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Abstract:
Metallic particleswith linear dimensionsd small comparedwith othercharacteristiclengths (like thewavelengthof electromagneticradiation,

the de Broglie wavelengthof theconductionelectrons,the coherencelength or the penetrationdepth in the superconductingstate,etc.) show
interestingeffectswhich are usually unobservablein bulk metals.The electronicpropertiesof theseparticleswith diametersof a few nm can be
analysedby consideringthemicrocrystalsnot as “giant molecules”but as“small solids”, i.e. by using thefamiliar methodsof solid statephysicswith
someproperly definedboundaryconditions, Due to the smallnessof the particles,the customaryquasi-continuouselectronicexcitation spectrum
splitsup into discreteenergylevelswith an averageenergysplitting S of a few meV. If then therelevantenergies(like thethermalenergykT, the
ZeemanenergygLO/LBH, the electrostaticenergyedE, the photon energyhw, thecondensationenergyfor the superconductingstated, etc.) are
comparablewith 5, novel effects areto be expected,called “quantumsize effects” (QSE). In an ensembleof small particles,it is expectedthat the
discrete energylevels are statistically distributed; therefore,methods of level statisticscan be employed to calculatethe different electronic
propertiesof small particles.

In this report,themorephenomenologicalaspectsof thephysicsof small particlesarediscussed,wheree.g. theinteractionof theelectromagnetic
radiationwith theparticleis describedby a dielectricconstant,also characteristicfor thebulk metal.Themoremicroscopicquantumsize effects in
small particlesarethen analysedtheoretically,mainly from thepoint of view of the statisticsof discreteenergylevels, andtheexisting experimental
resultsarediscussed.Superconductivityin small metallic particlesis reviewedwith emphasison thecritical fields in small particles, themagneticfield
dependenceof their microscopicproperties(e.g. densityof states),theproblem of a lower size limit of asuperconductor,andfluctuationsin small
superconductors.Finally, themostcommonly usedexperimentalmethodsto producesmall particlesaredescribed.

1. Introduction

Betweenthe well establishedandconventionaldomainof the atomic andmolecularphysicsandthat
of the physicsof condensedmatter,thereis an intermediateregion dealingwith the propertiesof small
aggregates,clusters,or small particles,which areneitherquite microscopicnor quite macroscopic.The
study of systemsin this intermediateregion is ratherimportant from a technologicalpoint of view for
the understandingof problems related to catalysis, chemisorption, aerosols,powder metallurgy,
ferrofluids, etc.; in addition, it is to be expectedthat the next level of miniaturizationof deviceswill
include systemsbelonging to this intermediateregion. From a more fundamentalpoint of view, the
studyof this stateof matter,intermediatebetweenthat of a molecule anda solid, seemsto be crucial
and should be very interestingbecauseit toucheson someratherbasic points of physical principles,
usuallyconcealedif one dealswith infinitely largesystems.

In this paper,we will limit ourselvesexclusively to the electronicpropertiesof smallsystems,i.e. the
physical propertiesof smallmetallic particlesdue to the presenceof electrons.Apart from a few but
very importantcontributions [1—4]this subjectseemsto haveattractedwider interestonly during the
last few years.Nevertheless,due to the many problemsinvolved— experimentallyit is very difficult to
preparewell definedsamplesin this intermediateregime,andtheoreticallyno adequatetools havebeen
developed— the field of studieson the electronicpropertiesof smallmetallic particlesis still very much
in its infancy. Somevery relevant,morerecentresultscan be found in the proceedingsof the first and
secondconferenceon small particles[5,6], and the reviewpapersby Baltes and Simanek[7], Hughes
andJam [8], Genzel [9], and Knight [10] give most valuableinformation.

We areinterestedin the changein the physicalbehaviourof a systemif oneputstogethermoreand
moreidenticalatoms.Most crudely speaking,veryobviouslya collection of copperatomsanda pieceof
a copperwire will behavevery muchdifferent, despitethe fact that both consistof the samechemical
element.The questionis how to investigatethis transitionin the physicalpropertiesif onegoesfrom a
single atom to abulk solid. Our point of view in this paperis to focusour attentionon smallmetallic
particleswhich still havea considerablenumberof electronsso that the usual methodsof solid state
physicsremainapplicable.In particular,the conceptof a quasi-particleas an electronicexcitationin a
metal, is still supposedto be meaningful.We start from the usualideasof solid statephysicsandadd
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somemodificationsdue to the smallnessof the systemas a sort of perturbation.In this spirit, a small
metallicparticle is thenconsideredas a solid with dimensionsL smallerthan someintrinsic length like
the wavelength of light A, the electron mean free path 1, the London penetrationdepth of a
superconductorAL, the coherencelength ~ of the superconductingstate,etc.

A rather interestingsituationresultsfrom the quantummechanicalfact that a systemconsistingof
many electronsin a finite volume hasdiscreteenergylevels. It is important to realize that a very clear
distinction hasto bemadebetweenthe densityof energylevelsof the full thermodynamicmanyparticle
system,and the density of energy levels of one single quantummechanicalparticle, both in a finite
volume.

Generally speaking,for the full thermodynamicmany particle system, the distancesbetweenthe
discreteenergylevelsof thewhole manyparticlesystemdecreaseexponentiallywith increasingnumber
N of the particles.This is due to the well known fact from statisticalmechanics[11], that in a closed
systemin thermalequilibrium the entropyS maybe expressedas a function of the total energyalone.
The statisticalweight~F (the numberof quantumstatesof thefull manyparticlesystemcorresponding
to the energyinterval ~E) is then by definition given by:

~F=eS~. (1.1)

Dividing L~Eby ~F, we obtain the mean separationbetweenneighbouringlevels in this interval near
the energyE. Denotingthis distanceby ~1(E), we get:

~i(E) = i~Ee’~. (1.2)

Therefore, the entropy function S(E) determinesthe densityof levels in the energyspectrumof a
macroscopicsystem. Since the entropy is additive, the mean spacingsbetween the levels of a
macroscopicbody consistingof the full many particle system decreaseexponentiallywith increasing
numberN of particles in it. It is clear that this analysisis closely relatedto the fact that surfaceeffects
can be neglectedcomparedwith bulk effectsif the numberof particlesinvolved is sufficiently largeand
thereforeit is possibleto define i.e. the entropyper particles = SIN. In the explicit calculationof s the
conceptually different energy density of the one particle system comes into play, which can be a
function of the dimensionsof the systemas well. In the rest of this paper, we shall be concernedwith
this one-particledensityof statesonly.

If we take a one-electronmodel Hamiltonian for the conduction electrons to representthe
“quasi-particles”in the smallmetallic particle, the eigenvaluesand eigenfunctionsare determinedby
the appropriateboundaryconditions.Usually, the level systematicsof particles in a large volume is
obtainedby consideringthe system in a large cubewith periodic boundaryconditions. In a naïve
free-electronmodel, the energy levels are given by E. = h27r2n2/(2m*L2), where L is the linear
dimensionof the system,m* the effective massof the electrons,and n2 = n~+ n~+ n~,with integer
values for n~.The spacingbetweentwo neighbouringlevelsat the Fermi energyEF is then given by

= h27r2/(2m*L2). This situation, where the final levels correspondto values of the momentum
quantizedin intervals~p,,. h/L, is perfectly adequatefor thedescriptionof a macroscopicsystem,and
takesinto accountthe uncertaintyrelation iXx,,. ~p,,.� h, which will broadenthe levelsaccordingly.In a
naïve, but incorrect picture one could arguethat the levels should be broaderthan z~E� h ~t, and
estimatethe meanlife time of the Bloch statesfrom the size limited meanfree path: L~E� hvFIL; the
enormousbroadeningof the single particleenergylevels found in this caseis ratheran indication of the
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breakdownof the naïvequasi-one-dimensionalBloch model.Yet, it makessomesenseto considerL/vF
as a kind of lifetime: In his discussionof the width of the electronspin resonancepeakmeasuredin
smallmetallicparticlesKawabata[12]showedthatthisclassicalestimatecorrespondstothestrengthof the
transitionmatrix elementsin a quantummechanicalcalculation.

If we considerthe electronlevelsof sufficiently minutemetallic particles,imperfectionsin the shape
of such particleswill removethe artificial degeneracyof the systemdue to the periodic boundary
conditions.Thenthe averagedistancebetweentwo levelsat the Fermi energyis 6 = z~eI(21rnF/8)(where

= LpF/(lrh), andPF the Fermi momentum),and is of coursejust twice the inverseof the densityof
statesp(EF) at the Fermi level. Also then, for sufficiently smallparticles,the level spacingmaybe larger
than the broadeningof the single electronenergylevels. In a particleof volume V = L3, containingN
electrons,wethereforehavefor spin degeneratelevels:

3 = 2/p(r~)= 21r2h3/(VpFm ) =

3SF/N. (1.3)

For a smallgold particlewith diameterd = 10 nm, and using the coefficient ‘y in the linear law of the
electronicspecific heat as measuredin the bulk material,eq. (1.3) gives 8 = 0.10meV. In generalit is
seenfrom eq. (1.3) thatwhen N iOn, . . . iO~the averagespacingis 8/k 1, . . . 0.1 K; thisis quite large
evenfor particledimensionswhich are sufficiently largeso that still the macroscopiccharacteristicsof
the metal can be used.It is obvious, andwas realized many yearsago [2—4],that interestingeffects
shouldoccurif the averagevalue for an ensembleof small particlesof the level spacingnearthe Fermi
energy8 becomesbigger than the thermalenergykT, the Zeetnanenergy~LO~LBH (H is the applied
magneticfield), the electrosticenergyedE (E is the applied electric field), the energyh~of radiation,
etc. (Seefig. 1.1.) In amost remarkablepaper[3], it was Kubowhoreactivatedinterestin andtriggered
morerecenttheoreticalandexperimentalwork on theseproblems.

d(nm)

100

o~kT~.i0p.~I/=edf

10~~
1 11111111 I 11111111 I I 1111111 I II

0.1 1 10 6(meV)
I 1111111 I I 111111 I I 111111 I I 1-111111

1 10 100 r (K)
I I I 111111 I I 111111 I I 111111 I I 1111111

1 10 100 (J.QH 1)
111111 I I 1111111 I 11111111 I 1111111 I I 1111111 I 11111

iO~ 10~ iü~ lO~ 1O~ £ (V/rn)

Fig. 1.1. Average level spacing~ = 4e~/3Nas a function of the particle diameterd, measuredin termsof someother relevantenergies.The
parametershavebeencalculatedusing a typical “standardmetal”, with a valueof N/V= 6.0 x 1028 electrons/rn

3for the electrondensity.
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It should be emphasizedthat the finiteness of the dimensionsof the particlesbrings about two
distinct effects on the electronicstatesin a particle.The first is the discretenessof the energylevels as
given by eq. (1.3), andthe secondis the effectdue to the existenceof surfacesas discussedin connection
with the full thermodynamicmanybodyproblem.Thesesurfaceeffectswill certainlybeimportantunder
the circumstancesdiscussedhere,but we will be mainly concernedwith the first effect, namely that of
the discretenessof the one-particleenergylevelsdueto thesmallnessof thesystem.In principle,a small
particleshould be consideredas a giant moleculecomposedof manythousandsof atoms,but herewe
will considera smallparticle as a smallsolid.

2. Phenomenologicaldescriptionof smallparticles

2.1. Interaction with electromagneticradiation

Small metallic particlesor colloids often showbeautiful colours,usuallydifferent from the coloursof
the bulk metal. An explanationfor this phenomenonwas given early in this centuryin terms of the
classicalelectromagnetictheory [1, 131. A particle, exposedto electromagneticradiation,will reducethe
intensity of the incident beam by scattering and absorption. This problem can be analysedwith
Maxwell’s equations.The discussionof this problem is relatively simple,becausethe dimensionsof the
submicroscopicparticlesof interesthereare smallerthan the wavelengthof the incoming electromag-
netic wave (if we consideronly nonionizing radiation).The applied field may then be assumedto be
homogeneousoverthe volume of the particle. For the caseof a sphericalparticlea full solutionof the
boundaryproblem was worked out by Mie [11.In this phenomenologicaltreatment the complex
dielectricconstantsof the metal andof the surroundingmediumare the only materialpropertieswhich
enterthe calculation.Therefore,Mie’s theory can be applied to metalsas well as to ionic crystalsand
semiconductors[9]. The extensionof Mie’s theory to ellipsoidally shapedparticles is quite easy,but also
for different particlegeometriessolutionsmaybe found [141.

Normally one is interestedin the propertiesof a collection of more or less identical particles,
reasonablywell separatedfrom eachother, and embeddedin a medium with well defineddielectric
constant:an appreciablefraction of the volume of the embeddingmedium will be occupiedby small
particles. The theory of J.C. Maxwell Garnett [131gives a prescriptionhow to calculatethe effective
dielectricconstantof amediumcontainingasmallvolumefractionof particles.Whentheparticlesoccupya
largefractionof thevolume,asin somecompositematerials,thistheoryfails. Theevaluationof theeffective
dielectricconstantis thenpossibleonly in sofar asit is possibleto characterizethematerialexplicitly. This
problemwill bediscussedin somedetail in section2.4. In section2.2we will considerthesolutiongiven by
Mie andsection2.3 will discusssize effects on the dielectric constantof the metalparticles.

2.2. Mie‘s theory

We will nowturn to the discussionof Mie’s calculationof the interactionof small sphericalparticles
with electromagneticradiation. The calculation is straightforward, but rather tedious, and was
repeatedlyelaboratedby many illustrious workers [15—17].Avoiding detailed calculationswe will
presenta brief outline of the procedureto calculatethe attenuationof an unpolarizedmonochromatic
light beamafter it haspassedthrough a medium containing sphericalparticles.The volume concen-
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tration of particlesis assumedto be so low that the particlesactas independentscatteringcentersand

that multiple scatteringdoesnot takeplace.Thenthe extinction of the beamis given by:
I(z)=Ioe_Yz (2.1)

where 1(z) is the intensity of the incoming beamafter a distancez. Under theseconditions, the
extinction coefficient y is a simpleproductof the numberof scatteringcentersper unit volume N/V and
the extinction crosssectionof one particleCext. The extinction crosssection is the sum of the scattering
crosssection C~aandthe absorptioncrosssection Cabs:

y = Cext = (Csca + Cabs). (2.2)

This extinction cross section can now be calculatedwith Mie’s theory, starting from Maxwell’s
equations.We consider the caseof a monochromatic,linearly polarizedplane waveof electric and
magneticfield amplitudesE and B incident onto the particle P (see fig. 2.~As a consequenceof
Maxwell’s equations,E andB arenot independent:B = (nlc)E, wheren = Ve~iis the refractiveindex
of the medium. (l’hroughoutthis papere and ~.i will denotethe relative permittivity andpermeability
respectively.)The incomingfield expressedin polar coordinatesis given by:

E. = sin 0 cos4, e”~°~°e”~’

= cos0 cos4, ethT~~05oe_i~0t (2.3a)

E~= —sin 4, e~T~20s0e~’°’

Ecos.p ______________

Esinsp

Fig. 2.1. The incoming electromagneticwave,directedalong the +z-axis, and theoutgoing sphericalwave, which is scatteredby the particle at
positionP.
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Br = (n/c)sin 0 sin 4, e~~~~05øei~~t

B9 = (n/c)cos0 sin 4, &“~~° e_I~0t (2.3b)

B4, = (n/c)cos4, e~c05
0e_Irof.

It wasnotedby Debye [15] that this problemcan mosteasilybe solvedwhenwe realizethat thevectors
E and B can be derivedfrom a scalarfield V which satisfiesthe samewaveequationas the cartesian
componentsof E and B, i.e.: ~V+ k2V= 0. One obtainsall possiblesolutions by consideringtwo
different functions V

1 and 1”2; the first will correspondto the casewhere the radial part of B is
vanishingandelectricalwavesaregenerated,the latterwill representthe magneticwaveswith vanishing
E,. The completesolution is the superpositionof the fields derivedfrom the two potentials.For the
electrical wavesthe componentsof E can be found as derivativesof the function (t9/Or)rV1 as will be
shown below, and the contribution of rV1 to the magnetic field is obtainedsubsequentlyby using
Maxwell’s equations.For the magneticwaves,in a similar way the componentsof B areobtainedfrom
direct differentiation of (8/Or)rV2, and the contributionto the electric field is found again from the
correspondingMaxwell equation:

Er = ‘~ rV~+ k
2rV

1

1 82 ick ~
E9=——-——rV1+ . —rV2 (2.4a)r OrOO nrsin 084,

1 ~2 ickO
E4. = rsin

B, = f~rV2+k
2rV

2

ink 8 1 82B9=— . —rV1+—————rV2 (2.4b)cr sin 084, r 8r80

inkO 1 ~2B4.=——rV1+ . rV2.
cr 80 rsin 0 8r84,

The expressionsfor Er andB, can be usedto get rV1 andrV2 respectively.The solutioncan be written
as a seriesexpansionin sphericalharmonics:

rV~~= e~”cos4, ~ ~‘ l(i+ 1) a1ifi1(k1r)P~(cos 0) (2.5a)

rV~= ~ e’~’
tsin 4, ~1~1 21+ ~ f3

1ifr1(k1r)P~
1(cos 0). (2.5b)

c
1 ,=~ ( )

Heren is the (complex) index of refractionand k = nw/c the wavevectorin the medium; 9!/1(z) [15] is
a Ricatti—Besselfunction of the type (irz/2)~

2J
1÷1j2(z)whereJ,±112(z)is a half integral Besselfunction,

and P~(cos 0) is an associatedLegendrepolynomial.For a1 = I3~= 1 the eqs. (2.5a)and (2.5b) will
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generatethe incomingwavegiven by eq. (2.3). For the field inside the particle,an ansatzof the form
given in eq. (2.5) is appropriate.For the scatteredwaveoutsidethe particle a decompositionmust be
made with functions ~,(kr) [15] instead of i~’,(kr).~,(z) is a Ricatti—Bessel function of the type
(1Tz/2)hI~2H~2i,

2(z)where H~112(z)is a half integral Hankel function of the first kind. The asymptotic
form of i~1(kr)for kr ~‘ 1 is i~1(kr)= (—i)~e”, representingan outgoing wave. The ansatzfor the
scatteredwave is therefore:

rV~= e~”°
tcos4, ~ ~+ 1) a,’q

1(k2r)P~(cos0) (2.6a)

rV~= e”°’sin4, 1(1 + 1) b,~,(k2r)P~’~(cos0). (2.6b)

Hereand in the following, the index (1), (2), and (i) referto the particle,the embeddingmedium,and
the incoming waverespectively.The coefficientsa~,/3~,a~andb1 can bedeterminedfrom the boundary
conditionsat the surfaceof the particle:

E(1) — (1) + (2)tang. — tang. tang. . a

B(1)
— ~L (2)tang. — tang. tang.

Thecontinuity of E9 andE4. impliesthe continuity of the functions(8/8r)rV1 and rV2 at r = ~d, whered

is the particle diameter.Similarly, the continuity of k
2rV

1 and(8/ôr)rV2 follows from the continuity of
both B9 andB4. at the particlesurface.The coefficientsa, and b, for the scatteredwavefound from the
boundaryconditionsare:

a — — n tfr~(nx)t//,(floX) — flo 4i~(nx)tfr,(nox) 2 8
n 4i1(nx) fl~(nox)— flo 4’~(nx)fl:(nox) ( . a)

= — n0 t/11(nx)ç1i~(nox)— nt/4(nx)çIi1(nox) 2 8b
no’/ii(nx)i(nox)n4i~(nx)~,(nox)~ ( . )

These expressionscontain the Mie-parameterx = ~ with the vacuumwavevectork13 = 2ir/Ao, the
index of refractionof the embeddingmedium n0 = VSm, and the (complex) index of refractionof the
particle n = \/e. Far away from the particle, r ~ A, we can substitutethe asymptotic form of the
function i~,(k2r).We definefunctionsS~(0)andS2(0):

~ — 21+ 1 J P~
1~(cos0) + b dP~1~(cos0)1 2‘( ) — 1(1 + 1)

1~a, ~ 0 ‘ dO ,f ( .9a)

— ~ 21+ if dP~(cos0) + 1, P~’~(cos0) 2 9b

2( )-_~1(1~1)fa, dO ~ sinO ( . )

Then the componentsof the electricandmagneticfields can be expressedconvenientlyas:
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(E’) = i exp~ik~r— iwt} sin 4, S1(O)(i~) (2.lOa)

(Es) = — i expik:r— iwt}cos 4, S~(0)(~) (2.lOb)

ErBrO. (2.lOc)

Far away from the particle, the scatteredwavehasthe form of an outgoingtransversesphericalwave.
The forwardscatteredbeam(0 = 0) determinesthe extinction crosssection.Becauseof the fact that

1 P~°(cosO)l~~= ~ P~(cos~ = ~l(l + 1),

the functionsS~(0)and S2(0) are equaland the extinction crosssection is independentof the stateof
polarizationof the incident radiation.The extinction andscatteringcrosssectionscan nowbe calculated
from the amplitudefunction 5(0) by:

Cext = — Re{S(0)} = — —4~-~~ (21 + 1) Re{a1+ b,} (2.lla)(nox) n0 O,1

Csca~f2 ~ (21+ 1){Ia,1
2+ b,~2}. (2.llb)

flO ~

We can proceedto an evaluationof the crosssectionsby a seriesexpansionin powersof x of the
functionsenteringeqs. (2.8a)and(2.8b). The lowestorder term in Cexi is proportionalto x3 andstems
from a

1, the third term in the expansionof a1 is proportionalto x
6 and is relatedwith the first term in

the powerseriesfor C~a.For very smallparticles,only the first orderelectricwavewill contribute,and
the extinction will be mainly due to absorption.The seriesexpansionof the coefficients leadsto the
following result:

2 2 1 2_ 2\1 2-, 2\ / 2_ 2~2
— 2• ~ n — no 3 + 2. ~~n n

01~n /..nO) 5 ~ 61 n n0 \ 6 2 12
al_3

1no2+
2n2x 5Iflo (n

2+2n~)2 X _9nokn2+2n2)x . a

b
1 = ~in~(n

2— n~)x5 (2.12b)

1 . n2—n~ ~
a

2=J~Ino22~32x. (2.12c)

For smallenoughparticles, the extinction can be calculatedby substitutionof the lowestorder term in
a1 only. With x = ~k0d, n

2 = e = e~+ ie
2, and n~= ~m the extinction coefficient y is calculatedto be:

y = ~Cext nokod3Im{C~~} 18ir~~-°Vo(E +22)2+ . (2.13)

y is proportionalto the volume of the particle V0 and the numberof particlesper unit volume. The
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intensity of the scatteredradiationwill be proportionalto V~,as can be inferredfrom eq. (2.llb). The
rangeof validity of eq. (2.13)hasto becheckedin eachcaseby comparisonwith the full Mie expression
eq. (2.11).

