL),
the chiral auxiliary (S)-2 (35.5 uL, 0.188 mmol) and Et;N (65.6 uL, 0.470 mmol) were added. The
mixture was stirred at room temperature overnight. The solvent was removed and the residue was
subjected to a flash silica gel chromatography (EtOAc/n-hexane = 1:25 to 1:10) to separate the two
diastereomers. The first eluting diastereomer was assigned as A-(S)-3 (red solid, 64.6 mg, 0.062 mmol,
39%, R = 0.75, EtOAc/n-hexane = 1:5) and the second eluting diastereomer was assigned as A-(S)-3

(red solid, 68.9 mg, 0.066 mmol, 42%, R = 0.5, EtOAc/n-hexane = 1:5).

A~(S)-3: *H NMR (300 MHz, CD,Cl,) 5 9.30 (d, J = 1.8 Hz, 1H), 7.86 (dd, J = 12.7, 5.1 Hz, 2H), 7.74
(dd, J = 11.6, 8.1 Hz, 2H), 7.61 (d, J = 7.6 Hz, 1H), 7.42 (ddd, J = 8.3, 4.3, 1.7 Hz, 2H), 7.00 (d, J =
7.8 Hz, 2H), 6.90 (dd, J = 7.9, 7.2 Hz, 3H), 6.69 (dt, J = 15.0, 7.5 Hz, 2H), 6.55 (d, J = 8.5 Hz, 1H),
6.24 (d, J = 7.7 Hz, 1H), 6.04 (t, J = 7.4 Hz, 1H), 4.39 (dd, J = 7.7, 2.2 Hz, 1H), 3.43-3.30 (m, 1H),
2.96 (dd, J = 11.7, 1.8 Hz, 1H), 1.47 (s, 9H), 1.17 (s, 9H), 0.40 (d, J = 7.0 Hz, 3H), 0.10 (d, J = 6.9 Hz,
3H).

BC NMR (75 MHz, CD,Cl,) 6 186.5, 185.3, 171.0, 170.1, 154.0, 152.9, 152.1, 152.0, 151.0, 149.9,
146.5, 145.9, 137.1, 1335, 132.8, 132.5, 130.7, 129.9, 129.4, 129.0, 127.7, 127.5, 125.5, 124.8, 124.3,
124.0, 123.6, 122,54, 122.47, 121.2, 120.7, 118.2, 113.6, 83.7, 35.5, 35.4, 32.1, 31.7, 30.3, 28.6, 20.3,
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15.1.

CD (MeOH): A, nm (A, M ecm™) 463 (—25), 345 (+43), 315 (-15), 287 (-12), 269 (+16), 253 (-7),
241 (+17), 229 (—43), 215 (+146).

A-(S)-3: 'H NMR (300 MHz, CD,Cl,) 6 9.05 (d, J = 1.8 Hz, 1H), 8.03 (d, J = 1.7 Hz, 1H), 7.89 (d, J =
8.4 Hz, 1H), 7.78 (d, J = 8.5 Hz, 1H), 7.67 (d, J = 7.6 Hz, 1H), 7.59 (dt, J = 8.1, 4.1 Hz, 1H), 7.46 (dd,
J =85, 1.9 Hz, 1H), 7.37 (dd, J = 8.5, 1.8 Hz, 1H), 7.26 (dd, J = 8.0, 1.7 Hz, 1H), 6.94-6.79 (m, 3H),
6.72 (td, J = 7.5, 1.2 Hz, 1H), 6.66-6.57 (m, 2H), 6.50-6.44 (m, 1H), 6.33 (d, J = 7.5 Hz, 1H),
6.22-6.14 (m, 1H), 3.51 (ddd, J = 8.5, 7.3, 4.4 Hz, 1H), 2.95 (dd, J = 11.2, 7.1 Hz, 1H), 2.50 (dd, J =
11.2, 8.7 Hz, 1H), 1.28 (s, 9H), 1.12 (s, 9H), 0.75 (d, J = 6.7 Hz, 3H), 0.24 (d, J = 7.0 Hz, 3H).

BC NMR (75 MHz, CD,Cl,) ¢ 187.1, 186.0, 171.2, 168.9, 153.5, 153.1, 152.6, 151.0, 148.9, 145.7,
145.6, 136.1, 133.6, 132.7, 132.1, 130.7, 130.6, 129.7, 129.6, 127.8, 127.0, 125.2, 125.0, 124.4, 124.3,
123.9,122.4,122.3, 121.12, 121.09, 119.8, 113.3, 84.1, 35.6, 35.5, 31.9, 31.6, 31.2, 29.7, 21.1, 18.5.
CD (MeOH): A, nm (Ag, M ecm™) 350 (—34), 319 (+19), 285 (+16), 271 (-8), 253 (+11), 229 (+88),
216 (-127).

IR (film): v (cm™) 3050, 2953, 2863, 1732, 1591, 1552, 1522, 1460, 1435, 1408, 1354, 1284, 1238,

1197, 1151, 1121, 1010, 976, 925, 883, 844, 809, 746, 732, 715, 661, 634, 579, 557.
HRMS (ESI, m/z) calcd for CusHalrN3OSSe,Na [M+Na]™: 1062.1221, found: 1062.1221.

3) Rhodium auxiliary complexes A-(R)-4 and A-(R)-4

—|+ PFe

s SthB” B QSe

1, o :

N
//,, \\\ (R) -2' ‘“u,, ' \\\\09 o) in, ‘ ‘\\\\\

“Rh’

\ \ N

| N\\\C K,CO3, EtOH, 70 °C l

/N “Me Ph N\
Se@JBu tBu@Se

rac-Rh(Se) A-(R)-4 (45%) A-(R)-4 (42%)

The new rhodium auxiliary complexes A-(R)-4 and A-(R)-4 were synthesized according to a reported
method with some modification.'® A mixture of rac-Rh(Se) (72.2 mg, 0.076 mmol), the chiral
auxiliary (R)-2' (23.8 mg, 0.084 mmol) and K,CO; (31.3 mg, 0.226 mmol) in EtOH (6.7 mL) was
heated at 70 <C for 18 h. Afterwards, the reaction mixture was cooled to room temperature and
concentrated to dryness. The residue was extracted by CH,Cl,, and the filtrate was evaporated to give
the mixture of two diastereoisomers, which was then washed by EtOH (8 < 8 mL) to give A-(R)-4
(17.1 mg, 0.016 mmol, 42% yield, R¢ = 0.5, EtOAc/n-hexane = 1:4) as a yellow solid. The filtrate was

concentrated and subjected to a flash chromatography on silica gel (n-hexane/CH,Cl, = 1:10) to give
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A-(R)-4 (18.3 mg, 0.017 mmol, 45% yield, R¢ = 0.35, EtOAc/n-hexane = 1:4) as a yellow solid. Note:
A-(R)-4 is soluble in EtOH; A-(R)-4 is insoluble in EtOH.

A-(R)-4: *H NMR (300 MHz, CD,Cl,) 6 9.34 (d, J = 1.9 Hz, 1H), 8.53 (d, J = 1.8 Hz, 1H), 7.95 (d, J =
8.4 Hz, 1H), 7.80 (d, J = 8.5 Hz, 1H), 7.59 (dd, J = 7.6, 1.2 Hz, 1H), 7.50 (dd, J = 8.5, 2.0 Hz, 1H),
7.43 (dd, J = 8.5, 1.9 Hz, 1H), 7.06 (dd, J = 7.5, 1.4 Hz, 1H), 6.98-6.89 (m, 4H), 6.87-6.78 (m, 3H),
6.75-6.67 (m, 1H), 6.58-6.46 (m, 2H), 6.37-6.30 (m, 2H), 6.22 (d, J = 8.6 Hz, 1H), 5.76 (ddd, J =
11.5,7.9, 0.9 Hz, 1H), 4.41-4.27 (m, 1H), 4.14-4.05 (m, 1H), 3.88 (dd, J = 12.5, 8.3 Hz, 1H), 1.37 (s,
9H), 1.23 (s, 9H).

C NMR (75 MHz, CD,Cl,) 6 182.11, 182.07, 175.4, 175.3, 169.4, 169.0, 168.5, 168.1, 167.6, 164.9,
161.5, 152.8, 152.8, 151.3, 144.3, 143.8, 138.2, 135.4, 133.6, 133.1, 132.9, 130.3, 130.13, 130.07,
129.7, 128.3, 127.9, 127.6, 127.4, 127.1, 125.2, 125.1, 124.63, 124.56, 123.5, 122.6, 121.1, 119.4,
119.31, 119.27, 104.5, 104.4, 98.8, 98.5, 75.0, 70.7, 35.8, 35.6, 31.9, 31.7.

A-(R)-4: *H NMR (300 MHz, CD,Cl,) § 9.14 (d, J = 1.7 Hz, 1H), 8.06 (d, J = 1.5 Hz, 1H), 7.79 (d, J =
8.5 Hz, 1H), 7.62 (d, J = 8.4 Hz, 1H), 7.56 (d, J = 7.1 Hz, 1H), 7.52-7.41 (m, 2H), 7.37 (dd, J = 8.5,
1.8 Hz, 1H), 7.02-6.70 (m, 8H), 6.43-6.30 (m, 4H), 5.97 (d, J = 7.7 Hz, 1H), 5.71 (dt, J = 30.2, 15.2
Hz, 1H), 4.96-4.78 (m, 2H), 4.10-3.89 (m, 1H), 1.46 (s, 9H), 1.28 (s, 9H).

BC NMR (75 MHz, CD,Cl,) ¢ 183.01, 182.97, 181.39, 181.35, 175.5, 175.4, 170.6, 170.2, 168.2,
167.8, 166.33, 166.29, 165.4, 162.0, 153.1, 152.8, 151.6, 151.2, 144.8, 141.4, 136.1, 133.6, 133.1,
132.9, 131.1, 130.0, 129.8, 129.6, 128.3, 128.0, 127.4, 127.2, 125.5, 124.4, 124.0, 123.9, 123.5, 122.9,
122.4,120.3, 120.2, 118.6, 98.9, 98.5, 76.2, 69.7, 35.4, 31.91, 31.86.

IR (film): v (cm™) 3053, 2955, 2862, 1618, 1577, 1530, 1441, 1369, 1286, 1219, 1156, 1094,

1026, 972, 919, 843, 812, 787, 749, 697, 661, 624, 578, 527, 458.

HRMS (ESI, m/z) calcd for C4H4sFN3;O,RhSe, [M+H]": 988.0810, found: 988.0809.

A-(R)-4:

CD (MeOH): A, nm (Ag, M cm™) 429 (—23), 343 (+18), 300 (—43), 276 (+27), 263 (+19), 255 (—22).
A-(R)-4:

CD (MeOH): &, nm (Ae, Mem™) 422 (+27), 351 (~46), 304 (+47), 277 (—30), 264 (-9), 244 (-39).
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4) Synthesis of non-racemic iridium/rhodium catalysts

A~(S)-3 A-(S)-3 A-(R)-4 A-(R)-4
NH,4PFg, CHsCN TFA, CH3CN
50 °C, 16 h NH4PFg
rt,1h
—+PFg | ]+ PFg +PFs | ]+ PF
6 6 +PFg +PFg’
Se@tBu tBuQse Se@tBu 6 tBUQSe °
\N N/ \N N/
,/C,Me Me\C\\ ’/C,Me Me\C\\
y, \\\\N 4 = N/’I: R W y, ‘\\N 4 = NI,, W
R RH h “RA
\N N ~ v
c C¢N NSC CZN
_N “Me Me” Ny _N “Me Me” Ny
Se@—tsu tBu—Gse Se@—tsu tBu@Se
A-Ir(Se) A-Ir(Se) A-Rh(Se) A-Rh(Se)

A suspension of the iridium auxiliary complex A-(S)-3 (61.7 mg, 0.060 mmol) or A-(S)-3 (65.3 mg,
0.063 mmol) and NH4PF (96.8 mg, 0.6 mmol) or NH4PF¢ (102.7 mg, 0.63 mmol) in acetonitrile (10.0
mL) was heated at 50 °C for 16 h. The reaction mixture was concentrated to dryness and subjected to
flash silica gel chromatography (CH,CI,/CH;CN = 100:1 to 15:1) to give the enantiopure catalyst
A-1r(Se) (52.7 mg, 0.058 mmol, 98%) or A-Ir(Se) (55.1 mg, 0.061 mmol, 97%) as a orange solid. All
other spectroscopic data of enantiopure ruthenium catalysts were in agreement with the racemic
catalysts. The absolute configurations were assigned by comparison with the analogue complexes
A-Ir(S) and A-1r(S).°

A-1r(Se): CD (MeOH): A, nm (Ae, M em™) 469 (-15), 362 (+43), 293 (-34), 260 (+17), 228 (-87),
216 (+199).

A-1r(Se): CD (MeOH): A, nm (Ag, M cm™) 470 (+14), 362 (-45), 292 (+32), 260 (—21), 228 (+84),
216 (~209).

To a suspension of A-(S)-4 (47.0 mg, 0.048 mmol) or A-(R)-4 (32.2 mg, 0.033 mmol), in CH;CN (3
mL) was added TFA (10 eq) in one portion and stirred at room temperature for 0.5 h. The reaction
mixture was evaporated to dryness, redissolved in CH3;CN, followed by the addition of excess NH,PFg
(30 eq), and then stirred at room temperature for another 0.5 h. The mixture was filtered by a thin pad
of silica gel, the pale yellow filtrate was concentrated, and then subjected to the column
chromatography on silica gel (CH,CI,/CH;CN = 100:1 to 5:1) to give the enantiopure catalysts
A-Rh(Se) (38.4 mg, 0.047 mmol, 98% yield) or A-Rh(Se) (26.0 mg, 0.032 mmol, 98% vyield) as pale
yellow solid. All other spectroscopic data of enantiopure ruthenium catalysts were in agreement with

the racemic catalysts. The absolute configurations were assigned by comparison with the analogue
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complexes A-Rh(S) and A-Rh(S)."

A-Rh(Se): CD (MeOH): A, nm (Ae, M'em™) 412 (-47), 371 (+71), 358 (+65), 306 (-112), 269 (+34),
246 (+55), 231 (—31), 212 (+93).

A-Rh(Se): CD (MeOH): &, nm (Ae, Mcm™) 413 (+38), 371 (—63), 355 (-58), 305 (+92), 266 (—32),
244 (=50), 230 (+22), 212 (-83).

5.3 Synthesis, Characterization and Reactivities of Bis-Cyclometalated

Iridium(111)/Rhodium(l11) Complexes Containing Pinene-Derived Ligands

5.3.1 Synthesis of the iridium and rhodium catalysts IrPP and RhPP

a) Synthesis of the 2-phenyl-5,6-(S,S)-pinenopyridine ligand

Z
o)
N
. . @)‘\/ °
\@ 10,, Ac,0, DMAP, TPP ig\ Br

rt, DCM, o NH,OAc, AcOH
75% 110 °C, 24 h
85%

(1R)-(+)-a-Pinene pinocarvone (S,5)-PP
Pinocarvone: Pinocarvone was synthesized following a published procedure with some
modifications.™ Acetic anhydride (1.324 g, 13.0 mmol) and pyridine (0.500 g, 6.3 mmol) were added
to the mixture of tetraphenylporphine (TPP) (8.0 mg, 1.3 umol), DMAP (31.0 mg, 0.3 mmol) and
(1R)-(+)-a-pinene (1.720 g, 12.6 mmol) in CH,CI, (11 mL). The suspension was stirred at room
temperature for 18 h under 'O, which is generated by 2 x 20W white lights. The mixture was then
diluted with CH,CI, and washed successively with saturated NaHCO3, 1 N HCI, and saturated CuSO,.
The organic fraction was thoroughly washed with water and dried over Na,SO,. After concentration,
the residue was purified by silica gel column (EtOAc/n-hexane = 1:30) to yield pinocarvone as a
purple oil (1.416 g, 9.4 mmol, 75%, R = 0.5, EtOAc/n-hexane = 1:10).

'H NMR (300 MHz, CD,Cl,) 6 5.90 (d, J = 1.8 Hz, 1H), 4.99 (d, J = 1.8 Hz, 1H), 2.83-2.58 (m, 3H),
2.57-2.40 (m, 1H), 2.23-2.17 (m, 1H), 1.36 (s, 3H), 1.28 (d, J = 10.3 Hz, 1H), 0.80 (s, 3H).
BC NMR (75 MHz, CD,Cl,) 6 199.9, 150.1, 117.2, 49.0, 43.0, 41.3, 39.3, 33.0, 26.3, 21.9.

Al spectroscopic data are in agreement with the literature.*
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(S,5)-PP: (S,S)-PP was synthesized following a published procedure with slight modifications.'? The
mixture of phenacylpyridinium bromide (2.781 g, 10.0 mmol), anhydrous ammonium acetate (6.630 g,
86.0 mmol) and pinocarvone (1.362 g, 9.1 mmol) in acetic acid (6.6 mL) was heated at 110 <C for 24 h.
After cooling to room temperature, water was then added and the mixture was extracted with ethyl
acetate. The combined organic layers were washed successively with water, brine and dried over
Na,SO,4 and concentrated. The residue was purified by silica gel chromatograph (EtOAc/n-hexane =
1:30) to yield 2-phenyl-5,6-(S,S)-pinenopyridine (S,S)-PP as a white solid (1.917 g, 7.7 mmol, 85%, R¢
= 0.5, EtOAc/n-hexane = 1:10).

'H NMR (300 MHz, CDCl3) & 7.99 (dd, J = 8.3, 1.3 Hz, 2H), 7.57-7.33 (m, 4H), 7.33-7.21 (m, 1H),
3.23 (d, J = 2.7 Hz, 2H), 2.81 (t, J = 5.7 Hz, 1H), 2.73 (dt, J = 9.4, 5.8 Hz, 1H), 2.52-2.29 (m, 1H),
1.45 (s, 3H), 1.34 (d, J = 9.5 Hz, 1H), 0.72 (s, 3H).

3C NMR (75 MHz, CDCl5) § 156.9, 154.9, 140.5, 140.1, 133.7, 128.7, 128.3, 126.8, 117.3, 46.5, 40.4,
39.7,36.9, 32.1, 26.2, 21.5.

All spectroscopic data are in agreement with the literature.™

b) Synthesis of the metal complexes

Iridium dimer complexes: Iridium dimer complexes were synthesized following a published
procedure with slight modifications."* The mixture of (S,S)-PP (374.0 mg, 1.50 mmol) and iridium
chloride hydrate (176.3 mg, 0.50 mmol) in a mixture of 2-ethoxyethanol/water (3:1, 23 mL) was
heated at 125 <C for 36 h under nitrogen. After removal of the solvent, the residue was subjected to
flash silica gel chromatography (EtOAc/n-hexane = 1:20) to separate the diastereomers. The first
eluting diastereomer was assigned as AA-2,, (red solid, 106.4 mg, 0.073 mmol, 29%) and the second
eluting diastereomer was assigned as AA-2, (red solid, 134.8 mg, 0.093 mmol, 37%). The A- and A-
configurations of the diastereomers were confirmed by the single crystal structures of A-IrPP and
A-1TPP.

AA-2,::*H NMR (300 MHz, CD,Cl,) & 7.66 (d, J = 8.0 Hz, 4H), 7.54 (dd, J = 7.8, 1.3 Hz, 4H), 7.42 (d,
J = 8.0 Hz, 4H), 6.95-6.83 (m, 4H), 6.71-6.60 (m, 4H), 6.04 (dd, J = 7.9, 0.9 Hz, 4H), 4.69 (dd, J =
18.5, 2.4 Hz, 4H), 2.90 (t, J = 5.7 Hz, 4H), 2.77 (dd, J = 18.6, 3.0 Hz, 4H), 2.71-2.61 (m, 4H),

2.31-2.25 (m, 4H), 1.42 (s, 12H), 1.23 (d, J = 9.6 Hz, 4H), 0.93 (s, 12H).

C NMR (75 MHz, CD,Cl,) ¢ 164.3, 161.1, 145.6, 142.8, 135.5, 134.9, 133.3, 128.5, 123.8, 122.7,
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115.6, 47.6, 41.0, 39.3, 37.9, 32.5, 26.0, 22.4.

CD (MeOH): A, nm (Ae, M'cm™) 386 (—67), 352 (+120), 306 (-71), 285 (~94), 255 (+157), 230
(+25).

AA-2,:: *H NMR (300 MHz, CD,Cl,) & 7.68 (d, J = 8.0 Hz, 4H), 7.56 (dd, J = 7.8, 1.4 Hz, 4H), 7.45 (d,
J =8.0 Hz, 4H), 6.90 (ddd, J = 8.3, 7.5, 1.1 Hz, 4H), 6.68-6.56 (m, 4H), 6.11-6.00 (m, 4H), 4.72 (dd,
J =185, 3.3 Hz, 4H), 2.91 (t, J = 5.7 Hz, 4H), 2.81-2.71 (m, 4H), 2.66 (dd, J = 18.5, 2.4 Hz, 4H),
2.32-2.26 (M, 4H), 1.47 (d, J = 9.6 Hz, 4H), 1.40 (s, 12H), 0.70 (s, 12H).

C NMR (75 MHz, CD,Cl,) 6 163.8, 160.7, 145.5, 142.9, 135.6, 135.3, 133.8, 128.2, 123.9, 122.7,
115.6, 47.4, 40.9, 40.3, 37.2, 31.8, 26.3, 21.9.

CD (MeOH): &, nm (A, M'cm™) 386 (+84), 351 (-99), 307 (+66), 284 (+73), 255 (~146), 231 (+2).
IR (film): v (cm™) 3049, 2922, 2868, 2019, 1595, 1576, 1462, 1437, 1420, 1385, 1218, 1122, 1074,
1028, 949, 836, 822, 773, 734, 719, 669, 449.

HRMS (ESI, m/z) calcd for C7,H7,Cl;N,lr, [M/2—CI]*: 689.2508, found: 689.2517.

Rhodium dimer complexes: The mixture of (S,S)-PP (748.0 mg, 3.0 mmol) and rhodium chloride
hydrate (209.3 mg, 0.79 mmol) in a mixture of 2-ethoxyethanol/water (3:1, 46 mL) was heated at
125 <T for 36 h under nitrogen. After removal of the solvent, the residue was subjected to flash silica
gel chromatography (EtOAc/n-hexane = 1:20) to separate the diastereomers. The first eluting
diastereomer was assigned as AA-2r, (orange solid, 115.3 mg, 0.091 mmol, 23%) and the second
eluting diastereomer as AA-2gr, (orange solid, 156.9 mg, 0.124 mmol, 31%). The A- and A-
configurations of the diastereomers were confirmed by the single crystal structures of A-RhPP and
A-RhPP.

AA-2gn: *H NMR (300 MHz, CD,Cl,) 6 7.72-7.58 (m, 8H), 7.50-7.41 (m, 4H), 7.00 (tt, J = 12.6, 6.3
Hz, 4H), 6.83-6.71 (m, 4H), 6.18 (dt, J = 13.0, 6.5 Hz, 4H), 4.63 (dd, J = 18.6, 2.5 Hz, 4H), 2.90-2.82
(m, 8H), 2.72-2.65 (M, 4H), 2.33-2.27 (m, 4H), 1.42 (s, 12H), 1.21 (d, J = 9.6 Hz, 4H), 0.90 (s, 12H).

C NMR (75 MHz, CD,Cl,) 6 161.3, 160.5, 159.2, 158.7, 145.4, 143.2, 135.5, 134.7, 128.8, 124.1,

123.8, 115.9, 47.6, 40.8, 39.5, 37.9, 32.7, 26.0, 22.3.
CD (MeOH): %, nm (Ae, M cm™) 436 (—20), 367 (+15), 336 (+76), 289 (—23), 264 (+77), 211 (+143).
AA-2gn - *H NMR (300 MHz, CD,Cl,) 6 7.72-7.61 (m, 8H), 7.49 (d, J = 8.0 Hz, 4H), 7.02 (td, J = 7.6,
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1.1 Hz, 4H), 6.77 (td, J = 7.6, 1.5 Hz, 4H), 6.25 (dt, J = 7.9, 1.1 Hz, 4H), 4.71 (dd, J = 18.6, 3.3 Hz,
4H), 2.90 (t, J = 5.7 Hz, 4H), 2.84-2.68 (m, 8H), 2.35-2.29 (m, 4H), 1.47 (d, J = 9.7 Hz, 4H), 1.41 (s,
12H), 0.70 (s, 12H).

C NMR (75 MHz, CD,Cl,) 6 161.1, 160.2, 159.5, 159.0, 145.3, 143.3, 135.7, 135.1, 128.6, 124.2,
123.9, 116.0, 47.4, 40.9, 40.2, 37.2, 31.9, 26.2, 21.9.