The scatteredradiation field calculatedfrom the Mie theory can be consideredas generatedby a
superpositionof oscillating electric and magneticmultipoles. The coefficientsa, and b, determinethe
magnitudeof the correspondinglth multipole moments.In the optical frequencyrangeand for very
smallparticles(d � 10_i A, whereA is the vacuumwavelengthof the electromagneticradiation)only the
electric dipole contributionneedsto be takeninto account.

Theresultof the Mie theory given in eq. (2.13)can be consideredas beingdue to an electricplasma
oscillation inducedin the metallic particle.In this context, it is very illustrative to calculatethe electric
dipole moment p induced by an applied electric field E0 in a particle with dielectric constante
embeddedin a medium with dielectricconstant~m. For the calculationof the strengthof the electric
field the chargesat the interfaceof the particleandthe mediumhaveto be takeninto account.In the
particularly simple geometry of sphericalparticles, the depolarizingfield is homogeneousover the
volume of the particle and the field inside the particle is proportional to the applied field. The field
outsidethe particleis the superpositionof the applied field and the field of the electricdipole moment
inducedin the particle.When the field E0 is directedalongthe z-axis, theelectric field can becalculated
as the gradient of the scalarfield ‘I’ given by:

~(i) = —aE0rcos0 (2.14a)

~(2) = —E0rcos0 + ‘°cos0 (2. 14b)

4irs0r
The proportionalityfactorsp anda can be calculatedfrom the usualboundaryconditions:

E~g,= E~g. (2.15a)

EE~rp.= EmE~rp.. (2.15b)

We obtainfor the field inside the metallic particle:

E~
1~= ~ E

0 (2.16)

andfor the inducedelectricdipole moment:

p = d

3 3~~E
0. (2.17)

Theplasmaoscillation of the metallic sphereis given by the frequency(
0R for whichp becomesinfinite,

i.e. when:

E(WR)+2Em 0. (2.18)

This electricdipole plasmaresonancecorrespondsto the lowestordercontributionto the scatteringin
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the Mie theory given in eq. (2.13), and leads to the well known beautiful colours of submicroscopic
dispersionsof metals.

2.3. Thedielectric constantofa smallmetallicparticle

The Mie theory for the scatteringand absorptionof electromagneticradiation by a small metallic
particle, as discussedin the previoussection, leadsto a plasmaresonance.This plasmaoscillation is
usually foundin the visible or nearultraviolet andhasbeenstudiedby manyworkersusingtransmission
of radiation [18—35],energyloss experimentsin the interaction betweenfastelectronsand the small
particles [36,37], by direct observationof theintensity of the scatteredlight [38], andthis local plasmon
mode is possibly observedalso in the emittedlight from particlescontainedin tunnel junctionswhen
the particles are excited by inelastic tunneling electrons[39]. In the interpretation of the optical
propertiesof smallparticles,it was soonrealizedthat the limited meanfree path of the electronsis the
most importantfactor leadingto modificationsof the opticalconstantof finely dispersedmetals[18—20]:
The meanfree pathfor diffuse scatteringoff the surfaceof a sphericalparticleis ~d,andwill besmaller
than the bulk mean free path for sufficiently small crystallites. The correspondingreductionof the
lifetime of the electronstatesleadsfor small d to a broadeningof the resonanceproportional to the
particle diameter. In fig. 2.2 the plasmaresonanceis shown of small silver particlesas measuredby
Doremus [22] in one of his pioneeringstudies.The absorptionis calculatedfrom Mie’s theory, using
experimentalvaluesfor the bulk dielectricconstantof silver, andthe imaginary part was correctedfor
the reducedmeanfree path.The overall correspondencebetweentheory andexperimentis satisfactory.
Extensivestudiesof the opticalpropertiesof small silver and gold particlesby Kreibig et al. [25—27]
haveconfirmedthis result.

It is generallyacceptedthat agood approximationto the dielectricconstantin smallparticlesis easily
obtainedfrom the bulk opticalconstants:The contributiondue to interbandtransitionsEb(W) is mostly
believedto remain unchanged,but th~Drude-like free electron part shouldbe modified using a size
limited scatteringtime:

1/r i/ro+2vFId. (2.19)
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Fig. 2.2. The opticalplasmaresonanceabsorptionline for small silver particleswith an averagediameterof about 10 nm. The values indicatedby
thecircles, calculatedusing a Drude-likedielectric constantwith a meanfree path of theelectronslimited by thesize of theparticle,are in good
agreementwith theexperimentalcurve.(From Doremus[22].)
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r0 is the scatteringtime in the bulk material,and VF denotesthe Fermi velocity. The contributionof the
surfacescatteringbecomesappreciablein the size rangebelow 100nm. Theresultingdielectricconstant
can thenbe written as:

_________ w~/w
2 .

e(w) = Eb(W) w(w + i/r) = Eb(W) 1 + 1/w2r2+1 wT(1 + 1/w2r2) (2.20)

wherew~,denotesthe plasmafrequencyof the bulk material.
For very smallparticlesa new effect comesinto play: Dueto size quantization,the conductionband

will breakup into discretelevelswith an averageseparationlargecomparedto thermalenergies[2,3].
This effect is calledQuantumSizeEffect (QSE).The Drude expressionof eq. (2.20) will then no longer
be valid. Severalattemptshavebeen madeto derive a dielectric function relevantfor this situation
quantum mechanically[26,40—44]. Kawabataand Kubo [40] have arguedthat the classical inter-
pretationof meanfree pathlimitation by scatteringat the surfaceis not correct:Thesurfaceof particles
in this size rangedoesnot really scatterthe electrons,it rathermanifestsitself as a boundarycondition
for electronstatesbound to the finite volume of the particle. The dissipativepart 62 of the dielectric
constantrepresentsdipole transitionsbetweentheseeigenstates,andhasbeencalculatedon the basisof
generalprinciples [40]. As discussedin Ruppin’spaper[44], the expressionsfound for e

2 by different
authorsagreewith the resultoriginally obtainedby KawabataandKubo:

QM \ 32eeF1 (~\-!~~ (~ 22162 ~ d ( . )

g5 is a smoothlyvarying function andhasa valueof the orderof 1. This resultshouldbecomparedwith

the phenomenologicalresultas given in eq. (2.20) in the limit for smallparticles,when lIT = 2vF/d:

= 2w~vF/w
3d. (2.22)

The observedline width of the plasmaresonanceof small silver particlesin fig. 2.3 [26] is consistent

r (eV)

1.00 . . ...—

0.0000 0102 0.3 0.6 05

d1(nm1)
Fig. 2.3. Measuredline width r of the optical plasmaresonancepeak in small silver particlesas a function of the inverseparticle diameterd~.
(From Genzel,Martin and Kreibig [26].)
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with this d~-dependence,as given in eq. (2.21) or eq. (2.22). However, the quantummechanical
calculationspredict an effectivemeanfree path for a sphericalparticleof approximatelytwice thevalue
of the classicalestimateleadingto a line width which is considerablysmallerthan the one observed.It
seemsthat the classicalinterpretationof the effect comparesbetterwith experimentthan the quantum
mechanicalcalculationswhich takeinto accountthe quantumsize effects. It shouldbe notedhowever
that anomalouslyshort scatteringtimescan resultfrom latticedefectsin smallmetallic particles[45].In
addition, the size distribution in samplescontaininglarger particles tends to broadenthe resonance
peak.

The situation is even more controversial concerningthe position of the peak of the plasma
resonance.The classical Mie theory takesonly into accountMaxwell’s equations,and thereforethe
resulting resonancesare purely geometricalin origin. If higher order terms in the Mie parameterx
contributeto the extinction given by eq. (2.11), the shapeof the resonancewill changeandthe position
Amax of the peakwill shift. For smallparticles,higher order termscan beneglectedand the position of
the peakwill be fixed, unlesssomesize dependenceof the dielectricconstantcomesinto play. This is
illustrated by modelcalculationsfor small sodiumparticlesof SmithardandTran [30],shownin fig. 2.4.
It can be seenthat the peakhardly shifts for particleswith diameterbelow approximately10 nm. For
evensmallerparticlesthe classicalconceptof the limitation of the meanfree path will leadto a shift of
the peakposition towardslonger wavelengths.

Let us consideragainthe Drudedielectric function as given in eq. (2.20).The frequencyw~of the
electricdipole plasmaresonanceis then found from the condition 61(WR) = ~2Em(eq. (2.18)). Using eq.
(2.20) we obtain:

W~JWR 2 = Eb(WR) + 2Cm. (2.23)
1 + (1/wRTo+ 2vF/wRd)
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Fig. 2.4. Absorption spectrumfor small sodiumparticles,calculatedusing Mie’s theory. For thedielectric constanttheclassicalDrude-expression
wasusedwith a size limited meanfree path.Thenumbersindicatethe diameterof theparticlesin nm. (From Smithardand Tran [30].)
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The resonancefrequencyis large comparedto the inversescatteringtime (WRTO ~ 1), but for particles
with a diameterapproaching1 nm 2vF/wRdwill be comparableto 1. For particlessubstantiallylarger
than 1 nm eq. (2.23) reducesto the sizeindependentvalueof:

= ~ (2.24)

Eq. (2.23) will lead to a shift of w~to longer wavelengths.Smithard and coworkershaveindeed
observedsuch a shift in small silver [28,29] and sodium [30,31] particles. Around the resonance
frequencyWR, the expressionfor the extinction crosssectionshowsa strongfrequencydependence(as
w4) which in generalresultsin a shift of the actualpeaktowardsfrequencieshigher thanw~.Forsodium
particles, the position of the peakwill remain approximatelyconstantfor particles down to 1 nm, in
agreementwith the modelcalculationsshownin fig. 2.4.

The resultsof a modelcalculationby Jam andArora [32] for smallsilver particlesis given in fig. 2.5.
Here, a dielectric function hasbeen used which hasbeen derived quantummechanicallyfrom the
resultsof Kawabataand Kubo [40] basedon the QSE. The behaviouris strikingly different from the
curvesshown in fig. 2.4 basedon the classicalresults:For the smallestparticlediameters,theyshowa
decreaseof the wavelengthat which maximumabsorptionoccurs. Genzel,Martin and Kreibig have
derived a quantummechanical dielectric function, as well; they consideredthe simple model of a
particlerepresentedby electronsmoving in a cubicpotentialwell with infinitely high sides [26,46]. The
experimentallyobservedline width (fig. 2.3) andposition of the peakof the plasmaresonance(fig. 2.6)
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Fig. 2.5. Absorption spectrumfor small silver particles,calculatedusing Mie’s theory. The dielectric constantwascalculatedusing thequantum
mechanicaltheoryof KawabataandKubo [40]which takesquantumsizeeffects into account.The numbersindicatethediameterof theparticlesin
nm. (FromJam andArora [32].)
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Fig. 2.6. Position of the optical plasmaresonancepeak asa function of theparticle diameterfor small silver particles. The data seemto compare
betterwith the quantummechanicalcalculationsthan with calculationsusing a classicalsize limited meanfree path. (From Genzel,Martin and
K.reibig [26].)

are in agreementwith this model. This shift to higher frequenciesof the position of the plasma
resonancewith decreasingparticle size was alsofoundin otherquantummechanicalcalculations[32,47]
basedon the original work of Kawabataand Kubo [40]. In an attempt to give a simplified analytical
solution, theyarguethat the dielectric function can begiven in a Drude-likeform as

2

e(w) = Sh(W) — (2_ 2/2 {(w2 — 112) — iw/’r}. (2.25)

The new constant11 can be found from the expressionfor the dielectric constantfor zero frequency,
usingthe resultsof their modelcalculation:

= ebUlk(0)+ 0.028 ernn L2 = Eb~Ik(0)+ 0.27 w2L2. (2.26)

When we expresseq. (2.26)in termsof an effectivescatteringlengthLe~= (2f7r)L, we obtain

112 = l.52v~/L~ff. (2.27)

Therefore,11 -~w
0 even for particleswith a diameterof 1 nm. From this result, a strong frequency

dependencein the infraredis expectedfor the dielectricfunction [46].The resultof eq. (2.26) hasbeen
derivedby Cmiand Ascarelli [42],as well andis in agreementwith the highstaticsusceptibilityof small
metallic particles predictedby Gor’kov and Eliashberg[4] many years ago. As before, eq. (2.25),
togetherwith the resonancecondition eq. (2.18), can be used to calculatethe position of the quantum
mechanicalplasma resonanceWOM of a small particle. (ÜQM will only deviate slightly from w~as
calculatedfrom eq. (2.24):

2
2 ,m2 woM ~ 2

WOMJI + 2 +fl2~. (2.28)
WOM T
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Using l/T = l/T0 + vF/Leff the position of the peakis foundto be:

2 2 ii2 i,2 2 ~ 2,2
WQM = WR+ 11 — l/T = WR+U.3LVF/L,eff.

As before,thefrequencyatwhichmaximumabsorptionis found,will beshiftedto higherfrequencieseven
more. This shift of the plasma resonanceto higher frequenciesfor the data representedin fig. 2.6
seemsto supportthe quantummechanicallyderiveddielectricfunction. For silver andsodiumparticles
a shift of the plasmapeakto lower frequencieswas found [28—31];severalattemptshavebeenmadeto
reconcilethe seeminglycontradictoryexperimentalresults:The influenceof surfacediffuseness[48,49],
and of the inclusion of a dielectricnucleus[50,51] havebeenconsideredto explain a shift towards
longer wavelengths.In addition, the extensionof the classical Mie theory to include longitudinal
polarizationwaves in the smallparticlesrevealeda possiblesecondaryabsorptionstructurejust above
the plasmafrequencyw1, [52].

2.4. Theeffectivedielectric constantof the embeddingmedium

The presenceof polarizableparticles will give an extra contribution to the effective dielectric
constantof the embeddingmedium.The field inside a polarizableinclusion is depressedbelow the
appliedfield as a resultof the depolarizationfield of the chargesaccumulatedat the interfacebetween.
the particle and the medium; the averagefield outsidethe polarizableinclusionsexceedsthe space
averagefield. Thereforea higher fieldstrengthwill be effective in polarizing an additionalparticle.

In eq. (2.17)we havecalculatedthe net electricdipole momentinducedin a particleembeddedin the
medium.The extrapolarization per unit volume t~tPresulting from the induceddipole momentsis

proportionalto the volume fraction of metalf and can be written as:

= 3f e0E~, (2.30)

whereE10~is the field acting on the particle. Wehaveto take into accountthe field at the positionof an
additionalparticleresultingfrom all the induceddipole moments.This is relatively simple if we consider
the usualsphericalregion aroundthisparticle.The contributionsfrom all the dipole momentsinside the
Lorentzspherejust cancel;the contributionsof all the dipole momentsoutsidethe spherereduceto the
depolarizationfield of the chargesat the interfaceof the medium andthe hypotheticalLorentz sphere
without a particle

E10, = SmEo+ ~AP/so= ~(Se~ + 2~m)E0 (2.31)

wherewe have introduced
6eff as the effective dielectric constantof the medium together with the

particles.Using againL~P= (Sert — 6m)~oEo,substitutionof eq. (2.31)in eq. (2.30) leadsto the following
result:

6eff6m ,C _____

6e~+2Em’ 6+2gm (2.32

This resultremindsoneof thefamiliar Clausius—Mossottiapproximationandhasbeenoriginally derived
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by J.C. Maxwell Garnett[13]. It is often written in an alternativeform:

MG — — 1 + 2f(e — Em)I(C + 2Em)
C — ~eff — Em . (2.33)1 —f(e — Em)I(E + 2am)

TheMaxwell Garnetttheory hasbeenvery successfulin explaining the opticalpropertiesof submicro-
scopicdispersionsof metals.Part of this successis due to the intimate relationshipwith the Mie theory
[1]: Both theoriesare basedon the solution of the same type of boundarycondition problem. The
Maxwell Garnetttheory is believedto be accurateonly for sufficiently low metalvolume concentration
andfor particlessmallerthan the wavelengthof the radiationinside the medium.In fact, evenstronger
requirementsmusthold [33,53]: The Maxwell Garnetttheory is valid only when all higher order terms
in the Mie theory can beneglectedand eq. (2.13)holds.

In recentyears there has been an increasinginterest for compositematerialswhere the volume
fractionsof metalanddielectricarecomparable.An extensionof the Maxwell Garnetttheory to higher
metal volume fraction or a careful discussionof its limits of accuracyis thereforeimportant. In the
reviewsby Landauer[54] andHale [55] a goodanalysisof this field is given. Thedielectricconstantof a
compositedoes not only dependon the dielectric constantsof the (two) phasesand the respective
volume fractions, it dependsalso on the more microscopicgeometryof the compositematerial.The
needfor detailedstructuralinformation setsa limit to the possibilityto predict the dielectricconstantof
inhomogeneousmaterials. In fact only boundscan be given for the value of the effective dielectric
constant.Hashin and Shtrikman[56] haveshown that the Maxwell Garnettresultof eq. (2.33)gives a
rigorouslower boundfor e,~as a function of metal volume fraction; eq. (2.33)is the exactsolutionfor
thedielectric constantof a materialwherethe spacewithin the compositeis completelyfilled by spheres
of varying diametereachsurroundedby a dielectric shell with a thicknessappropriateto the metal
volume fraction of the composite.Inversely, the compositesphereassemblage,wherethe roles of the
two compositesarereversed,gives a rigorousupperboundfor e,~.When someknowledgeof the phase
geometryis available,morestringentboundscan be set on the rangeof values of Ceff.

A seriousobjectionto the Maxwell Garnettresultof eq. (2.33) is the asymmetryin the treatmentof
the two differentmaterials.This hasbeentakeninto accountby Bruggeman’seffectivemediumtheory
[57],whereboth componentsare treatedin a fully equivalentway: Both dielectricand metalparticles
areconsideredas inclusionsin a mediumwith dielectricconstant6EMT The effective mediumresult is
obtainedwhen ~ is chosenin such a way that fluctuationsdueto the dipole fields of the inclusions
averageout to zero:

— EMT — EMT

(2.34)
This is exactly the original result of Bruggeman for spherical inclusions and can be formulated
alternativelyas:

EMT — 1 —f+f(e — EEMT)/(E + 26EMT)C — Cm 1—f— 2f(e — sm~)/(e+ 2em~) (2.35)

For smallf Bruggeman’seffective medium theory reducesto the original Maxwell Garnettresult. For
a higher volume fraction of metal the effective medium theory should be more accurate.It seems
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however, that this approachhasnot given better agreementwith the experimentalresultsthan the
Maxwell Garnetttheory [58—60].

The extensionof the theory to non-sphericalparticleshasbeendiscussedby Polderandvan Santen
[61] and,morerecently,by Galeener[62].Ellipsoidal shapeof the inclusionscan be introducedsimply
by substitutingthe appropriatedepolarizationfactorL in the denominatorat the right handsideof eq.
(2.32) insteadof the factor of ~ relevant to spherical inclusions. In the caseof aligned ellipsoids as
discussedby Galeenerone single factor L is needed.For the caseof randomlyorientedellipsoids an
averaginghas to be carried out over the possible orientationsof the ellipsoids with respectto the
electric field. Galeener’sresultshavebeencriticized by Cohen et al. [63]: For extremevaluesof the
depolarizationfactor, correctvalues of the effective dielectric constantare obtainedonly, when an
ellipsoidal cavity congruentwith the particle is considered,instead of a Lorentz sphere;the same
depolarizationfactorL will then appearon both sidesin eq. (2.32).

In the casediscussedby Galeener,the polarizability per unit volume of the voids is independentof
the void size and their shapeis reflected only through the factor L. In small metallic inclusionsthe
dielectricconstantwill besize dependent,as discussedin theprecedingsection.Therefore,a summation
over the size distribution of the metallic particlesshould be included. Granqvistand coworkershave
used the result of Polder and van Santenfor a selfconsistentformulation of the Maxwell Garnett
theory [33,34]. They have explicitly expressedthe size dependenceusing a d-dependentvolume
fraction f(d), andthey obtainedfor the caseof randomlyorientedellipsoids:

- — 1 + ~df(d)~~j (E(d)—e)/(e + L(e(d)—g)) 236
S_Cml1~f(d)1~ (e(d)-~)/(ë+L1(E(d)-ë)) (. )

In discontinuousfilms, oneaxis of the ellipsoidal islandsis normallyfound to be orientedperpendicular
to the substrate.Thenthe averagingis over two possibledepolarizationfactorsL, only [34].

There is considerableinterest in the propertiesof particulatematerials,becausethe absorption
resonancein the visible, found in this type of inhomogeneousmaterial,can be used to makeeffective
coatingsfor solarenergyconversion[64—66].It was notedthat the smallparticlesoften touch and are
arrangedin chainsof spheres,evenwhenthe filling factor is low. When the particlesareevenly spread
and wide apart, it may be expectedthat the effective field of all the other particles acting on an
additional particle is well describedusingthe Lorentz sphereapproach.When the individual particles
touchand form complexchainsor clusters,local field effects arisewhich havenot yet beentakeninto
account.Granqvistand Hunderi [33] havetried to incorporatelocal field effects by the introductionof
effectivedepolarizationfactors.This approachwas basedon the work of Clippe, EvrardandLucas [67],
who calculated the resonancefrequency for a number of geometricalconfigurations of identical
touchingspheres.This introductionof effective depolarizationfactorshasratherdrastic effects[33,34].
Moreover, the effectivedielectric constantwill increasewith increasingmetalvolume fraction. There-
fore, the Maxwell Garnetttheory predictsa shift to longer wavelengthsof the plasma resonancewith
increasingf. Similarly, a shift to longer wavelengthsis expectedwhenoneof the depolarizationfactors
is reducedbelow ~, becausethe resonancecondition is now modified to:

Le+(L_1)ë=0. (2.37)

GranqvistandHunderiwere able to give a very accuratedescriptionof the measuredtransmittanceof
gas evaporatedgold particles [33] using a distribution of effective depolarizationfactors. Also in the
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caseof discontinuousfilms, the high absorptionandthe shift of the absorptionpeakfoundexperiment-
ally couldbe reconciledwith the simple Maxwell Garnetttheory when local field effectswere takeninto
account[34,68]. Theextensionof theoriginal Maxwell Garnetttheory to incorporatelocal field effects
is still part of active research[69,70].

As far as most experimentsare concerned,it is obvious that the Maxwell Garnett theory is very
successful.Oneof the mostseriousshortcomingsof this theory is the fact that no percolationthreshold
is predicted.In this respect,the effectivemediumtheory is an improvement[71]. On the otherhand,
Bruggeman’stheorydoesnot take into accountthe all importantmicrostructureof thecoatedspheres,
so that the surfaceplasmaresonancepredictedby Mie’s theory becomeswashedout for increasing
metalcontent,in contradictionwith experimentalfindings. However, very recentlyPing Sheng[72] has
demonstratedthat a rigorousmixing of the two possiblemicrogeometriesof metalparticlessurrounded
by dielectricand metal coateddielectricparticles leadsto both a percolation thresholdand a plasma
resonance.

3. Quantum sizeeffectsin small metallic particles

3.1. Microscopicdescriptionof electronsin smallparticles

3.1.1. Electronicquantumsizeeffects
Quantumsize effects (QSE) in small metallic particleshavebeen discussedfor the first time in a

paper by Fröhlich [2], published in 1937. Fröhlich applies the Sommerfeld—Bloch model of free
electrons in a bulk metal directly to a particle of very smalldimensions,and the modificationsto the
usual,bulk valueof the electronicspecific heatare discussed.Although nowadayshis approachseems
too unrealisticto give meaningfulresults,thebasicideaof electronicQSE appearsclearly.

It is shown that metallic matter in form of sufficiently small grainsbehavesqualitatively different
from the bulk metal. Relying upon Fröhlich’s original paper we turn now to the first and most
importantquestion:What does‘small’ meanin the context of QSE,or: How small must a particlebe
that its intrinsic propertiesbecomedifferent from thoseof a bulk solid?

3.1.2. What is a smallparticle?
Whenthe numberof atomscontainedin a grain of solid matteris steadilyreduced,it is plausiblethat

in courseof this processa stageis realized,wheretheparticledoesnot behavelike asmallercopyof the
correspondingbulk solid anymore.A lower limit for the critical size is a particleconsistingof onesingle
atom.However, for most physical propertiesone expectsnot a sharptransition from atomic to bulk
solid behaviour;rather, one may expecta gradualchangeas a function of the numberof atoms and
ambientconditions,as temperature,pressureandelectromagneticfields.

Therearetwo obviousapproachesto a quantitativeestimateof this transition.The first oneis to start
from a single atom andto build up particlesby addingatom after atom,andto calculatethe electronic
states,vibration modesandelectromagneticpropertiesfrom molecularorbital theory.This procedure
needsenormouscomputationalefforts and generallythe clusterof atomsmust not contain morethan
about100atomsto keepthe work within reasonableproportions[73—79].Besides,informationobtained
from such calculationsfrequentlyhasonly the valueof examples:It doesnot give physical insightbased
on somegeneralandsimple principles.

Thereforewe shall bemostlyconcernedwith anotherapproach,at leastwhendealingwith electronic
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properties: the framework of bulk solid statetheory will be used to a large extent to describethe
particle properties,but modifications are added where the physical model makes them necessary.
Clearly such a procedurecannotfurnish correctresultsfor a particleconsistingof 5 or 10 atoms.But it
shouldgive useful information when the smallparticle is producedby graduallyreducingthe size of a
macroscopicsolid andwhenthe conditionsaresuch that it still containsthousandsof atomsat the onset
of the transition.This smallparticleapproachfrom the bulk side is exactlywhat Fröhlich did.

Following Fröhlich [2], we considerthe electronic specific heat of a small metallic particle. The
specificheatis a measurefor theenergywhich hasto be suppliedto the electrongasin order to increase
its temperatureby ~T. When the electronicenergylevelsaredenotedby En andtheir degeneracyby g~,
the energydifference~ U at a temperatureT with respectto the groundstateenergy(T = 0) U

0 is:

(3.1)

whereEm is the Fermi energy~F andf,, the Fermi distributionfunction

= exp{(e~— EF)IkT}+ l~ (3.2)

In order to derive the specific heatC~= 9(i~U)/oT, a schememustbe devisedto find the levelse,. and
their degeneracyg~.Whenthis hasbeenaccomplished,the problem is well defined,whateverthe nature
of the systemunderconsiderationmay be.

The energy levels ~ can be calculatedsimply for a free electrongas enclosedin a cubeof lateral
lengthL. Thenthe single electronenergiesaregiven by:

h
2k2 h2 ~.2

n•=0,1,2,... (3.3)

kn = (irIL)(ni, n
2, n3) is the wavevectorof a standingelectronwave. The endpointsof the kn-vectors

form a simple cubic lattice in the positiveoctantof the k-space.
If the systemcontainsa large numberof electrons(asit is supposedto do)n

2 = n~+ n~+ n~is a large
numberfor statesnearthe Fermi energy.As almostany largenaturalnumbercan berepresentedas the
sum of threesquaresin many ways, the energydifferencesIXE betweensuccessivelevels at the Fermi
energyis given by:

h2 ~. 2
(3.4)

As the densityof statesof a free electrongasis a monotonicallyincreasingfunction of energy,and as
the energydifference~E betweensuccessivelevels is independentof energy(seeeq. (3.4)), to each~ is
assigneda certaindegreeof degeneracysuch that the total numberof statesis fixed. If the free electron
energy level density is denotedby p(E)—a continuousfunction of energy!—thenumber of states
betweene andC + ~ is pfr) i~E,providedthat i~.s~ C. As thereareno statesbetweene ande + ~s in
Fröhlich’s modelof discreteenergylevels,the stateC itself must havethe degeneracyp(s)i~ein order
to conservethe correcttotal numberof states.



194 J.A.A.J.Perenboometa!., Electronicpropertiesof smallmeta!!ic particles

Now we proceedto determineg,,~ in the free electronapproximation.The volume of a shell between
C and C + E~~Cin the positiveoctantof the k-spaceis given by:

\3/2

(3.5)

The density of k-points is (rr/L)3, and thereforethe density of states,taking spin degeneracyinto
account,is given by p(s)~ = 2[1/(ir/L)3:

1 12 ~3/2
p(C)=L3~—~‘~? \/C. (3.6)

This is the continuouslevel distribution of the free electron model which has the property that
N(E)= f~ p(e’)di’, whereNfr) is the numberof statesup to energys. When insteadof the continuous
level distribution of eq. (3.6), a discrete distribution is introduced,where the difference between
successivelevels is constantand independentof energy (see eq. (3.4)), the normalizationN(s)=

foE p(C’) de’ hasto be replacedby

N(en)=~gm (3.7)

whereg,,~denotesthe degreeof degeneracyof the level Em. Necessarily,onehas

g,,~“p(Em)t~E. (3.8)

As an estimatefor the orderof magnitudeinvolved, we calculate~E and g,,. for a cubeof laterallength
L. Assuming6F = 5 eV, onegets

L= 1 cm: ~C =4x 1015eV, 4x lOttK; g,,, 6’< i0~

L=lOnm: L~C=4X103 eV, 40K; gm=60.

The position of 5F between its neighbouringupperandlower levels~t ands~is determinedby the
usual normalizationprocedure.We considerherethe simple case,that CF lies halfway betweenC

1 and
s_i. With the degeneracyof the level C~given by p(Cn)~C, z~Uof eq. (3.1) becomes

= ~ p(Sn) L~1CCnfn — ~ p(Cn) L~CE-.n(l f_n). (3.9)

As f~falls from the value1 to 0 over the energywidth kT, andas kT ‘~

5F, p(C±~)may be put equalto
p(CF) andconsideredas constant.The first termof eq. (3.1) is theenergyof the electronsat temperature
T andthe secondterm their energybeforethermalexcitation. Making useof the fact that fn = 1 f-n

and that the numberof excitedelectronsis equalto the numberof holesleft behind,one gets:

n1,2 p(Cn)fn = ~E ~ p(E_n) (1 f-n). (3.10)
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Using

— ~F = (n — ~) Ae, 5_n — CF = —(n— ~) Ae (3.11)

one obtains:

AU =
2p(sm)(As)2 ~ exp{(n —~).As/kT}+1~ (3.12)

n’0,2..

The electronicspecific heat follows immediately

2 __ (n—~)Ce 2p(s~)(As) ~ c9Texp{(n —~)AEIkT}+1~ (3.13)
n= 1.2..

Fröhlich discussestwo limiting casesof eq. (3.13): AC ~ kT andAC ~ kT. Looking at our estimates,the
first conditionis fulfilled for amacroscopicpieceof metal for T = 1 K.

Becausethe Fermi function of eq. (3.13)doesnot changesignificantly in the interval AE/kT, in the
high temperaturelimit, the summationcan be replacedby an integral. Introducing the variable

= (n — ~) As/kT, andputting ÔIÔT = (8~I~9T)e9I8.~= —((n — ~) AeIkT2) ~9/~oneobtains:

Ce= 2p(SF)k2TJ ~2 i~eE ~- ~ d~= ~ p(s~)k2T (3.14)

which is the well known resultobtainedfrom the continuouslevel distributionp(C) [80]. Qualitatively
speaking,the familiar T-law arisesbecauseat s~a very large numberof statesE~is containedin the
energyinterval kT: the weighting Fermi function distributesthe electronsas if the level distributions
were continuous.

The situation is different when As ~ kT; if As is large, the Fermi function will not lift a single
electronin the first excitedstate.Noticing that only the term with n = 1 contributessignificantly in eq.
(3.13),oneobtains

Ce 2p(SF)(As)2~ e15d/2~T+ 1 (s~~)~~3e_~2kT. (3.15)

The specific heat decreasesexponentiallywith decreasingtemperaturefor a well definedandgiven As.
This is the typical illustration for the quantumsize effect. Fig. 3.1 takenfrom Fröhlich’s [2] original
paper, showsthe ratio y = Ce/Cm as a function of the parameterkTIAs; Cm is the electronicspecific
heat of the bulk metal. As can be seen,y dependson the position of s~.Va correspondsto the case
where the Fermi level lies halfway betweentwo neighbouringelectron levels; ‘y~applies to the case
when 5F coincideswith an electronlevel; y = ~(Ya + ‘y~,)is the averagespecific heat oneexpectsfor an
assemblyof metal particleswith Fröhlich’s level structureandwell definedAC but varying position of
CF.

Theresultsobtainedsofar needsomediscussion:
(1) What are the conditions to make the QSE parameterx = AEIkT sufficiently big (x ~- 1)?
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I ~02’O
k T/~c

Fig. 3.1. The ratio y = CjC,~of theelectronicheatcapacityC of thesmall metallicparticleto theheatcapacity C,, of thebulk metalasafunction
of temperature,calculatedfor thecaseof equallevel spacingwith alevel spacing~e.For thecalculationof y,, theFermi levelwaspositionedin the
middle betweentwo levels,for Yb. theFermi levelcoincidedwith oneof theelectronlevels,andfinally y = ~(y + y,,). (From Frohlich [2].)

Obviously, for a given temperature,the size of the cubehas to be sufficiently reduced;in Fröhlich’s
model, accordingto eq. (3.4), onehasAC —~- i/L2. On the otherhand, for a given L the condition can
also befulfilled whenthe temperatureis low enough.For temperaturesof the orderof T= 1 K, L must
be rathersmall, of the orderof 10 nm: thereforethe saying that QSEoccur only for verysmallobjects.
However, one hasto bearin mind that not L itself is the decisive quantity, but x = AEIkT, hence
x —~- (l/kT)(l/L2).

(2) The high degeneracyof the levels (given by p(E
8)As) and the constant spacing AC betweenthe

levels are consequencesof the very simplebut also very unrealisticmodel which was chosen.Even in
the framework of the free electron model, the actual distribution of the levels C~ will reflect the
boundaryconditionsimposedby the shapeof the particle; as the latterconsistsof discreteatoms, the
perfectcubewill neverbe realizedin practice. How this influences the electronicorbitals is a very
difficult and yet unsolvedproblem. Different approachesto its solution will be presentedin the
subsequentsections.Already hereit is worthwhile to notethat the 1/L

2-dependenceof AC is an artefact
of the level degeneracyof Fröhlich’s model. It will be shown that in most casesthe averagelevel
spacingis given by AC -~ 1/V=~i/L3.

(3) Specific surfacepropertieshavebeenneglected,althoughit is well knownthat surfacestatesexist
which are characterizedby their finite extensioninto the interior of the crystal. At present,surface
phenomenaare part of active researchand to incorporatesurfacepropertiesinto the small particle
problemleadsto immensecomplications.

(4) The electroniclevelsareconsideredto be perfectly sharp,this implies an infinite lifetime of the
excited states.In bulk solids, different scatteringmechanismsare responsiblefor broadeningof the
energy levels. The finite spacing AC between neighbouring levels in the QSE regime makes the
scatteringless effective than in bulk. However, the broadeningdue to scatteringhasto be small
comparedwith As, otherwiseno manifestationsof the discretenessof the energyspectrumcan be
expected.
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3.2. Kubo’ssmallparticle

3.2.1. Generalconsiderationsand assumptions
As in Fröhlich’s treatment,the fundamentalfact that the spacingbetweenadjacentlevels increases

with decreasingparticle size lies at the basisof Kubo’s treatmentof the electronicpropertiesof small
particles[3]. However,the artificial conceptof equallyspacedlevelsis abandonedanda numberof new,
realisticassumptionsis made.

The most importantpoint concernsthe level scheme.Kuboemphasizesthe irregularityof the particle
shapewhich doesnot justify the boundaryconditionsof the modelof perfectcubesas usedby Fröhlich.
As the shapeof the particles is not known down to details of atomic dimensions,Kubo replacesthe
degeneratelevel schemeof eq. (3.3) by a statisticaldistribution. Here, use is madeof an important
resulton the influenceof the boundaryconditionson the asymptoticdensityof eigenvaluesof thewave
equation,a problemtreatedin a numberof papersby H. Weyl [81,82] (for a recentreview,see refs.
[83,84]). Thereit is shownthat the densityof eigenvalueswith largeindices— stateswith high “quantum
numbers”,in the quantummechanicallanguage— doesnot dependon the shapeof the region for which
the waveequationis solved;similarly, it doesnot dependon the exactnatureof the imposedboundary
conditions.The densityof eigenvalueswith largequantumnumbersis a function of the volume of the
region consideredalone. The question ariseswhat the measureis to call a quantumnumber ‘big’ or
‘small’. Although exactandexplicit prescriptionsaregiven in the literatureto answerthis question[85],
in the following it is takenfor grantedthat the quantumnumberof the Fermi level is so high that these
asymptotictheoremscanbe applied.Consequently,overenergyintervalswhich arelargecomparedwith
thespacingbetweenadjacentlevels,thedensityof statesp(E)doesnot dependontheboundaryconditions
at all. Therefore,oneusese.g. periodicboundaryconditionsandoneobtains[86]

p(EF)= ~N/sF. (3.16)

N is the numberof electronscontainedin the particle. The energylevelscontributingto eq. (3.16) are
spin degenerate.

As one is interestednot only in the ‘coarsegrained’ density of statesbut in the positions of the
individual levelsas well, a distributionof the individual levelsmustbe introducedsuch that P(EF) of eq.
(3.16) is conserved.This was done by Fröhlich by assumingan equal level spacing and a high
degeneracy.Kubo takesamorerealisticapproachin postulatingthat the levelsarerandomlydistributed.
This meansthat the energyaxis is divided in intervalssmall comparedto

=
2/p(SF)= ~EF/N (3.17)

where 3 is the averagespacingbetweentwo levelswhich areonly spin degenerate.Eachinterval hasthe
same,small probability of containinga level. Then, according to elementarystatistics, the spacingLI
betweenadjacentlevelsis Poissondistributed:

P(ai)=~e_4~?8 (3.18)

P(4)dLI is the probability of finding the nearest level in the interval (LI, LI + dzl) from the level
considered,see fig. 3.2. Such a distribution is qualitatively different from the equal level spacingwith
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PIts)

Fig. 3.2. The probability distribution P(
11)of thespacings~i betweenthe levels for a random(Poisson-)distributionof thesingle electronenergy

levels.

constantAs in Fröhlich’s model. The sameis true for thermodynamicalpropertiesderivedfrom this
modelas shownin the nextsubsection.

The differencebetweenoF = As -~ 1/L
2 and3K -~ ilL3 can be demonstratedby anumericalexample.

For a cubicparticleof gold (with an electronconcentrationof 5.9x l0~m~3)with 10 nm sidelengthand
containing about 6 x iO~atoms, one gets for the averagelevel separationaccordingto Kubo 3K =

0.6x l0~~eV = 0.7K, whereasfor Fröhlich’s model,onegetsS~= 3.6X iO~eV = 42 K.
It is useful to notethat P(zi) is largestfor LI = 0. This meansthat for a random arrangementthe

levelsare‘attracting’eachother,leadingto accidental,not explicitly intendeddegeneracy.Thereis asimple
argumentagainstintroducinga priori any degeneracyof the levels.Degeneracyis alwaysconnectedto
symmetry;if thesymmetryisdueto geometry,thegeometricalformof theparticlesshouldbeperfectdown
to structuraldetailsof the orderof thedeBroglie wavelengthof theelectronsat 5F, whichis about0.1nm.
With anexceptionfororgano-metallicclusters(whicharein factwell definedmolecules)it is notreasonable
to assume,that anyreal particlescan be madesymmetricto thisextent.

A furtherinnovationdueto Kubo is the conceptof particlescontainingan evenor an oddnumberof
electrons.This concept is based on pure electrostatics:the energyneededto chargea sphereof
diameterd with a chargee is in vacuume2/2lTs

0d.The chargecanonly originatefrom the surrounding
medium (i.e. the heat reservoir) which is at temperatureT Therefore, when kT(= iO~eV at
1 K) ~e

2/2irsod(=10_i eV for d = 20 nm), the probability for an electronto be capturedby a particleis
very small, chargefluctuationsarehighly improbable.As the particleis in its lowestenergystate,when
the total charge equals zero, the assumptionis made, that at low temperaturethe particles are
electrically neutral.

Becauseof the improbability of charge fluctuations, there will be particles containing an even
numberof electronsand particlescontainingan odd numberof electrons,and it will turn out that in
thesetwo casesdifferentpropertiesarefound. Theeven/odddistinctionhasoriginally beenput forward
by Kubo andhassubsequentlybeenadoptedin mostsmallparticlework.

3.2.2. Electronspecific heatand Pauli spinparamagnetism
In principle, the method for the calculation of the thermodynamicpropertiesof Kubo’s small

particles is straightforward. Nevertheless,the typical small particle propertiesmentioned in the
precedingparagraphnecessitatesomeprecautions.

The chargeconservation(i.e. the existenceof particleswith an evenandan odd numberof electrons)
complicatesthe computationconsiderably,becauseall quantitieshaveto be derivedfrom the particle
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conservingcanonicalensemble;it will turn out that the “odd-particle”propertiesaremarkedlydifferent
from the “even-particle” ones in the QSE regime. Therefore, the normally used grand canonical
ensemblemust be discardedas it containsfluctuations of the number of electrons.In the caseof a
degenerateFermigas the fluctuationsaregiven by [87]:

mkT 3N i/3
V. (3.19)

For a particlewith linear dimensionsof 10 nm and an electrondensityof 1029m~3,one has(AN)2= 1,
which is not very muchcomparedto the total numberof electronsof N = iO~.However,contraryto the
normal situationin statisticalmechanics,in the presentcasenot the relative fluctuation (AN)2/N is
important,but the absolutechangeof N by one electron.Statedin adifferent way: It doesnot matter
that the particle contains10000 or 10002 electrons,but it mattersthat it contains 10000 or 10001
electrons.The necessity to abandonthe grand canonicalensembleentails annoyingcomputational
consequences.The most importantconsequenceis the fact that the Fermi function is no longer a valid
expressionfor the occupationprobability of the single electronstates.

Furthermore, the level distribution of eq. (3.18) must be taken into account which leads to
inconvenientaveragingprocesses,evenwhenall particlesareof the samesize.When the particlesvary
in size, an additional averagingover the size distribution is required,each size characterizedby its
propervalueof S derivedfrom eq. (3.17).