CD (MeOH): &, nm (Ag, Mlem™) 434 (+24), 367 (=33), 335 (~50), 289 (+23), 264 (—80), 212 (~120).
IR (film): v (cm™) 3052, 2922, 1735, 1592, 1574, 1466, 1436, 1420, 1385, 1219, 1123, 1073, 1022,
948, 837, 822, 773, 734, 666, 650, 625, 427.

HRMS (ESI, m/z) calcd for C7,H7,Cl,N,Rh, [M—CI]*: 1233.3550, found: 1233.3554.

A-IrPP and A-IrPP: A suspension of AA-2, (103.0 mg, 0.07 mmol) and AgPF; (45.0 mg, 0.18 mmol)
in acetonitrile (14.2 mL, 5 mM), or AA-2,, (73.0 mg, 0.05 mmol) and AgPFs (32.0 mg, 0.13 mmol) in
acetonitrile (10.0 mL, 5 mM) was heated at 40 °C overnight under nitrogen in the dark. The reaction
mixture was concentrated to dryness and subjected to flash silica gel chromatography (CH,Cl,/CH;CN
= 100:1 to 20:1) to give the diastereomeric pure catalyst A-1rPP (125.0 mg, 0.14 mmol, 96%, R;= 0.3,
CH3CN/CH,CI, = 1:20) or A-1rPP (90.0 mg, 0.10 mmol, 98%, R¢ = 0.3, CH3CN/CH,CI, = 1:20) as a
yellow solid.

A-IrPP: *H NMR (300 MHz, CD,Cl,) 6 7.68 (d, J = 8.1 Hz, 2H), 7.56-7.43 (m, 4H), 6.90 (td, J = 7.6,
1.2 Hz, 2H), 6.73 (td, J = 7.5, 1.3 Hz, 2H), 6.16 (dd, J = 7.7, 0.9 Hz, 2H), 3.55 (dd, J = 18.2, 2.7 Hz,
2H), 3.37 (dd, J = 18.2, 3.1 Hz, 2H), 2.96 (t, J = 5.7 Hz, 2H), 2.88-2.74 (m, 2H), 2.56-2.50 (m, 2H),

2.20 (s, 6H), 1.50 (s, 6H), 1.39 (d, J = 9.7 Hz, 2H), 0.80 (s, 6H).

C NMR (75 MHz, CD,Cl,) ¢ 166.0, 160.8, 146.2, 143.3, 140.9, 137.0, 132.1, 129.6, 124.0, 123.4,

116.8, 47.6, 41.2, 41.0, 39.2, 31.9, 25.6, 21.3, 3.5.
CD (MeOH): &, nm (Ae, M cm™) 432 (-9), 334 (+38), 288 (—10), 263 (+39), 211 (+70).

A-1rPP:*H NMR (300 MHz, CD,Cl,) 6 7.69 (d, J = 8.1 Hz, 2H), 7.55-7.47 (m, 4H), 6.90 (td, J = 7.6,
1.1 Hz, 2H), 6.70 (td, J = 7.5, 1.3 Hz, 2H), 6.22 (dd, J = 7.7, 0.9 Hz, 2H), 3.64 (dd, J = 18.2, 3.2 Hz,
2H), 3.23 (dd, J = 18.2, 2.6 Hz, 2H), 3.01-2.90 (m, 2H), 2.88-2.77 (m, 2H), 2.54-2.48 (m, 2H), 2.21
(s, 6H), 1.48 (s, 6H), 1.34 (d, J = 9.8 Hz, 2H), 0.86 (s, 6H).

C NMR (75 MHz, CD,Cl,) 6 165.9, 160.7, 146.3, 143.4, 141.0, 137.1, 132.6, 129.3, 124.0, 123.4,

116.8, 47.7,41.4, 40.8, 38.9, 32.3, 26.0, 21.8, 3.4.

85



Chapter 5: Experimental Part

CD (MeOH): A, nm (Ag, M'em™) 432 (+12), 334 (-28), 288 (+12), 264 (-43), 211 (-65).
IR (film): v (cm™) 2927, 1596, 1470, 1440, 1388, 1218, 1190, 1127, 1032, 833, 782, 747, 556.
HRMS (ESI, m/z) calcd for CyHsglrN, [M—(CH3CN),—PFg]": 689.2508, found: 689.2519.

A-RhPP and A-RhPP: A suspension of AA-2g, (135.0 mg, 0.11 mmol) and AgPFs (67.0 mg, 0.27
mmol) in acetonitrile (20.5 mL, 5 mM), or AA-2g, (107.0 mg, 0.08 mmol) and AgPFg (53.0 mg, 0.21
mmol) in acetonitrile (16.8 mL, 5 mM), was heated at 40 °C overnight under nitrogen in the dark. The
reaction mixture was concentrated to dryness and subjected to a flash silica gel chromatography
(CH,CI,/CHsCN = 100:1 to 20:1) to give the diastereomeric pure catalyst A-RhPP (168.0 mg, 0.20
mmol, 96%, Rs= 0.3, CH;CN/CH,CI, = 1:20) or A-RhPP (133.0 mg, 0.16 mmol, 96%, R; = 0.3,
CH3CN/CH,CIl, = 1:20) as a yellow solid.

A-RhPP: *H NMR (300 MHz, CD,Cl,) 5 7.69 (d, J = 8.0 Hz, 2H), 7.56 (d, J = 8.0 Hz, 4H), 6.98 (td, J
=75, 1.1 Hz, 2H), 6.79 (td, J = 7.7, 1.4 Hz, 2H), 6.18 (d, J = 7.8 Hz, 2H), 3.56 (dd, J = 18.3, 2.5 Hz,
2H), 3.35 (dd, J = 18.3, 3.0 Hz, 2H), 2.96 (t, J = 5.7 Hz, 2H), 2.89-2.69 (m, 2H), 2.64-2.39 (m, 2H),
2.05 (s, 6H), 1.49 (s, 6H), 1.36 (d, J = 9.7 Hz, 2H), 0.79 (s, 6H).

C NMR (75 MHz, CD,Cl,) 6 162.5, 159.9, 159.4, 159.0, 145.6, 143.9, 136.7, 133.1, 129.6, 124.2,

124.1,121.3, 117.0, 47.6, 40.8, 39.9, 39.2, 32.1, 25.7, 21.4, 3.2.
CD (MeOH): &, nm (Ag, M™cm™) 389 (-31), 352 (57), 328 (+43), 305 (-32), 286 (—42), 258 (+73).

A-RhPP: 'H NMR (300 MHz, CD,Cl,) 6 7.71 (d, J = 8.0 Hz, 2H), 7.66-7.45 (m, 4H), 6.9 (td, J = 7.6,
1.1 Hz, 2H), 6.77 (td, J = 7.7, 1.4 Hz, 2H), 6.25 (d, J = 7.8 Hz, 2H), 3.63 (dd, J = 18.3, 3.1 Hz, 2H),
3.23 (dd, J = 18.3, 2.4 Hz, 2H), 2.96 (t, J = 5.7 Hz, 2H), 2.88-2.76 (m, 2H), 2.51 (dt, J = 9.0, 2.9 Hz,
2H), 2.06 (s, 6H), 1.47 (s, 6H), 1.32 (d, J = 9.8 Hz, 2H), 0.83 (s, 6H).

BC NMR (75 MHz, CD,Cl,) 6 162.3, 159.9, 159.7, 159.2, 145.6, 143.8, 136.7, 133.3, 129.3, 124.3,
124.1,121.1, 117.1, 47.6, 41.1, 39.8, 39.1, 32.4, 26.0, 21.8, 3.1.

CD (MeOH): &, nm (Ae, M cm™) 386 (+43), 351 (~50), 328 (~32), 307 (+34), 286 (+37), 258 (~72).
IR (film): v (cm™) 2937, 1595, 1577, 1471, 1439, 1422, 1219, 1126, 1029, 833, 780, 746, 556, 431.

HRMS (ESI, m/z) calcd for CagHasRNN, [M—(CHsCN),—PF4]*: 599.1934, found: 599.1930.
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5.3.2. Synthesis of 2-fluoroacetyl imidazoles

General procedure for the preparation of the 2-trifluoroacetyl imidazoles: 11a was synthesized
according to our recently published procedure.”® 11b—11f were synthesized according to reported
procedures with some modifications.’® Accordingly, trifluoroacetic anhydride (1.2 eq) was added
dropwisely to a stirred solution of imidazole in toluene (0.1 M referring to the imidazole) at —20 <C
over 20 min, and then EtsN (1.2 eq) was added slowly. After stirring for 6-8 h, the resulting mixture
was slowly warmed to room temperature and stirred overnight. After removal of the solvent in vacuo,
the residue was purified by flash chromatography on silica gel (EtOAc/n-hexane = 1:10 to 1:5).

2,2,2-Trifluoro-1-(1-isopropyl-1H-imidazol-2-yl)ethanone (11b)
O
N
N
EN)/[( CF3
“ipr

Following the general procedure, 1-isopropyl-1H-imidazole (1.102 g, 10.0 mmol) was converted to
11b (1.630 g, 7.9 mmol, yield: 79%, R¢ = 0.5, EtOAc/n-hexane = 2:1) as a colorless oil.

'H NMR (300 MHz, CDCl5) 6 7.43 (d, J = 0.5 Hz, 1H), 7.40-7.30 (m, 1H), 5.36 (hept, J = 6.6 Hz, 1H),
1.45 (dd, J = 6.7, 3.2 Hz, 6H).

3C NMR (75 MHz, CDCl;) 6 170.5 (g, J = 35 Hz), 137.3, 132.4, 124.0, 116.5 (g, J = 287.5 Hz), 50.2,
23.2.

“F NMR (282 MHz, CDCl;) § -72.1 (s, 3F).

IR (film): v (cm™) 3117, 2986, 1694, 1463, 1402, 1343, 1260, 1196, 1149, 1091, 942, 901, 837, 785,
738, 682, 654, 612, 552, 522.

HRMS (EI, m/z) calcd for CgHoFsN,O [M]*: 206.0667, found: 206.0660.

2,2,2-Trifluoro-1-(1-methyl-1H-imidazol-2-yl)ethanone (11c)

N (@]
[ N {

N CF,4

Me

Following the general procedure, 1-methyl-1H-imidazole (0.821 g, 10.0 mmol) was converted to 11c
(1.478 g, 8.3 mmol, yield: 83%, R¢ = 0.55, EtOAc/n-hexane = 2:1) as a white solid.
'H NMR (300 MHz, CDCls) § 7.37 (d, J = 0.9 Hz, 1H), 7.23 (d, J = 0.9 Hz, 1H), 4.07 (s, 3H).
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C NMR (75 MHz, CDCls) § 138.2, 132.0, 129.2, 118.3, 114.4, 36.3.

All spectroscopic data are in agreement with the literature.™

2,2,2-Trifluoro-1-(1-methyl-1H-benzo[d]imidazol-2-yl)ethanone (11d)
N (0]
N\
©:N\>_/<CF3
Following the general procedure, 1-methyl-1H-benzoimidazol (0.661 g, 5.0 mmol) was converted to
2-acyl imidazole 11d (1.034 g, 4.5 mmol, yield: 90%, R = 0.3, EtOAc/n-hexane = 2:1) as a white
solid.
'H NMR (300 MHz, CDCls) § 7.99 (d, J = 8.3 Hz, 1H), 7.65-7.31 (m, 3H), 4.17 (s, 3H).
C NMR (75 MHz, CDCl,) 6 174.1 (q, J = 35 Hz), 142.6, 140.9, 137.2, 128.2, 125.01, 121.4 (q, J =
155 Hz), 118.3, 114.5, 110.8, 32.5.
F NMR (282 MHz, None) § —72.8 (s, 3F).
IR (film): v (cm™) 3538, 1719, 1478, 1457, 1194, 1173, 1150, 1117, 1077, 1011, 950, 912, 750, 737,

633, 551, 536, 448, 402.

HRMS (APCI, m/z) calcd for CyoH;F3sN,OH [M+H]": 229.0583, found: 229.0582.

2,2,2-Trifluoro-1-(1-(4-methoxyphenyl)-1H-imidazol-2-yl)ethanone (11e)

[NHO

N CF,

OMe
Following the general procedure, 1-(4-methoxyphenyl)-1H-imidazole (1.742 g, 10.0 mmol) was

converted to 2-acyl imidazole 11e (0.811 g, 3.0 mmol, yield: 30%, R = 0.5, EtOAc/n-hexane = 2:1) as
a white solid.

'H NMR (300 MHz, CDCly) §7.47 (d, J = 0.9 Hz, 1H), 7.33 (d, J = 0.9 Hz, 1H), 7.25-7.18 (m, 2H),
7.01-6.94 (m, 2H), 3.87 (s, 3H).

B3C NMR (75 MHz, CDCl,) ¢ 160.3, 138.0, 132.2, 129.7, 129.5, 126.8, 123.8, 118.2, 114.4, 55.6.

F NMR (282 MHz, None) d ~73.4 (s, 3F).

IR (film): v (cm™) 3208, 3154, 2942, 2841, 1699, 1605, 1510, 1456, 1355, 1252, 1134, 1073, 933, 828,
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777,633, 538.
HRMS (APCI, m/z) calcd for Cy,HoF3N,O,H [M+H]": 271.0689, found: 271.0688.

2,2,3,3,3-Pentafluoro-1-(1-phenyl-1H-imidazol-2-yl)propan-1-one (11f)
N @)

B

CF,CF,
Ph

Following the general procedure, using perfluoropropionic acid anhydride instead,
1-(4-methoxyphenyl)-1H-imidazole (1.441 g, 10.0 mmol) was converted to 2-acyl imidazole 11f
(1.587 g, 5.5 mmol, yield: 55%, R¢ = 0.3, EtOAc/n-hexane = 2:1) as a white solid.

'H NMR (300 MHz, CDCly) & 7.49-7.36 (m, 4H), 7.28 (s, 1H), 7.26-7.15 (m, 2H).

C NMR (75 MHz, CDCls) ¢ 172.1, 138.5, 137.1, 132.3, 129.6, 129.4, 125.7, 120.0, 116.2, 112.1,
108.3, 104.8.

F NMR (282 MHz, None) § -81.0 (s, 3F), —116.7 (s, 2F).

IR (film): v (cm™) 3099, 1692, 1591, 1497, 1453, 1402, 1349, 1306, 1204, 1141, 1091, 994, 920, 826,
757,682, 531, 424.

HRMS (APCI, m/z) calcd for Cy,H;FsN,OH [M+H]": 291.0551, found: 291.0549.

5.3.3. Rhodium-catalyzed alkynylation reactions

@
N A-RhPP (3-6 mol% ) NH% CnFan+1
& NN, Et3N (1.2 eq) THF SN, R2

\\ ,’ LT:::I" R
3.0eqor10.0 eq r.t. or 40 °C or 60 °C

General catalytic procedure: A dried 10 mL Schlenk tube was charged with the catalyst A-RhPP
(3-6 mol%) and the corresponding trifluoromethyl ketones (0.20 mmol, 1.0 eq). The tube was purged
with nitrogen and THF (0.2 mL), and then Et3N (33.27 i, 1.2 eq) was added via syringe, followed by
the corresponding alkynes (3.0 eq or 10.0 eq). The tube was sealed and the reaction was stirred at the
indicated temperature for the indicated time (monitored by TLC) under nitrogen atmosphere.
Afterwards, the solvent was removed under reduced pressure. The residue was purified by flash
chromatography on silica gel (EtOAc/hexane = 1:10 to 1:5) to afford the products 20a-y. Racemic
samples were obtained by carrying out the reactions with rac-RhPP. The enantiomeric excess was

determined by chiral HPLC analysis.
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(R)-1,1,1-Trifluoro-4-phenyl-2-(1-phenyl-1H-imidazol-2-yl)but-3-yn-2-ol (20a)

Starting from trifluoromethyl ketone 11a (48.0 mg, 0.20 mmol) and phenylacetylene (61.3 mg, 0.60
mmol) according to the general procedure to give 20a as a white solid (61.0 mg, 0.178 mmol, yield:
89%, R¢ = 0.5, EtOAc/n-hexane = 1:2). Enantiomeric excess was established by HPLC analysis using
a Chiralpak AD-H column, ee = 95% (HPLC: AD-H, 254 nm, hexane/isopropanol = 90:10, flow rate
1.0 mL/min, 25 °C, t, (major) = 8.8 min, t, (minor) = 25.2 min). [a]p® = +102.3° (¢ 0.7, CH,Cl,).

'H NMR (300 MHz, CD;0D) & 7.58-7.38 (m, 5H), 7.37—7.20 (m, 6H), 7.14-7.08 (m, 1H).

C NMR (75 MHz, CD,0D) ¢ 142.9, 139.8, 132.8, 130.5, 130.0, 129.7, 129.4, 128.7, 127.9, 126.6,
122.8,122.3,89.4,83.7, 71.0 (q, J = 33.0 H2).

F NMR (282 MHz, CD;0D) & —78.56 (s, 3F).

IR (film): v (cm™) 2291, 1595, 1497, 1467, 1418, 1259, 1202, 1172, 1133, 1125, 1071, 1043, 1027,
994, 936, 903, 785, 761, 746, 722, 689, 584, 562, 538, 529, 502.

HRMS (ESI, m/z) calcd for CygH14FsN,O [M+H]": 343.1053, found: 343.1058.

(R)-1,1,1-Trifluoro-2-(1-isopropyl-1H-imidazol-2-yl)-4-phenylbut-3-yn-2-ol (20b)

HO, ,CFs3

%,
2,

Starting from trifluoromethyl ketone 11b (41.2 mg, 0.20 mmol) and phenylacetylene (61.3 mg, 0.60
mmol) according to the general procedure to give 20b as a white solid (58.2 mg, 0.189 mmol, yield:
94%, Rf = 0.5, EtOAc/n-hexane = 1:2). Enantiomeric excess established by HPLC analysis using a
Chiralpak AD-H column, ee = 97% (HPLC: AD-H, 254 nm, hexane/isopropanol = 90:10, flow rate 1.0
mL/min, 25 °C, t, (minor) = 6.6 min, t, (major) = 10.1 min). [a]p” = +41.2° (¢ 0.6, CH,CL,).

'H NMR (300 MHz, CD,0D) § 7.62-7.49 (m, 2H), 7.47—7.31 (m, 4H), 6.99 (d, J = 1.0 Hz, 1H),
5.46-5.29 (m, 1H), 1.46 (d, J = 6.7 Hz, 6H).

3C NMR (75 MHz, CD;0D) ¢ 141.5, 132.9, 130.6, 129.7, 128.3, 124.7 (q, J = 284.0 Hz), 122.4,

120.0, 88.6, 84.0, 71.6 (g, J = 33.8 Hz), 50.3, 24.0, 23.7.
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F NMR (282 MHz, CD;0D) § —79.04 (s, 3F).

IR (film): v (cm™) 2981, 2254, 1493, 1467, 1248, 1185, 1170, 1125, 1109, 1017, 941, 908, 789, 752,
705, 692, 650, 640, 628, 580, 554, 529, 456, 425.

HRMS (ESI, m/z) calcd for CyH16F3N,O [M+H]": 309.1209, found: 309.1214.

(R)-1,1,1-Trifluoro-2-(1-methyl-1H-imidazol-2-yl)-4-phenylbut-3-yn-2-ol (20c)

HO, ,CF,

7
%,

Starting from trifluoromethyl ketone 11c (35.6 mg, 0.20 mmol) and phenylacetylene (61.3 mg, 0.60
mmol) according to the general procedure to give 20c as a white solid (51.4 mg, 0.18 mmol, yield:
92%, Rf = 0.5, EtOAc/n-hexane = 1:2). Enantiomeric excess established by HPLC analysis using a
Chiralpak AD-H column, ee = 99.6% (HPLC: AD-H, 254 nm, hexane/isopropanol = 90:10, flow rate
1.0 mL/min, 25 °C, t, (minor) = 7.1 min, t, (major) = 9.2 min). [a]p® = +42.5° (c 0.6, CH,Cl,).

'H NMR (300 MHz, CD;0D) 6 7.62-7.49 (m, 2H), 7.47-7.29 (m, 3H), 7.13 (d, J = 1.2 Hz, 1H), 6.96
(d, J = 1.2 Hz, 1H), 3.94 (s, 3H).

C NMR (75 MHz, CD;0D) § 142.1, 133.0, 130.6, 129.6, 127.6, 125.9, 124.8 (g, J = 284.3 Hz),
122.5,88.7, 83.8, 71.9 (g, J = 33.8 Hz), 35.7.

“F NMR (282 MHz, CD;0D) § —80.99 (s, 3F).

IR (film): v (cm™) 2233, 1482, 1402, 1284, 1242, 1209, 1192, 1172, 1157, 1120, 1106, 1034, 1018,
999, 942, 912, 788, 756, 709, 683, 616, 582, 531, 551, 421, 398.

HRMS (ESI, m/z) calcd for Cy4,H1,F3N,O [M+H]": 281.0902, found: 281.0899.

(R)-1,1,1-Trifluoro-2-(1-methyl-1H-imidazol-2-yl)-4-(p-tolyl) but-3-yn-2-ol (20d)

HO, ,CFs

%,
“,

Starting from trifluoromethyl ketone 11c (35.6 mg, 0.20 mmol) and 1-ethynyl-4-methylbenzene (69.7

mg, 0.60 mmol) according to the general procedure to give 20d as a white solid (55.6 mg, 0.189 mmol,
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yield: 95%, R; = 0.5, EtOAc/n-hexane = 1:2). Enantiomeric excess established by HPLC analysis
using a Chiralpak AD-H column, ee = 99.4% (HPLC: AD-H, 254 nm, hexane/isopropanol = 90:10,
flow rate 1.0 mL/min, 25 °C, t, (minor) = 8.9 min, t. (major) = 13.3 min). [o]p® = +32.7° (c 0.4,
CH,CI,).

'H NMR (300 MHz, CD;0D) 6 7.43 (d, J = 13.3 Hz, 2H), 7.18 (d, J = 7.9 Hz, 2H), 7.12 (d, J = 1.2 Hz,
1H), 7.02-6.89 (m, 1H), 3.93 (s, 3H), 2.34 (s, 3H).

3C NMR (75 MHz, CD;0D) 6 142.2, 141.2, 132.9, 130.3, 127.6, 125.9, 124.9 (q, J = 284.0 Hz) 119.4,
89.0, 83.1,71.9 (g, J =33.0 Hz), 35.7, 21.5.

F NMR (282 MHz, CD;0D) § —79.43 (s, 3F).

IR (film): v (cm™) 2240, 1512, 1482, 1411, 1278, 1244, 1190, 1173, 1150, 1103, 1057, 1027, 1019,
942,912, 820, 759, 702, 676, 612, 551, 532, 523, 504, 453, 427, 411.

HRMS (ESI, m/z) calcd for Cy5H14F3N,O [M+H]": 295.1053, found: 295.1057.

(R)-1,1,1-Trifluoro-2-(1-methyl-1H-imidazol-2-yl)-4-(m-tolyl) but-3-yn-2-ol (20e)
HO, ,CFs

Starting from trifluoromethyl ketone 11c (35.6 mg, 0.20 mmol) and 1-ethynyl-3-methylbenzene (69.7
mg, 0.60 mmol) according to the general procedure to give 20e as a white solid (55.8 mg, 0.190 mmol,
yield: 95%, R; = 0.5, EtOAc/n-hexane = 1:2). Enantiomeric excess established by HPLC analysis
using a Chiralpak AD-H column, ee > 99% (HPLC: AD-H, 254 nm, hexane/isopropanol = 90:10, flow
rate 1.0 mL/min, 25 °C, t, = 29.0 min). [o]p> = +43.1° (¢ 0.6, CH,Cl,).

'H NMR (300 MHz, CD;0D) § 7.45-7.30 (m, 2H), 7.30-7.18 (m, 2H), 7.13 (d, J = 1.1 Hz, 1H), 6.95
(d, J = 1.0 Hz, 1H), 3.94 (s, 3H), 2.32 (s, 3H).

BC NMR (75 MHz, CD;0D) 6 142.2, 139.6, 133.4, 131.4, 130.1, 129.5, 127.6, 125.9, 124.8 (q, J =
283.8 Hz), 122.3,89.0, 83.4, 71.9 (g, J = 33.0 Hz), 35.6, 21.2.

F NMR (282 MHz, CD;0D) § —79.81 (s, 3F).

IR (film): v (cm™) 2234, 1485, 1247, 1172, 1149, 1105, 1034, 943, 915, 894, 796, 765, 691, 682, 635,
426.