In Appendix I an outline of Kubo’s calculation is presented,emphasizingsomecritical steps.Here,
we give only the main resultsincluding somediscussion.

In the high-temperaturelimit (S/kT4 1), onegetsfor the specific heat:

= ~1r2k2Tp(sF) (.5/kT4 1) (3.20)

andfor the susceptibilitydueto the Paulispin paramagnetism:

XPoI-~aP(5m) (5/kT4l). (3.21)

Theseare just the familiar resultsfor the propertiesof a bulk metal. When the thermalenergykT is
much bigger than the averagelevel spacing5, a large numberof levelsabovethe Fermi energyare
occupiedand thereforemany energiescontribute to the partition function. Consequently,a large
numberof configurationshaveto be takeninto accountfor the computationof the partition function,
andanegligible error is introducedwhenthe summationis replacedby an integration.As long as the
meanlevel spacingdoesnot change,all level distributionsgive the sameresultsfor the thermodynamic
quantities;this is exactlythe customarybulk situationwherethe level structureentersonly in the form
of the densityof statesat 5F~

In the low temperaturelimit (SlkT~ 1), only very few levelsabovee~will beoccupied,of the order
of 2 or 3. The partition function will then dependcrucially on the positionof the few individual levels
aroundEF; therefore,not only the averagespacingS = 2lp(s~)is importantbut alsothe distributionof
the first few single particlelevelsaround5F~In addition,a differentbehaviourwill be seenfor particles
with an odd andan evennumberof electrons(“odd” and“even” case)dueto charge-conservation.

As shownin Appendix I, onegetsfor the specific heatin zeromagneticfield the Kubo-QSEresults
[3]:
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C~d=1.645k2Tp(CF) (3.22a)
(S/kT~’i, H=0)

Ceven= 2.512k2Tp(CF). (3.22b)

In the low field limit, the magnetizationis given by:

M~d= /LB tanh(JLo~
8H/kT) (3.23a)

(8/kT~-1,p.o/.L~H/S41)

Meven= 4/.L~(kT/8)sinh(2l.Lol.L~H/kT)J1+4t cosh
2(pLo~L~H/kT)+ t2~ (3.23b)

For H —*0, onegetsfor the spin susceptibility:

x~= p~
0j~~/kT (3.24a)

(o/kT~’i, H—*0)

Xeven = 1.52l/.Lo/.L~p(CF). (3.24b)

Finally, the magnetizationin the QSE-andthe high field-limit is given by:

M~jd= 2p~oj~9H/S+ 2/J.B(i + exp(—4/.Lo~~H/S)) (3.25a)

(S/kT~’1, /.Lo/.LBH/S ~c-1)
2 1Meven= 2jso~BH/15 + ~~(1 — exp(—4/.LO/LBH/S)). (3.25b)

Contrary to Fröhlich’s resultof eq. (3.15), the electronspecific heatfor a Poissondistributed level
schemeis a linear functionof thetemperature.Comparedwith the bulk material, its valueis reducedby
about one third. More dramaticnew featuresare found for the Pauli spin paramagnetism.The odd
particlesbehaveat low temperaturesas if the magneticpropertiesweredeterminedby the spin of a free
electron occupyinga statewhich for H 0 is only spin degenerate.This leads to the Curie-type
temperaturedependenceof themagnetizationas given by eq. (3.24a). It is interestingto notethatXeven

doesnot vanish,evenwhen S/kT—e ~. This is a consequenceof the Poissonlevel schemewherelevels
“attract” each other: the smaller the level spacing the bigger the probability of its occurrence;
therefore,for any valueof 5/kTthereis alwaysanonzeroprobability to find levelswith energy-distance
LI <kT We shall see in the nextsection that ~even(T) is totally different if level distributionsareused
wherethe levelsrepelratherthan attracteachother, i.e. distributions wherethe probability for very
small level spacingsLI —* 0 goesto zero.

The importanceof the canonicalcalculationinsteadof the customarygrandcanonicalone hasbeen
emphasizedby Denton, Mühlschlegeland Scalapino [88]; they havecalculatedthe electronic heat
capacity for Fröhlich’s equal level spacing caseusing Fröhlich’s method (i.e. the grand canonical
ensemble) and the canonical ensemble.As is shown in Appendix II it is possible to calculate
the canonical partition function exactly for the equal level spacingcase. The results of Denton,
MühlschlegelandScalapinoareshownin fig. 3.3.

Most important for experimentalverificationsof the theoreticalQSEpredictionsis a more precise
specificationof the conditionS/kT~- 1. As higher orderanalyticalcalculationsto checkthe influenceof
the (S/kT)-termare very tediousin the caseof the Poissonlevel scheme,Denton,Mühlschlegeland
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Fig. 3.3. (a) The electronicheat capacity C, and (b) the spin susceptibilityx as a function of temperaturefor a particle with an equal spacing5
betweenthe levels, calculatedusing the grand canonical ensembleand the electronnumberconservingcanonicalensemble,respectively.x ~s

normalizedto the Pauli spin paramagneticsusceptibilityyp. (From Denton,Muhlschlegeland Scalapino[88].)

Scalapinomadecomputercalculations.It turnsout that the lowestorderapproximation,containingonly

termsof the order (S/kT)~’,is valid only whenthe condition S/kT� 10 is fulfilled.

3.3. Levelstatistics

In the QSElimit, the thermodynamicpropertiesof the electronsaredeterminedby two fundamental
concepts:the single electronlevel structureandchargeconservation.The exampleof the specific heat
showedthat by assumingan equalspacingbetweendegeneratelevels,onegetsin thelimit of smallkT/S
an exponentialT-dependence(eq. (3.15)), whereasKubo’s randomdistribution of energy levelsgives
the familiar linear T-law (eqs. (3.22a),(3.22b))as for the bulk metal,althoughwith smallercoefficients.
In addition, fig. 3.3 showshow chargeconservationinfluences the specific heat and the spin suscep-
tibility for aparticlewith equallevel spacingS.

A wide rangeof different possibilitiesfor the level distributioncan be offered.Fröhlich’s equallevel
spacing is probably an oversimplification of the actual situation; Kubo’s Poisson schemeis very
plausiblebut it is in fact an “ad hoc” assumption.Gor’kov and Eliashberg[4] havepointed out that
there are distributionswhich are possibly more justified. Thesedistributions will be discussedin the
following, relying very muchon a paperby PorterandRosenzweig[89,90].

3.3.1. An analogy with statisticalmechanics
Statisticalmechanicsdescribesthe global behaviourof systemswhich consistof a large numberof
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‘particles’ — e.g. a gas of atoms in a macroscopicvolume. Becauseof the large numberof atoms, the
exact time developmentof the systemcannot be determined,although the interaction betweenthe
atoms is quite well understood.The statisticsgive information aboutthe global, averagepropertiesof
the system,like pressureor temperature.This is accomplishedby making somebasic assumptionson
the occupationprobability of phasespace.“A priori” probabilitiesareattributedto all stateswhich are
accessibleto the system.The justification of this procedurelies mainly in its success.

In this subsectionwe would like to point out that there is a close analoguebetween ordinary
statisticalmechanicsand level statistics,when roughly speaking—theroles of the “known” and the
“unknown” quantitiesof statisticalmechanicsareinterchanged.

To be more specific, let usconsider a small metallic particle. The electron-likeexcitationsin this
particleform a degenerateFermi gas,they interactwith eachother,with othersortsof excitations,and
with the walls of the particle. As explainedin section3.2, this latter interaction is of very complicated
nature; therefore, the Hamiltonian of the electron system will be very complicated.The problem
consistsnow in finding the energyspectrumof this Hamiltonian, i.e. the stationarystatesin the single
electronapproximation.

The lowest statesof the systemcan be found with sufficient accuracyif the real Hamiltonian is
substitutedby a reasonableapproximationfor which the eigenvalueequationcan be solved.However,
for the high energiesof interesthere (aroundCF), already smallperturbationshaveto be takeninto
account,influencing the spectrummore andmorewith increasingenergy.As thesesmallperturbations
are complicated and not known, the eigenfunctionsof the complicated Hamiltonian cannot be
calculated.Therefore,oneintroducesthe conceptof level statisticsin the hopethat it gives information
on global propertiesof the spectrum,suchas the probability distribution of the energyeigenvalues.

This illustratesthe meaningof interchanging“known” and “unknown” quantitieswhen going from
statisticalmechanicsto level statistics.

In ordinary statisticalmechanicsthe “unknown” quantity is the stateof the systemand the “known”
quantitiesare the forcesacting on the atoms. For a closed systemeachphasespaceelementof given
volume— correspondingto a stateof the total system— is given the samea priori probability of being
occupiedwhen the state is compatiblewith the energyof the system.Clearly, eachvolume elementin
phasespaceis equivalentto a possiblestateof the system.Suchanassumptionis certainlyinadequateif
we want to get knowledgeon the level structureof acomplexsystembecauseit alreadyanticipateswhat
in fact hasto be looked for. In level statisticsthe role of the “unknown” quantitiesis played by the
forces: It is explicitly assumedthat the Hamiltonianof the systemis so complex, that its single terms
cannot be enumerated.This complexsystemis thoughtof as a systemin which many particles are
interactingaccordingto unknownlaws. Subsequentlyan ensembleof systemsis consideredin which all
laws of interaction,compatiblewith certain general symmetry properties,are given equal a priori
probability.

In table 3.1 a comparisonis madebetweenthe usual statisticalmechanicsandthe new techniqueof
level statistics.This conceptof energylevel statisticsbasedon an ensembleof systemsis dueto Wigner
[91]. The hope, that such a statisticalprocedurefor finding the probability distribution of the energy
levels may be successful,is (as in the usual statisticalmechanics)basedon the expectation,that the
systemmight be describedby a huge variety of complexHamiltonians,but that the spectralproperties
of theseHamiltonianswill not deviatevery much from the spectralpropertiesof a properly chosen
averageHamiltonian for the ensemble[92]. The exceptionswill be formed by systemswith a high
degreeof symmetry (i.e. simple systems).In thesesystems,the matrix elementsof the Hamiltonian are
strongly correlatedand their interdependenceis mostclearly shown by grouptheory.However, when
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Table 3.1
Comparisonof the level statisticswith theusualstatistical mechanics

Statisticalmechanics Level statistics

State{p, q} of thesystemnot known. InteractionbetweentheConstituentsof thesystemnot known.
Statisticalassumptionon thedistributionof statesand Statisticalassumptionon the interactions(of certain

theiroccupationin phasespace. symmetrytype).
The hope is, that overall propertiesof thesystemCan The hopeis, that overall propertiesof the level spectrumof

be found:p. T thesystemcan befound,especiallytheprobability
distributionof energyeigenvalues.

e.g.the statesof a systemcan be separatedin categorieswith evenandodd parity, it can be shownthat
for eachof thesetwo categoriesalonethe theory of level statisticsmight give very good results,but
whenthe densitiesof statesare comparedwithout taking parity into account,no agreementis found.
Thismeansthatdeviationsof an actuallevel distributionfrom the ensembleaveragesuggesttheexistence
of conservedquantumnumberswhich havebeenoverlooked.

3.3.2. Symmetrypropertiesof theHamiltonian
As we havediscussedin greatlength, the interactionsof an electronin a small particle are very

complicated.The detailed form of the Hamiltonian H can in generalnot be determinedto such an
extentto give the energyspectrumaround CF with sufficient precision.Nevertheless,the Hamiltonian
exists,andmayhavesomesymmetryproperties.In this sectionwe will study thesesymmetryproperties
of the Hamiltonianin somedetail. In Hilbert space,the Hamiltoniancan berepresentedby ahermitian
matrix H:

H=Ht=H* (3.26)

H~is the hermitian-conjugatedmatrix, obtainedby complexconjugationof the transposedmatrix H.
If thereis no time-reversalinvariance,then nothing is known about the Hamiltonian matrix H,

exceptthat it mustbe a complexhermitian matrix. This matrix can be written down numerically in any
representation,differing from any other, by a unitary transformationU:

UtU = I, or Ut = U’. (3.27)

Besidehermiticity, someother, well known, generalinvariancepropertiesof the Hamiltoniancan be
considered.They arelisted in table3.2. Spacetranslationinvarianceleadsto the familiar conservation
of momentum,andtime translationinvarianceto conservationof energy.Our problemis to analysethe
structureof the Hamiltonianunderthe variouscombinationsof the remainingsymmetryproperties.

Let usconsidertime inversioninvariance.The time reversaloperatorT is an anti-unitaryoperator,
andcan bewritten as the productof a unitary operatorU andthe complexconjugationoperatorK:
T = UK. Whenno spindependenttermscomeinto the Hamiltonian,abasiscan be chosen,so that U is

just theunity operator:

T=K, T2=K2=I. (3.28)
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Table 3.2
Generalsymmetrypropertiesof theHamiltonian

Invariance Associatedoperator

Spacetranslation Total momentum
Time translation Total energy
Spaceinversion Parity
Time inversion Time reversal
Spacerotation Totalangularmomentum

When the spin enters,the choice of U is dictatedby the propertiesof the total angularmomentum

operatorJ~Fromthe requirementTJT’ = —J, one can deduce,that an appropriatechoiceof T is:

T = iu~K= exp(i1TS~/h)K

T2 = ~ i~~K= (~~)(~~)K2 = —I (3.29)

hereS is the spin operatorando~,a Pauli spin matrix. For N spins:

T = exp(ilT ~ Sny/h) K

T2= +1, for evenN (3.30)

T2=—I, foroddN.

When T2 = +1, U can be diagonalized;a basiscan bechosen,so that, again, T = K [92].
Time invariance,togetherwith the hermiticity of H, gives:

andH=I~ (3.31)

the Hamiltonianis thereforereal and symmetric.This symmetrypropertyof H is conservedunderan
orthogonaltransformation0, with

O0=i, orO=O’. (3.32)

When T2 = —I, we note, that for a state~I’ satisfyingthe Schrödingerequation:

(~1’,T!1’) = (T~T2~P)*= (7~~[i)* = (~(‘T~1’)

or (3.33)

(!P, T~[’)=0.

When the Hamiltonianis time inversioninvariant,both ~I’and PP satisfythe Schrödingerequationfor
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the sameenergy.Therefore,the degeneracyis at leasttwofold. This is the famousKramersdegeneracy.
Due to thisspin degeneracy,the matrix T cannotbe diagonalized;the appropriatetransformationsare
the 2N X 2N matricesfrom the N-dimensionalsymplecticgroupSp(N). In this case,the Hamiltonian is
a quaternion-realmatrix.

However,whenthe Hamiltonian is rotationally invariant (even in the case T2 = —I), an alternative
definition of the time reversaloperatoris possible:

T°= exp(—ii’rJ~/h)T = exp(—i1TJ~/h)exp(iirS~/h)K = exp(—iITL
5/h)K (3.34)

and now (T°)
2= +1 again, therefore,U can be diagonalized.Just as in the case,whereonly orbital

angularmomentawere considered,the orthogonaltransformationsarethe symmetryoperationsfor the
Hamiltonian.

The different types of symmetry,discussedabove, are summarizedin table 3.3. These symmetry
propertiesof the Hamiltonian mayhaveinterestingconsequencesfor the eigenvaluespectrum.

Let us considerthe accidentalapproachof two eigenvaluesof the Hamiltonian; we will determine
the probability P(LI), that the spacingbetweentheselevelsis LI [93—95].For the orthogonalensemble
the relevantpart of the Hamiltonian(which is real and symmetricin thiscase)is:

H= (~* )‘) (3.35a)

the eigenvalueequationcan be solveddirectly using the secularequation:

x—E —x~~-E~=0 (3.35b)

andwe find as eigenvaluesfor H:

E = ±Vx2+ y2 (3.35c)

the probabilityto find a nearestlevel spacingin the interval betweenLI andLI + dLI is just the volume in
the parameterspace(x, y) for which E lies in the interval between~LIand ~LI+ ~dLI,this is ~rLI dLI;
therefore

P(LI)dLI-~=LIdLI. (3.36)

Table 3.3
Thesymmetry andtransformationalpropertiesof theHamiltonian

Symmetry Hamiltonian Canonicalgroup

No time inversionsymmetry. Hermitian. Unitary transformations.
Time inversion symmetry,integralspin. Real,symmetric. Orthogonaltransformations.
Timeinversion symmetry,spacerotationsymmetry. Real,symmetric. Orthogonaltransformations.
Timeinversion symmetry,half-integralspin. Quatemionreal. Symplectictransformations.
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Similarly, for the unitary ensemble,the matrix H is hermitian:

H= (,x.,, y’~y”) (3.37a)

and the eigenvaluesof thisHamiltonian are:

E=±\/x2+yf2+y~~ ; (3.37b)

in this casethe volume in the parameterspace(x, y’, y”), for which the nearestlevel distance2E lies
betweenLI andLI + dLI, is proportional to LI2 dLI,

P(LI)dLI—~-LI2dLI. (3.38)

Finally, for the symplectic ensemble,the Hamiltonian is representedby a quaternion-realmatrix; the
relevantpart, which describesthe interactionof two Kramersdoublets,approachingin energy,is given
by:

/ x 0 y iz\

H=I o~ ~‘ I (3.39a)
z x 0
y 0 —x

wherey = y’ + iy”, andz = z’ + iz”, the solution of the secularequationis:

E=±\/x2+yy*+zz* ; (3.39b)

this leadsto a spacingprobability:

P(i) dLI -= LI4 dLI. (3.40)

The most spectacularfeature of the results in eqs. (3.36), (3.38) and (3.40), is the vanishing
probability of the occurrenceof very small level spacings.Contrary to Kubo’s distribution, eq. (3.18),
the chanceof an accidentaldegeneracyof two levels is zero. In the next section,we will considerthe
level spacingdistributionfor the differentensemblesin moredetail.

3.3.3. Theorthogonalensemble
As wehavediscussedabove,theorthogonalensembleis appropriatewhen
(1) The HamiltonianH is time inversioninvariant;
(2) a. The angularmomentumJ/h is integer, or

b. The Hamiltonianis rotation invariant.
In the limiting caseof small spin orbit coupling and when no applied magneticfield is present(which
would disturb the time inversionsymmetry),the electron spin is conserved.The spin merely gives a
twofold degeneracyof the states.The angularmomentumenteringthe Hamiltonianis theninteger,and
condition2a is fulfilled. Therefore,as shownbefore,H is a real, symmetricmatrix, andthe appropriate
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basistransformationsarethe orthogonalmatrices0, with

O0 = I, or O= (3.41)

As explainedin section3.3.1, somereasonableassumptionson the matrix elementshaveto be made,
basedon thesesymmetrypropertiesof H. A suitableprobability distributionfor the matrix elementsis
obtainedwhen equalweight is given to all possible interactions.Fromthis distribution, one finds the
probability distributionof the eigenvalues,which solvesthe problem in principle.

In a first assumption,one considersa finite N x N matrix in placeof the exact infinite dimensional
matrix H~ the distributionof eigenvaluesof the finite matrix is supposedto be as representativefor
the actualsystemas the oneof the infinite matrix. This assumptionwill be discussedat the end of this
section.The othertwo basicassumptionsconcernthe probability with which a matrix occurs,wherethe
matrix elementsHm8 (a = 1,. . . N; /3 = 1,. . . N) havecertainnumericalvalues.BecauseH is a sym-

metric matrix, it consistsof N(N + 1)/2 independentelements.The probability, that the first element
lies in the interval (H11, H11 + dH11), the secondin the interval (H12, H12+ dH12) and soon, is given by
PN(Hil, H12, . . . ,H~)dH11 dH12. . . dH~. The differential probability PN(H!i, H12, . . . HNN)

PN(Hq) mustbe constructedin such a way that it satisfiesthe fundamentalrequirementsof
(1) independenceof the matrix elementfrom the chosenbasis;
(2) invarianceof PN(H1J) when a transitionfrom onereal basis to an other real basisis made.

These requirementsare sufficient to give an explicit analytic determinationof PN(H11). They give the
mathematicalformulation of the statistical propertiesof a system subject to random forces with a
specialtypeof symmetry.