HRMS (ESI, m/z) calcd for Cy5H14F3N,O [M+H]": 295.1053, found: 295.1057.
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(R)-1,1,1-Trifluoro-2-(1-methyl-1H-imidazol-2-yl)-4-(o-tolyl)but-3-yn-2-ol (20f)

HO, ,CFs3

%,
%,

Starting from trifluoromethyl ketone 11c (35.6 mg, 0.20 mmol) and 1-ethynyl-2-methylbenzene (69.7
mg, 0.60 mmol) according to the general procedure to give 20f as a white solid (57.5 mg, 0.196 mmol,
yield: 98%, R; = 0.5, EtOAc/n-hexane = 1:2). Enantiomeric excess established by HPLC analysis
using a Chiralpak AD-H column, ee = 99.4% (HPLC: AD-H, 254 nm, hexane/isopropanol = 90:10,
flow rate 1.0 mL/min, 25 °C, t, (minor) = 10.5 min, t, (major) = 12.3 min). [a]p” = +45.9° (c 0.7,
CH,CIl,).

'H NMR (300 MHz, CD;0D) 6 7.57-7.41 (m, 1H), 7.34-7.15 (m, 3H), 7.12 (d, J = 1.2 Hz, 1H), 6.95
(d, J = 1.2 Hz, 1H), 3.95 (s, 3H), 2.43 (s, 3H).

C NMR (75 MHz, CD,0D) ¢ 142.2, 142.1, 133.2, 130.7, 130.6, 127.6, 126.8, 125.8, 123.0, 122.1,
119.2, 87.8, 87.7, 71.9 (q, J = 33.0 Hz), 35.6, 20.6.

“F NMR (282 MHz, CD;0D) § —79.63 (s, 3F).

IR (film): v (cm™) 2924, 2853, 2229, 1535, 1415, 1301, 1285, 1245, 1216, 1193, 1168, 1154, 1121,
1088, 1012, 887, 861, 826, 794, 766, 749, 711, 682, 638, 611, 569, 548, 494, 430, 389. HRMS (ESI,

m/z) calcd for CysH13FsN,ONa [M+Na]*: 317.0883, found: 317.0872.

(R)-4-(4-(tert-Butyl)phenyl)-1,1,1-trifluoro-2-(1-methyl-1H-imidazol-2-yl)but-3-yn-2-ol (20g)

HO, ,CF;

tBu

Starting from trifluoromethyl ketone 11c (35.6 mg, 0.20 mmol) and 1-(tert-butyl)-4-ethynylbenzene
(94.9 mg, 0.60 mmol) according to the general procedure to give 20g as a white solid (67.1 mg, 0.199
mmol, yield: 99%, R; = 0.6, EtOAc/n-hexane = 1:2). Enantiomeric excess established by HPLC
analysis using a Chiralpak AD-H column, ee > 99% (HPLC: AD-H, 254 nm, hexane/isopropanol =
90:10, flow rate 1.0 mL/min, 25 °C, t, = 12.4 min). [a]p® = +32.1° (¢ 0.8, CH,Cl,).

'H NMR (300 MHz, CD;0D) ¢ 7.54-7.44 (m, 2H), 7.44-7.37 (m, 2H), 7.12 (d, J = 1.1 Hz, 1H), 6.95
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(d, J = 1.0 Hz, 1H), 3.94 (s, 3H), 1.30 (s, 9H).
3C NMR (75 MHz, CD;0D) ¢ 154.2, 142.3, 132.8, 127.5, 126.6, 125.9, 123.0, 119.5, 88.9, 83.2, 71.8
(g, J = 33.0 Hz), 35.70, 35.66, 31.50.

F NMR (282 MHz, CD;0D) § —79.38 (s, 3F).

IR (film): v (cm™) 2963, 2235, 1506, 1478, 1391, 1253, 1185, 1170, 1118, 1104, 1052, 1024, 942,
909, 833, 751, 713, 688, 657, 615, 563, 530, 513.

HRMS (ESI, m/z) calcd for CigHz0FsN,O [M+H]": 337.1533, found: 337.1523.

(R)-4-([1,1'-Biphenyl]-4-yl)-1,1,1-trifluoro-2-(1-methyl-1H-imidazol-2-yl)but-3-yn-2-ol (20h)

HO, ,CF;

Starting from trifluoromethyl ketone 11c (35.6 mg, 0.20 mmol) and 4-ethynyl-1,1'-biphenyl (106.4 mg,
0.60 mmol) according to the general procedure to give 20h as a white solid (66.5 mg, 0.187 mmol,
yield: 93%, R; = 0.5, EtOAc/n-hexane = 1:2). Enantiomeric excess established by HPLC analysis
using a Chiralpak AD-H column, ee = 99% (HPLC: AD-H, 254 nm, hexane/isopropanol = 90:10, flow
rate 1.0 mL/min, 25 °C, t, (minor) = 13.3 min, t, (major) = 22.6 min). [o]p> = +20.4° (c 0.8, CH,Cl,).
'H NMR (300 MHz, CD;0D) § 7.65-7.54 (m, 6H), 7.50-7.37 (m, 2H), 7.36-7.27 (m, 1H), 7.12 (d, J
= 1.2 Hz, 1H), 7.01-6.92 (m, 1H), 3.94 (s, 3H).

BC NMR (75 MHz, CD;0D) ¢ 1435, 142.1, 141.2, 133.5, 130.0, 129.0, 128.1, 127.9, 127.6, 126.7,
126.0, 123.0, 121.3, 88.6, 84.4, 72.2, 71.8, 72.0 (q, J = 31.0 Hz), 35.7.

F NMR (282 MHz, CD;0D) & —80.26 (s, 3F).

IR (film): v (cm™) 2924, 2233, 1448, 1290, 1251, 1173, 1087, 1029, 1014, 944, 912, 838, 757, 692,
618, 559, 517, 504, 458.

HRMS (ESI, m/z) calcd for CyH1sF3N,0 [M+H]": 357.1209, found: 357.1214.
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(R)-1,1,1-Trifluoro-4-(4-methoxyphenyl)-2-(1-methyl-1H-imidazol-2-yl)but-3-yn-2-ol (20i)

HO, ,CF3

%,
“,

Starting from trifluoromethyl ketone 11c (35.6 mg, 0.20 mmol) and 1-ethynyl-4-methoxybenzene
(79.6 mg, 0.60 mmol) according to the general procedure to give 20i as a white solid (59.3 mg, 0.191
mmol, yield: 96%, R = 0.5, EtOAc/n-hexane = 1:2). Enantiomeric excess established by HPLC
analysis using a Chiralpak AD-H column, ee = 99.4% (HPLC: AD-H, 254 nm, hexane/isopropanol =
90:10, flow rate 1.0 mL/min, 25 °C, t, (minor) = 13.1 min, t, (major) = 18.6 min). [o]p> = +34.9° (c
0.6, CH,Cl,).

'H NMR (300 MHz, CD;0D) 6 7.57-7.40 (m, 2H), 7.12 (d, J = 1.2 Hz, 1H), 7.03-6.87 (m, 3H), 3.94
(s, 3H), 3.80 (s, 3H).

B3C NMR (75 MHz, CD;0D) ¢ 162.2, 142.3, 134.6, 127.5, 125.9, 124.9 (q, J = 284.3 Hz), 115.2, 114.4,
89.0, 82.4,71.8 (g, J = 33.0 Hz), 55.9, 35.6.

“F NMR (282 MHz, CD;0D) § —79.46 (s, 3F).

IR (film): v (cm™) 2969, 2941, 2844, 2233, 1606, 1568, 1512, 1480, 1462, 1446, 1407, 1296, 1253,
1211, 1192, 1181, 1157, 1120, 1075, 1051, 993, 967, 943, 887, 837, 819, 760, 748, 737, 677, 611, 564,
501, 457, 421.

HRMS (ESI, m/z) calcd for Cy5H14F3N,0, [M+H]": 311.1013, found: 311.1004.

(R)-1,1,1-Trifluoro-2-(1-methyl-1H-benzo[d]imidazol-2-yl)-4-phenylbut-3-yn-2-ol (20j)

HO, ,CF3

Starting from trifluoromethyl ketone 11c (35.6 mg, 0.20 mmol) and 1-ethynyl-4-fluorobenzene (61.3
mg, 0.60 mmol) according to the general procedure to give 20j as a white solid (47.0 mg, 0.157 mmol,
yield: 79%, R = 0.5, EtOAc/n-hexane = 1:2). Enantiomeric excess established by HPLC analysis
using a Chiralpak AD-H column, ee > 99% (HPLC: AD-H, 254 nm, hexane/isopropanol = 90:10, flow
rate 1.0 mL/min, 25 °C, t, = 11.4 min). [a]p® = +42.6° (¢ 0.4, CH,Cl,).
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'H NMR (300 MHz, CD;0D) 6 7.71-7.51 (m, 2H), 7.21-7.05 (m, 3H), 6.96 (d, J = 1.2 Hz, 1H), 3.94
(s, 3H).

C NMR (75 MHz, CD,0D) § 166.3, 163.0, 142.0, 135.4, 135.3, 127.6, 126.0, 124.8 (q, J = 282.8
Hz), 118.8, 117.0, 116.7, 87.6, 83.7, 72.0 (q, J = 33.0 Hz), 35.7.

F NMR (282 MHz, CD;0D) ¢ —81.04 (s, 3F), —112.13 (s, 1F).

IR (film): v (cm™) 2227, 1600, 1509, 1227, 1213, 1188, 1177, 1140, 1081, 1016, 947, 916, 840, 769,
754, 711, 677, 613, 535, 503, 478, 466, 392.

HRMS (ESI, m/z) calcd for Cy,H1:F3N,O [M+H]": 299.0802, found: 299.0805.

(R)-4-(4-Chlorophenyl)-1,1,1-trifluoro-2-(1-methyl-1H-imidazol-2-yl)but-3-yn-2-ol (20k)

HO, ,CFs

%,
“,

Starting from trifluoromethyl ketone 11c (35.6 mg, 0.20 mmol) and 1-chloro-4-ethynylbenzene (61.3
mg, 0.60 mmol) according to the general procedure to give 20k as a white solid (60.8 mg, 0.194 mmol,
yield: 97%, R; = 0.5, EtOAc/n-hexane = 1:2). Enantiomeric excess established by HPLC analysis
using a Chiralpak AD-H column, ee = 99.0% (HPLC: AD-H, 254 nm, hexane/isopropanol = 90:10,
flow rate 1.0 mL/min, 25 °C, t, (minor) = 8.5 min, t, (major) = 13.1 min). [o]p” = +30.4° (c 0.6,
CH,Cl,).

'H NMR (300 MHz, CD;0D) 6 7.62-7.48 (m, 2H), 7.48-7.34 (m, 2H), 7.13 (d, J = 1.2 Hz, 1H), 6.96
(d, J = 1.0 Hz, 1H), 3.93 (s, 3H).

BC NMR (75 MHz, CD;0D) § 141.9, 136.7, 134.5, 129.9, 127.7, 126.0, 124.8 (q, J = 284.0 Hz),
121.2,87.4,84.9,72.1 (g, J = 33.0 Hz), 35.7.

F NMR (282 MHz, CD;0D) § —80.14 (s, 3F).

IR (film): v (cm™) 2235, 1592, 1491, 1480, 1400, 1291, 1246, 1194, 1107, 1089, 1017, 986, 916, 895,
831, 793, 762, 716, 687, 648, 607, 581, 530, 469, 438, 424.

HRMS (ESI, m/z) calcd for C14H;CIF3N,O [M+H]": 315.0507, found: 315.0509.
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(R)-4-(4-Bromophenyl)-1,1,1-trifluoro-2-(1-methyl-1H-imidazol-2-yl)but-3-yn-2-ol (20I)

HO, ,CF3

Starting from trifluoromethyl ketone 11c (35.6 mg, 0.20 mmol) and 1-bromo-4-ethynylbenzene (61.3
mg, 0.60 mmol) according to the general procedure to give 201 as a white solid (70.0 mg, 0.195 mmol,
yield: 97%, R; = 0.5, EtOAc/n-hexane = 1:2). Enantiomeric excess established by HPLC analysis
using a Chiralpak AD-H column, ee = 99% (HPLC: AD-H, 254 nm, hexane/isopropanol = 90:10, flow
rate 1.0 mL/min, 25 °C, t, (minor) = 9.0 min, t, (major) = 15.0 min). [a]p> = +30.3° (¢ 0.8, CH,Cl,).
'H NMR (300 MHz, CD;0D) & 7.61-7.51 (m, 2H), 7.47 (d, J = 8.5 Hz, 2H), 7.14 (d, J = 1.1 Hz, 1H),
7.01-6.91 (m, 1H), 3.93 (s, 3H).

C NMR (75 MHz, CD;0D) § 141.9, 134.6, 132.9, 127.7, 126.0, 124.8, 124.7 (g, J = 284.3 Hz),
121.6, 87.5, 85.0, 72.1 (g, J = 33.8 Hz), 35.7.

F NMR (282 MHz, CD;0D) § —79.47 (s, 3F).

IR (film): v (cm™) 3120, 2805, 2244, 1486, 1243, 1188, 1175, 1151, 1103, 1072, 1023, 942, 912, 836,
822, 794, 757, 681, 622, 526, 460, 417.

HRMS (ESI, m/z) calcd for Cy,H1;BrF;N,O [M+H]": 359.0012, found: 359.0002.

(R)-1,1,1-Trifluoro-4-(2-fluorophenyl)-2-(1-methyl-1H-imidazol-2-yl)but-3-yn-2-ol (20m)
HO, ,CFs

Starting from trifluoromethyl ketone 11c (35.6 mg, 0.20 mmol) and 1-ethynyl-2-fluorobenzene (72.1
mg, 0.60 mmol) according to the general procedure to give 20m as a white solid (59.2 mg, 0.199
mmol, yield: 99%, R; = 0.5, EtOAc/n-hexane = 1:2). Enantiomeric excess established by HPLC
analysis using a Chiralpak AD-H column, ee = 97% (HPLC: AD-H, 254 nm, hexane/isopropanol =
98:2, flow rate 1.0 mL/min, 25 °C, t, (minor) = 7.6 min, t, (major) = 8.7 min). [a]o” = +34.5° (¢ 0.5,
CH,CL,).

'H NMR (300 MHz, CD;0D) § 7.63-7.52 (m, 1H), 7.50-7.39 (m, 1H), 7.20-7.10 (m, 3H), 6.95 (d, J

= 1.0 Hz, 1H), 3.95 (s, 3H).
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3C NMR (75 MHz, CD;0D) ¢ 164.6, 161.3, 140.5, 133.5, 131.4, 131.3, 126.2, 124.5, 124.1, 123.8 (q,
J = 284.0 Hz), 115.4, 115.1, 109.6, 109.3, 87.4, 80.9, 70.4 (g, J = 33.8 Hz), 34.2. °F NMR (282
MHz, CD;0D) § —80.07 (s, 3F), —111.56 (s, 1F).

IR (film): v (cm™) 2240, 1574, 1492, 1450, 1284, 1249, 1226, 1176, 1091, 1060, 1011, 916, 891, 837,
763, 707, 683, 636, 614, 579, 532, 503, 479, 436, 408.

HRMS (ESI, m/z) calcd for C1,H1:N,O [M+H]": 299.0802, found: 299.0806.

(R)-4-(3,5-Bis(trifluoromethyl)phenyl)-1,1,1-trifluoro-2-(1-methyl-1H-imidazol-2-yl)but-3-yn-2-0
I (20n)

CF,

Starting from trifluoromethyl ketone 1ic (35.6 mg, 0.20 mmol) and
1-ethynyl-3,5-bis(trifluoromethyl)benzene (142.9 mg, 0.60 mmol) according to the general procedure
to give 20n as a white solid (82.8 mg, 0.199 mmol, yield: 99%, R; = 0.5, EtOAc/n-hexane = 1:2).
Enantiomeric excess established by HPLC analysis using a Chiralpak AD-H column, ee > 99% (HPLC:
AD-H, 254 nm, hexane/isopropanol = 98:2, flow rate 1.0 mL/min, 25 °C, t, = 10.4 min). [a]p”> = —4.8°
(c 0.7, CH,CIy).

'H NMR (300 MHz, CD;0D) § 8.23-8.15 (m, 2H), 8.04 (d, J = 13.6 Hz, 1H), 7.15 (d, J = 1.1 Hz, 1H),
6.99 (d, J = 1.2 Hz, 1H), 3.94 (s, 3H).

3C NMR (75 MHz, CD;0D) 6 141.5, 133.4 (m), 127.9, 126.4, 125.3, 124.7 (q, J = 284.5 Hz), 124.3
(9, J = 270.5 Hz), 123.9 (m), 87.5, 85.2, 72.6 (g, J = 33.5 Hz), 35.8.

F NMR (282 MHz, CD;0D) § —64.4 (s, 6F), —80.0 (s, 3F).

IR (film): v (cm™) 2925, 2236, 1593, 1577, 1463, 1437, 1380, 1277, 1176, 1132, 1105, 1054, 1030,
945, 918, 898, 775, 740, 700, 683, 616, 589, 438, 422, 404, 394.

HRMS (ESI, m/z) calcd for Cy5H10FgN,O [M+H]": 417.0655, found: 417.0648.
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(R)-1,1,1-Trifluoro-2-(1-methyl-1H-imidazol-2-yl)-4-(pyridin-2-yl)but-3-yn-2-ol (200)
HO, ,CF3

Starting from trifluoromethyl ketone 11c (35.6 mg, 0.20 mmol) and 2-ethynylpyridine (61.9 mg, 0.60
mmol) according to the general procedure to give 200 as a yellow oil (46.3 mg, 0.165 mmol, yield:
82%, R¢ = 0.5, EtOAc/n-hexane = 1:2). Enantiomeric excess established by HPLC analysis using a
Chiralpak AD-H column, ee > 99% (HPLC: AD-H, 254 nm, hexane/isopropanol = 90:10, flow rate 1.0
mL/min, 25 °C, t, = 5.6 min). [a]p® = +37.4° (¢ 0.6, CH,Cl,).

'H NMR (300 MHz, CD;0D) ¢ 8.55 (ddd, J = 5.0, 1.7, 0.9 Hz, 1H), 7.87 (td, J = 7.8, 1.8 Hz, 1H),
7.70 (dt, J = 7.9, 1.0 Hz, 1H), 7.45 (ddd, J = 7.7, 5.0, 1.2 Hz, 1H), 7.15 (d, J = 1.1 Hz, 1H), 6.97 (d, J
= 1.2 Hz, 1H), 3.95 (s, 3H).

3C NMR (75 MHz, CD;0D) 6 150.9, 142.3, 141.6, 138.6, 129.4, 127.8, 126.1, 125.7, 124.7 (q, J =
284.3 Hz), 71.9 (q, J = 33.3 Hz), 87.0, 84.0, 35.7.

F NMR (282 MHz, CD;0D) 6 ~79.55 (s, 3F).

IR (film): v (cm™) 2236, 1585, 1483, 1465, 1430, 1279, 1250, 1175, 1109, 1092, 1055, 1027, 942, 912,
844,777,738, 717, 682, 635, 617, 594, 537, 503, 401.

HRMS (ESI, m/z) calcd for Cy3H11FsNsO [M+H]": 282.0849, found: 282.0853.

(R)-1,1,1-Trifluoro-2-(1-methyl-1H-imidazol-2-yl)-4-(thiophen-3-yl)but-3-yn-2-ol (20p)
CF3

HO

7,
“,

Starting from trifluoromethyl ketone 11c (35.6 mg, 0.20 mmol) and 3-ethynylthiophene (64.9 mg, 0.60
mmol) according to the general procedure to give 20p as a white solid (53.9 mg, 0.188 mmol, yield:
94%, Rf = 0.5, EtOAc/n-hexane = 1:2). Enantiomeric excess established by HPLC analysis using a
Chiralpak OJ-H column, ee = 99.0% (HPLC: OJ-H, 254 nm, hexane/isopropanol = 85:15, flow rate
1.0 mL/min, 25 °C, t, (minor) = 11.4 min, t, (major) = 14.2 min). [a]p®® = +44.1° (c 0.6, CH,CL,).

'H NMR (300 MHz, CD;0D) § 7.80-7.70 (m, 1H), 7.50-7.38 (m, 1H), 7.21 (dd, J = 5.0, 1.0 Hz, 1H),

7.12 (d, J = 1.0 Hz, 1H), 6.95 (d, J = 0.9 Hz, 1H), 3.93 (s, 3H).
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3C NMR (75 MHz, CD;0D) ¢ 142.1, 132.0, 130.7, 127.6, 127.1, 125.9, 124.8 (q, J = 284.3 Hz), 71.9
(9,3 =33.0 Hz), 121.5, 84.2, 83.3, 35.6.

F NMR (282 MHz, CD;0D) § —79.41 (s, 3F).

IR (film): v (cm™) 2236, 1478, 1285, 1244, 1194, 1173, 1080, 1050, 1027, 1002, 941, 912, 885, 872,
789, 760, 722, 688, 658, 626, 610, 532, 500, 417.

HRMS (ESI, m/z) calcd for Cy,H1oF3N,OS [M+H]": 287.0460, found: 287.0468.

(R)-1,1,1-Trifluoro-2-(1-methyl-1H-imidazol-2-yl)oct-3-yn-2-ol (20q).

HO, ,CFs

N
@T\

nPent
\Me

Starting from trifluoromethyl ketone 11c (35.6 mg, 0.20 mmol) and hex-1-yne (164.3 mg, 2.0 mmol)
according to the general procedure to give 20q as a white solid (45.5 mg, 0.175 mmol, yield: 88%, R¢
= 0.3, EtOAc/n-hexane = 1:2). Enantiomeric excess established by HPLC analysis using a Chiralpak
AD-H column, ee = 97% (HPLC: AD-H, 220 nm, hexane/isopropanol = 95:5, flow rate 1.0 mL/min,
25 °C, t, (minor) = 8.4 min, t, (major) = 11.7 min). [a]p™ = +35.0° (¢ 0.5, CH,Cl,).

'H NMR (300 MHz, CD;0D) ¢ 7.09 (d, J = 1.2 Hz, 1H), 6.91 (d, J = 1.2 Hz, 1H), 3.89 (s, 3H), 2.33 (t,
J = 6.9 Hz, 2H), 1.62-1.37 (m, 4H), 0.93 (t, J = 7.2 Hz, 3H).

3C NMR (75 MHz, CD;0D) ¢ 142.7, 127.3, 125.6, 124.8 (q, J = 283.7 Hz), 90.4, 75.3, 71.1 (q, J =
33.0 Hz), 35.6, 31.2, 22.9, 19.0, 13.8.

“F NMR (282 MHz, CD;0D) § —79.64 (s, 3F).

IR (film): v (cm™) 2960, 2936, 2874, 2247, 1688, 1484, 1466, 1257, 1165, 1141, 1072, 991, 943, 915,
906, 839, 751, 718, 699, 683, 614.

HRMS (ESI, m/z) calcd for Cy,H16F3N,0 [M+H]": 261.1220, found: 261.1210.

(R)-4-Cyclohexyl-1,1,1-trifluoro-2-(1-methyl-1H-imidazol-2-yl)but-3-yn-2-ol (20r)

HO, ,CF;

%,
%,

Starting from trifluoromethyl ketone 11c (35.6 mg, 0.20 mmol) and ethynylcyclohexane (216.4 mg,
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2.0 mmol) according to the general procedure to give 20r as a white solid (38.8 mg, 0.136 mmol, yield:
68%, R; = 0.3, EtOAc/n-hexane = 1:2). Enantiomeric excess established by HPLC analysis using a
Chiralpak AD-H column, ee = 94% (HPLC: AD-H, 220 nm, hexane/isopropanol = 95:5, flow rate 1.0
mL/min, 25 °C, t, (minor) = 7.7 min, t, (major) = 11.0 min). [a]o® = +5.7° (¢ 0.5, CH,CL,).

'H NMR (300 MHz, CD;0D) 6 7.09 (d, J = 1.2 Hz, 1H), 6.90 (d, J = 1.2 Hz, 1H), 3.89 (s, 3H),
2.62-2.45 (m, 1H), 1.90-1.80 (m, 2H), 1.79-1.62 (m, 2H), 1.62-1.44 (m, 3H), 1.44-1.23 (m, 3H).

3C NMR (75 MHz, CD;0D) § 142.7, 127.3, 125.6, 124.8 (q, J = 283.7 Hz), 94.1, 75.4, 71.0 (q, J =
33.0 Hz), 35.6, 33.1, 30.1, 26.9, 25.7.

F NMR (282 MHz, CD;0D) § —80.30 (s, 3F).