The independenceof the matrix elementsleadsto factorization:

PN(H11)= f11(H11)f12(H12).. . f~(H,~).. . fNN(HNN). (3.42)

(a � /3)

The transformationfrom one real basisto anotherreal basisis given by a real unitary (i.e. orthogonal)

matrix 0. Therefore,whenputting

H’ = 0~’H0 (3.43)

PN(H1,,) must satisfy

PN(HI) = PN(H,J). (3.44)

Eqs. (3.42) and (3.44)determinePN(H11), the straightforwardcalculationis shownexplicitly in ref. [89].
Onefinds that the matrix elementsH,,,~(with a � /3) andH,,.1, arenormally distributed,the dispersionof
the H,,,, beingtwice the dispersionof the Han:

PN(H11)= C exp(—(H~1+ 2H~2~ . + H~.,N)/4o-
2)= C exp(—TrH2/4o-2). (3.45)

~j~2is the meansquaredispersionof the off-diagonalelements.
As a next step,one hasto diagonalizethe “randommatrix” ~ in order to obtainthe distribution

function for the eigenvaluesEA. a- will havethe meaningof a scalingfactor for the energydifference
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between the EA. The transformationfrom the basis ~ to the eigenvectorsIxA) of the unknown
HamiltonianH is accomplishedby the orthogonaltransformationA (a,~).For N2 elementsa,~,there
are N(N+ 1)72 normalization and orthogonality constraints.Therefore,each a,~.dependson N(N —

1)/2 independentparametersa
1:

a,~= a~,,(a1,a2 aN(N_1),2). (3.46)

We try to obtainthe eigenvaluedistribution by replacingthe N(N + 1)72 valuesH~in eq. (3.45) by N
values EA (defined by H~xA)= EAIXA)) and N(N — i)/2 values a1. Again from simple orthogonality
arguments,it follows that

(3.47)

The differentialdH11 .. . dHNN hasto be replacedby JN dE~.. . dEN da1 .. . daN(N_1)/2whereJN is the
Jacobianof the coordinatetransformation:

oH11 OH11 OH11
8E1 0E2 OaN(N_1)/2

JN= : : . (3.48)
OI~INN OHNN OHNN

0E1 0E2 OaN(N_i)/2

TheJacobian(seeref. [89])can be separatedinto two factors,onecontainingtheEA only andtheother
containingthe a1:

JN = [iiii IE~—E~J]h(ai,a2 aN(N_I),2). (3.49)

By integratingover the independentparametersa, one obtainsafter substitutingeqs. (3.47) and(3.49)
in eq. (3.45):

PN(EI,E2,...,EN)= ~ (3.50)

whereC is aconstantof normalization.This expression,known as Wishartdistribution [96],is theresult
we have been looking for: The probability distribution of the eigenvaluesof a symmetric random
matrix, characterizingthe Hamiltonianof a “random system” subjectto statistically equally probable
interactionswith a certainsymmetry.For N = 2, eq. (3.50) reducesto

P2(E1,E2) = C2~E1— E21 exp[—(E~+ E~)/4cr
2]. (3.51)

Fromthis expressionit is easyto derive the distribution for the level spacingsP~(LI).(The superscript0
indicatesthat we considerspacingsbetweenadjacent levels only, with zero levels in between. For
N = 2, thereareof courseno otherspacings.)With the definition for thelevel spacingLI = E

1 — E2> 0,
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andfor the meaneigenvalueE = ~(E1+ E2), eq. (3.51)can bewritten as:

P2(LI, E) = C~LIexp(—LI
2/8a-2)exp(—E2/2a-2). (3.52)

Integratingover all E leadsto:

P
2(LI) = C’2’LI exp(—LI

2/8a-2). (3.53)

The meanlevel spacingS is now given by:

S=JLIP
2(LI)dLI. (3.54)

Introducingthe variable x = LI/cS, reo~acingthe normalizationconstantC’~by its actual value [97] and
making useof the relation a- = S/\/21T, onegetsfor the spacingdistribution:

P~(x)= ~irxexp(—~irx
2). (3.55)

This distribution (3.55) is also known under the nameof Wignersurmisebecauseit was supposedby
Wignerthat the nearestlevel spacingof the orthogonalensembleshouldbe distributedaccordingto this
law. However, this assumptionis correctonly for N = 2; for higher dimensionsit is no longer true.
Nevertheless,for all practicalpurposes,the Wigner surmiseis an excellent approximation(even for
N —~~z) so that the exactnearestneighbourdistributionsareonly of academicinterest[98].

For higher dimensions(N> 2), oneis not only interestedin the nearestneighbourspacingsP~,(x),
but also in the next-nearestspacings P~.,(x),next-next-nearestspacingsP~,(x),and so on. The
eigenvaluesE

1 must first be orderedaccording to magnitude.With increasingdimensionality, the
mathematicaldifficulties soon become enormousand machine computationsmust replace analytic
brainwork. In fig. 3.4a the Wigner surmiseP°2is shown, togetherwith the Poissondistribution for
comparison.The absenceof small level spacingsis more pronouncedfor the unitary and symplectic
ensemble,in accordancewith the results of eqs. (3.36), (3.38) and (3.40). In fig. 3.4b the machine
calculateddistributionsareshown for the nearestlevel spacingP?0, the next-nearestlevel spacingP~

the next-next-nearestlevel spacingP~0,up to P~0the calculationwasdonefor a 10 X 10 randommatrix
[99].

The level repulsion,shownto arisefrom this model,hasbeenobservedin the nearestlevel spacings
takenfrom spectroscopicdataof complexatomsandnuclei [89,100].

3.3.4. Theunitary and symplecticensemble
Whenthe spinentersthe Hamiltonianexplicitly throughspin orbit coupling, the symplecticensemble

is the appropriateensemble.The spin orbit coupling must be strong enough to mix up levels which
wouldhavebeendeterminedby the orthogonalensemblepreviously.

A criterion to estimatethe strengthof the spin orbit couplinghasbeengivenby Kawabata[12].The
symplecticensembleapplieswhen

(hvFld)(Ag)
2~‘- S (3.56)
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P(ts)
1.2-

Poisson
2 —~ Wigner surmise

0.6
1 1 orthogonal ensemble

2 unitary ensemble
3 symplectic ensemble

00 1.0 2.0 3.0
ts /o

p°10 (ts)

0.6 -

3.0 5.0 5.0 7.0 :0 9:0
ts/o

Fig. 3.4. (a) Comparisonof nearestlevel spacingdistributions: thePoissondistributionand theWignersurmiseP°2for theorthogonal,theunitary,
and the symplectic ensemble.(b) Computercalculateddistributions for the nearestlevel spacingdistribution P?0. thenext-nearestlevel spacing
distributionP)o. etc., for asystemdescribedby a lOx 10 randommatrix. (From Porter[99].)

vF is the Fermi velocity of the electrons,d is the particle diameter,and Ag is the electronicg-shift as
measuredby an electronspin resonance(ESR)experiment.This Kawabata-ruleis quiteplausible:The
ESRline width is accordingto Elliott [101]given by:

l/T = (Ag)
2/r,. (3.57)

where Ttr is the relaxationtime entering the DC electrical conductivity.For small particles,wherethe
electronicmeanfree path 1 is bigger thanthe dimensionsof the particle(1 > d), r is given by Ttr = dlvF.
Theelectronenergyis determinedwithin AE = h/r; whenAE ~- 8, “mixing of the levels” occursandthe
symplecticensembleis appropriate.Conversely,for (hvF/d)(Ag)24 8 the orthogonalensemblemustbe
used.

When the appropriatesymmetry transformationsfrom the symplecticgroupare takeninto account,
the level distributionfound is:

PN(EI,E
2,. . .,EN) = C[ fl IE,. —E~I4]exp(_~-~~ E~). (3.58)

a-
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TheWignersurmisefor the nearestlevel spacingsfor the symplecticensembleis of the form:

~ (3.59)

In this casethe level repulsionis drasticallystrongerthan in the caseof the orthogonalensemble,
becauseof the factor E5. — EVI

4. The presenceof the Kramersdegeneracyseemsto makeany additional
degeneracyenormouslymoreunlikely [92].

Furthermore,time reversalsymmetry is brokenby a magneticfield. If in the presenceof spin orbit
couplingthe magneticfield is sufficiently strong (J2o~

3H> 5, seeref. [4]), the unitary ensembleapplies
insteadof the symplecticone.It’s probability distributionis given by:

PN(El,E2, . . . ,EN)= c[~ IE~ _EvI2]exp(~ ~ E~) (3.60)
A1

andthe Wignersurmiseis

P~(x)= -~4x2 exp(_ -~--x2). (3.61)

3.3.5. Physicalconsequencesof the repulsionof energylevels
In the QSE limit, the repulsionof energylevels leads to drastic effects in the behaviourof the

susceptibilityof particleswith an evennumberof electrons.In Kubo’s model,the spin susceptibilityin
the “even case” is only weakly dependenton the temperature,and at low temperaturesit is slightly
bigger thanthe familiar Pauli spin susceptibility(seeeq. (3.24b)).Thisbehaviouris dueto the accidental
degeneracyof the Poissonlevel distribution,eq. (3.18).When this degeneracyis lifted and /LO/LBH < 5,
then the particleswith an evennumberof electronswill not contributeto the magnetizationat all as all
the spin-up and spin-downlevels are occupiedup to SF and the higher levels areinaccessibleat low
temperature(kT < 5) andin low magneticfields. Thereforeone expectsthat the spin susceptibilityin

the “evencase”shouldvanishwhen repulsionof theenergylevelsoccurs.
As discussedin the precedingsections,the appropriaterandomensembleis selectedby the symmetry

propertiesof the systemunderconsideration:
1. The orthogonalensemblecan be usedwhen the Hamiltonianis time inversioninvariant andthe

total angularmomentumis integer.Theseconditionsarefulfilled for low magneticfields (ILOILBH 4 8)
andweakspin orbit coupling((hvF/d)(Ag)2 4 5).

2. The symplecticensemblecan be usedwhen the Hamiltonian is time inversioninvariant as well,
and whenthetotal angularmomentumis half integer.

3. The unitary ensemblemustbe usedwhen the Hamiltonianis not time inversioninvariant.
Thesedifferentcasesagainreflect the old distinction between“even” and “odd” particles.When the
spin does not enter the Hamiltonian explicitly, as it is the casefor weak spin orbit coupling, the
orthogonalensembleapplies.However, when the spin orbit coupling is sostrongthat spin dependent
termshaveto betakeninto account,evenandodd particlesbehavequitedifferently: Forevenparticles
the total angularmomentumis again integer, and the orthogonalensemblemay be used; for odd
particles,with half integer total angularmomentum,the symplecticensemblewith its very strong level
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repulsion applies. If time reversalsymmetry is broken by a strong magnetic field, the distinction
betweenevenandodd particleslosesits significanceandthen the unitary ensembleis appropriate.

Czerwonkoderivedasymptoticformulas for the specific heatand spin susceptibilityfor the various
random ensemblesin the high temperature(kT ~ 5) and low temperature(kT 4 5) limit [102—104].
Resultsvalid over the whole temperaturerange havebeen obtainedby Denton, Mühlschlegeland
Scalapino[88,105] usingan ingeniousapproximativemethod.They give an exactresult for the partition
function of a particlewith equallyspacedsingle electronlevels(seeAppendix II); usingthis equallevel
spacingcaseas a zerothapproximation for level repulsion, they proceedto better approximationsby
allowing the levels next to 5F to vary accordingto distribution functionsof the typeof eq. (3.55). As a
nextstep, the next-nearestlevel spacingdistributioncan be introduced,andso on. Fromthedistribution
functionsP~,(LI)in fig. 3.4b a quickconvergenceof this procedurecan be expected.In figs. 3.5 and3.6
the spin susceptibilityand specific heat areshown,calculatedas a function of kT/8 [88]. In fig. 3.5 the
vanishingof the spin susceptibilityin evenparticlescomesout clearly.The dominantcontributionto the
susceptibilityof the odd particlesstemsfrom the alignmentof the oneunpairedspin.

The low temperaturebehaviourof the specific heatcan be derivedvery easily [4, 93—95]. The free
energy F can be found from the partition function Z, as a simple averageover the appropriate
ensemble.For low temperatures(kT4 8) only the lowest excitations need to be considered.The

8.0 __ POISSOn I random)

orthogonal ensemble

- ~ft~ona~

4.0 0.0 0.2 0.4 0.6 0.8 kr/S
POISSOn I random I <~>1kodd ‘,, case 1.0 /

3.0 - \ — — even case /0.8 / 1/

2.0 - ,/

1.0 - 0.6 / ~

I I I I 02

0.0 0.2 04 0,6 0.8 1.0 I I I

kr/S 0.0 0.05 0.10 0.15 0.20 0.25
Fig S. The spin susceptibilityx of a small metallic particle nor- kr/S
malized to the Pauli spin paramagneticsusceptibilityXe as a function Fig. 3.6. (a)The electronicspecific heatof a small metallicparticleas
of temperature.The averagelevel spacing is 5. and for the levels a function of temperature.The averagelevel spacingis S andfor the
around vf an averagingover theorthogonalor over thePoissonlevel levels around E~an averagingover the level probability distribution
probability distributionwascarried out. (From Denton. Miihlschlegel was earnedout. (b) A blow up of theQSE region, kT/6<0.25.(From
and Scalapino[881.) Denton.MUhlschlegeland Scalapino[88].)
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partition function for odd andevenparticlesis then simply:

Z = 2+4 e_
4mT for oddparticles (3.62a)

Z = 1 + 4 e_4mT for evenparticles. (3.62b)

With the low-energyapproximationfor the level spacingdistributionP(LI) as given by eqs.(3.36), (3.38)
and (3.40) we can easily carry out the ensembleaverage.The specific heat is then given by the
expression

C=T~kTJP(LI)lnZdLI (3.63)

from which we obtain C —~T2 for the orthogonalensemble,C -~ T5 for the symplectic ensemble,and
C— T3 for the unitary ensemble,in accordancewith the low temperatureapproximationsobtainedby
otherauthors[88,102—105]. Thedecreaseof thespecific heatwith temperatureis strongerfor the larger
level repulsioneffect.

3.4. Spectroscopyof the smallparticle levelstructure

Probablythe most direct methodto probe the level structureof small particles is single electron
excitationwith optical methods.If 5/k is of the order of 1 K, the low lying excitationscorrespondto
radiation in the far infrared (1 K 0.7cm1). Theoretically, the behaviourof small size-h quantized
metallic particlesexposedto an electromagneticfield hasbeenstudiedby Gor’kov andEliashberg[4].

Considerfirst a particle in a static applied electric field E
0. Due to the discretenessof the level

spectrum,aweakappliedfield (edEo< 5) is not able to inducea current as it is possiblein a bulk metal
wherea shieldingchargedistributionis built up. In asmallmetallic particle,the electric field will cause
a distortionof theelectronicwavefunctionsin sucha way that chargeis accumulatedon onesideof the
particle andremovedfrom the otherside. Theparticle behaveslike a dielectricor as a giant molecule.
For small fields E0, first orderperturbationtheory can be applied and the polarization of the particle
will be a linear function of the appliedfield.

Gor’kov and Eliashbergassumedthat the internal field E1~,inside the particle is constant.This is
certainly not correctfor very smallparticleswith a low electrondensitybecausethe screeninglength
becomesof the orderof the particledimension,as was discussedby Rice,SchneiderandSträssler[106].
However, when the internal field E10, is constant, one may set E1~0= — LP/e0, where L is the
depolarizationfactor and P the net polarization of the particle, defined as p/V with p the induced
electricdipole moment(cf. eq. (2.17)) and V the volume of the particle.The electricsusceptibilityx and
the polarizabilitya aredefinedby:

P = xeoEi.~= (s — l)s0E1~, (3.64a)

p = aC0E0 (3.64b)

(asdiscussedin section2.2, for the caseof a particleembeddedin a mediumwith dielectricconstant~m

we mustsubstituteXeff = (e — Cm)/Cm). Obviously,a andx areconnectedby the simple relation
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a=l+XLV. (3.65)

It should be emphasizedthat, contrary to what is statedin ref. [4], Gor’kov andEliashberghave
calculatedthe susceptibilityx and not the polarizability a [107].

The frequencydependentsusceptibilityof a smallparticlecan be calculatedby usingageneralization
of the usualmethodto calculatethe polarizabilityof the hydrogenatom in its groundstate(seee.g. ref.
[108]):

2e2 Ek—Eo 2
— ~.\2~2 2IXOkI . (3.66)

Co k ~ .l~O) Ii 0)

Here,the electricfield is assumedto be alongthex-direction. For the hydrogenatom onehas,as usual,
= E

0 however,in the caseof smallparticles,this hasto be corrected:eq. (3.66) gives the response
of the electronsto the electric field which theyexperience(i.e. E1~5for a smallparticle) and therefore
a(co)hasto be replacedby x(w). As therearemany electronsinvolved in a smallparticle, occupation
probabilitiesn,. haveto be introducedfor the states1k). Single particle absorptionoccursat energies

= (Ek — E1); damping can be introduced in a phenomenologicalway by a complex frequency
notationcv —* cv + if’. The absorptionof thesystemis then given by theimaginarypart of x(w). With the
substitutionIXk,

12 = ~irk,l2,one getsfor the susceptibilityof a smallparticle:

.~ e2 ~ (Ek—E,)(nk—nt) 2 367
~ ~

Separatingthe staticanddynamicpart leadsto the following result:

ne—n,Irk,l (3.68a)
COk, k I

2h2 2 2

x(w)—x(O)= — 3eo ~Ek i~,(Ek —E,)2—h2(w+ iI’)2 (3.68b)

Following Shapoval,the matrix elementslTk,12 can be evaluatedusinga quasi-classicalmethod [109].As
this methodis of rathergeneralinterest,we will sketchit briefly. The expectationvaluesof the quantity
(r(t) r(t + T))~

1 are calculatedin the state ni); r(t) is the positionoperatorand ni) denotesa stateof
energyE~,the label i will take into accountpossibledegeneracy.Changingover to the Schrodinger
representationwith a time independentoperatorr, oneobtains

(r(t) r(t + r))~~= ~ exp(—i(E~— Em)TIh)~ (nilrlmjXmjtrlni). (3.69)

With hO)nm = E,, — Em and~ (nilrlmjXmjlrlni) = 21mm 2 (taking into accountthe spin degeneracyof the
orbital state ni)) this relationcan bewritten as:

(r(t) r(t + T))~,= 2 ~ exp(—iwnmr) mm 2 2 f exp(—iwr) r~m(w)12 dcv. (3.70)
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As (m(t)m(t + r))~
1 is an even function of r, the Fourier inversionleadsto:

Irmn (w)12 = ~ ~— 2 J (r(t) r(t + r))~~cos(cvr)dr. (3.71)

At this point, a quasi-classicalapproximationis made:The fact is beingusedthat the meanexpectation
valueof anyoperatoraveragedoverall stateswith acertainenergycan beapproximatedby theaverageof
theclassicalexpectationvaluesevaluatedalongtrajectoriesof theparticlewith agiven energy.In eq. (3.71)
theindex ni will bereplacedby E~andthe averageis takenoverthe classicaltrajectoriesof energyE~:A
straight line from onepointat the surfaceof theparticleto another.The electronis thensupposedto be
scattereddiffusely off the surface(otherwisethe quasi-classicalapproximationcannotbe used,seeref.
[109]).The time betweentwo scatteringeventsat the surfaceis typically T = d/2vF. Therefore, the
autocorrelationfunction (m(t) r(t + ‘T))E, will vanishafter a time of this orderof magnitude.The cosine
term in eq. (3.71)can beapproximatedby 1 whenthecalculationof matrix elements1mm 2 is restricted to

stateswith 0j,,m 4 vF/d. Thereforeonegets:

1mm (~)j2= mm = ~— J (r(t) m(t + T))E, dr. (3.72)

Obviously, eq. (3.72) is correctonly for low frequencies,cv <2vF/d 1013Hz, andfor thesefrequencies
1mm 2 is independentof cv. The evaluationof the integral in eq. (3.72) is tediousbut straightforward
[4, 109], andGor’kov and Eliashbergobtain

= 0.01845d
3/hvF, (3.73)

In order to calculatethe dynamicsusceptibilityof eq. (3.68),Dyson’s two level correlationfunction
R(E

1, E2) can be used[92]. R(E1,E2) dE5 dE2 gives the probability to find onelevel k in the interval
(E1,E1 + dE1) and the other level I in the interval (E2,E2 + dE2) independentof the position of the
otherlevels;R(E1,E2) is a function of the distancebetweenthe energylevelsonly: R(1E1— E21). Each
term in the summationof eq. (3.68b) may be multiplied by the probability to find a certainpair of
eigenvaluesand the summationcan then be replacedby an integral. For frequenciescv 4 vF/d the
susceptibilitycan be calculatedfrom:

x(cv) = x(O) - 0.00615e2hcv2d3]J dE1 dE2~ E2 (E1 - )~+ iF)
2~ (3.74)

For the differentensembles,the functionsR(IEI — E
21) canbe calculated[4,92], and for the orthogonal

ensemble,Dyson gives the following expression:

= 1 — fsin(ith/S)]
2— d sin(ITLI/5)/(ITLI/5) f sin(irx) d

‘ -‘ I. irLI/S J d(4/S) j irx x. (3.75)
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The frequencydependentdielectric susceptibilitiesare of greatestimportancebecausethey reflect
the statistical nature of the level distributions via the two level correlation function R(JE1 — E21).
Gor’kov and Eliashberghavecalculatedthe susceptibilityx(cv), which is proportionalto thedimension-
less function A(cv)= 2h

2cv2p(CF) I {R(e)/(C2 — h2(cv + if’)2)} de. Someerrorswere detectedin the ori-
ginal expressionscalculatedby Gor’kov and Eliashberg,and very recently Devaty and Sievers[110]
derivedthe following expressionsfor the real andimaginary partsof this function, A

1 andA2:

A?’~”(73)= 2— sin 271 — 2~[J~2_~’1dt] ~- (~iL)

‘1 (3.76a)

A(73)= 273 2sin
2~+273 [Jsintd~iT]d(sin~)

A~”1t(
73)= 2— sin2’q

2 (3.76b)

Art(n)=2n_
2sh1~ ~1

A7mPi(z) =

2~sin2z + ~ ~ sin tdtl ~
2z Li t jdz\ Z

(3.76c)

A7mPi(z)= z — 5111 Z + z [J~ di’] d (SiI1Z)

in theseexpressionsz = 21r*cvp(CF) and~ = z/2.A1 andA2 arealso shownin figs. 3.7a,3.7b and3.7c as

4 (Z)/Z

10 20 z 10 20 10 20

Fig. 3.7. The real and imaginary parts A1 (dashedlines) and A2 (solid lines)of the dimensionlessfunction A(z). A(z) is proportionalto the
susceptibility~(a~)characterizingtheelectrodynamicresponseof asmall metallic particle.Thedimensionlessvariablez = 2ii’~wp(ee)is proportional
to theenergyhw of theelectromagneticradiationandthe densityof statesPfrF) at theFermi level E~.The functionsA1 andA2 are shownfor the
orthogonal(a), theunitary (b), andthesymplecticensemble(c), respectively.For thesymplecticensemble,thesusceptibilityis a strongly oscillating
function of thefrequency.(From Devaty and Sievers[110].)
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a function of the variable z for the orthogonal,the unitary, andthe symplecticensemble,respectively.
Whereasthe absorption,given by A2, is a rathersmoothfunction of the frequencyfor the orthogonal
ensemble,the symplectic ensemblegives an absorption with very pronouncedoscillations. Their
unambiguousexperimentalverification would constitutea landmarkof smallparticle physics.

3.5. Experiments

3.5.1. Nuclearmagneticresonance(NMR)
The Knight shift is oneof the mosteleganttools to studyquantumsize effectsin the spin paramag-

netism of the electrons in small particles, becausethe Knight shift is proportional to the spin
susceptibility of the conduction electrons [111] as a result of the contact hyperfine interaction,
A U = al S. I is the nuclearspin in units of 11, the hyperfinecoupling constanta of the groundstateis
equalto ~Lo~cByNhj’P(0)1

2, where‘y~is the nucleargyromagneticratio and 1V’(0)12 the densityof s-like
conductionelectronsat the positionof the nucleus.The spin of theconductionelectronswill bealigned
in an externalmagnetic field B

0, and the net polarizationresulting from the Pauli spin paramagnetic
susceptibilityis given by p.og,a~(N/V)(S~)= xpB0.This leadsto ashift of the peakpositionof the NMR
signal.The Knight shift is definedas the fractionalchangeof the resonancefield andis thereforegiven
in this caseby:

K— AB aXp 377
— B0 /sOgp.ByNh(N/V)

From eq. (3.77) andthe expressionfor the hyperfinecouplingconstantgiven aboveit is clear that the
Knight shift is proportionalto the spin susceptibility, and proportionalto the ratio of the conduction
electrondensityat the nucleusandthe averageconductionelectrondensity, I~1’(0)I

2/(N/V). The Knight
shift is insensitive to magneticimpurities which may be presentat the surfaceof small particles, in
contrastto direct measurementsof the susceptibility.Impuritieswould lead to enhancedspin relaxation
andconsequentlyto a broadeningof theNMR line, howeverthe positionof the resonancewould not be
influenced.

In a pioneering experiment on QSE Charvolin, Froidevaux, Taupin and Winter reported an
investigationof small lithium particlesby NMR techniques[112].The lithium particleswereobtainedby
irradiation of a lithium fluoride crystal with thermalneutronsat 77 K. When the doseof theradiation is
properly chosen,two typesof lithium particlesare formed [113]:Small plateletsin the (100) planeof 1
or 2 atomic layers thicknessand lateral dimensionsin the order of 3 nm, and, simultaneously,thick
lithium globulesof approximately30 nm diameter.The NMR curverecordedat room temperatureis
shownin fig. 3.8a. Two narrow linesaresuperposedon a broadresonance.The latteris dueto theLi~
of the LiF matrix andis of no further interestfor the discussionof QSE. Thenarrowresonanceat lower
magneticfields (labeled“A” in fig. 3.8a) shows a displacementwith respectto the centerof the Li~
resonance;the displacementis equalto the Knight shift of bulk lithium metal and this resonanceis
thereforeattributedto the thick lithium globules.The not displacednarrowresonance(labeled“B” in
fig. 3.8a)can be explainedassumingaQSE. A simpleestimateof the averagelevel spacingin the small
lithium platelets gives S 300K; therefore the occurrenceof a QSE is possible, even at room
temperature.Obviously,the condition for the low field limit of Kubo’s theory (seesection3.2) /LBB <8
is satisfied.Following Kubo, the distinctionbetweenevenandoddparticlesis made,but unlikeKubo’s
assumptionof a Poissonlevel spacingdistribution, repulsionof energylevelsis thoughtto occur.Then,
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the spin susceptibility of the “even” particlesvanishesin the low field limit, and consequentlythe
Knight shift mustbe zeroin this casewhich explainsthenon-shiftedresonance“B”, In the “odd” case,
the spin magneticmoment is dueto the one unpairedelectronat the Fermi level, for all particleswith
an odd numberof electronsandof all sizes,as long asthe OSE conditionis fulfilled. Thesusceptibility
for a given particle is constant,whatever its volume, and this implies that the susceptibilityper unit
volume (of particle) varies with the particle size as x — N~,where N is the numberof atomsper
particle. Therefore, each particle with an odd number of electronshas its own size dependent
susceptibility~o(d).Moreover,whenthe particlesarenot of uniformsize,one will observeinsteadof a
single resonancethe superpositionof all the resonancesbelongingto different values~o(d).If therange
of particlesizesis wide enough,no resonancewill be observedfor the“odd” particles,andthisseemsto
be the casein the experimentsby Charvolin,Froidevaux,Taupinand Winter. In addition,the fact that
the resonancewith zero Knight shift disappearedupon annealingof the samplesupportsthe inter-
pretationbasedon quantumsize effects:During the annealingprocess,the smallplateletsdisappearand
muchbiggerglobulesareformed.Below room temperature,the NMR experimentsbecomeincreasingly
difficult becausethe reducedmotional narrowing leadsto a broadeningof the resonancelines. More
details on the NMR experimentsin small lithium particlescan be found in Taupin’s papers[114,115].

Kobayashi,Takahashi,SasakiandNomura studiedparticlesof the superconductorsaluminium and
tin rangingin sizefrom 4.5 to 40 nm andpreparedby evaporationin low pressurehelium gas[116—119];
the particles were oxidized to prevent metallic contact. They also preparedvery much smaller tin
particles(with diameterdown to 2.2nm) by evaporationof discontinuouslayersof tin with an overlayer

of Si02 [120].On theoreticalgrounds,it is expectedthat the spin pairing in superconductorswill lead to
avanishingof the paramagneticsusceptibilityof the electrons;however,it is foundexperimentallythat
very often the Knight shift doesnot tendto zero for T—~0, most probably as a consequenceof spin
reversescattering[121].The shieldingof the appliedmagneticfield due to the Meissnereffect prohibits
the observationof theseeffectsunlessexperimentsaredoneon sampleswith a dimensionsmallerthan
the London penetrationdepthsuchas smallparticles(seesection4 for moredetails). HinesandKnight
[10,122] showed that with increaseof the spin orbit coupling (by adding suitable impurities), the
decrease.of the Knight shift was reduced;a decreaseof the particle size,causingan enhancedsurface
scatteringrate, hasa similar effect.For superconductingaluminium (which is the superconductorwith
the lowestatomic weightandthereforewith the smallestspin orbit coupling)zeroKnight shift hasbeen
observedfor T—* 0 [123].Froma theoreticalpoint of view, Mühlschlegel,ScalapinoandDenton [124]
havediscussedthe influenceof the QSEon small superconductingparticles:Due to the finite size,the
phasetransitionwill not be sharpandthe spin susceptibilityshouldthereforeexhibit a broadtransition
around T~.When the dimensionsof the particles are smaller than the coherencelength ~ of the
superconductingstate,spatially uniform fluctuationsof the order parameterwill dominatethe ther-
modynamics.For 8/kT~ 1, they calculateda decreaseof the paramagneticsusceptibility at T~to
already 40% of the bulk value, while S should still be considerablybigger to observequantumsize
effects.The temperaturedependenceof the Knight shift for aluminiumparticlesmeasuredby Kobay-
ashi and coworkers[116—118],and Ido and Hoshino [125,126] is in qualitativeagreementwith these
results.Shiba[127]hasmadeacalculationusing the equallevel spacingmodel; he hasexplicitly taken
into account spin orbit coupling through mixing of wavefunctions of opposite spin. Unlike the
calculationsof Denton,Muhlschlegeland Scalapino[105],who calculatedthe susceptibilityusing the
symplecticensemble,this model leadsto a residualsusceptibilityat T = 0 both for superconductingand
even normal particles;the magnitudeof the residualsusceptibility of the electronsdependson the
strengthof the spin orbit coupling. In recentwork Kobayashiandcoworkershavemeasuredthe Knight
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Fig. 3.8. Derivative of the nuclearmagneticresonancesignal for small particlesof lithium, aluminium and copper. (a) For lithium, two narrow
resonancesareobserved,superposedon thebroadresonanceof Li’ in LiF. TheKnight shift of theresonanceindicatedby “A” is equalto thebulk
valueof lithium metal; this resonanceis attributedto thick lithium globules.Theresonanceindicatedby “B”, with zeroKnight shift, is attributedto
very small lithium particlescontainingan even numberof electronsfor which the susceptibilityvanishesbecauseof quantum sizeeffects. (From
Charvolin, Froidevaux,Taupinandwinter [112].)(b) TheNMR resonanceof small gas-evaporatedaluminiumparticleswith anaveragediameterof
4.5 nm. The Knight shift of thesmall particleresonanceis smallerthanthe Knight shift of thebulk metal.The low field tail is enhanceddueto the
presenceof odd particlesof varying size. (From Kobayashi,TakahashiandSasaki[117].)(c) TheNMR resonanceof small copperparticleswith an
averagediameterof 10 nm, again showingthereduction of the Knight shift K

05~observedin even particles.The particleswerepreparedby flash
evaporationin high vacuumand were isolatedwith siliconmonoxide.(From Yeeand Knight [134].)

shift of aluminiumparticles in a large applied magneticfield, so that the effectsof superconductivity
should be largely suppressed.Under theseconditions,the Knight shift is found to be substantially
reducedaswell at low temperatures,indicating a spinpairing which is increasinglymoreeffectiveas the
particle size is reduced[119].In addition,an indication of the quantumsize effect in oddparticleswas
also found: The asymmetryof the resonanceline— a tail towards the low field, high Knight shift
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side— was attributedto the particlescontainingan odd numberof electrons.Using a suitableGaussian
distribution of particle sizes, satisfactory agreementbetween the observedshape and a calculated
resonancecurve was obtained.For tin, a divalent metal, the resonanceline was symmetric,consistent
with the absenceof odd particles.For tin particlesonly a smalldecreaseof the Knight shift was found,
theresidualshift for T —~0 beinglargerthesmallertheir sizefor particlesof diameterdownto 10 nm.Thisis
obviouslyaconsequenceof the higher spin orbit couplingin tin andthe increaseof the factor h/r with
decreasingparticlesize [118].For still smallerparticles,d < 10 nm, theresidualKnight shift decreaseswith
decreasingparticlesize.This is interpretedas blocking of the mixing of energylevels throughspin orbit
coupling as a result of QSE[120].

Underquantumsize conditions,it is expectedthat relaxationprocesseswill be blocked.However, no
enhancementof the spin relaxationtime was observedin small particles:For some samples,even a
reductionof the relaxationtime T1 below the bulk valuewas noted,indicating the presenceof an extra
relaxationmechanismprobablyconnectedwith the presenceof paramagneticimpuritiesat the surface
of the particles.The influenceof the magneticfield and of the particle size on the relaxationtime was
studiedin detail [118,120, 128], and recently a theory was put forward by Sone [129,130] explaining
theseresults.Sone calculatedthe effects of fluctuationsof superconductivity,taking into accountthe
Zeemanenergyof the electronsandthe depairingeffect of the magneticfield, for particlessmallerthan
both the coherencelength and the penetrationdepth,but not so small that the energy levels become
discrete.The opposingeffectsof the pair breakingand of the alignmentthrough the Zeemanterm lead
to a detailedfit of thesecalculationsto the experimentaldata.However, morerecentresultsof Tseand
MacLaughlin [131,132], obtained at lower values of the applied magnetic field, seem not to be in
completeagreementwith Sone’smodel.

Kobayashi,TakahashiandSasakihaveobservedaresonancesignalin smallcopperparticles[133]:The
line becamebroaderwith increasingSIkT,andthe Knight shift did not tendto vanish.As in the caseof
aluminium(seefig. 3.8b), the low field tail was enhanced,indicating the presenceof odd particles.The
measurementsof Yee and Knight haveconfirmed theseresults[134].In fig. 3.8c the derivativeof the
absorption signal is shown for copper particles with an averagediameter of 10 nm. They also
determinedthe Knight shift of small copperparticlesin the sizerange from 2.5 to 11 nm, which were
preparedby flash evaporationof successivelayers of copperparticles isolatedwith siliconmonoxide;
their resultsaregiven in fig. 3.9. Oneof their samples,with an averageparticlediameterd 4 nm, had
sucha narrowsizedistributionthat the evenparticlepeakwas not obscuredby the broadbackgroundof
the odd particles in the low field tail. Therefore, the Knight shift of the evenparticles in this sample
could be studied at higher temperaturesas well. A decreaseof the Knight shift is found at lower
temperatures,the decreaseis largerfor the smallerparticles,andsets in at a higher temperature.Again
in disagreementwith the predictionsof both the orthogonalandsymplecticensemble[105],a residual
shift is left for T—*0. In analogywith the caseof superconductors,this residualshift maybe attributed
to spin reversescatteringpreventingpairing of the spins.Yee andKnight havecomparedtheir results
with the calculationsof Abrikosov and Gor’kov [121] and obtaineda reasonableagreement.Qualita-
tively, the resultscan alsobe explainedwith Shiba’s theory [127].The strengthof the spin orbit coupling
relativeto the averagelevel spacingis given by:

hhvF(Ag)
2 (3.78)

r
505 d5

where ~ is the spin lifetime, andAg the g-shift as measuredwith conductionelectronspin resonance.
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Fig. 3.9. Size andtemperaturedependenceof the Knight shift K
05,observedin flash evaporatedcopperparticlesisolatedwith SiO, normalizedto

theKnight shift of the bulk metal Km,tai. For decreasingparticlediameter,the residual Knight shift at zero temperatureis found to decrease,
indicating avanishingof theelectronicsusceptibilityof small even particlesas a resultof quantum size effects. (From YeeandKnight [134].)

This parametershoulddependon the particlesize as d
2, but the observedvariationseemsto be much

weaker.According to the argumentsof Kawabata[12], spin flip scatteringshould be blocked by
quantumsizeeffects, leadingto narrowconductionelectronspin resonancelines; this would alsofavour
spin pairing in evenparticles.TheresidualKnight shift as observedby YeeandKnight is in agreement
with Kubo’s prediction of spin pairing in evenparticles, if one allows for partial inhibition of spin
pairing through spin reversescattering.As was the casewith very small tin particles,the depairing
becomesweakerwith decreasingparticlesize,in accordancewith the blocking of the scatteringprocess
as discussedby Kawabata.

Other NMR measurementson fine copperparticleswere reportedby Ido and Hoshino [135],and
Hines [136].Hinespreparedthe copperparticlesby flash evaporationas well andthe particleshadan
averagediameterof 11 and 15 nm. The width of the resonanceline was interpretedby taking into
accountthreestill different contributions:

— Apb~Ik,the line width of bulk copper,
—AVK, the contributionfrom the Kubo mechanism(hinderedrelaxationin the QSE regime),and
—Apc~,thecontributiondueto the CharlesandHarrisonmechanism[137].

This latter contributionarisesfrom chargedensity fluctuationsnearthe particle surfaceresultingfrom
the requirementthat the electronicwavefunctionsmustvanishat the surface.The nucleiin the rangeof
thesefluctuationsexperiencedifferentdensitiesof electronsat their sites, leadingto a broadening,with
a negligible displacementof the center,of the resonanceline. Taking this effect into account,the line
width shouldincreasewith decreasingparticlesize.The line widths of the NMR resonances,measured
recently on smallplatinum particles[138],was explainedsuccessfullyassumingsuch conductionelectron
densityoscillations.As the CharlesandHarrisonmechanismwasnot takeninto accountby Charvolin et
al. [112,115], their interpretationof the experimentson lithium particlesis questionedby Hines.More
possible relaxationmechanismsare discussedby Knight in his review paper [10], and by Ido and
Hoshino [135],who also found an additional field and size dependentcontributionto the line width.
Very definitely, QSE seems to have been observedby NMR techniques.However, a detailed
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understandingandanalysisof all the mechanismsinvolved in the experimentson the different samples
is still lacking.

3.5.2. Conductionelectronspin resonance(CESR)
CESRis the resonanttransitionbetweenZeemanlevels of the conductionelectronsat hcvo = g/.LBB.

Note that in the sizerange,whereQSE is expectedto beimportant, the particlesare so small that the
exciting microwave field is not significantly attenuatedby the skin effect. The main relaxation
mechanismin CESRis dueto the spin orbit interaction [101].For a bulk metal, the spin relaxationtime
r is given by the well known expression:

T Ttr/(Ag)
2 (3.79)

whereAg is the electronicg-shift, a measurefor the strengthof the spin orbit coupling, and Ttr is the
suitably averagedtime betweentwo scatteringeventscharacteristicfor e.g. the electricalconductivity.
This relaxationgives a line width of the resonanceof AB h/gp.

8r. In smallparticles,the electronmean
free path is limited by the particledimensions,and theneq. (3.79) leadsto

r d/vF(Ag)
2 (3.80)

whereas usuald is the particlediameterand VF the Fermi velocity. Eq. (3.80) predictsa broadeningof
the absorptionline, comparedwith the bulk line width, proportionalto d1. When the particle size is
reducedevenmore,the electronicenergylevelsbecomediscreteandQSE comesinto play: The Elliott
relaxationmechanismwill thenbe blockeddueto the fact that no electronicenergylevelsareavailable
during relaxation compatiblewith energy conservation [12,139]. In the quantum size limit, the
relaxationtime should becomevery long and the correspondingabsorptionline should be very sharp.

Following Kawabata[12], we summarizethe conditionswhich haveto be fulfilled in order to see
QSEin CESR:

(1) 5 ~“ hcvo: This conditionprohibits energytransferduring relaxationto the kinetic energyof other
electrons;the relaxationprocessis blocked.

(2) 5 ~‘ hir: This condition is relatedwith the uncertaintyprinciple; the electronic levels of the
particlesmust be sufficiently narrow to preventoverlappingof the levelsdue to lifetime broadening.
Relaxationby spin orbit coupling is then weakenoughso as not to mix the energylevels.When both
theseconditionsare fulfilled, a 8-function like absorptionline is predictedby Kawabata[12] at the
frequency11 = — (hwo/r5)f~,wheref~is a constantof the orderof 1, slightly dependingon S andthe
detailsof the energylevel distribution.Becauseof the statisticaldistributionof f~,the resonanceline of
an assemblyof smallparticlesis the envelopeof all single electronresonances.For particlesof uniform
size,one finds AB h2cv

0/g,s~r5.Comparedwith the bulk metal, the line width is reducedby thefactor
hcvo/8andis now proportionalto d

2.Expressioneq. (3.80)may still beusedto calculater, but it should
benotedthat r doesnot haveany morethe meaningof a lifetime in the strict sense.r characterizesthe
magnitudeof the spin orbit matrix elements[12]. In general,it is impossibleto measureelectronspin
resonancein heavy metals due to the large spin orbit interaction.However, when the relaxation
mechanismin blockedby the QSE,it should be possibleto observeCESRin thesemetalsas well. As
the frequencydoesnot dependon the occupationof the electronlevels, the shift andthe shapeof the
absorptionline are temperatureindependent;this is in markedcontrastto the situationwith static
(thermodynamic)effects of the QSE. The intensity of the CESR signal is proportional to the
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susceptibility of the conductionelectronsand will reveal the predictedquantumsize effects in the
paramagneticsusceptibility:The vanishingof the susceptibilityin particlescontainingan evennumber
of electrons,as T—*0, andthe T1-law in the susceptibilityat low temperaturesin particleswith an odd
numberof electrons.

Unfortunately, the experimentalresultsare not yet very coherent,clear, and transparentat this
moment.For bulk samples,whereno QSE is present,the dependenceof the line width of the CESR
resonanceon the sample dimension appearsto be in accordancewith eq. (3.80) [140]. At low
temperatures,when the bulk mean free path of the electrons is much larger than the sample
dimensions,the line width increaseswith decreasingsamplesize.Thisphenomenonis an exampleof a
simplegeometricalsize effect.

CESR in small particleshasbeenobservedin light metals such as lithium [115,141—146], sodium
[147—149],andaluminium[150],as well as in someheavymetalsas gold [151,152], silver [153—156],and
platinum [157].Saiki et al. [145]observedCESRin lithium particlesat room temperature.The particles
werepreparedby evaporationin an inert gasandtheir averagediameterrangedfrom 300 to 10 nm; the
sampleswere coveredwith paraffin to preventoxidation. The resultsare illustrated in fig. 3.10: For
particles largerthan 100nm, the geometricalsize effect (a broadeningof the absorptionline propor-
tional to d1) is observed,in agreementwith earlier results[141];for particlessmallerthan 100nm, the
line width decreaseswith decreasingparticlediameterto a limiting valueof 0.2mT. This narrowing of
the resonanceline, indicating an increaseof the transverserelaxationtime T

2, can be attributedto a
blockingof the relaxationmechanismas aresult of quantumsizeeffects. Borel, NarbelandMonot [146]
preparedlithium particlesof verysmall size by simultaneouscondensationof CO2 andLi, followed by a
heat treatment.The mean sizes of the particles in thesesampleswere estimatedto be from 0.7 to
1.8nm. At 9.3 GHz andat 77 K the line width for the 0.7nm diameterparticleswas 1.56mT; particles
in this smallsize rangeshoweda line width which is largerthanfor the much largerparticlesstudiedby

8~10’

/ \\ o Saiki et al.
/ \.