IR (film): v (cm™) 2936, 2925, 2856, 2245, 1488, 1443, 1389, 1191, 1157, 1093, 1046, 1013, 941, 924,
906, 848, 759, 708, 688, 591, 536, 514, 456.

HRMS (ESI, m/z) calcd for Cy,H:sF3sN,O [M+H]": 287.1377, found: 287.1363.

(R)-4-Cyclopropyl-1,1,1-trifluoro-2-(1-methyl-1H-imidazol-2-yl)but-3-yn-2-ol (20s)

HO, ,CFs

Starting from trifluoromethyl ketone 11c (35.6 mg, 0.20 mmol) and ethynylcyclopropane (132.2 mg, 2
mmol) according to the general procedure to give 20s as a white solid (41.0 mg, 0.168 mmol, yield:
84%, R¢ = 0.2, EtOAc/n-hexane = 1:2). Enantiomeric excess established by HPLC analysis using a
Chiralpak AD-H column, ee = 94% (HPLC: AD-H, 220 nm, hexane/isopropanol = 95:5, flow rate 1.0
mL/min, 25 °C, t, (minor) = 6.9 min, t, (major) = 8.3 min). [o]p> = +48.7° (¢ 0.5, CH,Cl,).

'H NMR (300 MHz, CD;OD) 6 7.08 (d, J = 1.2 Hz, 1H), 6.90 (d, J = 1.2 Hz, 1H), 3.87 (s, 3H),
1.44-1.35 (m, 1H), 0.90-0.80 (m, 2H), 0.79-0.71 (m, 2H).

3C NMR (75 MHz, CD;0D) 6§ 142.6, 127.3, 125.7, 124.8 (q, J = 283.8 Hz), 93.4, 71.2 (q, J = 33.0
Hz), 70.1, 35.6, 8.6, 8.5, —0.01.

F NMR (282 MHz, CD;0D) § —80.41(s, 3F).

IR (film): v (cm™) 2236, 1494, 1454, 1362, 1288, 1277, 1191, 1172, 1164, 1143, 1088, 1035, 947, 925,
907, 848, 816, 758, 738, 714, 687, 610, 491.

HRMS (ESI, m/z) calcd for C1H1,F3N,O [M+H]™: 245.0907, found: 245.0897.
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(R)-1,1,1-Trifluoro-2-(1-methyl-1H-imidazol-2-yl)-5-phenylpent-3-yn-2-ol (20t)

HO, ,CF3

ST

N Bn

N\,

Me
Starting from trifluoromethyl ketone 11c (35.6 mg, 0.20 mmol) and prop-2-yn-1-ylbenzene (69.7 mg,
0.60 mmol) according to the general procedure to give 20t as a white solid (32.4 mg, 0.110 mmol,
yield: 55%, R; = 0.4, EtOAc/n-hexane = 1:2). Enantiomeric excess established by HPLC analysis
using a Chiralpak AD-H column, ee = 99% (HPLC: AD-H, 220 nm, hexane/isopropanol = 90:10, flow
rate 1.0 mL/min, 25 °C, t, (minor) = 8.6 min, t, (major) = 14.3 min). [a]p> = +25.0° (¢ 0.3, CH,Cl,).
'H NMR (300 MHz, CD;0D) 6 7.45-7.25 (m, 4H), 7.25-7.16 (m, 1H), 7.08 (d, J = 1.2 Hz, 1H), 6.92
(d, J = 1.2 Hz, 1H), 3.86 (s, 3H), 3.75 (s, 2H).
C NMR (75 MHz, CD;0D) ¢ 142.5, 137.0, 129.6, 129.0, 127.8, 127.4, 125.7, 124.8 (q, J = 284 Hz),
88.2,77.3,71.4 (g, J = 33.8 Hz), 35.6, 25.5.
F NMR (282 MHz, CD;0D) § —79.55 (s, 3F).
IR (film): v (cm™) 2256, 1604, 1495, 1453, 1409, 1338, 1285, 1187, 1165, 1142, 1061, 945, 926, 909,
762, 723, 693, 619, 607, 535, 478, 456.

HRMS (ESI, m/z) calcd for Cy5H14F3N,O [M+H]": 295.1064, found: 295.1053.

(R)-1,1,1-Trifluoro-2-(1-methyl-1H-imidazol-2-yl)-4-(trimethylsilyl)but-3-yn-2-ol (20u)

HO, ,CF3

ST

N_ SiMe3
Me

Starting from trifluoromethyl ketone 11c (53.5 mg, 0.30 mmol) and ethynyltrimethylsilane (88.4 mg,
0.90 mmol) according to the general procedure to give 20u as a white solid (52.7 mg, 0.191 mmol,
yield: 64%, R; = 0.4, EtOAc/n-hexane = 1:2). Enantiomeric excess established by HPLC analysis
using a Chiralpak OD-H column, ee > 99% (HPLC: OD-H, 220 nm, hexane/isopropanol = 98:2, flow
rate 1.0 mL/min, 25 °C, t, = 10.7 min). [a]p®® = +54.5° (¢ 0.6, CH,Cl,).

'H NMR (300 MHz, CDs0OD) 6 7.10 (d, J = 1.2 Hz, 1H), 6.92 (d, J = 1.2 Hz, 1H), 3.89 (s, 3H), 0.22 (s,
9H).

3C NMR (75 MHz, CD,0OD) & 141.9, 127.5, 125.8, 124.6 (q, J =283.8 Hz), 99.3, 94.7, 71.2 (q, J =
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33.0 Hz), 35.5, -0.6.

F NMR (282 MHz, CD;0D) § —79.64 (s, 3F).

IR (film): v (cm™*) 2965, 2240, 1491, 1380, 1288, 1277, 1265, 1251, 1205, 1192, 1172, 1140, 1110,
1055, 1030, 947, 913, 844, 764, 749, 730, 709, 699, 603, 520, 460, 418.

HRMS (ESI, m/z) calcd for Cy3HysFsN,0Si [M+H]": 277.0979, found: 277.0982.

(R)-4-(Cyclohex-1-en-1-yl)-1,1,1-trifluoro-2-(1-methyl-1H-imidazol-2-yl)but-3-yn-2-ol (20v)
HO, ,CFs

Starting from trifluoromethyl ketone 11c (35.6 mg, 0.20 mmol) and 1-ethynylcyclohex-1-ene (64.9 mg,
0.60 mmol) according to the general procedure to give 20v as a white solid (49.5 mg, 0.174 mmol,
yield: 87%, R; = 0.4, EtOAc/n-hexane = 1:2). Enantiomeric excess established by HPLC analysis
using a Chiralpak AD-H column, ee = 97% (HPLC: AD-H, 220 nm, hexane/isopropanol = 95:5, flow
rate 1.0 mL/min, 25 °C, t, (minor) = 10.3 min, t, (major) = 12.8 min). [o]p> = +36.5° (¢ 0.5, CH,Cl,).
'H NMR (300 MHz, CD50D) 6 7.09 (d, J = 1.2 Hz, 1H), 6.91 (d, J = 1.1 Hz, 1H), 6.34-6.19 (m, 1H),
3.89 (s, 3H), 2.40-1.93 (m, 4H), 1.87-1.40 (m, 4H).

C NMR (75 MHz, CD;0D) 6 142.4, 138.6, 127.4, 125.7, 124.8 (q, J = 283.8 Hz), 120.6, 90.6, 81.2,
71.5 (q, J = 33.3 Hz), 35.6, 29.5, 26.6, 23.2, 22.4.

F NMR (282 MHz, CD;0D) § —79.93 (s, 3F).

IR (film): v (cm™) 3138, 2944, 2852, 2216, 1721, 1484, 1361, 1288, 1189, 1173, 1137, 1090, 1054,
1013, 947, 910, 765, 734, 720, 695, 533.

HRMS (ESI, m/z) calcd for Cy4H16F3N,0 [M+H]": 285.1209, found: 285.1207.

(R)- 1,1,1-Trifluoro-2-(1-methyl-1H-benzo[d]imidazol-2-yl)-4-phenylbut-3-yn-2-ol (20w)

HO, ,CFs

),
%,

Starting from trifluoromethyl ketones 11d (45.6 mg, 0.2 mmol) and phenylacetylene (61.3 mg, 0.60

mmol) according to the general procedure to give 20w as a white solid (48.4 mg, 0.146 mmol, yield:
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73%, Rf = 0.5, EtOAc/n-hexane = 1:2). Enantiomeric excess established by HPLC analysis using a
Chiralpak AD-H column, ee = 98.8% (HPLC: AD-H, 254 nm, hexane/isopropanol = 90:10, flow rate
1.0 mL/min, 25 °C, t, (major) = 13.2 min, t, (minor) = 16.2 min). [a]o? = 34.6° (c 0.4, CH.,CL,).

'H NMR (300 MHz, MeOD) 6 7.74 (d, J = 7.5 Hz, 1H), 7.61-7.49 (m, 3H), 7.46-7.24 (m, 5H), 4.12 (s,
3H).

3C NMR (75 MHz, MeOD) & 148.5, 142.2, 138.0, 133.0, 130.5, 129.6, 125.1, 124.8 (q, J = 284.3),
124.0, 122.9, 120.6, 111.2, 89.5, 83.3, 72.4 (g, J = 33.0 Hz), 32.7.

F NMR (282 MHz, None) 6 —78.78 (s).

IR (film): v (cm™) 2243, 1492, 1474, 1445, 1385,1331, 1287, 1244, 1186, 1167, 1113, 1072, 1029,
1020, 1007, 997, 946, 818, 762, 734, 691, 636, 618, 587, 553, 539, 480, 437, 418.

HRMS (ESI, m/z) calcd for CygHy3FsN,OH [M+H]": 331.1053, found: 331.1056.

(R)-1,1,1-Trifluoro-2-(1-(4-methoxyphenyl)-1H-imidazol-2-yl)-4-phenylbut-3-yn-2-ol (20x)

HO, ,CF3

Starting from trifluoromethyl ketones 11e (54.0 mg, 0.2 mmol) and phenylacetylene (61.3 mg, 0.60
mmol) according to the general procedure to give 20x as a white solid (70.7 mg, 0.190 mmol, yield:
95%, R; = 0.5, EtOAc/n-hexane = 1:2). Enantiomeric excess established by HPLC analysis using a
Chiralpak AD-H column, ee = 94.3% (HPLC: AD-H, 254 nm, hexane/isopropanol = 90:10, flow rate
1.0 mL/min, 25 °C, t, (minor) = 8.8 min, t, (major) = 13.1 min). [a]o* = 85.9 (¢ 1.0, CH,Cl,).

'H NMR (300 MHz, MeOD) 6 7.44-7.20 (m, 1H), 7.17 (d, J = 1.2 Hz, 1H), 7.08 (d, J = 1.0 Hz, 1H),
6.96-6.86 (M, 1H), 3.75 (s, 1H).

3C NMR (75 MHz, MeOD) & 161.4, 143.0, 132.8, 132.3, 130.4, 129.9, 129.4, 127.7, 126.7, 124.6 (q,
J=284.3 Hz),122.4, 114.9, 89.5, 83.7, 70.8 (q, J = 33.0 Hz), 56.00.

F NMR (282 MHz, None) § —78.56.

IR (film): v (cm™) 2336, 1512, 1491, 1463, 1443, 1301, 1251, 1202, 1166, 1070, 941, 898, 834, 757,
726, 718, 687, 629, 560, 542, 529, 502, 462.

HRMS (ESI, m/z) calcd for CyH1sF3N,0,H [M+H]": 373.1158, found: 373.1169.
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(R)- 4,4,5,5,5-Pentafluoro-1-phenyl-3-(1-phenyl-1H-imidazol-2-yl)pent-1-yn-3-ol (20y)

HO, ,CF,CF3

%,
“,

Starting from pentafluoroketones 11f (58.0 mg, 0.2 mmol) and phenylacetylene (61.3 mg, 0.60 mmol)
according to the general procedure to give 20y as a white solid (63.2 mg, 0.161 mmol, yield: 81%, R¢
= 0.3, EtOAc/n-hexane = 1:2). Enantiomeric excess established by HPLC analysis using a Chiralpak
AD-H column, ee = 96.8% (HPLC: AD-H, 254 nm, hexane/isopropanol = 90:10, flow rate 1.0 mL/min,
25 °C, t, (minor) = 8.1 min, t, (major) = 19.5 min). [a]o* = 12.8° (¢ 0.8, CH,Cl,).

'H NMR (300 MHz, MeOD) 6 7.46-7.38 (m, 5H), 7.38-7.28 (m, 5H), 7.17 (d, J = 1.3 Hz, 1H), 7.13
(d, J = 1.3 Hz, 1H).

3C NMR (75 MHz, MeOD) § 142.9, 140.1, 132.8, 131.1, 130.5, 129.9, 129.6, 129.4, 128.9, 128.1,
127.2,122.5,122.3,90.3, 83.9, 71.7.

F NMR (282 MHz, None) ¢ —78.42, —116.89, —117.84, —-120.28, —-121.23.

IR (film): v (cm™) 2246, 1597, 1498, 1457, 1445, 1330, 1212, 1179, 1154, 1142, 1124, 1097, 1075,
1058, 988, 936, 841, 773, 756, 689, 643, 569, 537, 517, 434, 418.

HRMS (ESI, m/z) calcd for C,oH13FsN,OH [M+H]": 393.1021, found: 393.1027.
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5.4 Octahedral Chiral-at-Ruthenium Complexes for Asymmetric Catalysis

5.4.1. Synthesis and characterization of catalysts

a) Synthesis of the NHCs ligands

Br
/N
Q . .
/ o] _

| Mes
» =S i
7 = L. N e
o N a Br N 170 °C, solvent-free, 30 h 1S r
ST’ s3' , solvent-free, L1

a: (i) 1.11 equiv of n-BuLi/THF,-78 °C, 30min
(i) 0.73 equiv of ZnCl,/THF,-78 °C to RT, 30min
(iii) 1.0 equiv of 82", 1.6 mol% Pd(PPh3),/THF, reflux, 18 h

2-Bromo-5-(3,5-dimethylphenyl)pyridine (S3’) was synthesized following a published procedure
with slight modifications.*” The 2-bromo-5-iodopyridine (S1’) (925.3 mg, 5.0 mmol) was dissolved in
2.0 mL of THF and was cooled to —78 °C. n-Butyllithium (n-BuLi) (3.47 mL, 5.55 mmol, 1.6 M in
hexane) was added over a 30 min period. The lithiate was then warmed to —40 °C and stirred for 15
min before being cooled again to —78 °C. A solution of ZnCl, (pre-dried under vacuum) (497 mg, 3.65
mmol) was separately prepared in 4.0 mL THF. This solution was then added to the lithiate over a 5
min period at —78 <C. The reaction mixture was left to warm to room temperature upon which it was
added to a solution of 1-bromo-3,5-dimethylbenzene (S2') (925 mg, 5.0 mmol) and Pd(PPhs), (93 mg,
0.08 mmol, 1.60 mol%) in 5 mL THF. The final reaction mixture was degassed and heated to reflux for
18 h. The brown solution was then cooled to room temperature and 2/3 of the THF was evaporated
under reduced pressure and its volume replaced by CH,Cl,. The solution was then treated with a
mixture of sat. NaHCO; and EDTA solutions (1:1) (3 x 70 mL). All the agueous phases were
combined and extracted with CH,Cl,. The organic phases were combined, dried over MgSO, and
concentrated. Purification on a silica gel column (EtOAc/hexane = 1:50) resulted in the compound S3’
as a white solid (712 mg, 54% vyield, R = 0.5, EtOAc/n-hexane = 1:10).

'H NMR (300 MHz, CDCl;) 6 8.56 (d, J = 2.1 Hz, 1H), 7.79-7.67 (m, 1H), 7.52 (d, J = 8.2 Hz, 1H),
7.14 (s, 2H), 7.06 (s, 1H), 2.40 (d, J = 5.7 Hz, 6H).

3C NMR (75 MHz, CDCls,) ¢ 148.7, 140.8, 139.0, 137.1, 136.6, 136.4, 130.3, 128.0, 125.0, 21.5.

IR (film): v (cm™) 3013, 2910, 2854, 1598, 1447, 1343, 1074, 1017, 826, 694, 404.
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HRMS (ESI, m/z) calcd for Ci3H;3BrN [M+H]": 262.0226, 264.0206, found: 262.0228, 264.0207.

L1 was synthesized following a published procedure with slight modifications.*® 1-Mesitylimidazole
(391 mg, 2.1 mmol) and 2-bromo-5-(3,5-dimethylphenyl)pyridine (S3’) (524 mg, 2.0 mmol) were
stirred in a sealed tube at 170 °C for 30 h. After cooling to room temperature, the resulting brown solid
was washed with diethyl ether for several times until no starting materials were visible by TLC, and
then the solvent was removed to give L1 as a white solid (498 mg, 56% yield). MP: 304 <C.

'H NMR (300 MHz, CDCls) 6 11.38 (s, 1H), 9.28 (d, J = 8.4 Hz, 1H), 8.93 (s, 1H), 8.69 (s, 1H), 8.26
(d, J = 7.1 Hz, 1H), 7.36 (s, 1H), 7.20 (s, 2H), 7.09 (s, 1H), 7.05 (s, 2H), 2.40 (s, 6H), 2.35 (s, 3H),
2.20 (s, 6H).

B3C NMR (75 MHz, CDCl;) 6 146.9, 144.7, 141.7, 139.1, 139.03, 138.97, 136.0, 135.9, 134.1, 130.71,
130.67, 130.1, 125.1, 124.1, 120.3, 116.3, 21.4, 21.2, 18.0.

IR (film): v (cm™) 2900, 2774, 1604, 1534, 1480, 1378, 1331, 1243, 1081, 1052, 1029, 963, 864, 831,
753, 730, 700, 669, 636, 582, 549, 413.

HRMS (ESI, m/z) calcd for CosHy6N; [M—HBr]™: 368.2121, found: 368.2111.

N
'y
N AN
Vel ® |N/
es
N (/:,l,\l
| P F N e
Br” N [ Br

170 °C, solvent-free, 24h Mes
L2

L2 was prepared according to a reported literature procedure.™
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b) Synthesis of rac-Rul and rac-Ru?2

® l > (\N N
(\N N 1) RuCl3-xH,0, 200 °C N | _NCMe
NJI » Mes” Ru_
S ° Mes NCM
Med  BF 2) AgPFg, 60 °C W ‘ e
N

R=3,5-Me,Ph: rac-Ru1
R=H: rac-Ru2

rac-Rul Complex: A solution of RuCl3exH,0 (25.0 mg, 0.12 mmol) and L1 (108 mg, 0.24 mmol) in
ethylene glycol (2.4 mL) was heated at 200 <C for 8 h, and the reaction mixture was treated with
saturated aqueous NH,4PF; after cooling down to room temperature. A yellow precipitate formed which
was separated by filtration and dissolved in CH,Cl,, washed with water and dried to obtain a
red-orange solid. To the red-orange solution in CH3;CN (3 mL) was added AgPFs (38 mg, 0.15 mmol)
in one portion, and then stirred at 60 T overnight. After cooling to room temperature, the mixture was
filtered. The filtrate was collected, evaporated to dryness and purified by column chromatograph on
silica gel (CH,CI,/CH;CN = 10:1) to give rac-Rul (133 mg, 0.110 mmol, 92% yield for two steps, R¢
= 0.4, CH;CN/CH,CI, = 1:10) as a pale yellow solid. MP: 241-243 <C (decomp.).

'H NMR (300 MHz, CD,Cl,) 5 8.49 (d, J = 1.9 Hz, 2H), 8.04 (dd, J = 9.8, 2.2 Hz, 4H), 7.61 (d, J = 8.6
Hz, 2H), 7.19 (d, J = 9.4 Hz, 6H), 6.91 (d, J = 2.3 Hz, 2H), 6.59 (d, J = 13.2 Hz, 2H), 2.47 (s, 12H),
2.30 (s, 6H), 2.01 (s, 6H), 1.98 (s, 6H), 1.50 (s, 6H).

C NMR (75 MHz, CD,Cl,) 6 189.5, 152.2, 149.1, 140.5, 139.9, 137.0, 135.8, 135.1, 135.0, 134.3,
134.2, 131.4, 130.3, 129.6, 125.9, 124.9, 124.8, 118.0, 111.8, 21.7, 21.1, 17.7, 17.4, 3.9. F NMR (282
MHz, CD,Cl,) 6 —71.31, —73.83.

IR (film): v (cm™) 2924, 1609, 1499, 1425, 1372, 1306, 1256, 1114, 1035, 932, 828, 697, 604, 554,
438.

rac-Ru2 Complex: A solution of RuClzexH,0O (52.0 mg, 0.25 mmol) and L2 (172 mg, 0.50 mmol) in
ethylene glycol (5.0 mL) was heated at 200 <C for 4 h, and the reaction mixture was treated with
saturated aqueous NH,PFsafter cooling down to room temperature. A yellow precipitate formed which

was separated by filtration and dissolved in CH,Cl,, washed with water and dried to obtain a yellow
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solid. To the yellow solution in CH3;CN (5 mL) was added AgPF¢ (79 mg, 0.31 mmol) in one portion,
and then stirred at 60 <C overnight. After cooling to room temperature, the mixture was filtered. The
filtrate was collected, evaporated to dryness and purified by column chromatograph on silica gel
(CH.CI,/CH3CN = 10:1) to give rac-Ru2 (224 mg, 0.224 mmol, 89% yield for two steps, R; = 0.4,
CH3;CN/CH,CI, = 1:10) as a pale yellow solid. MP: 184—186 <C (decomp.).

'H NMR (300 MHz, CD,Cl,) 6 8.36 (d, J = 4.8 Hz, 2H), 7.93 (d, J = 2.3 Hz, 2H), 7.90-7.74 (m, 2H),
7.47 (d, J = 8.2 Hz, 2H), 7.17-7.00 (m, 2H), 6.91 (d, J = 2.3 Hz, 2H), 6.75 (s, 2H), 6.52 (s, 2H), 2.28
(s, 6H), 2.19 (s, 6H), 1.98 (s, 6H), 1.45 (s, 6H).

C NMR (75 MHz, CD,Cl,) 6 190.4, 153.2, 152.5, 140.6, 138.6, 135.6, 134.1, 134.0, 130.4, 129.8,
125.8,124.9, 123.3, 117.6, 111.3, 21.1, 17.6, 17.4, 3.9.

F NMR (282 MHz, CD,Cl,) 6 —72.21, —74.73.

IR (film): v (cm™) 3146, 2946, 2281, 1613, 1486, 1449, 1420, 1335, 1305, 1259, 826, 770, 741, 553,
455.

¢) Synthesis of enantiomerically pure ruthenium catalysts

S SN
| -
7/ N
(S)-2", 36% NJ,,,,,,| 0
—» Mes” Rul_
Mes ‘ \N o)

2+ 2 PFg N \/
o O Sy
ot L
N Pr G R

@ on
/KFI{ NCMe A-(S)—Ru1

Mes” u
MeS\N_/ NCMe Et3N, CH,Cl,, 60 °C
R + PFg
K/N N z —I 6
N
T\J\R ‘ ,\\l:\>
Oll, \\\\\ N\
R = 3,5-Me,Ph L Ru‘ Mes
" Mes
(R)-2", 32% \
\_J N

/IPINJN y
RN

A-(R)-Ru1
A-(S)-Rul and A-(R)-Rul: A mixture of rac-Rul (100.0 mg, 0.083 mmol), the chiral auxiliary (S)-2'"
or (R)-2" (42.4 mg, 0.207 mmol) and triethylamine (84.0 mg, 0.830 mmol) in CH,Cl, (1.37 mL) was
heated at 60 <C for 20 h. The reaction mixture was cooled to room temperature and concentrated to

dryness. The residue was subjected to a flash silica gel chromatography (CH;CN /CH,CI, = 1:200) to
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separate the first eluting diastereomer, which was assigned as A-(S)-Rul (red solid, 35.6 mg, 0.030
mmol, 36%) or A-(R)-Rul (red solid, 31.8 mg, 0.027 mmol, 32%), respectively. MP: 181-183 <€
(decomp.).

'H NMR (300 MHz, CD,Cl,) 6 8.67 (d, J = 2.0 Hz, 1H), 8.17 (d, J = 1.9 Hz, 1H), 7.95 (d, J = 2.3 Hz,
1H), 7.88 (dd, J = 9.5, 2.2 Hz, 2H), 7.65 (dd, J = 8.6, 2.0 Hz, 1H), 7.52 (dd, J = 8.1, 1.8 Hz, 1H), 7.47
(d, J = 8.6 Hz, 1H), 7.30 (d, J = 8.6 Hz, 1H), 7.10-7.02 (m, 3H), 6.98 (s, 2H), 6.88-6.89 (m, 3H), 6.84
(d, J = 2.2 Hz, 1H), 6.54 (d, J = 8.8 Hz, 2H), 6.48 (d, J = 6.7 Hz, 3H), 6.31-6.22 (m, 1H), 4.32 (dd, J
=9.1, 3.0 Hz, 1H), 4.10 (t, J = 9.0 Hz, 1H), 3.97 (dt, J = 8.9, 3.0 Hz, 1H), 2.40 (s, 6H), 2.36 (s, 6H),
2.30 (s, 3H), 2.06 (s, 3H), 1.99 (s, 3H), 1.96 (s, 3H), 1.60 (s, 3H), 1.42 (s, 3H), 0.58 (d, J = 6.9 Hz, 3H),
0.42-0.25 (m, 1H), —0.05 (d, J = 6.8 Hz, 3H).

BC NMR (75 MHz, CD,Cl,) ¢ 197.7, 196.4, 172.0, 165.4, 153.0, 152.9, 148.7, 148.3, 139.7, 139.64,
139.57, 139.4, 137.3, 135.8, 135.5, 135.3, 135.2, 135.0, 134.4, 134.3, 134.2, 134.0, 133.9, 130.8,
130.5, 130.0, 129.6, 129.2, 125.8, 125.3, 124.53, 124.48, 124.0, 116.8, 116.1, 113.0, 110.9, 110.7,
110.1, 75.3, 66.7, 30.2, 21.73, 21.71, 21.09, 21.03, 19.01, 18.8, 18.1, 17.6, 13.7.

“F NMR (282 MHz, CD,Cl,) 6 —72.56, —75.07.

HRMS (ESI, m/z) calcd for Cg,Hg:N;O,Ru [M—PF¢]*: 1040.4175, found: 1040.4182.

A-(S)-Rul: CD (MeOH): &, nm (Ae, M*cm™) 473 (=7), 407 (+34), 365 (-5), 332 (+16), 291 (-36),
269 (+37), 247 (-13), 227 (+27), 208 (-64), 200 (+95). IR (film): v (cm™) 3138, 2960, 2918, 1606,
1535, 1494, 1472, 1419, 1376, 1323, 1279, 1251, 1222, 1066, 1035, 925, 837, 749, 690, 598, 555, 428,
392.

A-(R)-Rul: CD (MeOH): A, nm (Ag, Micm™) 471 (+6), 407 (~18), 367 (+5), 334 (-9), 292 (+16), 269
(=6), 249 (+9), 244 (+8). IR (film): v (cm™) 2959, 2919, 2861, 1605, 1493, 1471, 1419, 1373, 1309,
1252, 1223, 1150, 1066, 1034, 925, 835, 753, 689, 598, 554, 430.
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S ]+ PFs
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N~ N
w ogo
2% N, | 0
— es u-
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S| newe A-(S)}Ru2
Mes Ru\
'V'eS\N_/’ NCMe EtsN, CH,Cl,, 60 °C
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K/N N /| —I 6
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L « ‘R
(R)}-2",38% O N Mes
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A-(R)-Ru2
A-(S)-Ru2: A mixture of rac-Ru2 (109.4 mg, 0.11 mmol), the chiral auxiliary (S)-2'' (56.0 mg, 0.27
mmol) and triethylamine (110.5 mg, 1.09 mmol) in CH,CI, (1.82 mL) was heated at 60 °C for 20 h.
The reaction mixture was cooled to room temperature and concentrated to dryness. The residue was
subjected to a flash silica gel chromatography (CH;CN /CH,Cl,= 1:600 to 1:200) to separate the first
eluting diastereomer (orange solid, 29.5 mg, 0.03 mmol, 28%) which was assigned as A-(S)-Ru2.
A-(R)-Ru2: The catalyst A-(R)-Ru2 was similarly synthesized with A-(S)-Ru2. A mixture of rac-Ru2
(109.4 mg, 0.11 mmol), the chiral auxiliary (R)-2'" (56.0 mg, 0.27 mmol) and triethylamine (110.5 mg,
1.09 mmol) in CH,CI; (1.82 mL) was heated at 60 °C for 30 h. The reaction mixture was cooled to
room temperature and concentrated to dryness. The residue was subjected to a flash silica gel
chromatography (CH;CN /CH,CI,= 1:600 to 1:200) to separate the first eluting diastereomer (orange
solid, 40.9 mg, 0.04 mmol, 38%) which was assigned as A-(R)-Ruz2.

'H NMR (300 MHz, CD,Cl,) 6 8.36 (d, J = 4.5 Hz, 1H), 7.99-7.72 (m, 3H), 7.65 (t, J = 7.5 Hz, 1H),
7.62-7.41 (m, 2H), 7.32 (dd, J = 31.3, 8.2 Hz, 2H), 7.01-6.98 (m, 1H), 6.89-6.68 (m, 6H), 6.47 (d, J =
18.2 Hz, 2H), 6.30-6.28 (m, 1H), 6.04 (s, 1H), 4.23-4.14 (m, 2H), 3.96 (s, 1H), 2.27-2.10 (m, 12H),
1.54 (s, 3H), 1.35 (s, 3H), 0.51 (d, J = 6.6 Hz, 3H), 0.22-0.04 (m, 1H), -0.07 (d, J = 6.3 Hz, 1H).

C NMR (75 MHz, CD,Cl,) 6 154.3, 154.2, 150.9, 139.8, 137.7, 136.5, 136.4, 135.2, 135.1, 134.8,
134.6, 134.0, 133.4, 130.6, 130.2, 129.8, 129.7, 129.5, 125.7, 125.2, 121.4, 121.2, 116.7, 115.8, 110.6,

109.9, 75.0, 66.4, 30.5, 21.1, 21.0, 19.1, 18.7, 18.1, 18.0, 17.5, 13.6.
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F NMR (282 MHz, CD,Cl,) 5 ~72.62, —75.14.

A-(S)-Ru2: CD (MeOH): &, nm (Ae, M cm™) 396 (+25), 352 (~6), 327 (+6), 303 (~11), 280 (+19),
260 (—11), 232 (+70).

A-(R)-Ru2: CD (MeOH): A, nm (Ae, M cm™) 398 (~15), 353 (+7), 328 (-2), 302 (+12), 280
(~10), 258 (+11), 240 (-9).

IR (film): v (cm™) 3171, 3138, 2962, 2921, 2867, 1607, 1536, 1479, 1445, 1414, 1379, 1321, 1280,
1252, 1225, 1155, 1130, 1069, 925, 832, 762, 685, 553, 529, 453,

HRMS (ESI, m/z) calcd for CysHysN;,O,RU [M—-PF]": 832.2918, found: 832.2922.

AN R _l +PFg’ R —|+ PFg
| -
(/\N N N/\§ TFA (10.0 eq)
NJ"/, \O Ou,,, l \\\\\N NH,4PFg (30.0 eq)
~ ", W R
R P or ‘
N

u” "Mes » A or A Ru catalysts

Mes  CH,CN, r.t.
NNy P PrUN\/
T R R

R =H or 3,5-Me,Ph

To a suspension of A-(S)-Rul (27.2 mg, 0.023 mmol), A-(R)-Rul (20.1 mg, 0.017 mmol), A-(S)-Ru2
(33.0 mg, 0.034 mmol) or A-(R)-Ru2 (40.9 mg, 0.042 mmol) in CH;CN (3 mL) was added TFA (10 eq)
in one portion and stirred at room temperature for 0.5 h. The reaction mixture was evaporated to
dryness, redissolved in CH;CN, followed by the addition of excess NH4PFs (30 eq), and then stirred at
room temperature for another 0.5 h. The mixture was filtered by a thin pad of silica gel, the pale
yellow filtrate was concentrated, and then subjected to the column chromatography on silica gel
(CH,CI,/CHsCN = 100:1 to 5:1) to give the enantiopure catalyst A-Rul (25.6 mg, 0.021 mmol, 92%
yield), A-Rul (19.5 mg, 0.016 mmol, 95% yield), A-Ru2 (25.8 mg, 0.026 mmol, 76% yield) or A-Ru2
(37.1 mg, 0.037 mmol, 88% yield) as pale yellow solid. All other spectroscopic data of enantiopure

ruthenium catalysts were in agreement with the racemic catalysts.

CD (CH,OH) for A-Rul: A, nm (Ae, Mlcm™) 346 (+11), 328 (+4), 307 (+38), 289 (-9), 268 (+76),
239 (-73), 226 (~26), 207 (~76).
CD (CHsOH) for A-Rul: &, nm (Ae, Mcm™) 344 (-12), 329 (-5), 306 (~39), 290 (+11), 269 (~79),
240 (+75), 225 (+25), 206 (+77).
CD (CH,OH) for A-Ru2: A, nm (A, Mcm™) 351 (+4), 312 (-4), 283 (+23), 264 (-21), 235 (+23),
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218 (-1).
CD (MeOH) for A-Ru2: %, nm (Ae, M cm) 314 (+8), 283 (-22), 264 (+32), 233 (~15).

5.4.2 Assignment of the absolute configuration of enantiopure ruthenium complexes

High quality single crystals for X-ray diffraction were obtained by converting the single enantiomer

A-Ru2 into A-Ru2-DPPE.

/ |2+ 2PFg % |2+ 2PFg
L L
~ N \N N/%

N

N~ N
N Ph,P  PpPh, (10.0€a)  Ph, &N
MeCN,, | Mes DPPE Pu,,, | & Mes
“Rd Mes "R Mes
7 N/ r / N/
MeCN | \’ CH,Cl,, 2 h 9¢ |
N N\/) 2 N NY
A Ru2 A-Ru2-DPPE

A-Ru2-DPPE  was obtained Dby reacting A-Ru2 (200 mg, 0.02 mmol) with
1,2-bis(diphenylphosphino)ethane (DPPE) (79.7 mg, 0.2 mmol) at room temperature for 2 hours in
CH,CI, (2.0 mL). The solution was then evaporated and the resulting solid was washed with Et,O and
a pure pale yellow solid was obtained (24.4 mg, yield: 92%). MP: 217—-219 <C (decomp.).

'H NMR (300 MHz, CD,Cl,) § 8.09 (d, J = 2.2 Hz, 2H), 7.78 (d, J = 5.3 Hz, 2H), 7.62-7.45 (m, 4H),
7.40 (t, J = 6.8 Hz, 4H), 7.31-7.23 (m, J = 7.4, 6.2 Hz, 8H), 7.13-6.94 (m, 6H), 6.63-6.49 (m, 6H),
6.48-6.35 (M, 4H), 3.16-3.06 (M, 2H), 2.90-2.61 (m, 2H), 2.13 (s, 6H), 1.45 (s, 6H), 1.32 (s, 6H).

BC NMR (75 MHz, CD,Cl,) ¢ 188.5, 187.4, 154.7, 153.3, 140.8, 139.7, 135.0, 134.5, 134.4, 133.6,
133.2, 132.9, 132.8, 132.7, 131.9, 130.9, 130.6, 130.43, 130.37, 130.31, 130.25, 130.19, 130.13,
130.08, 129.87, 129.81, 129.76, 129.2, 128.7, 123.2, 118.4, 113.3, 28.0, 27.5, 20.9, 19.0, 18.4.

F NMR (282 MHz, CD,Cl,) 6 —72.12, —74.64.

IR (film): v (cm™) 2953, 2922, 2853, 1614, 1485, 1455, 1437, 1413, 1378, 1331, 1295, 1260, 1186,
1174, 1089, 832, 770, 740, 696, 556, 520.

Crystals of A-Ru-DPPE were obtained from slow diffusion of Et,O into a solution of the complex in
MeOH and CH,Cl,. The obtained crystal structure of A-Ru-DPPE contains a A-configuration at the

ruthenium center.
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5.4.3. Ruthenium-catalyzed alkynylation reactions

HO, Re

o) %
A-Ru1 (0.5-1 mol%) XN S
1 X Re + H—R? . > R X,
L EtzN (20 mol%) _ R

16 h, THF, 60 °C

General catalytic procedure: A dried 10 mL Schlenk tube was charged with the catalyst A-Rul
(0.5-1.0 mol%) and the corresponding trifluoromethyl ketones (0.20 mmol, 1.0 eq). The tube was
purged with nitrogen, THF (0.4 mL) and Et;N (5.6 L, 0.2 eq) were added via syringe, and followed
by the corresponding alkynes (3.0 eq). The tube was sealed and the reaction was stirred at 60 °C for 16
h under nitrogen atmosphere. The solvent was removed and the residue was purified by flash
chromatography on silica gel (EtOAc/hexane = 1:50) to afford the propargyl alcohols. Racemic
samples were obtained by using rac-Rul. The product (S)-26a was obtained by using A-Rul as
catalyst. The (S)-configuration of the product 26a was assigned by comparison with published optical
rotation and chiral HPLC retention time data.?° All other products were assigned accordingly. Optical
rotation of (S)-26a: [o]p® = —24.2° (c 1.0, CH,Cl,, 99.1% ee). Lit.”: [a]p®® = —25.5 (c 1.1, CHCl,,
88% ee for S-configuration). Chiral HPLC with (S)-26a: (Daicel Chiralcel OJ-H column, 254 nm,
hexane/isopropanol = 90:10, flow rate 0.8 mL/min, 25 °C) t, (minor) = 14.8 min, t, (major) = 34.8 min.

Lit.>: t, (minor) = 16.9 min, t, (major) = 33.4 min.

(S)-1,1,1-Trifluoro-2,4-diphenylbut-3-yn-2-ol (26a)
HO,,,' CF4

Starting from 2,2,2-trifluoro-1-phenylethanone (34.8 mg, 0.20 mmol) and phenylacetylene (61.3 mg,
0.60 mmol) according to the general procedure to give 26a as a colorless oil (52.4 mg, 0.190 mmol,
yield: 95%, R¢ = 0.4, EtOAc/n-hexane = 1:10). Enantiomeric excess was established by HPLC analysis
using a Chiralcel OJ-H column, ee = 99.2% (HPLC: OJ-H, 254 nm, hexane/isopropanol = 85:15, flow
rate 1.0 mL/min, 25 °C, t, (minor) = 9.5 min, t, (major) = 25.2 min). [a]p® = —24.2° (¢ 1.0, CH,Cl,).
'H NMR (300 MHz, CDCl5) 6 7.86-7.83 (m, 2H), 7.61-7.52 (m, 2H), 7.51-7.33 (m, 6H), 3.11 (s, 1H).
C NMR (75 MHz, CDCl,) 6 135.5, 132.2, 129.70, 129.68, 128.6, 128.4, 127.4, 127.3, 123.6 (q, J =
284.0 Hz), 121.1, 88.3, 84.6, 73.6 (q, J = 32.3 Hz).
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F NMR (282 MHz, CDCls) 6 —80.26.
HRMS (ESI, m/z) calcd for CyH1oF3 [M+H-H,0]": 259.0729, found: 259.0728.

Al spectroscopic data are in agreement with the literature.?

(5)-1,1,1-Trifluoro-2-phenyl-4-(p-tolyl)but-3-yn-2-ol (26b)

HO, ,CF,

%,

Me

Starting from 2,2,2-trifluoro-1-phenylethanone (34.8 mg, 0.20 mmol) and 1-ethynyl-4-methylbenzene
(69.7 mg, 0.60 mmol) according to the general procedure to give 26b as a colorless oil (57.3 mg, 0.197
mmol, yield: 99%, R; = 0.4, EtOAc/n-hexane = 1:10). Enantiomeric excess established by HPLC
analysis using a Chiralcel OJ-H column, ee = 99.2% (HPLC: OJ-H, 254 nm, hexane/isopropanol =
85:15, flow rate 1.0 mL/min, 25 °C, t, (minor) = 8.5 min, t, (major) = 12.3 min). [a]p> = —29.2° (¢ 1.0,
CH,Cl,).

'H NMR (300 MHz, CDCls) § 7.88-7.78 (m, 2H), 7.48-7.40 (m, 5H), 7.17 (d, J = 7.9 Hz, 2H), 3.06 (s,
1H), 2.38 (s, 3H).

C NMR (75 MHz, CDCl,) 6 140.1, 135.6, 132.1, 129.6, 129.4, 128.4, 127.38, 127.37, 123.6 (q, J =
284.0 Hz), 88.5, 84.0, 73.6 (q, J = 32.3 Hz), 21.7.

“F NMR (282 MHz, CDCl5) 6 —80.20.

HRMS (ESI, m/z) calcd for Cy;H1,F; [M+H-H,0]": 273.0886, found: 273.0885.

All spectroscopic data are in agreement with the literature.”

(S)-1,1,1-Trifluoro-2-phenyl-4-(m-tolyl)but-3-yn-2-ol (26c¢)
HO, ,CF,

%,

Starting from 2,2,2-trifluoro-1-phenylethanone (34.8 mg, 0.20 mmol) and 1-ethynyl-3-methylbenzene
(69.7 mg, 0.60 mmol) according to the general procedure to give 26c¢ as a colorless oil (57.4 mg, 0.197
mmol, yield: 99%, R; = 0.4, EtOAc/n-hexane = 1:10). Enantiomeric excess established by HPLC

analysis using a Chiralcel OJ-H column, ee = 99.2% (HPLC: OJ-H, 254 nm, hexane/isopropanol =
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85:15, flow rate 1.0 mL/min, 25 °C, t, (minor) = 6.9 min, t, (major) = 11.6 min). [o]p® = —29.0° (c 1.0,
CH,CI,).

'H NMR (300 MHz, CDCls) 6 8.03-7.65 (m, 2H), 7.49-7.38 (m, 3H), 7.37-7.30 (m, 2H), 7.24-7.17
(m, 2H), 3.07 (s, 1H), 2.34 (s, 3H).

3C NMR (75 MHz, CDCl,) ¢ 138.4, 135.5, 132.8, 130.6, 129.6, 129.3, 128.5, 128.4, 127.4, 123.6 (q, J
= 284.0 Hz), 120.9, 88.5, 84.2, 73.6 (q, J = 32.3 Hz), 21.3.

F NMR (282 MHz, CDCls) 6 —80.26.

IR (film): v (cm™) 3543, 3064, 3037, 2233, 1598, 1485, 1450, 1351, 1251, 1171, 1102, 1064, 1016,
933, 903, 783, 762, 697, 626, 589, 524, 447.

HRMS (ESI, m/z) calcd for Cy7H1,F3 [M+H-H,0]": 273.0886, found: 273.0884.

Al spectroscopic data are in agreement with the literature.?

(S)-1,1,1-Trifluoro-2-phenyl-4-(o-tolyl)but-3-yn-2-ol (26d)
HO,,,' CF5

Starting from 2,2,2-trifluoro-1-phenylethanone (34.8 mg, 0.20 mmol) and 1-ethynyl-2-methylbenzene
(69.7 mg, 0.60 mmol) according to the general procedure to give 26d as a colorless oil (56.4 mg, 0.197
mmol, yield: 99%, R; = 0.4, EtOAc/n-hexane = 1:10). Enantiomeric excess established by HPLC
analysis using a Chiralcel OJ-H column, ee = 99.2% (HPLC: OJ-H, 254 nm, hexane/isopropanol =
85:15, flow rate 1.0 mL/min, 25 °C, t, (minor) = 6.5 min, t, (major) = 8.9 min). [a]po* = —21.6° (¢ 1.0,
CH,Cl,).

'H NMR (300 MHz, CDCly) § 7.97-7.73 (m, 2H), 7.56-7.37 (m, 4H), 7.35-7.09 (m, 3H), 3.06 (s, 1H),
2.47 (s, 3H).

3C NMR (75 MHz, CDCl,) ¢ 141.2, 135.5, 132.5, 129.8, 129.72, 129.66, 128.4, 127.39, 127.38, 125.9,
123.6 (q, J = 284.0 Hz), 120.9, 88.4, 87.4, 73.7 (9, J = 32.3 Hz), 20.7.

F NMR (282 MHz, CD;0D) ¢ —80.25.

IR (film): v (cm™) 3543, 3067, 2922, 2228, 1599, 1486, 1451, 1351, 1242, 1175, 1124, 1097, 1063,
1007, 933, 905, 827, 759, 713, 666, 625, 599, 537, 501, 456, 429.

HRMS (EI, m/z) calcd for C;7H13F50: 290.0919, found: 290.0913.
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(S)-1,1,1-Trifluoro-4-(4-methoxyphenyl)-2-phenylbut-3-yn-2-ol (26e)

HO, ,CF,

%,

OMe

Starting from 2,2,2-trifluoro-1-phenylethanone (34.8 mg, 0.20 mmol) and
1-ethynyl-4-methoxybenzene (79.3 mg, 0.60 mmol) according to the general procedure to give 26e as
a pale yellow solid (60.4 mg, 0.197 mmol, yield: 99%, R; = 0.7, EtOAc/n-hexane = 1:10). MP: 64 °C.
Enantiomeric excess established by HPLC analysis using a Chiralcel OJ-H column, ee = 99.0%
(HPLC: OJ-H, 254 nm, hexane/isopropanol = 85:15, flow rate 1.0 mL/min, 25 °C, t, (minor) = 20.1
min, t, (major) = 22.1 min). [a]o®® = —38.8° (¢ 1.0, CH,CL,).

'H NMR (300 MHz, CDCl5) 6 8.00-7.73 (m, 2H), 7.58-7.36 (m, 5H), 7.00-6.77 (m, 2H), 3.83 (s, 3H),
3.10 (s, 1H).

3C NMR (75 MHz, CDCls) 6 160.7, 135.7, 133.8, 129.6, 128.4, 127.4, 123.6 (q, J = 283.5 Hz), 114.3,
113.1, 88.4, 83.4, 73.6 (q, J = 32.3 Hz), 55.5.

“F NMR (282 MHz, CDCl5) 6 —80.20.

HRMS (ESI, m/z) calcd for Cy;H14F30; [M+H]": 307.0940, found: 307.0940.

All spectroscopic data are in agreement with the literature.®

(S)-4-(4-Bromophenyl)-1,1,1-Trifluoro-2-phenylbut-3-yn-2-ol (26f)

HO, ,CFs

Br

Starting from 2,2,2-trifluoro-1-phenylethanone (34.8 mg, 0.20 mmol) and 1-bromo-4-ethynylbenzene
(108.6 mg, 0.60 mmol) according to the general procedure to give 26f as a pale yellow oil (53.2 mg,
0.150 mmol, yield: 75%, Rs = 0.4, EtOAc/n-hexane = 1:10). Enantiomeric excess established by
HPLC analysis using a Chiralcel OJ-H column, ee = 97.0% (HPLC: OJ-H, 254 nm,
hexane/isopropanol = 85:15, flow rate 1.0 mL/min, 25 °C, t, (major) = 11.8 min, t, (minor) = 18.0 min).
[a]p? = —30.4° (c 1.0, CH,CL,).

'H NMR (300 MHz, CDCly) & 7.81-7.78 (m, 2H), 7.55-7.48 (m, 2H), 7.47-7.36 (m, 5H), 3.05 (s, 1H).
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C NMR (75 MHz, CDCl;) 6 135.2, 133.6, 132.0, 129.8, 128.5, 127.3, 124.2, 123.5 (q, J = 283.8 Hz),
120.0, 87.2, 85.7, 73.6 (g, J = 32.5 Hz).

F NMR (282 MHz, CDCls) 6 —80.22.

HRMS (APCI, m/z) calcd for CisHoBrF; [M+H-H,0]": 338.9814, found: 338.9812.

Al spectroscopic data are in agreement with the literature.?

(5)-1,1,1-Trifluoro-4-(2-fluorophenyl)-2-phenylbut-3-yn-2-ol (26g)

Starting from 2,2,2-trifluoro-1-phenylethanone (34.8 mg, 0.20 mmol) and 1-ethynyl-2-fluorobenzene
(72.1 mg, 0.60 mmol) according to the general procedure to give 26g as a colorless oil (38.8 mg, 0.132
mmol, yield: 66%, R = 0.4, EtOAc/n-hexane = 1:10). Enantiomeric excess established by HPLC
analysis using a Chiralcel OJ-H column, ee = 99.4% (HPLC: OJ-H, 254 nm, hexane/isopropanol =
85:15, flow rate 1.0 mL/min, 25 °C, t, (minor) = 8.8 min, t, (major) = 17.2 min). [a]p> = —17.6° (¢ 1.0,
CH,Cl,).