~~—o—�~-H \ • Sen and Petinov
5~10-

F —~H \\

- b~k

2~10~~

I I I I I I

0 100 200 300 ~00
d)nm)

Fig. 3.10. Line width of theconductionelectronspin resonancesignal for small gas-evaporatedparticlesof lithium as a function of the particle
diameterd. For particleswith adiameterlargerthan100 nm, the line width increaseswith decreasingparticlesize dueto theclassicalsize limitation
of themeanfree path,in agreementwith earlierdataof Gen andPetinov. Forsmallerparticles,the line width decreasesas aresult of theblocking
of therelaxationprocessdue to quantumsize effects.(From Saiki, Fujita, Shimizu, Sakoh andWada[1451.)
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Saiki et al. At 460MHz, the line widths were between0.25 and0.48mT, correspondingto a transverse
relaxation time of the order of 2X 108s. For the samplewith a meanparticle size of 1.5nm, the
resonancewas studiedat temperaturesbelow 77 K, and it was observedthat the line width did not
changemuch as a function of temperature,whereasthe longitudinal relaxationtime T

1, as measured
from the saturationcurves,increasedconsiderablywith decreasingtemperature(from 3 x 10_6s at 77 K
to 2x iO~s at 40 K). For particlesin this size range,the CESRis probablybroadenedas a resultof the
distributionof g-shifts overthe volume andsurfaceregionsof the particle,as was discussedby Holland
[139],and manifestationsof QSEcan only befound in the longitudinal relaxationtime T1.

Gordoncarefullystudiedsmall sodiumparticlesproducedin X-irradiatedsodiumazide[149],andthe
temperatureandsizedependenceof the line width was found to follow a relation of the type:

= F(T) + 2.60x 10°
2/d+ 7.686x 1012/dT (3.81)

wherethe first term F(T) indicatesa phonon term,connectedwith bulk properties;the secondterm is
the broadeningdue to the geometricalsize effect, and the third term is attributedto the presenceof
paramagneticimpurities on the surfaceof the particles,leading to an extra temperaturedependent
relaxationmechanism.The line shapeof the resonanceobservedat different temperaturescould be
analysedwith a superpositionof Lorentzian curves with line width correspondingto eq. (3.81) and
weightedwith asuitabledistributionof the particlesizes.Earlierdataof Smithard[148],from which the
bulk term F(T) was subtracted[149],are shown in fig. 3.11. As can be seen, the resonanceis not
narrowed as predicted by Kawabata’stheory. At very low microwave power, a broad and easily
saturatedresonancewas observed [149]; this resonanceis attributed to quantum size narrowed
resonances,but believedto bebroadenedinhomogeneouslyby a distributionof- contacthyperfinefields.
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Fig. 3.11. Line width of theconductionelectronspin resonancesignal for smallsodium particles.For largeparticles,the line width is proportionalto
the inverseof the classicalsize limited lifetime of theelectronsdivE. The Kawabataconditions arerepresentedby verticalbars, for lEw~4 8 and

45 the relaxationwill be reducedwith the factorhws/5 due to quantum size effects. The experimentaldata of Smithard do not reveal the
correspondingnarrowingof the resonance.(From Gordon[149].)
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Fig.3.12. The susceptibility,~of small silverparticlesin a benzenematrix, normalizedto thePauli spinparamagneticsusceptibilityXe, asa function
of temperature.x was determinedfrom the intensity of the conductionelectronspin resonanceand has a T~dependenceas expectedfor odd
particleswith at least oneunpairedelectronspin. (From Monot andMillet [1561.)

The resultsobtainedfor gold particles [151,152] arenot very cleareither. In the author’s laboratory
attempts to observe CESR in samplesof colloidal gold with diameter from 3.4 to 25 nm were
unsuccessful.It seemsthat the particlesize,belowwhich CESRcan be observed,is quite small, but on
the other hand the very fact that CESR is observedin small gold particles [151,152] supportsthe
predictionsof QSE.

A negativeresultwas also reportedby Smithard[29] for silver particles in photosensitiveglass.A
resonancewas observedin silver colloidal particlesin KC1: Ag crystals,with particles in the size range
from 5 to 30 nm. Monot, Narbel andBorel reportedspinresonanceexperimentson silverparticleswith
a diameterin the orderof 1 nm [154].The proportionalitybetweenthe shift of the resonance(hcvolr5)f,
andits width h2cvo/gp..

8r5,predictedby Kawabata’stheory,was verified for morethan thirty samples,
preparedby reductionof an aqueoussolution of Ag2O and also by simultaneouscondensationof Ag
andCO2. The line shapeof the resonancesobservedin silver particlesin various matrix materialswas
found to be asymmetric.This asymmetrymay be relatedto the existenceof a critical size of 2 nm for
CESR in silver particles(correspondingto the conditions given by Kawabata)and the fact that the
averagesizein all sampleswasin excessof 2 nm, evenbeforeannealing[155].

Monot and Millet [156]measuredCESRon silverparticlespreparedby simultaneouscondensation
of silver and benzene,followed by a heat treatment.The susceptibility of the conductionelectrons
deducedfrom the intensityof the CESRsignal and determinedas afunction of temperatureshoweda
T~dependenceatlow temperatures,as predictedfor oddparticles (seefig. 3.12).A similar resultwas
reportedfor platinum particleswith adiameterof 2.2nm preparedfrom a hydrosol[157].

3.5.3. Far infrared absorption
The energies correspondingto the averagespacing of the electron energy levels under QSE

conditionsare in the far infraredrangeof the electromagneticspectrum.The discretestructureof the
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single electronexcitationspectrumwasthereforeexpectedto manifestitself directly in the far infrared
absorption.Tanner,SieversandBuhrman[158]studiedthe far infraredabsorptionof varioussamples
of lead, copper,aluminium and tin. One of their samplesconsistingof aluminium particleswith an
averagediameterof 15 nm,hada particularlynarrowdistributionof sizes; the absorptionof thissample
is shown in fig. 3.13, andit is tempting to attributethe wiggles in the spectrumto the level structure
effects predictedby Gor’kov and Eliashberg[4] as discussedin section 3.4. In a subsequentpaper
Granqvist, Buhrman,Wyns and Sievers [159,160] convincingly showedthat the structureobservedis
insignificant as far as QSE is concerned.The resultsof model calculations[110,159], illustrated in fig.
3.14, show that any practically achievable distribution of particle sizes will tend to smear out the
oscillations resulting from the discretenessof the single particle level structure.Therefore,attempts
seemto be fortuitousto observedirectly the discretelevel structureon collectionsof smallparticlesas
theyareprepareduntil now.

A possibleway out of this problemwould be to do experimentson one or only very few particles.
Due to the enormousproblemsconnectedwith the intensity, it is unrealistic to try to observefar
infrared absorptionon a single particle,but it has beenproposedto do such experimentat optical
frequencies[161].The intensity of the radiation scatteredby a small metallic particle falls off quite
rapidly with decreasingsize (ji~roportionalto d6, seesection2.2), but for particleswith a diameterof a
few nanometersit is still so strong that they can be observedby eye using an ultramicroscope.This
techniquewasusedby Zsigmondy[162]very long agoto studythe growth kinetics of colloidal particles.
Although the wavelengthnear the plasma resonanceof the small particle is much larger than the
particledimensions,separatespotshavebeenobservedwhenthecolloidal systemis sufficiently dilute. If
an optical laserwith a band width smaller than the expectedmean level spacingis used to excite the
collectivesurfaceplasmamode,underfavourableconditionsthe scatteredradiationwill reflect the level
structure of the single electron excitations, and these effects can be studied with usual Raman
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Fig. 3.13. Far infraredabsorptionspectrumof small gas.evaporatedaluminiumparticleswith an averagediameterof 15 nm. The oscillationsof the
absorptioncoefficient asa function of thewavenumberarewell in excessof theinstrumentalresolution; but mostprobably,they arenot dueto the
discretenessof theelectroniclevel spectrum.(From Tanner,Sieversand Buhrman[158].)
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Fig. 3.14. Model calculationsof theabsorptioncoefficient of small metallic particlesin the far infrared.The absorptionwas calculatedusing the
Gor’kov—Eliashbergtheoryand an additional averagingover different particle sizes wasdone using a log-normal particlesize distribution, with
different valuesfor thewidth a but with aconstantaverageparticlediameterof 2.5 nm (seeinsert).For thesymplecticensemblelargeoscillationsof
theabsorptioncoefficient arefound, but thesesoondisappearwhen theparticlesare not of uniform size. (From Granqvist,Buhrman,Wyns and
Sievers[1591.)

spectroscopictechniques.A numberof seriousproblemsmust be overcome:The effectivetemperature
of the conductionelectronsmust be so low that only very few levels are partly occupiedto prevent
smearingout of the discretestructureof the single electronexcitationspectrum;moreover,coincidence
measurementswill be necessaryto determinethe energylevel correlationfunction, as the time available
for measurementsis probably very short.The proposedexperimentwill be ratherdifficult to perform,
but amoredirect observationof thediscretestructureof the energylevelsresultingfrom QSEwould be
of invaluableimportance.

So, unfortunately,far infraredabsorptionmeasurementsdo not give direct informationon the single
electronexcitationspectrum[159,160]. Nevertheless,the overall absorptionwas found to vary with the
frequencyii approximatelyas v2 (seefig. 3.13), in agreementwith both the Gor’kov andEliashberg[4],
and the classicalDrude theory [159].However,the absorptioncoefficient is ordersof magnitudelarger
thancalculatedfrom all thesetheoreticalmodels.Moreover,the Gor’kov—Eliashbergtheory leadsto a
d’ dependenceof the absorptioncoefficient, whereasthe far infrared absorptionwas foundto increase
with increasingparticlesize.Lushnikov,MaksimenkoandSimonovhavereconsideredthe original work
of Gor’kov andEliashberg,andtheyhavecalculatedthefar infraredabsorptiontaking into accountthe
Coulombinteractionbetweenthe conductionelectronsas well [163];this calculationgives correctly the
experimentallyobservedsize dependenceof the absorptioncoefficient, but still doesnot reproducethe
high value found in the experiments.Severalextra absorptionmechanismshavebeen proposedto
explain the experimentalresults,such aseddycurrents,the effectsof amorphousoxide layers, or direct
excitationof surfacephonons[164—168].StroudandPan [164]haveshownthat wheneddycurrentsare
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takeninto accountthe absorptioncoefficient, calculatedusing an effectivemedium approach,is a few
ordersof magnitudebiggerthanthe Maxwell Garnettresult.The effectivemediumvalueis found in the
usualway, i.e. fluctuationsdueto the fields scatteredfrom the inclusionsareassumedto averageout to
zero,andtheforwardscatteredfield is now calculatedusingeq. (2.lla); the Mie expressionis evaluated
to higher order, whereasonly the lowest order contribution was containedin the original Maxwell
Garnetttheory.

A very detaileddiscussionof the far infraredabsorptionof very smallmetallic particleswas given by
Granqvist [168]. Predictionsof the original Maxwell Garnett theory and of Bruggeman’seffective
medium theory were compared,and the influencewas discussedof effective depolarizationfactors
which can take into accountlocal field effects. It was shown that the effect of eddy currentscan be
includedwith an effective magneticpermeabilityof the medium arising from the inducedmagnetic
dipole momentsof the small particles;this leadsto an extra term in the absorptionwhich becomes
important for particles largerthan about5 nm. The size dependenceis different for very smalland for
largerparticles:Proportionalto d°when eddy currentscan be neglected,andproportionalto d3 for
largerparticles.

3.5.4. Static electricsusceptibility
In their original paper[4], Gor’kov andEliashbergpredicteda strong enhancementof the electrical

polarizability of a system of small metallic particles if the applied electric field E is not too big
(eEd~ 8). They foresaw technical applications in the form of artificial dielectrics with large and
controllable dielectric constants.However, in two different sets of experimentson small metallic
particlesdispersedin a glassmatrix, no such anomalouseffectswereobserved[169,170]. The reasonis
discussedin section3.4: Not the polarizability a, but the susceptibilityx

0 hasbeencalculated,as the
effect of the depolarizingfield of the inducedelectricdipole momentwas not takeninto account.The
expressionfor the polarizability of a smallparticle is given in eq. (3.65). For a very big particle,with
perfectscreeningof the externalfield as in the bulk metal, the susceptibilitytendsto infinity, andone
getsthe familiar resultof classicalelectrostatics:a = ~ird

3.When the quantumsize effect is takeninto

E(r)/E
0

r~1

d
— 8.2 ~ classical

rid
Fig. 3.15. Theresultsof aselfconsistentcalculationof theelectric field E(r) inside a metallicparticlewhen theeffectof theThomas—Fermiscreening
length is taken into account(full curve),and theclassicalresultwherethe interior of theparticle is perfectlyshieldedfrom theappliedelectricfield
E0. The electronicdensityparameterr~is relatedto themeanelectronicdensity n by r, = (3ni4ira~°,and theBohr radiusaB is 0.053nm. (From
Rice, Schneiderand Strässler[106].)
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account,thepolarizability of a smallparticle is slightly smallerthan that of the correspondingmetallic
particle [107]. As X~~ 1 the difference is very small: For a gold particle of diameter 10 nm with
S 0.1meV, a is roughly 1% smaller than the classical value, whereasthe erroneouslysupposed
enhancementof the polarizability would be a factor of the orderof 300.

If the Thomas—Fermiscreeninglength of the electrongasbecomescomparableto the dimensionsof
the particle, the assumptionof a spatially uniform electric field inside the particleis no longer true, as
can be seenin fig. 3.15.The polarizationof the particleis then determinedby this varying internalfield,
andhasto becalculatedselfconsistently.This problemhasbeentreatedin detail by Rice,Schneiderand
Strässler[106],andCmi andAscarelli [42].

3.5.5. Staticmagnetization
As discussedin section3.5.1,NMR experimentsarevery well suited to studythe susceptibilityof the

conductionelectronsand to look for QSE. However, the contributionfrom the unpairedelectron in
“odd” metallic particleshasnot beendetectedunambiguouslyby NMR techniquesdueto the fact that
the size distributiontendsto smearout the volume susceptibilityassociatedwith the polarizationof this
single electron.Under favourableconditions,the presenceof odd particles is noticeableonly in the
deformationof the resonanceline of particleswith an evennumberof electrons.Obviously,it is of great
interestto do an experimentwherethe particleswith an odd numberof electronsmanifestthemselves
in a moredirect way, andwherethe non-uniformityof size doesnot to a largeextentmasktheexpected
effects. The simplest experimentto study the “odd” caseis the measurementof the static mag-
netization.If SIkT~ 1 and~0/28H< 8, the contributionof the evenparticles to the magneticmoment
vanishes,whereasthe odd particlesbehaveas if eachhada single free electronspin.

Measurementsof the dc magneticsusceptibilitycan be usedto studythe appearanceof theMeissner
effect in small superconductingparticlesas well; this will be discussedin somedetail in section4. Akoh
and Tasaki [171]measuredthe susceptibilityof small vanadiumparticles (d > 9 nm) and observeda
Curie—Weiss type contribution to the paramagneticsusceptibility which increasedwith decreasing
particle size, proportional to the fraction of surfaceatoms and which they thereforeattributed to
magnetic moments arising from localization of 3d orbitals at the particle surface. Magnetization
measurementshavealsoprovedto be a powerful tool for the studyof the superparamagneticbehaviour
of small, single-domain,ferromagneticparticles.

Only in very few investigationsthe dc magnetizationhasbeenused to look for quantumsize effects
in the susceptibility of the conductionelectrons[172—174].Most workers favour the electron spin
resonancetechniquewhich is much more sensitivethan conventionalsusceptometers.However, in
magnetizationmeasurements,the magneticfield can bevariedatwish, andthereforeat temperaturesof
about 1 K it should be possibleto observesaturationeffects of the magnetizationof the conduction
electronsin magneticfields B < 10 T, easilyaccessiblewith standardsuperconductingmagnets.Marzke
and coworkers [172] have measuredthe susceptibility of 2.2nm diameterplatinum particles. The
sampleswere preparedfrom platinum hydrosolsand were stabilized using gelatin. Below 20 K the
susceptibility obeyed a T’-law correspondingto approximatelyone spin on every two particles.
However,the magnitudeof this contributionseemsnot to be compatiblewith relatedCESRmeasure-
ments[157].Meier and Wyder measuredthe magnetizationof indium particlesembeddedin paraffin
[173,1741.The indium metalwas evaporatedinto a flow of helium gas andthe aerosolso obtainedwas
passedthroughmoltenparaffin.Theparaffin actedas a filter andan appreciableamountof theparticles
was trapped,well separatedfrom eachother.The magneticmoment of the sampleswas measuredby
meansof avibratingsamplemagnetometerin the temperaturerangefrom 4.2 to 1.5K, andin magnetic
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fields up to 5 T. In this temperaturerange,the magnetizationwasfound to be only weaklytemperature
dependent(as comparedto a T°-law).After subtractionfrom the data of a negative contribution,
linearly dependenton the magneticfield B, andbelievedto bedue to the diamagnetismof the paraffin,
a paramagneticcontributionto the magri’~tizationwasfoundwhichwas a strongly non-linearfunctionof
B and which saturatedat temperaturesof =4K at fields of approximately2 T [174].Attempts to
explain the observedmagnetizationwithin Kubo’s modelof free spinsweredoomedto be unsuccessful
becausethe data did not scalewith the parameter/.L~BIkT.It was suggestedthat the relatively low
saturationfield of the paramagneticpart of the signal could bedue to largeorbital momentaassociated
with the nearly spherical boundaryconditions, imposed on the statesof the electrons.This high
symmetry introducesa very strong degeneracyof the electronicenergy levels. In a more elaborate
discussion,van Gelder[175]was able to modify this simplemodel to includethe observedtemperature
dependence.The degeneratelevels of the Zeemanmultiplets are now assumedto be split up in a
randomway as a result of randomperturbationsfrom perfectsphericity.When the remaininglinear
dependenceon B for high fieldswas subtractedfrom the calculateddata(aswasdonein theexperiment
of Meier and Wyder) curvesas shown in fig. 3.16 were obtained.Fig. 3.16bshowsthat van Gelder’s
theory can give a good description of the experimental results. Separatemeasurementsof the
magnetizationat77 K did not show any non-linearityin themagnetizationcurves,in agreementwith the
theoreticalmodels.

1.5 K
400 - OK

200 200 K

B(tesla)
Fig. 3.16. Calculatedmagneticmoment of small sphericalparticles as a function of temperature.For the calculation it wasassumedthat the
appropriateeigenfunctionsof theelectronsarethesphericalharmonicswith largeorbitalquantumnumbers;furthermore,arandomcontributionto
theHamiltonianwasconsideredto take into accounttheeffectsof deviationsfrom theidealsphericalsymmetrydueto e.g. roughnessof theparticle
surface.The experimentalresultsof Meier and Wyder areindicated in (b) by the dashed line and they seemto be in good agreementwith the
calculatedcurves,which wereobtainedaftersubtractionof the linear part of themagnetizationfor fieldsabove2 teslafrom thecurvesgiven in (a).

(From Van Gelder[175].)
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Nevertheless,it was the generalfeeling that theseexperimentaldataprovidedonly avery restricted
basisfor conclusionsregardingthe presenceof quantumsize effects. More detailedinformation about
the transitionto bulk-like behaviour,aboutthecorrelationof theobservedeffectswith particlesize,and
the temperaturedependenceof the effect over a much wider rangewas badly needed.For measure-
mentsof this type a very sensitiveandversatilemagnetometerwasconstructed[176],andrecently the
magnetizationof indium particleswas measuredover an extendedrangeof temperatures(2.5 to 300 K)
andwith improvedsensitivity [176,177].The temperaturedependenceof the magnetizationof samples
containing indium particles embeddedin paraffin was found to be a function of /.L~BIkT,in dis-
agreementwith van Gelder’stheory and the earlier interpretationof the experimentaldata. Typical
magnetizationdataarepresentedin fig. 3.17, the full curverepresentsthe effectivemomentcalculated
from the occupationprobabilitiesof a spin S= 1 Zeemantriplet, the datacorrespondto five seriesof
measurementsas a function of T at different values of B. After subtractionof the temperature
dependentcontributionm1(BIT), alinear function of B wasleft, andthis contributionwas attributedto
the (field independent)diamagneticsusceptibility of the sample. In only a few of the samples,the
remaining contribution was a strongly non-linear function of B. But after subtractionof the linear
function observedin the high field limit, a temperatureindependentcontributionwas obtained,which
saturatedat fields well below 1 T andwhich wasattributedto a contaminationof the samplewith very
small piecesof iron. In the earlier experimentsby Meier and Wyder [174]such contaminationshave
probablybeenmistakenfor a small particle effect, as the different contributionsto the magnetization
could not be discriminatedin the very limited temperaturerangeavailable.

As an orderof magnitudeestimate,one can comparethe volume susceptibilityassociatedwith one
unpairedspin in aparticle of volume V0 (~‘= p~o~a~IkTV0) with the Pauli spin paramagneticsuscep-
tibility (Xp = ~oi~p(sm)).As the quantumsize parameterS scaleswith N

1, andhencewith V~1,one
obtainsfor indium particlesin this regime:x 6.8x 10_6SIkTx hasbecomecomparablewith the bulk
Pauli susceptibilitywhen the latter starts to deviatefrom the normal bulk value as a resultof QSE
[3, 105]. The paramagneticsusceptibilitywill dominatewhen V

0T <4.2x 10_25m
3K. Therefore,QSE

in ( i/I
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Fig. 3.17. The magneticmoment of a collection of small gas-evaporatedparticlesof indium embeddedin paraffin as a function of BIT The data
representtheresultsof five seriesof measurementsat different valuesof theappliedmagneticfield; for eachvalueof B, anasymptoticvalueof m
for T-+ ~ was determinedand subtractedfrom the experimentaldata. The magnetizationclosely follows a curve which representsa common
Langevin function characterizedby a spin quantumnumberS= 1. (From Perenboom,WyderandMeier [1771.)
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will occur in indium particles smaller than 6 nm at temperaturesapproaching1 K. The measured
paramagneticcontribution mi(BIT) was a few ordersof magnitudebigger than expectedfor a single
spin per particle,andwas attributedto oxygen trappedin the paraffin matrix. Therefore,it hadto be
concludedthat no quantumsize effectshavebeenobservedin smallindium particles[177].