'H NMR (300 MHz, CDCl5) 6 7.87-7.75 (m, 2H), 7.68-7.33 (m, 5H), 7.23-7.03 (m, 2H), 3.11 (s, 1H).
BC NMR (75 MHz, CDCly) ¢ 165.1, 161.7, 135.2, 133.9, 131.6, 131.5, 129.2, 128.4, 127.4, 124.3,
124.2, 1235 (q, J = 283.8 Hz), 116.0, 115.7, 110.0, 109.8, 89.6, 81.9, 73.7 (g, J = 32.3 Hz), 35.70,
35.66, 31.50.

“F NMR (282 MHz, CDCls) 6 —108.91, —80.22.

IR (film): v (cm™) 3555, 3450, 3068, 2238, 1958, 1609, 1574, 1490, 1449, 1352, 1251, 1176, 1116,
1063, 1008, 935, 906, 838, 760, 717, 666, 625, 584, 549, 481, 436.

HRMS (ESI, m/z) calcd for CysHgF,O [M—H]":293.0584, found: 293.0582.

(S)-1,1,1-Trifluoro-2-phenyl-4-(thiophen-2-yl)but-3-yn-2-ol (26h)
HO, ,CF;

Starting from 2,2,2-trifluoro-1-phenylethanone (34.8 mg, 0.20 mmol) and 3-ethynylthiophene (64.9
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mg, 0.60 mmol) according to the general procedure to give 26h as a pale yellow oil (49.5 mg, 0.176
mmol, yield: 88%, R; = 0.5, EtOAc/n-hexane = 1:10). Enantiomeric excess established by HPLC
analysis using a Chiralcel OJ-H column, ee = 96.2% (HPLC: OJ-H, 254 nm, hexane/isopropanol =
60:40, flow rate 1.0 mL/min, 25 °C, t, (minor) = 8.5 min, t, (major) = 18.4 min). [a]p>> = —46.2° (¢ 1.0,
CH,Cl,).

'H NMR (300 MHz, CDCly) 6 7.89-7.74 (m, 1H), 7.61 (dd, J = 3.0, 1.1 Hz, 1H), 7.50-7.41 (m, 3H),
7.33-7.31 (m, 1H), 7.20 (dd, J = 5.0, 1.1 Hz, 1H), 3.06 (s, 1H).

3C NMR (75 MHz, CDCls) § 135.4, 131.0, 130.0, 129.7, 128.4, 127.3, 127.3, 126.0, 123.5 (q, J =
283.5 Hz), 120.2, 84.4, 83.6, 73.6 (q, J = 32.3 Hz), 35.7.

F NMR (282 MHz, CDCl5) § —80.22.

IR (film): v (cm™) 3543.3300, 3110, 2232, 1489, 1450, 1356, 1260, 1237, 1172, 1105, 1062, 1013,
909, 869, 828, 785, 697, 625, 593, 518.

HRMS (ESI, m/z) calcd for Cy,HgF;0S [M—H]": 281.0242, found: 281.0252.

All spectroscopic data are in agreement with the literature.?’

(S)-4-(Cyclohex-1-en-1-yI)-1,1,1-Trifluoro-2-phenylbut-3-yn-2-ol (26i)
HO, ,CFs

Starting from 2,2,2-trifluoro-1-phenylethanone (34.8 mg, 0.20 mmol) and 1-ethynylcyclohex-1-ene
(63.7 mg, 0.60 mmol) according to the general procedure to give 26i as a colorless oil (54.8 mg, 0.196
mmol, yield: 98%, R; = 0.5, EtOAc/n-hexane = 1:10). Enantiomeric excess established by HPLC
analysis using a Chiralcel OJ-H column, ee = 99.2% (HPLC: OJ-H, 230 nm, hexane/isopropanol =
95:5, flow rate 1.0 mL/min, 25 °C, t, (minor) = 14.5 min, t, (major) = 15.4 min). [a]o”> = -15.6° (c 1.0,
CH,CL,).

'H NMR (300 MHz, CDCly) 6 7.85-7.71 (m, 2H), 7.49-7.35 (m, 3H), 6.37-6.26 (m, 1H), 2.98 (s, 1H),
2.28-2.06 (M, 4H), 1.78-1.55 (m, 4H).

3C NMR (75 MHz, CDCl5) ¢ 138.1, 135.8, 129.5, 128.3, 127.4, 123.6 (g, J = 283.7 Hz), 119.3, 90.1,
82.0,73.4 (q,J=32.3 Hz), 28.8, 25.8, 22.2, 21.4.

F NMR (282 MHz, CDCl5) 5 —80.98.
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HRMS (ESI, m/z) calcd for CyeH;4F;0 [M—H]": 279.0991, found: 279.1007.

Al spectroscopic data are in agreement with the literature.?

(S)-4-Cyclohexyl-1,1,1-trifluoro-2-phenylbut-3-yn-2-ol (26j)
HO, ,CF;
X

Starting from 2,2,2-trifluoro-1-phenylethanone (34.8 mg, 0.20 mmol) and ethynylcyclohexane (64.9
mg, 0.60 mmol) according to the general procedure to give 26j as a colorless oil (54.1 mg, 0.192
mmol, yield: 96%). Enantiomeric excess established by HPLC analysis using a Chiralpak AD-H
column, ee = 99.2% (HPLC: AD-H, 210 nm, hexane/isopropanol = 95:5, flow rate 1.0 mL/min, 25 °C,
t, (minor) = 6.7 min, t, (major) = 9.5 min). [a]po®® = -5.4° (c 1.0, CH,CL,).

'H NMR (300 MHz, CDCl;) 6 7.89-7.67 (m, 2H), 7.55-7.33 (m, 3H), 2.89 (s, 1H), 2.70-2.42 (m, 1H),
1.89-1.69 (m, 4H), 1.60-1.31 (m, 6H).

B3C NMR (75 MHz, CDCl;) 6 136.0, 129.4, 128.2, 127.4, 123.6 (g, J = 283.5 Hz), 93.7, 76.5, 73.0 (q,
J=32.0 Hz), 32.18, 32.16, 29.0, 25.9, 24.7.

“F NMR (282 MHz, CDCl5) 6 —80.73.

HRMS (FD, m/z) calcd for Ci6H1,F30 [M]": 282.1231, found: 282.1148.

All spectroscopic data are in agreement with the literature.”

(S)-4-Cyclopropyl-1,1,1-trifluoro-2-phenylbut-3-yn-2-ol (26k)
HO,," CF5
X

Starting from 2,2,2-trifluoro-1-phenylethanone (34.8 mg, 0.20 mmol) and cyclopropylacetylene (39.7
mg, 0.60 mmol) according to the general procedure to give 26k as a colorless oil (46.4 mg, 0.193
mmol, yield: 97%, R; = 0.3, EtOAc/n-hexane = 1:10). Enantiomeric excess established by HPLC
analysis using a Chiralcel OJ-H column, ee = 97.0% (HPLC: OJ-H, 220 nm, hexane/isopropanol =
90:10, flow rate 1.0 mL/min, 25 °C, t, (minor) = 15.7 min, t, (major) = 18.1 min). [a]p> = —42.2° (c
1.0, CH,CL).
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'H NMR (300 MHz, CDCl;) 6 7.88-7.61 (m, 2H), 7.47-7.33 (m, 3H), 2.88 (s, 1H), 1.48-1.23 (m, 1H),
1.07-0.70 (m, 4H).

BC NMR (75 MHz, CDCls) § 135.9, 129.4, 128.2, 127.3, 123.5(q, J = 283.5 Hz), 92.8, 73.0 (q, J =
32.0 Hz), 71.3, 8.63, 8.60, —0.50.

“F NMR (282 MHz, CDCls) 6 —80.49.

HRMS (FD, m/z) calcd for Cy3H1:F50 [M]": 240.0762, found: 240.0755.

Al spectroscopic data are in agreement with the literature.”

(5)-1,1,1-Trifluoro-2-phenyloct-3-yn-2-ol (26l)
HO, ,CF3

O Seo

Starting from 2,2,2-trifluoro-1-phenylethanone (34.8 mg, 0.20 mmol) and hex-1-yne (49.3 mg, 0.60
mmol) according to the general procedure to give 26l as a colorless oil (50.4 mg, 0.196 mmol, yield:
98%, R; = 0.4, EtOAc/n-hexane = 1:10). Enantiomeric excess established by HPLC analysis using a
Chiralcel OJ-H column, ee = 99.0% (HPLC: OJ-H, 220 nm, hexane/isopropanol = 90:10, flow rate 1.0
mL/min, 25 °C, t, (minor) = 7.6 min, t, (major) = 9.3 min). [a]o> = —3.6°(c 1.0, CH,Cl,).

'H NMR (300 MHz, CDCl3) 6 7.80-7.67 (m, 2H), 7.57-7.34 (m, 3H), 2.90 (s, 1H), 2.34 (t, J = 7.0 Hz,
2H), 1.67-1.53 (m, 2H), 1.53-1.39 (m, 2H), 0.98-0.93 (t, J = 7.4 Hz, 3H).

C NMR (75 MHz, CDCls) 6 135.9, 129.4, 128.2, 127.3, 123.6 (g, J = 283.5 Hz), 89.9, 76.4, 73.1 (q,
J=32.3Hz),30.3,22.1, 18.5, 13.6.

F NMR (282 MHz, CDCl5) 5 —80.66.

IR (film): v (cm™) 3478, 3068, 2960, 2933, 2869, 2243, 1453, 1352, 1259, 1166, 1035, 994, 936, 906,
841, 761, 725, 697, 667, 625.

HRMS (APCI, m/z) calcd for C14H14F3 [M+H-H,0]": 239.1042, found: 239.1039.

Al spectroscopic data are in agreement with the literature.?*

(S)-1,1,1-Trifluoro-2-phenyl-4-(trimethylsilyl)but-3-yn-2-ol (26m)
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HO,," CF;

oY
SiMe;

Starting from 2,2,2-trifluoro-1-phenylethanone (34.8 mg, 0.20 mmol) and ethynyltrimethylsilane (58.9
mg, 0.60 mmol) according to the general procedure to give 26m as a colorless oil (42.1 mg, 0.155
mmol, yield: 77%, R¢ = 0.5, EtOAc/n-hexane = 1:10). Enantiomeric excess established by HPLC
analysis using a Chiralcel OJ-H column, ee = 99.6% (HPLC: OJ-H, 210 nm, hexane/isopropanol =
95:5, flow rate 1.0 mL/min, 25 °C, t, (major) = 5.3 min, t, (minor) = 10.7 min). [o]o® = —20.8° (c 1.0,
CH.Cl,).
'H NMR (300 MHz, CDCl3) 6 7.76-7.72 (m, 2H), 7.49-7.36 (m, 3H), 2.96 (s, 1H), 0.25 (s, 9H).
3C NMR (75 MHz, CDCl5) 6 135.2, 129.6, 128.3, 127.3, 123.3 (q, J = 283.5 Hz)100.3, 94.5, 73.2 (q,
J =32.3 Hz), -0.36.
F NMR (282 MHz, CDCl5) & —80.39.
IR (film): v (cm™) 3471, 2963, 1492, 1452, 1347, 1253, 1175, 1129, 1068, 1015, 933, 906, 845, 761,

697, 627, 498, 451.

(S)-1,1,1-Trifluoro-4-phenyl-2-(p-tolyl)but-3-yn-2-ol (26n)

HO, ,CF3

o
Ph
Me

Starting from 2,2,2-trifluoro-1-(p-tolyl)ethanone (37.6 mg, 0.20 mmol) and phenylacetylene (61.3 mg,
0.60 mmol) according to the general procedure to give 26n as a colorless oil (53.8 mg, 0.185 mmol,
yield: 93%, R = 0.4, EtOAc/n-hexane = 1:10). Enantiomeric excess established by HPLC analysis
using a Chiralcel OJ-H column, ee = 98.0% (HPLC: OJ-H, 254 nm, hexane/isopropanol = 85:15, flow
rate 1.0 mL/min, 25 °C, t, (minor) = 8.4 min, t, (major) = 17.1 min). [a]o*> = —29.0° (¢ 1.0, CH,CL,).
'H NMR (300 MHz, CDCly) 6 7.73 (d, J = 8.1 Hz, 2H), 7.58-7.54 (m, 2H), 7.46-7.33 (m, 3H),
7.32-7.22 (m, 2H), 3.10 (s, 1H), 2.41 (s, 3H).

3C NMR (75 MHz, CDCl5) § 139.7, 132.6, 132.2, 129.3, 129.1, 128.6, 127.2, 123.6 (g, J = 283.8 Hz),
121.2,88.1,84.8, 73.5 (g, J = 32.3 Hz), 21.3.

F NMR (282 MHz, CDCl5) 5 —80.35.

HRMS (El, m/z) calcd for C17H13F;0 [M]": 290.0918, found: 290.0925.
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Al spectroscopic data are in agreement with the literature.?

(5)-1,1,1-Trifluoro-4-phenyl-2-(m-tolyl)but-3-yn-2-ol (260)
HO, ,CF3

Me .

s

Ph

Starting from 2,2,2-trifluoro-1-(m-tolyl)ethanone (37.6 mg, 0.20 mmol) and phenylacetylene (61.3 mg,
0.60 mmol) according to the general procedure to give 260 as a colorless oil (55.9 mg, 0.193 mmol,
yield: 96%, R = 0.4, EtOAc/n-hexane = 1:10). Enantiomeric excess established by HPLC analysis
using a Chiralcel OJ-H column, ee = 99.4% (HPLC: OJ-H, 254 nm, hexane/isopropanol = 85:15, flow
rate 1.0 mL/min, 25 °C, t, (minor) = 7.0 min, t, (major) = 26.4 min). [a]o>> = —14.8° (¢ 1.0, CH,CL,).
'H NMR (300 MHz, CDCl3) § 7.71-7.59 (m, 2H), 7.61-7.52 (m, 2H), 7.47-7.30 (m, 4H), 7.29-7.22
(m, 1H), 3.11 (s, 1H), 2.43 (s, 3H).
BC NMR (75 MHz, CDCl;) § 138.2, 135.4, 132.2, 130.4, 129.7, 128.6, 128.3, 127.8, 123.6 (q, J =
283.8 Hz), 124.5, 121.2, 88.1, 84.8, 73.5 (g, J = 32.3 Hz), 21.7.
F NMR (282 MHz, CDCls) 6 —80.74.
IR (film): v (cm™) 3543, 3470, 2923, 2861, 2232, 1603, 1488, 1445, 1351, 1242, 1181, 1150, 1110,
1079, 1023, 950, 913, 835, 783, 756, 727, 691, 629, 587, 557, 527, 438.
HRMS (FD, m/z) calcd for C,7H13F;0 [M]": 290.0918, found: 290.0912.

Al spectroscopic data are in agreement with the literature.?*

(R)-1,1,1-Trifluoro-4-phenyl-2-(o-tolyl)but-3-yn-2-ol (26p)
HO, ,CF,
Me Ph

Starting from 2,2,2-trifluoro-1-(o-tolyl)ethanone (37.6 mg, 0.20 mmol) and phenylacetylene (61.3 mg,
0.60 mmol) according to the general procedure to give 26p as a colorless oil (15.8 mg, 0.054 mmol,
yield: 27%, Rf = 0.5, EtOAc/n-hexane = 1:10). Enantiomeric excess established by HPLC analysis
using a Chiralcel OJ-H column, ee = 90.6% (HPLC: OJ-H, 254 nm, hexane/isopropanol = 85:15, flow
rate 1.0 mL/min, 25 °C, t, (minor) = 7.7 min, t, (major) = 9.1 min). [a]p> = —33.6° (¢ 1.0, CH,Cl,).

'H NMR (300 MHz, CDCly) 6 7.86 (d, J = 7.6 Hz, 1H), 7.58-7.48 (m, 2H), 7.45-7.20 (m, 6H), 3.05 (s,
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1H), 2.70 (s, 3H).

B3C NMR (75 MHz, CDCls) § 138.0, 132.9, 132.7, 132.0, 129.7, 129.5, 128.8, 128.6, 125.9, 124.2 (q, J
= 285.0 Hz), 121.3, 88.8, 85.2, 74.2 (q, J = 32.8 Hz), 21.9 (q, J = 2.5 Hz).

F NMR (282 MHz, CDCl5) 6 —79.03.

IR (film): v (cm™) 3544, 3063, 2931, 2229, 1599, 1488, 1448, 1350, 1242, 1174, 1124, 1083, 1051,
1002, 916, 757, 730, 690, 657, 629, 585, 555, 524, 456.

HRMS (ESI, m/z) calcd for Ci7Hy3F;0 [M]*: 290.0918, found: 290.0901.

All spectroscopic data are in agreement with the literature.?*

(5)-1,1,1-Trifluoro-2-(4-methoxyphenyl)-4-phenylbut-3-yn-2-ol (26q).

HO, ,CFj

Q/xph
MeO

Starting from 2,2,2-trifluoro-1-(4-methoxyphenyl)ethanone (40.8 mg, 0.20 mmol) and
phenylacetylene (61.3 mg, 0.60 mmol) according to the general procedure to give 26q as a colorless
oil (55.1 mg, 0.180 mmol, yield: 90%, R¢ = 0.3, EtOAc/n-hexane = 1:10). Enantiomeric excess
established by HPLC analysis using a Chiralcel OJ-H column, ee = 98.8% (HPLC: OJ-H, 254 nm,
hexane/isopropanol = 85:15, flow rate 1.0 mL/min, 25 °C, t, (minor) = 13.3 min, t, (major) = 34.5 min).
[0]o® = —24.6° (c 1.0, CH,CL,).

'H NMR (300 MHz, CDCl3) 6 7.74 (d, J = 8.6 Hz, 2H), 7.59-7.49 (m, 2H), 7.46-7.31 (m, 3H),
7.03-6.91 (m, 2H), 3.84 (s, 3H), 3.14 (s, 1H).

3C NMR (75 MHz, CDCl;) 5 160.7, 132.2, 129.6, 128.7, 128.6, 127.6, 123.6 (q, J = 283.5 Hz), 121.2,
113.8, 88.1, 84.8, 73.3 (q, J = 32.3 Hz), 55.5.

F NMR (282 MHz, CDCls) 6 —80.47.

HRMS (FD, m/z) calcd for C;7H13F50, [M]*: 306.0868, found: 306.0883.

Al spectroscopic data are in agreement with the literature.?

(S)-2-(4-Bromophenyl)-1,1,1-Trifluoro-4-phenylbut-3-yn-2-ol (26r)
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Starting from 1-(4-bromophenyl)-2,2,2-trifluoroethanone (50.6 mg, 0.20 mmol) and phenyl-acetylene
(61.3 mg, 0.60 mmol) according to the general procedure to give 26r as a colorless oil (70.2 mg, 0.198
mmol, yield: 99%, R; = 0.3, EtOAc/n-hexane = 1:10). Enantiomeric excess established by HPLC
analysis using a Chiralcel OJ-H column, ee = 99.0% (HPLC: OJ-H, 254 nm, hexane/isopropanol =
85:15, flow rate 1.0 mL/min, 25 °C, t, (minor) = 6.6 min, t, (major) = 8.1 min). [a]o® = -15.2° (c 1.0,
CH.Cl,).

'H NMR (300 MHz, CDCls) § 7.69 (d, J = 8.4 Hz, 2H), 7.62-7.50 (m, 4H), 7.47-7.33 (m, 3H), 3.14 (s,
1H).

C NMR (75 MHz, CDCl,) ¢ 134.5, 132.2, 131.6, 129.9, 129.1, 128.7, 124.2, 123.3 (q, J = 284.0 Hz)
120.8, 88.6, 84.0, 73.2 (g, J = 32.5 Hz).

F NMR (282 MHz, CDCl5) 5 —80.39.

HRMS (FD, m/z) calcd for Ci6H10BrF;0 [M]": 353.9867, found: 353.9852.

Al spectroscopic data are in agreement with the literature.?

(S)-2-(3-Bromophenyl)-1,1,1-Trifluoro-4-phenylbut-3-yn-2-ol (26s)
HO, ,CF;

Br "

U~

Ph

Starting from 1-(3-bromophenyl)-2,2,2-trifluoroethanone (50.6 mg, 0.20 mmol) and phenylacetylene
(61.3 mg, 0.60 mmol) according to the general procedure to give 26s as a colorless oil (70.1 mg, 0.198
mmol, yield: 99%, R; = 0.3, EtOAc/n-hexane = 1:10). Enantiomeric excess established by HPLC
analysis using a Chiralcel OJ-H column, ee = 98.8% (HPLC: OJ-H, 254 nm, hexane/isopropanol =
85:15, flow rate 1.0 mL/min, 25 °C, t, (minor) = 5.9 min, t, (major) = 8.1 min). [a]po* = -53.2° (¢ 1.0,
CH,Cl,).
'H NMR (300 MHz, CDCls) & 7.98 (s, 1H), 7.85-7.71 (m, 1H), 7.62-7.50 (m, 3H), 7.49-7.27 (m, 4H),
3.13 (s, 1H).
C NMR (75 MHz, CDCls) § 137.6, 132.8, 132.3, 130.5, 130.5, 129.9, 128.7, 126.1, 123.3 (q, J =
284.0 Hz), 122.5, 120.8, 88.8, 83.9, 73.0 (g, J = 32.5 Hz).
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F NMR (282 MHz, CDCls) 6 —80.22.
HRMS (FD, m/z) calcd for C,6H10BrF;0 [M]": 353.9867, found: 353.9848.

Al spectroscopic data are in agreement with the literature.?

(5)-1,1,1-Trifluoro-4-phenyl-2-(4-(trifluoromethyl)phenyl)but-3-yn-2-ol (26t)

HO, ,CF3

o~
Ph
FsC

Starting from 2,2,2-trifluoro-1-(4-(trifluoromethyl)phenyl)ethanone (48.4 mg, 0.20 mmol) and
phenylacetylene (61.3 mg, 0.60 mmol) according to the general procedure to give 26t as a colorless oil
(68.5 mg, 0.199 mmol, yield: 99%, R; = 0.3, EtOAc/n-hexane = 1:10). Enantiomeric excess
established by HPLC analysis using a Chiralpak IG column, ee = 98.8% (HPLC: IG, 254 nm,
hexane/isopropanol = 99:1, flow rate 1.0 mL/min, 25 °C, t, (minor) = 7.7 min, t, (major) = 12.4 min).
[a]p® = —10.8° (c 1.0, CH,CL,).

'H NMR (300 MHz, CDCly) 6 7.96 (d, J = 8.3 Hz, 2H), 7.71 (d, J = 8.3 Hz, 2H), 7.63-7.50 (m, 2H),
7.48-7.33 (m, 3H), 3.21 (s, 1H).

C NMR (75 MHz, CDCl;) § 139.3, 132.3, 131.9 (g, J = 32.5 Hz), 130.0, 128.7, 128.0, 127.9, 125.4
(9, J = 3.8 Hz), 124.0 (q, J = 270.5 Hz), 123.0 (g, J = 284.0 Hz), 121.4, 88.9, 83.8, 73.2 (q, J = 32.5
Hz).

F NMR (282 MHz, CD;0D) § —80.24, —62.85.

IR (film): v (cm™) 3601, 3064, 2233, 1619, 1490, 1414, 1323, 1245, 1167, 1128, 1071, 1010, 921, 840,
800, 756, 721, 688, 631, 595, 529, 457, 408.

HRMS (FD, m/z) calcd for Cy7H:0FsO [M]*: 344.0636, found: 344.0622.

(S)-1,1,1-Trifluoro-2-(naphthalen-2-yl)-4-phenylbut-3-yn-2-ol (26u)
HO, ,CF3

IS
Ph

Starting from 2,2,2-trifluoro-1-(naphthalen-1-yl)ethanone (44.8 mg, 0.20 mmol) and phenylacetylene
(61.3 mg, 0.60 mmol) according to the general procedure to give 26u as a white solid (62.5 mg, 0.192

mmol, yield: 96%, R; = 0.2, EtOAc/n-hexane = 1:10). MP: 59 °C. Enantiomeric excess established by
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HPLC analysis using a Chiralcel OJ-H column, ee = 98.8% (HPLC: OJ-H, 254 nm,
hexane/isopropanol = 85:15, flow rate 1.0 mL/min, 25 °C, t, (minor) = 11.0 min, t, (major) = 22.5 min).
[a]p® = —19.2° (c 1.0, CH,CL,).

'H NMR (300 MHz, CDCl;) 6 8.35 (s, 1H), 8.06-7.80 (m, 4H), 7.72—7.49 (m, 4H), 7.48-7.31 (m, 3H),
3.25 (s, 1H).

C NMR (75 MHz, CDCls) ¢ 133.8, 132.9, 132.8, 132.3, 129.8, 128.8, 128.7, 128.2, 127.8, 127.21,
127.16, 126.6, 124.4, 123.7 (q, J =283.8 Hz), 121.1, 88.5, 84.7, 73.7 (q,  =32.3 Hz). °F NMR (282
MHz, CDCl;) 6 —79.90.

HRMS (FD, m/z) calcd for CpoH13F;0 [M]*: 326.0918, found: 326.0915.

All spectroscopic data are in agreement with the literature.?

(S)-1,5-Diphenyl-3-(trifluoromethyl)pent-1-yn-3-ol (26v)

HO, CF;

©/\/\
Ph

Starting from 1,1,1-trifluoro-4-phenylbutan-2-one (40.4 mg, 0.20 mmol) and phenylacetylene (61.3
mg, 0.60 mmol) according to the general procedure to give 26v as a colorless oil (26.8 mg, 0.088
mmol, yield: 44%, R; = 0.3, EtOAc/n-hexane = 1:10). Enantiomeric excess established by HPLC
analysis using a Chiralcel OJ-H column, ee = 62.4% (HPLC: OJ-H, 254 nm, hexane/isopropanol =
85:15, flow rate 1.0 mL/min, 25 °C, t, (minor) = 8.2 min, t, (major) = 9.1 min). [o]o> = 26.6° (¢ 1.0,
CH,Cl,).

'H NMR (300 MHz, CDCls) 6 7.56-7.47 (m, 2H), 7.43-7.19 (m, 8H), 3.11-2.96 (m, 2H), 2.65 (s, 1H),
2.33-2.14 (m, 2H).

BC NMR (75 MHz, CDCls) § 141.0, 132.2, 129.6, 128.7, 128.63, 128.61, 126.4, 124.2 (g, J =283.5
Hz), 121.2, 88.1, 83.5, 72.4 (g, J =31.5 Hz), 36.8, 30.0.

F NMR (282 MHz, CDCls) 6 —81.53.

HRMS (FD, m/z) calcd for Cy5HsFsO [M]*:304.1075, found: 304.1070.

All spectroscopic data were in agreement with the literature.*

(R)-Ethyl 2-hydroxy-4-phenyl-2-(trifluoromethyl)but-3-ynoate (26w)
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HO CF,

EtOOCK

Ph
Starting from ethyl trifluoropyruvate (34.0 mg, 0.20 mmol) and phenylacetylene (61.3 mg, 0.60 mmol)

according to the general procedure to give 26w as a colorless oil (37.9 mg, 0.139 mmol, yield: 70%, R¢
= 0.3, EtOAc/n-hexane = 1:10). Enantiomeric excess established by HPLC analysis using a Chiralcel
0OJ-H column, ee = 6.8% (HPLC: OJ-H, 254 nm, hexane/isopropanol = 90:10, flow rate 1.0 mL/min,
25 °C, t, (minor) = 8.1 min, t, (major) = 9.5 min).

'H NMR (300 MHz, CDCly) 6 7.60-7.46 (m, 2H), 7.47-7.27 (m, 3H), 4.58-4.37 (m, 2H), 4.28 (s, 1H),
1.40 (t, J = 7.1 Hz, 3H).

BC NMR (75 MHz, CDCls) ¢ 166.7, 132.3, 129.8, 128.5, 121.9 (q, J =284.5 Hz), 120.8, 87.4, 79.9,
71.9 (g, J =34.0 Hz), 65.2, 14.0.

F NMR (282 MHz, CDCl3) 6 —78.19.

Al spectroscopic data are in agreement with the literature.”

(S)-1-Chloro-1,1-difluoro-2,4-diphenylbut-3-yn-2-ol (26x)
HO, ,CF.CI

Ph
Starting from 2-chloro-2,2-difluoro-1-phenylethanone (38.1 mg, 0.20 mmol) and phenylacetylene
(61.3 mg, 0.60 mmol) according to the general procedure to give 26x as a colorless oil (57.7 mg, 0.176
mmol, yield: 99%, R; = 0.4, EtOAc/n-hexane = 1:10). Enantiomeric excess established by HPLC
analysis using a Chiralcel OJ-H column, ee = 99.4% (HPLC: OJ-H, 254 nm, hexane/isopropanol =
60:40, flow rate 1.0 mL/min, 25 °C, t, (minor) = 6.9 min, t, (major) = 16.0 min). [a]p”* = —26.8° (c 1.0,
CH,CIl,).
'H NMR (300 MHz, CDCls) & 7.88-7.85 (m, 2H), 7.61-7.52 (m, 2H), 7.51-7.33 (m, 6H), 3.30 (s, 1H).
3C NMR (75 MHz, CDCl;) 6 135.6, 132.2, 129.7, 129.6 (t, J = 300.0 Hz), 129.2, 128.6, 128.2, 127.9,
121.2, 88.5, 85.6, 77.4(t, J = 27.7 Hz).
F NMR (282 MHz, CDCls) 6 —63.85, —64.41, —65.52, —66.08.
HRMS (FD, m/z) calcd for C;6H3; CIF,0 [M]": 292.0466, found: 292.0450.

Al spectroscopic data are in agreement with the literature.?
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Procedure for the synthesis of (S)-28a
O

cl A-Ru2 (3 mol%)

CF, —

+ H—— |

NH EtzN (20 mol%)
2 48 h, THF, 60 °C
27a 10.0 eq (S)-28a

A dried 10 mL Schlenk tube was charged with the catalyst A-Ru2 (3.0 mg, 3 mol%) and
1-(2-amino-5-chlorophenyl)-2,2,2-trifluoroethanone 27a (22.4 mg, 0.20 mmol). The tube was purged
with nitrogen, THF (0.2 mL) and Et;N (2.8 L, 0.2 eq) were added via syringe, and followed by
cyclopropylacetylene (84.7 L, 10.0 eq). The vial was sealed and the reaction was stirred at 60 °C for
48 hours under nitrogen atmosphere. The solvent was removed and the residue was purified by flash
chromatography on silica gel (EtOAc/hexane = 1:50) to afford 7.1 mg (25% vyield, R; = 0.2,
EtOAc/n-hexane = 1:5) of 27a as a light yellow solid. Racemic sample was obtained by using rac-Ru2.
The (S)-configuration of the product (S)-28a was obtained by using A-Ru2 as catalyst. The
(S)-configuration of the product 28a was assigned by comparison with published chiral HPLC
retention time data. Chiral HPLC with (S)-28a: (Daicel Chiralpak AD-H column, 254 nm,
hexane/isopropanol = 85:15, flow rate 1.0 mL/min, 25 °C) t, (major) = 7.3 min, t, (minor) = 11.9 min.
Lit.?: t, (major) = 6.8 min, t, (minor) = 11.1 min. Optical rotation of (S)-28a: [a]p** = —53.6° (c 0.5,
CH,Cl,, 99.0% ee).

'H NMR (300 MHz, CDCl3) d 7.54 (d, J = 2.4 Hz, 1H), 7.12 (dd, J = 8.6, 2.5 Hz, 1H), 6.62 (d, J = 8.6
Hz, 1H), 4.44 (s, 3H), 1.43-1.34 (m, 1H), 0.99-0.76 (m, 4H).

C NMR (75 MHz, CDCl,) & 143.8, 130.5, 130.3, 124.2 (q, J =285.0 Hz), 123.7, 120.8, 120.7, 93.9,
74.9 (g, J =33.0 Hz), 70.6, 8.7, 8.6, —0.5.

F NMR (282 MHz, CDCls) 6 —80.82.

All other spectroscopic data are in agreement with the literature.?
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Procedure for the synthesis of (S)-28b
0
Cl o A-Ru2 (0.2 mol%) Cl
S H—m< | =
o EtzN (20 mol%)
NO. 16 h, THF, 60 °C
27b 3.0eq (S)-28b

A dried 10 mL Schlenk tube was charged with 1-(5-chloro-2-nitrophenyl)-2,2,2-trifluoroethanone 27b
(50.6 mg, 0.20 mmol). The tube was purged with nitrogen, 0.4 mL of A-Ru2 in THF (1.0 mg/mL) and
EtsN (5.6 1L, 0.2 eq) were added via syringe, and followed by cyclopropylacetylene (50.9 L, 3.0 eq).
The vial was sealed and the reaction was stirred at 60 °C for 16 hours under nitrogen atmosphere. The
solvent was removed and the residue was purified by flash chromatography on silica gel
(EtOAc/hexane = 1:50) to afford 60.6 mg (95% vyield, R¢ = 0.3, EtOAc/n-hexane = 1:5) of (S)-28b as a
light-yellow oil. Racemic sample was obtained by using rac-Ru2. The (S)-configuration of the product
(S)-28b was obtained by using A-Ru2 as catalyst. The (S)-configuration of the product (S)-28b was
assigned by comparison with published rotation data. [a]p® = —26.0° (¢ 1.0, CH,Cl,, 99.4% ee).
Lit.?": [a]o® = —22.0° (c 0.38, CHClI;, 93% ee for S-configuration).Enantiomeric excess established by
HPLC analysis using a Chiralpak OD-H column, ee = 99.4% (HPLC: OD-H, 220 nm,
hexane/isopropanol = 95:5, flow rate 1.0 mL/min, 25 °C, t, (minor) = 7.9 min, t, (major) = 8.8 min).

'H NMR (300 MHz, CDCly) 6 7.80 (s, 1H), 7.53-7.41 (m, 2H), 3.63 (s, 1H), 1.40-1.14 (m, 1H),
0.95-0.75 (m, 4H).

3C NMR (75 MHz, CDCly) 6 148.7, 137.1, 130.5, 130.1 (g, J = 2.2 Hz), 129.8, 125.6, 122.7 (q, J =
284.8 Hz), 94.5, 71.8 (g, J = 33.8 Hz), 68.6, 8.4, -0.8.

“F NMR (282 MHz, CDCls) 5 —78.28.

Al other spectroscopic data are in agreement with the literature. %’

Large-scale reaction for (S)-28b: A dried 25 mL Schlenk tube was charged with the catalyst A-Ru2
(10 mg, 0.2 mol%) and 1-(5-chloro-2-nitrophenyl)-2,2,2-trifluoroethanone 27b (1.268 g, 5.0 mmol).
The tube was purged with nitrogen, 10 mL THF and EtsN (138.6 |, 0.2 eq) were added via syringe,
and followed by cyclopropylacetylene (1.27 mL, 3.0 eq). The vial was sealed and the reaction was
stirred at 60 °C for 16 hours under nitrogen atmosphere. The solvent was removed and the residue was

purified by flash chromatography on silica gel (EtOAc/hexane = 1:50) to afford 1.555 g (97% yield) of
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(S)-28b as a light-yellow oil.

Procedure for the synthesis of (S)-28c

0
Cl oF A-Ru2 (0.2 mol%) Cl
3 H—=—X | >
EtzN (20 mol%)
cl 16 h, THF, r.t.
27¢ 3.0 eq (S)-28¢c

A dried 10 mL Schlenk tube was charged with 1-(2,5-dichlorophenyl)-2,2,2-trifluoroethanone 27c
(48.6 mg, 0.20 mmol). The tube was purged with nitrogen, 0.4 mL of A-Ru2 in THF (1.0 mg/mL) and
EtsN (5.6 1L, 0.2 eq) were added via syringe, and followed by cyclopropylacetylene (50.9 L, 3.0 eq).
The vial was sealed and the reaction was stirred at room temperature for 16 hours under nitrogen
atmosphere. The solvent was removed and the residue was purified by flash chromatography on silica
gel (EtOAc/hexane = 1:50) to afford 58.5 mg (95% vyield, R¢ = 0.5, EtOAc/n-hexane = 1:10) of (S)-28c
as a colourless oil. Racemic sample was obtained by using rac-Ru2. The (S)-configuration of the
product (S)-28c was obtained by using A-Ru2 as catalyst. The (S)-configuration of the product 28c
was assigned by comparison with published rotation data. [o]p? = +1.4° (¢ 1.0, CH,Cl,, 95.0% ee).
Lit.?": [o]po® = +4.87° (c 1.39, CHCls, 91% ee for S-configuration). Enantiomeric excess established
by HPLC analysis using a Chiralpak AD-H column, ee = 95.0% (HPLC: AD-H, 220 nm,
hexane/isopropanol = 98:2, flow rate 1.0 mL/min, 25 °C, t, (major) = 11.2 min, t, (minor) = 14.0 min).
'H NMR (300 MHz, CDCls) § 7.88 (d, J = 2.4 Hz, 1H), 7.39-7.26 (m, 2H), 3.42 (s, 1H), 1.40-1.31 (m,
1H), 0.98-0.70 (m, 4H).

C NMR (75 MHz, CDCl;) § 134.0, 132.87, 132.85, 131.3, 130.4, 130.1, 123.3 (g, J = 285.0 Hz),
94.1,71.9 (q, J = 33.5 Hz), 69.3, 8.2 (d, J = 5.3 Hz), —0.54.

F NMR (282 MHz, CDCl5) 5 —78.60.

All other spectroscopic data are in agreement with the literature.?’

Large-scale reaction for (S)-28c: A dried 25 mL Schlenk tube was charged with the catalyst A-Ru2
(8.0 mg, 0.2 mol%) and 1-(2,5-dichlorophenyl)-2,2,2-trifluoroethanone 27c¢ (972.0 mg, 4.0 mmol).
The tube was purged with nitrogen, 8 mL THF and Et;N (110.9 L, 0.2 eq) were added via syringe,

and followed by cyclopropylacetylene (1.02 mL, 3.0 eq). The vial was sealed and the reaction was
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stirred at room temperature for 16 hours under nitrogen atmosphere. The solvent was removed and the

residue was purified by flash chromatography on silica gel (EtOAc/hexane = 1:50) to afford 1.224 g

(99% vyield) of (S)-28c as a colorless oil.
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Chapter 6. Appendices

6.1 List of Abbreviations

'H NMR proton nuclear magnetic resonance spectroscopy
BC NMR carbon nuclear magnetic resonance spectroscopy
“FNMR fluorine nuclear magnetic resonance spectroscopy
0 chemical shift

J coupling constant

br broad

S singlet

d doublet

t triplet

q quartet

m multiplet

ppm parts per million

AcOH acetic acid

aq agueous

Ar argon

bpy 2,2 -bipyridine

CD circular dichroism

CH,CI, dichloromethane

CD,Cl, dideuteromethylenechloride

CHClI; chloroform

CDCl; deuterochloroform

CH3;CN/ MeCN acetonitrile

conc concentrated

DMAP 4-dimethylaminopyridine

DMF dimethylformamide

DMSO dimethyl sulfoxide

ee enantiomeric excesses

e.g. exempli gratia (lat.: for example)

etal. et alii (lat.: and others)

ESI electrospray ionization
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EtOH
Et,0
Et;N
EtOAC
EWG

HPLC
HRMS
Hz

IR spectra
Ir

L

min
mL
mmol
MS

Nu
Ph
PPy
rac
Rh
rt
TFA
THF
TLC
TPP
uv

ethanol

diethyl ether

triethyl amine

ethyl acetate

electron withdrawing group
hour(s)

high performance liquid chromatography
high resolution mass spectrometry
Hertz

infrared spectra

iridium

liter(s)

mol/liter

meta-

minute(s)

milliliter(s)

millimole

mass spectroscopy

nitrogen

nucleophile

phenyl

2-phenylpyridine

racemic

rhodium

room temperature
trifluoroacetic acid
tetrahydrofuran

thin layer chromatography
tetraphenylporphine

ultraviolet
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6.5.2 List of organic compounds
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6.6 List of Spectra of Complexes

6.6.1 NMR spectra of enantiopure metal complexes
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Figure 59 'H NMR and "*C NMR spectra of rac-1r(Se).
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Figure 65 '*H NMR and **C NMR spectra of AA-2gp.
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Figure 69 '"H NMR and "*C NMR spectra of A-RhPP.
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Figure 70 '*H NMR and **C NMR spectra of A-RhPP.
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Figure 71 'H NMR and "*C NMR spectra of A-1rPP.
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Figure 72 '*H NMR and **C NMR spectra of A-IrPP.
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6.6.2 CD spectra of enantiopure metal complexes
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Figure 78 CD spectra of complexes A-(S)-3and A-(S)-3 recorded in CH;OH (0.2 mM).
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Figure 79 CD spectra of complexes A-1r(Se) and A-1r(Se) recorded in CH;OH (0.2 mM).
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Figure 80 CD spectra of complexes A-(R)-4 and A-(R)-4 recorded in CH3;OH/CH,CI, = 4:1 (0.2 mM).
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Figure 81 CD spectra of complexes A-Rh(Se) and A-Rh(Se) recorded in CH;OH (0.2 mM).

169



Chapter 6: Appendices

200 -
—_— AA2
150 - e AAZg

100

50

Ae (Mlem™)
o

-50

-100

'150 T T T T T T T 1
200 300 400 500 600

A (nm)

Figure 82 CD spectra of complexes AA-2gpand AA-2gy, recorded in CH;OH (0.2 mM).
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Figure 83 CD spectra of complexes AA-2,.and AA-2, recorded in CH3;OH (0.2 mM).
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Figure 84 CD spectra of complexes A-RhPP and A-RhPP recorded in CH;OH (0.2 mM).
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Figure 85 CD spectra of complexes A-IrPP and A-IrPP recorded in CH;0OH (0.2 mM).
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Figure 86 CD spectra of complexes A-(S)-Rul and A-(R)-Rul recorded in CH3;OH (0.2 mM).
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Figure 87 CD spectra of complexes A-Rul and A-Rul recorded in CH;0H (0.2 mM).
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Figure 88 CD spectra of complexes A-(S)-Ru2 and A-(R)-Ru2 recorded in CH3;OH (0.2 mM).
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Figure 89 CD spectra of complexes A-Ru2 and A-Ru2 recorded in CH;0OH (0.2 mM).
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6.6.3 HPLC spectra of compounds
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Figure 90 HPLC traces for the racemic reference complex A/A-Rul and A-Rul. HPLC conditions:
HPLC column on an Agilent 1200 Series HPLC System. The column temperature was 25 <C and
UV-absorption was measured at 254 nm. Solvent A= 0.1% TFA, solvent B = MeCN (Daicel Chiralpak

IB (250 x<4.6 mm), with a linear gradient of 35% to 45% B in 180 min, flow rate = 0. 6 mL/min). HPLC
trace for the complex Integration of peak areas > 100:1 e.r.
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VWD A Wavelength=254 nm (YU\Z319000071.D)
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Figure 91 HPLC traces (Daicel Chiralpak AD-H column) of rac-20a (reference) and (R)-20a. Area
integration = 97.5:2.4 (95.1% ee).
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VWD1 A, Wavelength=254 nm (YU\Z324000087.D)
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Figure 92 HPLC traces (Daicel Chiralpak AD-H column) of rac-20b (reference) and (R)-20b. Area
integration = 98.5:1.5 (97.0% ee).
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VWD1 A, Wavelength=254 nm (Yu\z362.D)
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Figure 93 HPLC traces (Daicel Chiralpak AD-H column) of rac-20c (reference) and (R)-20c. Area
integration = 99.8:0.2 (99.6% ee).
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VWD1 A, Wavelength=254 nm (YU\Z327000093.D)
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Figure 94 HPLC traces (Daicel Chiralpak AD-H column) of rac-20d (reference) and (R)-20d. Area

integration = 99.7:0.3 (99.4% ee).

178



Chapter 6: Appendices

VWD1 A, Wavelength=254 nm (YU\Z355000062.D)
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Figure 95 HPLC traces (Daicel Chiralpak AD-H column) of rac-20e (reference) and (R)-20e. Area
integration > 99 (> 99% ee).
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VWD1 A, Wavelength=254 nm (Yu\z383-2.D)
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Figure 96 HPLC traces (Daicel Chiralpak AD-H column) of rac-20f (reference) and (R)-20f. Area
integration = 99.7:0.3 (99.4% ee).
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VWD1 A Wavelength=254 nm (YU'\Z330000103.D)
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Figure 97 HPLC traces (Daicel Chiralpak AD-H column) of rac-20g (reference) and (R)-20g. Area

integration > 99 (> 99% ee).
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Figure 98 HPLC traces (Daicel Chiralpak AD-H column) of rac-20h (reference) and (R)-20h. Area

integration = 99.3:0.7 (98.6% ee).

182



Chapter 6: Appendices
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Figure 99 HPLC traces (Daicel Chiralpak AD-H column) of rac-20i (reference) and (R)-20i. Area
integration = 99.7:0.3 (99.4% ee).
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Figure 100 HPLC traces (Daicel Chiralpak AD-H column) of rac-20j (reference) and (R)-20j. Area

integration > 99 (>99% ee).
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VWD1 A, Wavelength=254 nm (YU\Z354000057.D)
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Figure 101 HPLC traces (Daicel Chiralpak AD-H column) of rac-20k (reference) and (R)-20k. Area
integration = 99.5:0.5 (99.0% ee).

185



Chapter 6: Appendices
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Figure 102 HPLC traces (Daicel Chiralpak AD-H column) of rac-20l (reference) and (R)-20l. Area
integration = 99.4:0.6 (98.8% ee).
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VWD1 A, Wavelength=254 nm (YU\Z347.D)
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Figure 103 HPLC traces (Daicel Chiralpak AD-H column) of rac-20m (reference) and (R)-20m. Area
integration = 98.7:1.3 (97.4% ee).
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VWD1 A, Wavelength=254 nm (YU\Z369-CRUDE00109.D)
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Figure 104 HPLC traces (Daicel Chiralpak AD-H column) of rac-20n (reference) and (R)-20n. Area
integration > 99 (>99% ee).
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VWD1 A, Wavelength=254 nm (Yu'z366.D)
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Figure 105 HPLC traces (Daicel Chiralpak AD-H column) of rac-200 (reference) and (R)-200. Area
integration > 99 (>99% ee).
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Figure 106 HPLC traces (Daicel Chiralpak OJ-H column) of rac-20p (reference) and (R)-20p. Area
integration = 99.5:0.5 (99.0% ee).
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VWD A, Wavelengin=220 nm (YUZ502.0)
mAl | o >
] . .oga,,_,_\
60 |?3§. o2
] | Sw@-&
50 | |
] | ”
40 | i
] | |
0 \ { |
] ' H
0] | a
] ', \
R |\
] \ \
o] L\ ;} .
6 B 10 12 14 16 18 mir
VWDT A, Wavelength=220 nm (YU2512-5% D)
mAl 7 E
5 f
200—_ |
175 ‘\
120 1
125 ‘ \
] |
100 |
| i
75—: ‘ ‘\
A
26 o \
] o } N
04 -
5 B R R 16 ' 13 mir
Peak RetTime Type Width Area Height Area
#  [min] [min] [mAU*s ] [mAU] %
P B e <mmmmmeemn [ mmmeee]
1 8.432 BB a.1996 68.85143 4.808675 1.5121
2 11.716 BB 8.2962 4432.49512 218.45798 98.4879

Figure 107 HPLC traces (Daicel Chiralpak AD-H column) of rac-20q (reference) and (R)-20g. Area
integration = 98.5:1.5 (97.0% ee).
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VWD A, Wavelengih=220 nm (YUZ477AD)
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Figure 108 HPLC traces (Daicel Chiralpak AD-H column) of rac-20r (reference) and (R)-20r. Area
integration = 97.2:2.8 (94.4% ee).
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Figure 109 HPLC traces (Daicel Chiralpak AD-H column) of rac-20s (reference) and (R)-20s. Area
integration = 96.9:3.1 (93.8% ee).
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VWD1 A, Wavelength=220 nm (Yu\z374.D)
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Figure 110 HPLC traces (Daicel Chiralpak AD-H column) of rac-20t (reference) and (R)-20t. Area
integration = 99.4:0.6 (98.8% ee).
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VWD1 A, Wavelength=220 nm (YU\Z377000143.D)
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Figure 111 HPLC traces (Daicel Chiralpak OD-H column) of rac-20u (reference) and (R)-20u. Area
integration > 99 (>99% ee).
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Figure 112 HPLC traces (Daicel Chiralpak AD-H column) of rac-20v (reference) and (R)-20v. Area
integration = 98.3:1.7 (96.6% ee).
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Figure 113 HPLC traces (Daicel Chiralpak AD-H column) of rac-20w (reference) and (R)-20w. Area
integration = 99.4:0.6 (98.8% ee).
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Figure 114 HPLC traces (Daicel Chiralpak AD-H column) of rac-20x (reference) and (R)-20x. Area
integration= 97.1:2.9 (94.3% ee).
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Figure 115 HPLC traces (Daicel Chiralpak AD-H column) of rac-20y (reference) and (R)-20y. Area
integration = 98.4:1.6 (96.8% ee).
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Figure 116 HPLC traces (Daicel Chiralcel OJ-H column) of rac-26a (reference) and (S)-26a. Area
integration = 99.6:0.4 (99.2% ee).
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Figure 117 HPLC traces (Daicel Chiralcel OJ-H column) of rac-26b (reference) and (S)-26b. Area
integration = 99.6:0.4 (99.2% ee).
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Figure 118 HPLC traces (Daicel Chiralcel OJ-H column) of rac-26¢ (reference) and (S)-26c. Area
integration = 99.6:0.4 (99.2% ee).
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Figure 119 HPLC traces (Daicel Chiralcel OJ-H column) of rac-26d (reference) and (S)-26d. Area
integration = 99.6:0.4 (99.2% ee).
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Figure 120 HPLC traces (Daicel Chiralcel OJ-H column) of rac-26e (reference) and (S)-26e. Area
integration = 99.5:0.5 (99.0% ee).
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Figure 121 HPLC traces (Daicel Chiralcel OJ-H column) of rac-26f (reference) and (S)-26f. Area
integration = 98.5:1.5 (97.0% ee).
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Figure 122 HPLC traces (Daicel Chiralcel OJ-H column) of rac-26g (reference) and (S)-26g. Area
integration = 99.7:0.3 (99.4% ee).
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Figure 123 HPLC traces (Daicel Chiralcel OJ-H column) of rac-26h (reference) and (S)-26h. Area

integration = 98.1:1.9 (96.2% ee).
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Figure 124 HPLC traces (Daicel Chiralcel OJ-H column) of rac-26i (reference) and (S)-26i. Area
integration = 99.6:0.4 (99.2% ee).
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Figure 125 HPLC traces (Daicel Chiralpak AD-H column) of rac-26j (reference) and (S)-26j. Area
integration = 99.6:0.4 (99.2% ee).
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Figure 126 HPLC traces (Daicel Chiralcel OJ-H column) of rac-26k (reference) and (S)-26k. Area
integration = 98.5:1.5 (97.0% ee).
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Figure 127 HPLC traces (Daicel Chiralcel OJ-H column) of rac-26l (reference) and (S)-26l. Area
integration = 99.5:0.5 (99.0% ee).
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Figure 128 HPLC traces (Daicel Chiralcel OJ-H column) of rac-26m (reference) and (S)-26m. Area
integration = 99.8:0.2 (99.6% ee).
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Figure 129 HPLC traces (Daicel Chiralcel OJ-H column) of rac-26n (reference) and (S)-26n. Area
integration = 99.1:0.9 (98.2% ee).
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Figure 130 HPLC traces (Daicel Chiralcel OJ-H column) of rac-260 (reference) and (S)-260. Area
integration = 99.7:0.3 (99.4% ee).
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Figure 131 HPLC traces (Daicel Chiralcel OJ-H column) of rac-26p (reference) and (R)-26p. Area
integration = 95.3:4.7 (90.6% ee).
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Figure 132 HPLC traces (Daicel Chiralcel OJ-H column) of rac-26q (reference) and (S)-26q. Area
integration = 99.4:0.6 (98.8% ee).
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Figure 133 HPLC traces (Daicel Chiralcel OJ-H column) of rac-26r (reference) and (S)-26r. Area
integration = 99.5:0.5 (99.0% ee).
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Figure 134 HPLC traces (Daicel Chiralcel OJ-H column) of rac-26s (reference) and (S)-26s. Area
integration = 99.4:0.6 (98.8% ee).
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Figure 135 HPLC traces (Daicel Chiralpak IG column) of rac-26t (reference) and (S)-26t. Area
integration = 99.4:0.6 (98.8% ee).
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Figure 136 HPLC traces (Daicel Chiralcel OJ-H column) of rac-26u (reference) and (S)-26u. Area
integration = 99.4:0.6 (98.8% ee).
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Figure 137 HPLC traces (Daicel Chiralcel OJ-H column) of rac-26v (reference) and (S)-26v. Area
integration = 81.2:18.8 (62.4% ee).
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Figure 138 HPLC traces (Daicel Chiralcel OJ-H column) of rac-26w (reference) and (R)-26w. Area
integration = 53.4:46.6 (6.8% ee).
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Figure 139 HPLC traces (Daicel Chiralcel OJ-H column) of rac-26x (reference) and (S)-26x. Area
integration = 99.7:0.3 (99.4% ee).
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Figure 140 HPLC traces (Daicel Chiralpak AD-H column) of rac-28a (reference) and (S)-28a. Area
integration = 99.5:0.5 (99.0% ee).
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VWD1 A, Wavelength=220 nm (Yu\z1089-2.D)
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Figure 141 HPLC traces (Daicel Chiralpak OD-H column) of rac-28b (reference) and (S)-28b. Area
integration = 99.7:0.3 (99.4% ee).
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VWD1 A, Wavelength=220 nm (Yu\z1048-AD-H-2013.D)
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N
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6 é 1ID 1|2 14 1‘6 mi
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s ] [mAU] %

1 11.554 BB 0.4432 3046.60596 102.37451 49.9572
2 14.480 MM 0.6424 3051.82495  79.18198 50.0428

VWD1 A, Wavelength=220 nm (Yu\z1098.D)

";gg B § é(\\!@
&
300 ‘ \
|
250 [
200
|
100 | ‘
50 5 5."‘5’5550
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Peak RetTime Type Width Area Height Area
#  [min] [min] [mAU*s] [mAU] %

1 11.225 MM 0.4713 9771.46191 345.55936 97.5140

2 14.001 MM 0.5840 249.10698 7.10932 2.4860
Figure 142 HPLC traces (Daicel Chiralpak AD-H column) of rac-28c (reference) and (S)-28c. Area
integration = 97.5:2.5 (95.0% ee).
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6.7 List of Crystal Structure Data

Figure 143 Crystal structure of rac-1r(Se). ORTEP drawing with 50% probability thermal ellipsoids.
The counteranion is omitted for clarity.
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Cc14'

C15'

c1o' Se3
c2 .
cir
ca
X)c12
cs'
NT'
co
N4Z 32
céz .
= c6
N1Z c7'
c2z ,
ara Ba 018
c17

C3z c19

Table 7 Crystal Data and Structure Refinement for rac-1r(Se).

Crystal data:

Identification code
Habitus, colour
Crystal size

Crystal system
Space group

Unit cell dimensions

\Volume

Cell determination
Empirical formula
Moiety formula
Formula weight
Density (calculated)
Absorption coefficient
F(000)

2649 Om

block, yellow

0.37 x 0.30 x 0.16 mm®

Monoclinic

P2, Z=4
a=17.0086(8) A a=90%
b = 16.2286(7) A B=91.595(2)<
c=17.2753(8) A y=90%
4766.6(4) A°

9705 peaks with Theta 2.4 t0 27.6<
Cu1H44CiFsIrN,PSe,

CagHasIrN,Se,, FeP, 3(CH,Cl,)
1300.59

1.812 Mg/m®

4.757 mm™

2536
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Data collection:

Diffractometer type Bruker D8 QUEST area detector
Wavelength 0.71073 A

Temperature 100(2) K

Theta range for data collection 2.116 to 27.600<

Index ranges -22<=h<=22, -21<=k<=21, -22<=|<=22
Data collection software APEX3 (Bruker AXS Inc., 2015)

Cell refinement software SAINT V8.35A (Bruker AXS Inc., 2015)
Data reduction software SAINT V8.35A (Bruker AXS Inc., 2015)

Solution and refinement;

Reflections collected 202475

Independent reflections 21990 [R(int) = 0.0366]
Completeness to theta = 25.242° 99.9 %

Observed reflections 21415[1 > 2(1)]

Reflections used for refinement 21990

Absorption correction Numerical Mu From Formula
Max. and min. transmission 0.52 and 0.18

Flack parameter (absolute struct.) -0.0038(13)

Largest diff. peak and hole 1.313 and -1.177 e. A*®
Solution Direct methods

Refinement Full-matrix least-squares on F?
Treatment of hydrogen atoms Calc. positions, constr. ref.
Programs used XT V2014/1 (Bruker AXS Inc., 2014)

SHELXL-2014/7 (Sheldrick, 2014)
DIAMOND (Crystal Impact)
ShelXle (Hibschle, Sheldrick, Dittrich, 2011)

Data / restraints / parameters 21990/ 37 /1145
Goodness-of-fit on F? 1.110
R index (all data) wR2 = 0.0584

R index conventional [I>2sigma(l)] R1=0.0250
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Figure 144 Crystal structure of A-RhPP. ORTEP drawing with 50% probability thermal ellipsoids. The
hexafluorophosphate counteranion is omitted for clarity.

Table 8 Crystal Data and Structure Refinement for A-RhPP.

Crystal data:

Identification code 7244 Om

Habitus, colour needle, colourless

Crystal size 0.46 x0.18 x 0.09 mm3

Crystal system Monoclinic

Space group P2, Z=8

Unit cell dimensions a=16.3796(9) A a=90%
b =18.1551(9) A B=93.249(2)<
¢ =27.7174(15) A y=90<

Volume 8229.2(8) A’

Cell determination 9925 peaks with Theta 2.4 to 25.2<

Empirical formula C0.80H43.60Cl1 60FsN4PRD

Moiety formula CaoHi2N4 Rh, FgP, 0.8(CH,Cl,)

Formula weight 894.55

Density (calculated) 1.444 Mg/m?

Absorption coefficient 0.619 mm™

F(000) 3661
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Data collection:

Diffractometer type
Wavelength

Temperature

Theta range for data collection
Index ranges

Data collection software

Cell refinement software

Data reduction software

Solution and refinement:

Reflections collected
Independent reflections
Completeness to theta = 25.242°
Observed reflections

Reflections used for refinement
Absorption correction

Max. and min. transmission
Flack parameter (absolute struct.)
Largest diff. peak and hole
Solution

Refinement

Treatment of hydrogen atoms
Programs used

Data / restraints / parameters

(G‘RIGU”)
Goodness-of-fit on F>
R index (all data)

R index conventional [I>2sigma(l)]

Bruker D8 QUEST area detector
0.71073 A

110(2) K

2.184 t0 25.334<

-19<=h<=19, -21<=k<=21, -33<=1<=33
BRUKER APEX2 2014.9-0

BRUKER SAINT

SAINT V8.34A (Bruker AXS Inc., 2013)

187023

29991 [R(int) = 0.1334]
99.9 %
24833[1>2sigma(l) ]
29991

Semi-empirical from equivalents

0.95 and 0.84

0.019(8)

1.392 and -1.061 e A’

Direct methods

Full-matrix least-squares on F?
Calculated positions, constr. ref

XT V2014/1 (Bruker AXS Inc., 2014)
SHELXL-2014/7 (Sheldrick, 2014)
DIAMOND (Crystal Impact)

29991 /2029 / 2009

Restraints for anisotropic  thermal

1.065

WR2 = 0.1222
R1 =0.0557
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Figure 145 Crystal structure of A-RhPP. ORTEP drawing with 50% probability thermal ellipsoids. The
hexafluorophosphate counteranion is omitted for clarity.

Table 9 Crystal Data and Structure Refinement for A-RhPP.

Crystal data:

Identification code 2339-zwei_0m

Habitus, colour nugget, red

Crystal size 0.69 x 0.32 x 0.20 mm®

Crystal system Orthorhombic

Space group P212121 Z=8

Unit cell dimensions a=15.3828(5) A =90°
b =22.8555(9) A =90°
¢ = 25.3802(10) A =90<

Volume 8923.2(6) A’

Cell determination 9665 peaks with Theta 2.2 to 25.3<

Empirical formula CH46ClsFsN4PRN

Moiety formula CaoHs2N4RN, FgP, 2(CH,CI,)

Formula weight 996.51

Density (calculated) 1.484 Mg/m?

Absorption coefficient 0.718 mm™

F(000) 4064
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Data collection:

Diffractometer type
Wavelength

Temperature

Theta range for data collection
Index ranges

Data collection software

Cell refinement software

Data reduction software

Solution and refinement:

Reflections collected
Independent reflections
Completeness to theta = 25.242°
Observed reflections

Reflections used for refinement
Absorption correction

Max. and min. transmission
Flack parameter (absolute struct.)
Largest diff. peak and hole
Solution

Refinement

Treatment of hydrogen atoms
Programs used

Data / restraints / parameters
Goodness-of-fit on F?
R index (all data)

R index conventional [I>2sigma(l)]

Bruker D8 QUEST area detector
0.71073 A

100(2) K

2.220 t0 25.315<

-18<=h<=18, -26<=k<=27, -30<=I<=30
BRUKER APEX2 2014.9-0

BRUKER SAINT

SAINT V8.34A (Bruker AXS Inc., 2013)

66861

16195 [R(int) = 0.0589]
99.8 %
14816[1>2sigma(l) ]
16195

Semi-empirical from equivalents
0.87 and 0.74

0.005(9)

0.381 and -1.027 . A’

Direct methods

Full-matrix least-squares on F?
Calculated positions, constr. ref.
XT V2014/1 (Bruker AXS Inc., 2014)
SHELXL-2014/7 (Sheldrick, 2014)
DIAMOND (Crystal Impact)
16195/663/1121

1.110

wR2 =0.0807

R1=0.0396
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Figure 146 Crystal structure of A-IrPP. ORTEP drawing with 50% probability thermal ellipsoids. The
hexafluorophosphate counteranion is omitted for clarity.

Table 10 Crystal Data and Structure Refinement for A-1rPP.

Crystal data:

Identification code 297 Om

Habitus, colour plate, yellow

Crystal size 0.20 x 0.14 x 0.06 mm®

Crystal system Monoclinic

Space group P21 Z=8

Unit cell dimensions a=16.3847(13) A =90<
b = 18.1929(15) A =93.095(2)<
c=27.453(2) A =90<%

Volume 8171.4(11) A®

Cell determination 9347 peaks with Theta 2.3 to 25.2<

Empirical formula Cuo.88H43.75Ci1.75FsIrN4P

Moiety formula CaoHa2IrNy, FgP, 0.88 (CH,Cl,)

Formula weight 990.25

Density (calculated) 1.610 Mg/m?
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Absorption coefficient
F(000)

Data collection:

Diffractometer type
Wavelength

Temperature

Theta range for data collection
Index ranges

Data collection software

Cell refinement software

Data reduction software

Solution and refinement:

Reflections collected
Independent reflections
Completeness to theta = 25.242°
Observed reflections

Reflections used for refinement
Absorption correction

Max. and min. transmission
Flack parameter (absolute struct.)
Largest diff. peak and hole
Solution

Refinement

Treatment of hydrogen atoms
Programs used

Data / restraints / parameters
Goodness-of-fit on F?

R index (all data)

R index conventional [I>2sigma(l)]

3.483 mm*
3942

Bruker D8 QUEST area detector
0.71073 A

100(2) K

2.193t0 25.356<

-19<=h<=19, -21<=k<=21, -33<=|<=31

BRUKER APEX2 2014.9-0
BRUKER SAINT

SAINT V8.34A (Bruker AXS Inc., 2013)

112143

29568 [R(int) = 0.0532]

99.9 %

27002[1>2sigma(l) ]

29568

Numerical

0.82 and 0.57

0.055(8)

4.835 and -1.145 e. A

Direct methods

Full-matrix least-squares on F?
Calculated positions, constr. ref.
XT V2014/1 (Bruker AXS Inc., 2014)
SHELXL-2014/7 (Sheldrick, 2014)
DIAMOND (Crystal Impact)
29568 / 1774/ 2007

1.089

wR2 =0.1121

R1 =0.0484

234



Chapter 6: Appendices

Figure 147 Crystal structure of A-IrPP. ORTEP drawing with 50% probability thermal ellipsoids. The
hexafluorophosphate counteranion is omitted for clarity.

Table 11 Crystal Data and Structure Refinement for A-1rPP.

Crystal data:

Identification code z98b Om

Habitus, colour plate, yellow

Crystal size 0.25 x 0.12 x 0.05 mm®

Crystal system Orthorhombic

Space group P21212 Z=4

Unit cell dimensions a =15.3905(7) A =90<
b =22.8141(13) A =90°
¢ =12.6639(6) A =90<

Volume 4446.6(4) A

Cell determination 9601 peaks with Theta 2.3 to 25.3<

Empirical formula CyHa6Cly FglrN4P

Moiety formula CaoHa2IrNy, FeP, 2(CH,CIy)

Formula weight 1085.80

Density (calculated) 1.622 Mg/m®

Absorption coefficient 3.339 mm™

F(000) 2160
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Data collection:

Diffractometer type
Wavelength

Temperature

Theta range for data collection
Index ranges

Data collection software

Cell refinement software

Data reduction software

Solution and refinement:

Reflections collected
Independent reflections
Completeness to theta = 25.242°
Observed reflections

Reflections used for refinement
Absorption correction

Max. and min. transmission
Flack parameter (absolute struct.)
Largest diff. peak and hole
Solution

Refinement

Treatment of hydrogen atoms
Programs used

Data / restraints / parameters
Goodness-of-fit on F?
R index (all data)

R index conventional [I>2sigma(l)]

Bruker D8 QUEST area detector
0.71073 A

100(2) K

2.222 t0 25.284<

-18<=h<=17, -14<=k<=27, -13<=I<=15
BRUKER APEX2 2014.9-0

BRUKER SAINT

SAINT V8.34A (Bruker AXS Inc., 2013)

15571

7935 [R(int) = 0.0296]

99.6 %

7212[1>2sigma(l) ]

7935

Numerical

0.85and 0.53

0.007(5)

1.257 and -0.575 e A’®

Direct methods

Full-matrix least-squares on F?
Calculated positions, constr. ref.
XT V2014/1 (Bruker AXS Inc., 2014)
SHELXL-2014/7 (Sheldrick, 2014)
DIAMOND (Crystal Impact)
7935/0/530

0.966

wR2 = 0.0608

R1=10.0301
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F1'E

Figure 148 Crystal structure of 20l. ORTEP drawing with 50% probability thermal ellipsoids.

Table 12 Crystal Data and Structure Refinement for 20I.

Crystal data:

Identification code
Habitus, colour
Crystal size

Crystal system
Space group

Unit cell dimensions

\Volume

Cell determination
Empirical formula
Moiety formula
Formula weight
Density (calculated)

z341 Om

needle, colourless

0.36 x 0.18 x 0.16 mm®
Orthorhombic

P212121 Z=8
a=10.9456(3) A =90°
b =12.5890(4) A =90°
c=21.7213(6) A =90<%
2993.07(15) A®

9966 peaks with Theta 2.5 t0 25.2<
Cy4H10BrF3N,O

C14H10BrF3N,O

359.15

1.594 Mg/m?
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Absorption coefficient 2.778 mm™
F(000) 1424

Data collection:

Diffractometer type Bruker D8 QUEST area detector
Wavelength 0.71073 A

Temperature 100(2) K

Theta range for data collection 2.466 to 25.317<

Index ranges -13<=h<=13, -15<=k<=15, -26<=I<=26
Data collection software BRUKER APEX2 2014.9-0

Cell refinement software BRUKER SAINT

Data reduction software SAINT V8.34A (Bruker AXS Inc., 2013)

Solution and refinement:

Reflections collected 22310

Independent reflections 5384 [R(int) = 0.0530]

Completeness to theta = 25.242° 99.9 %

Observed reflections 4902[1>2sigma(l) ]

Reflections used for refinement 5384

Absorption correction Numerical

Max. and min. transmission 0.67 and 0.35

Flack parameter (absolute struct.) 0.027(8)

Largest diff. peak and hole 0.235 and -0.270 e. A’

Solution Direct methods

Refinement Full-matrix least-squares on F?
Treatment of hydrogen atoms CH calc. positions, constr., OH located, isotr. ref.
Programs used XT V2014/1 (Bruker AXS Inc., 2014)

SHELXL-2014/7 (Sheldrick, 2014)
DIAMOND (Crystal Impact)

Data / restraints / parameters 5384 /189 /454
Goodness-of-fit on F? 1.055
R index (all data) WR2 = 0.0556

R index conventional [I>2sigma(l)] R1=0.0290
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Figure 149 Crystal structure of rac-Rul. ORTEP drawing with 50% probability thermal ellipsoids. The
hexafluorophosphate counteranion is omitted for clarity.

Table 13 Crystal Data and Structure Refinement for rac-Rul.

Crystal data:

Identification code z1020c_0Om

Habitus, colour needle, colourless

Crystal size 0.62 x 0.13 x 0.11 mm’®

Crystal system Monoclinic

Space group C2/c Z=4

Unit cell dimensions a=19.8615(9) A =90°
b =22.9601(10) A =95.504(2)<
¢ =13.8009(6) A =90<

Volume 6264.5(5) A’

Cell determination 9919 peaks with Theta 2.3 to 25.3<

Empirical formula Cs6HeoCi4F12NgP2RuU
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Moiety formula Cs4HsNgRu, 2(FgP), 2(CH,CIy)
Formula weight 1377.93

Density (calculated) 1.461 Mg/m®

Absorption coefficient 0.551 mm™

F(000) 2808

Data collection:

Diffractometer type Bruker D8 QUEST area detector
Wavelength 0.71073 A

Temperature 230(2) K

Theta range for data collection 2.312 t0 25.297<

Index ranges -23<=h<=23, -27<=k<=27, -16<=I<=16
Data collection software APEX3 (Bruker AXS Inc., 2015)

Cell refinement software SAINT V8.37A (Bruker AXS Inc., 2015)
Data reduction software SAINT V8.37A (Bruker AXS Inc., 2015)

Solution and refinement:

Reflections collected 47978

Independent reflections 5694 [R(int) = 0.0442]
Completeness to theta = 25.242° 99.9 %

Observed reflections 4994[1 > 206(1)]

Reflections used for refinement 5694

Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.94 and 0.87

Largest diff. peak and hole 0.382 and -0.389 e. A’

Solution dual space algorithm
Refinement Full-matrix least-squares on F?
Treatment of hydrogen atoms Calculated positions, constr. ref.
Programs used XT V2014/1 (Bruker AXS Inc., 2014)

SHELXL-2014/7 (Sheldrick, 2014)
DIAMOND (Crystal Impact)
ShelXle (Hibschle, Sheldrick, Dittrich, 2011)

Data / restraints / parameters 5694 /191/473
Goodness-of-fit on F? 1.065
R index (all data) wR2 = 0.0951

R index conventional [I>2sigma(l)] R1=0.0370
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Figure 150 Crystal structure of A-Ru2-DPPE. ORTEP drawing with 50% probability thermal ellipsoids.
The hexafluorophosphate counteranion is omitted for clarity.

Table 14 Crystal Data and Structure Refinement for A-Ru2-DPPE.

Crystal data:

Identification code z1056_0m_sq

Habitus, colour plate, colourless

Crystal size 0.31x 0.30 x 0.14 mm®

Crystal system Monoclinic

Space group P21 Z=2

Unit cell dimensions a=14.2760(6) A =90°
b =15.7178(7) A =103.244(2)<
¢ =14.3256(6) A =90<

Volume 3129.0(2) A

Cell determination 9151 peaks with Theta 2.6 to 27.5<

Empirical formula CeoHsgF12NgPsRuU [+ solvent]

Moiety formula CeoHssNgP2RuU, 2(FgP) [+ solvent]
Disordered solvent has been “squeezed”

Formula weight 1316.07

Density (calculated) 1.397 Mg/m?
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Absorption coefficient 0.431 mm™
F(000) 1344

Data collection:

Diffractometer type Bruker D8 QUEST area detector
Wavelength 0.71073 A

Temperature 110(2) K

Theta range for data collection 2.231t0 27.546<

Index ranges -18<=h<=18, -20<=k<=20, -18<=1<=18
Data collection software APEX3 (Bruker AXS Inc., 2015)

Cell refinement software SAINT V8.37A (Bruker AXS Inc., 2015)
Data reduction software SAINT V8.37A (Bruker AXS Inc., 2015)

Solution and refinement:

Reflections collected 71723

Independent reflections 14432 [R(int) = 0.0431]
Completeness to theta = 25.242° 99.9 %

Observed reflections 13176[1 > 2(1)]

Reflections used for refinement 14432

Extinction coefficient X =0.0009(2)

Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.94 and 0.89

Flack parameter (absolute struct.) -0.023(6)

Largest diff. peak and hole 0.343 and -0.343 . A’

Solution Dual space algorithm
Refinement Full-matrix least-squares on F?
Treatment of hydrogen atoms Calculated positions, constr. ref.
Programs used XT V2014/1 (Bruker AXS Inc., 2014)

SHELXL-2016/6 (Sheldrick, 2016)
DIAMOND (Crystal Impact)
ShelXle (Hibschle, Sheldrick, Dittrich, 2011)

Data / restraints / parameters 14432 /280/ 810
Goodness-of-fit on F? 1.023
R index (all data) wWR2 = 0.0563

R index conventional [I>2sigma(l)] R1=0.0278
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