4. Superconductivityin smallparticles

The problemof superconductivityin smallparticlesattracteda greatdealof interestovermanyyears
[178].We will not discussthe very importantsurfaceeffectswhich aremoreaccessiblein smallparticles
than in bulk material (e.g. electron—electroninteractiondueto surfacephonons[179]),but again in the
spirit of this paperwe will concentrateon questions,where the smallnessof the superconducting
particle is essentialin order to lead to new effects such as size effects, QSE, magneticproperties,
thermal fluctuations,andon the questionof a lower size limit for superconductivityitself.

4.1. Characteristiclengthsof superconductors

Three characteristiclengths,relevantin superconductors,can be comparedwith the dimensionsof
the particles [180]:The penetrationdepth A, characterizingthe spatial penetrationof a magneticfield
into a superconductor;the coherencelength ~, characterizingthe spatial “variation of superconduc-
tivity” as measuredby the superconductingorder parameterzi (r); and the coherence length ~A of

Pippard, characterizingthe non-locality of the electrodynamicresponsefunction with respectto the
vectorpotentialA. In addition, theproblemsof a discontinuousenergylevel structure(QSE)haveto be
consideredin small superconductorsas well. These characteristiclengthscan be calculatedwith the
BCS microscopictheory of superconductivity[181]and the more modernversion thereof[182].In an
impure superconductor,the Pippardcoherencelength is approximatelygiven by

1/5~A = 1/~+ 1/! (4.1)

where I is the electronic mean free path and ~o = 0.l8hvF/kTC (vF: Fermi velocity, T~:critical
temperature).Obviously, ~ I if I ‘~ ~ In the Ginzburg—Landauapproximation [183], i.e. for
temperaturesT closeto T, ~(T) is given by

T 1/2

~a(T)_~~~O(T_cT) (l~’4~) (4.2)

or

T 1/2~4(T)~(~OlTT) (l<<~~). (4.3)

For the penetrationof a magneticfield in asmall superconductor,an effectivepenetrationdepthAe~can
be defined.For the dirty case,the BCS theory [181]leadsat T= 0 to

— I / \1/2 ,..~ j
‘
teff’tL~, 0/ .4) 1tL~ oft)
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whereAL = (mI~one2)U2is the London penetrationdepth definedin the conventionalway in termsof
the propertiesof the pure normal metal [180] (m and e denote the mass and the charge of the
conductionelectrons,and n their densityperunit volume). Apart from anumericalfactor which is 0.86
at T~,a correspondingrelationis valid for T>0. If the particleis cleanso that I ~ ~ A > d, whered
is the particlediameter,the non-localityof the electrodynamicsmustbe takeninto accountandonegets

Aeff = AL(~o/d)t12. (4.5)

For most superconductors,theseintrinsic lengthsAL and~ are of the orderof a few hundrednm.

4.2. Magnetizationof small superconductingparticles

Surprisingly enough,thereexist very few investigationson the magnetizationof small superconduc-
ting particles,althoughmagnetizationmeasurementsshouldgive a considerableamountof information
on the more thermodynamicpropertiesof small superconductors.Most of the magneticmeasurements
on small superconductorsare simple determinationsof T~by monitoringthe susceptibilityin order to
study the sizedependenceof superconductivity[184].

If the size of the superconductingparticle is small comparedwith the penetrationdepth Aeff,
accordingto the Ginzburg—Landautheory [180]a secondorder phasetransition towards the normal
stateis to be expectedin a magneticfield [185];thereforeall superheatingor supercoolingeffectswill
disappear.From a pure phenomenologicalpoint of view, the magneticpropertiesof a small super-
conductorcan be describedby a Londonequation[186]:

V?B=BIA2. (4.6)

Here, dueto the non-locality of the electrodynamicsandthe field dependenceof the penetrationdepth
A, an appropriateAeff hasto be usedas sketchedin eqs. (4.4) and (4.5). For a sphereof diameterd in a
uniform field B

0, the solutionof (4.6) (expressedin polar coordinatesandwith the direction of the field
as the axis of reference[186])is given by:

d ~ Ad sinh(r/A) [ I r\ A]r � ~-. B. = ~B0r
2 sinh(d/2A)~coth~) — —j cos0

B
9 = ~ [coth(~-)_~- (i+~)] sin0 (4.7a)

~ =0

r > ~: Br = [B0+ 2~om/4in-
3]cos0

B
9 = [—B0+ p.om/4irr

3] sin0 (4.7b)

=0

where:
~T 3/ 6A fd\ 12A2\

= —--~-B
0d~l~-cothk~)+~,). (4.8)
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The leading factor —(irI4)B0d
3 is equalto the magneticmoment inducedin a perfectly diamagnetic

sphere.Eq. (4.7b) showsthat the field outsidethe sphereis the original one togetherwith that of the
inducedmagneticdipole momentm. For the magneticmomentperunit volume M, onehas

M 6A /d\ 12A2
(4.9)

where

= — ~B
0. (4.10)

For smallparticles,eq. (4.9) reducesto

(d~A). (4.11)

When wetakeinto accountthe size dependenceof the Londonpenetrationdepth,given in eq. (4.5), we
can rewrite this relationas:

M1 d
3

M
060A~0~ (4.12)

On the basisof this simpleLondon theory (eq. (4.6)) it is possibleto makean estimateof the critical
magneticfield of a small superconductingparticle. If the magnetostaticenergyrequiredto expel the
field from the interior of the sphereis equalto the superconductingcondensationenergy,the particle
exhibits a first order phasetransition into the normalstate.Fromthe condition that theseenergiesare
equal,the critical field of a smallparticle(d 4 A) is given from the London theory as

H = \/60H~(AJd) (4.13)

whereHB is the thermodynamiccritical field of the bulk material.
It is well known that this London approach is inadequate,as it does not take into account

non-linearitiesin the responseof the superconductorto the static magneticfield. These can most
appropriatelybe includedwith the helpof the celebratedGinzburg—Landauequations(for an excellent
analysisof theseequationsseee.g. ref. [180]).

If, accordingto Ginzburg—Landau,the order parameterzi characterizingthe superconductingstate
variesspatially,the minimizationof the free energydensityof the superconductorleadsto the following
equation,usingthe conventionalnotation[180]:

~—~--~(—ihV—2eA)
24(r)+aLi(r)+ b~(r)l2.i(r) = 0. (4.14)

The phenomenologicalconstants114m*, a and b can either be relatedto quantitiesaccessibleby
experiments(like the thermodynamicbulk critical field HB, the Londonpenetrationdepth AL, andthe
coherencelength ~4), or can be calculateddirectly from the microscopictheory of superconductivity.
Thegaugeof the vectorpotentialA(r) hasto be chosenappropriately,andthe boundarycondition
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n (—ihV4 — 2eM)= 0 (4.15)

hasto be fulfilled, wheren is the vectornormal to the surfaceof the body.
In fields somewhatbelow the critical field H~of the superconductingparticle, the superconducting

phasehas to have a small value of the order parameter,i.e. zl —~0if H-+H~(secondorder phase
transition).Therefore,eq. (4.14)can be linearizedwith respectto zi, andoneobtains

~4~~~(_ihV_2eA)2z1= Iakl (4.16)

whereA denotesthe vectorpotential of the uniform externalfield B for zl = 0, when the particleis in
the normalstateandtheexternalfield is undisturbed.Eq. (4.16)hasthefamousandwell knownform of
the Schrödingerequationfor a particle of mass2m * andcharge2e in a magneticfield, with at as the
energyeigenvalue.Therefore,the problemamountsto the determinationof the lowest eigenvalueof
this Schrödingerequation.In the limit of a small particle (d 4 AL), this can be done by perturbation
theory, using the magnetic field as a perturbationand ~i(r) = constant as the unperturbedwave
function. For the uniform field B, the vector potential can be taken as A(r) = ~BX r; this gauge,
togetherwith the spatiallyconstantorderparameter,satisfiesthe boundaryconditionsat the surfaceof
the particle,i.e. n A = 0. In first orderperturbationtheory, the lowesteigenvalueis given by

E0 = .~J~~~B2r2sin20 dV= 40* B
2d2 (4.17)

where0 = 4 (B, r). When the magneticfield is decreased,superconductivitywill reappearin the small
particleat a field strengthgivenby the conditionE

0 = at. Rewriting the phenomenologicalconstantsof
the Ginzburg—Landauequationin termsof the Londonpenetrationdepth,onegetsfor the critical field
of a small superconductingspherein the Ginzburg—Landauapproximation

H~= \/8OHB(AJd). (4.18)

As expected,this result is slightly higher than the result of the simpleLondon theory given in eq.
(4.13).

It hasto be realizedthat evenfor very small superconductingparticleswithout any Meissnereffect
thereexistsa theoreticalupperlimit for the critical field H~this is the so-calledparamagneticlimit of
Clogston[187].The condensationenergyof a superconductori~Fhasto belargerthanthe differencein
the paramagneticenergybetweenthe normal and the superconductingstate: L~F> ~/Lo(XN — xs)H

2
(XN,s: magneticsusceptibilityin the normalandsuperconductingstate).Neglectingorbital contributions
to the susceptibility, and assumingzero susceptibilityin the superconductingstate,one getsfrom the
BCS theory ~HrnaX(O) = 1.841’~T.

4.3. Microscopictheoryofsmallsuperconductors

4.3.1. Basicequations
The more moderntreatmentsof the generalmicroscopictheory of superconductivityare basedon

the Gor’kov equations[182]. In this approacha superconductorin an external magnetic field is
describedby the following set of coupledequations:
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(ihw~— .F~)G(r, r’, w~)+ ~i*(r) F(r, r’, w,,) = Il S(r — r’) 4 19)

(ihw~+~*)F(r, r’, w~)+~(r)G(r, r’, w~)= 0. (

In these equations,G and F are the usual temperaturedependentGreen’s functions; for finite
temperatures,the Matsubarafrequencieshw~= (2n + 1)irkT guaranteethe properFermi statistics..F~is
the full electronHamiltonian measuredfrom the chemicalpotential,andincludesthe interactionof the
electronswith boundaries,with impuritiesandwith the magneticfield. H differs from i4” by the sign of
the magneticfield. In the usual bulk superconductor,the exchangeof phononsleads to an effective
attraction betweenelectronsclose to the Fermi surface. This interparticle potential is usually ap-
proximated by an attractivedelta function with strength g >0; the singular nature of this potential
occasionallyleadsto spuriousdivergent integralswhich will be cut off at the Debyefrequency.The
equationsof motion (4.19)haveto be solvedtogetherwith the self-consistencyequation

~(r) = gF(r, r) = (gkT/h)~ F(r, r, we). (4.20)

At this point, it should be notedthat the all importanteffectiveattractionbetweenelectronsdueto
phononsmay be drasticallydifferent in small particles. Low frequencyphononscannotexist in a fine
particlebecauseof its limited size; Rothwarf[188]haspointedout the possibilityof enhancementof T~
in fine particlesdueto this low frequencycut-off. On the otherhand,from a moremicroscopicpoint of
view, the decreaseof the numberof nearestneighbouratomson the surfacecausesa decreaseof the
force constantandtherefore the averagephonon frequencybecomeslow [184,189]. Of course,if the
relevantmechanismfor superconductivityis not only the electron—phononinteraction but if surface
phononsor other surfacepropertiesare involved as well, drastic effects can be expected in small
particleswherethe surfaceto bulk ratio is so favourable[179,190—192].

In the following, we will concentrateon superconductorswhich are small comparedwith the
magneticfield penetrationdepthandwith the coherencelength,but the dimensionsof the systemsare
still largein comparisonwith interatomicdistances.In principle, such a superconductorhasthe same
propertiesas a bulk sample,as longas it is not locatedin amagneticfield. However,the behaviourof a
small sample in a strong magneticfield has someinteresting features:the gap in the oneparticle
excitation spectrum vanishesat a certain value of the field, while the other propertiesof the
superconductingstateareretained;with increaseof the field, a secondorderphasetransitioninto the
normal stateoccurs.The magnitudeof this critical field dependson the dimensionsof the sample and
on the concentrationof impurities. In our discussion,we will follow a methoddue to Larkin [193].

If the magneticfield is zeroandthe superconductoris still largecomparedwith interatomicdistances,
the order parameterz~doesnot dependon the size of the superconductor.This can be shown by
expandingthe Gor’kov relations,eqs. (4.19), in termsof the eigenfunctionsof the Hamiltonian

(4.21)

With the expansions

G(r, r’) = a~. ~I’~(r)i/i~.(r’)

F(r, r’) = ~ b~’t/IA(r) t/i~r’) (4.22)
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a straightforwardcalculationleadsto

F = h2w2+~f~~2(r) t~(r)tfrA(r)
A (4.23)

G— ‘~ 1h~~+~A ,*I \ (I

If it is now assumedthat ~i is a constant,the self-consistencyeq. (4.20)leadsto

1i(r)= (gkTlh) ~ I~rA(r)J
2h2 2 2 (4.24)

nA ~‘-1n
kol<~oo

If the dimensionsof the systemarelargecomparedwith interatomicdistancessothat zl is muchlarger
than the distancebetweenlevels, the summationin eq. (4.24) is carriedout over a large numberof
states.The rapidly oscillating parts in t/IA(r)12 then cancel out and this term can be replacedby the
average,equal to 1/V (V: volume of the particle). The assumptionthat z~is not dependenton r is
thereforevalid. The summationover A can be replacedby an integralover the energy~ in the usual
way,

(4.25)

wherep(e~) is the densityof statesat the Fermi level. Eq. (4.24) becomes

1 = (gkTlh)lTp(EF)~ (h2w~+ ~2)_1/2 (4.26)

which is the usualwell known result for bulk superconductors[182].Thereforeone concludesthat (in
the absenceof a magneticfield) the propertiesof small superconductors,which are still large on an
atomicscale,aredeterminedby the densityof statesat the Fermi level andby the interactionconstant
g, and arenot dependenton the dimensionsof the system,or the form of the boundaryconditionsat
the surface,or the concentrationof impurities.

4.3.2. Smallsuperconductorsin a magneticfield
4.3.2.1. Pure superconductor.If a pure small spherical superconductorwith specular boundary

conditionsis placedin a magneticfield, the componentof the angularmomentumalongthe direction of
the magnetic field is conserved.The operatorsH and H* of eqs. (4.19) have thereforethe same
eigenfunctionsbut differenteigenvalues:

= (~A— ~LH)I/’A Hifr = (~A+ pH)I/!~. (4.27)

Here, ~ = ~o(e/2m)L,where p~/~andL are the componentsof the magneticmoment and angular
momentum,andH is the magneticfield. Again expandingeqs. (4.19)in termsof theseeigenfunctions
Il/A, onegets
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F— G—— ihwn+~+p’H 428
- (hWn - i/1H)2 + ~2 + ~ 2’ — (hw~— i~H)2+ ~2 + zl 2 (.

Using thesesolutionsin the integralequation(4.20) onegets

1 = (gkT/h)lrp(EF) [(ho.~— i/LH)2 + zi2]_1/2) (4.29)

Here,the brackets(. . . .) denoteanaverageover all stateswith differentvaluesof ~ lying on the Fermi
surface. Becauseof the still large dimensions of the system, on an atomic scale, one can use
quasi-classicalformulasfor the angularmomentumandthe level densityin the averagingprocess:

/2H = /.Lo(e/2m)H (p xr) = /.LQ(e!2m)pFrHcosa. (4.30)

PF is the Fermi momentumof the electron,r the radial position anda = 4(H,PF).

We will now concentrateon the case of zero temperature.Then it is necessaryto replacethe
summationover the frequenciesWn in eq. (4.29) by an integral. In order to normalizeeverythingto the
superconductorwithout a magnetic field, the coupling constantg can be written, by using the BCS
relation, as

g~= p(SF) ln(2hwDI~1o) (4.31)

where
4i0 is the order parameterin zero magneticfield and hwD the relevantphonon energy.The

integralequationfor the orderparameterleadsto an integralof the type

J F(w) dw = I ((w — i~H)+ i(~
2+ ~ 2)112)((w— i~H)— i(~2+ ~ 2)1/2). (4.32)

On evaluationof this integral, two different caseshaveto be considered,dependingon the positionof
the poles.If

,.~cosa (e/4m) PFdH< (~2+ ~j 2)1/2 (4.33)

or, by defining a field

H
1 = (4m/~Oe)L1O/pFd= 3.26H~(Add) (4.34)

if H � H1, one can displace the integration contour by i~sH;then the integral is no longer field
dependentandonegets

~i(H)=~10 forH~H1. (4.35)

Physically, thismeansthat the magneticenergy,.LH for H � H1, is not yet strong enoughto breakany
Cooperpairs.For higher fields, i.e. if H � H1, the integralequationbecomes
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ln(A/zlo) = ~1{ln(xu + {(xu)2 — 1}h/2) — (1— (xu)2)112}u(1— u2)112du (4.36)

where x = Hz1
0/H14. It follows from this equationthat z.1 (H) goesto zero at a critical field H~in a

secondorderphasetransition.Eq. (4.36) can be solvedanalyticallyandone gets

H = ~e~’~H1= 2.57H1= 8.40H8(AJd). (4.37)

This critical field for a smallsuperconductingparticle, ascalculatedfrom the microscopictheory,can be
comparedwith the resultsfrom the phenomenologicalapproach,eqs. (4.13) and(4.18).

The excitationspectrumis given by the poles of G, if w~—~ —iw, leadingto

(4.38)

while the densityof statesis given by

p(w) = ~ S(e,,— 11w). (4.39)

The energygap hwg in the excitationspectrumis given by the statewith the largestvalueof j.t in eq.

(4.38),andone gets

hWg= ~1~(1 — H/H1). (4.40)

Thanksto the powerful methodsof Green’sfunction techniques,it is possibleto calculateexplicitly all
relevantphysicalquantitiesas magneticmoment,Knight shift etc. within the framework of this model
of a puresuperconductingparticle [193].

4.3.2.2. Superconductorwith impurities. If the superconductingparticle containsnon-magneticim-
purities, it is possible to averageeqs. (4.19) with respectto the randomposition of the impurities in
exactlythe sameway as in the caseof an infinite medium[182].This resultsin a renormalizationof the
frequencyw andof the gapparameterzi in termsof a relaxationtime T = I/VF, where I is the meanfree
path and Vff the Fermi velocity [194].Again, this procedureis justified as long as the dimensionsof the
samplesarelarge comparedwith interatomicdistances;the correctionswhich ariseareof the orderof
(pFdIh) for a small sphereof diameterd.

In exactlythe sameway as in the caseof a pure superconductingparticle,the critical field f-Ia for a
secondorder phasetransitioncan be found by putting LI (H) = 0. In the limiting caseof a very short
meanfree path(14~) thiscan be doneanalytically [194],andonegetsat zero temperature

H~= 2.43H1(~0/l)”
2= 7.92HB(AL/d)(~o/l)~2 (4.41)

which can be comparedwith the critical field of the cleancaseas given by eq. (4.37).The intermediate
cases,0< 1 <x, haveto be evaluatednumerically [195].Fig. 4.1 showstheoreticalcalculationsof the
critical field for a small superconductingsphereas a function of the bulk meanfree path,for specular
reflection of the electronsat the boundary.
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Fig. 4.1. The critical field at zero temperature,calculatedfor a small sphereas a function of thebulk meanfree path 1 measuredrelativeto the
coherencelength ~, underthe assumptionof specularreflection of the electronsat the boundaries.The normalizationfield H, is given by
H, = (4m/pse)iio/p,~d= 3.26HB(AL/d),whereH~is thebulk critical field, AL theLondonpenetrationdepth,andd theparticlediameter.Thedashed
line indicatesMaki’s analytical solutionin the limit of a small meanfree path.(From StrOsslerandWyder [1951.)

More microscopicproperties, like the density of one-particlestatesp(w) or the electrodynamic
responsefunction u(w),can be calculatedfrom thismodelwith the usualformalismin astraightforward
way. It hasbeenpointed out by Maki [194]that in the limit of 1 —~0 the theory of a superconducting
particlein a magneticfield is equivalentto thecelebratedtheory of asuperconductorwith paramagnetic
impurities of Abrikosov and Gor’kov [196] if n/ne (where n is the concentrationof paramagnetic
impurities, and n~the critical concentrationfor which the metal is no longer superconducting)is
replacedby (H/H~)2.The casesof finite meanfree pathshaveto be evaluatednumerically [195].As a
typical illustration, fig. 4.2 shows theoreticalcalculationsof the density of statesof a small super-
conductingparticle in different magneticfields for several valuesof the meanfree path. The gap as
function of the field is shownin fig. 4.3, againfor differentvaluesof the meanfree path as measuredby
the coherencelength ~. It is interestingto note that the field Hg at which the spectrumof excitations
first becomesgaplessis given by

Hg/He = 0.954 for l/~~—*0 (4.42a)

Hg/Hc = 0.389 for l/~~—~ci~. (4.42b)

In the latter caseHg is equalto H
1 asdefinedin eq. (4.34) (cf. eq. (4.37)).

Unfortunately,no realquantitativeexperimentson small particlesexistwhich would allow to test in
detail thesetheoreticalpredictionson the microscopicpropertiesof small superconductors.Tunneling
measurementson thin films by Millstein and Tinkham [197]seemto be in good agreementwith this
theory,althoughthe theoreticalresultsarestrictly valid for smallparticlesonly.
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Fig. 4.2. The normalizeddensity of statesp(~)IpNas a function of Fig. 4.3. The normalizedenergygap h~/A

0of a small superconduc-

energyhw for a superconductingsmall spherein a magneticfield H, ting particle in a magneticfield H, calculatedfor different values of
calculatedfor different meanfree pathsat zerotemperature.PN is the the meanfree pathat zerotemperature.H~is thecritical field of the
density of statesin the normal phase,H~is the critical field of the small particle and4~is thebulk BCS orderparameterat H = 0 and
small particle,andAs is thebulk BCS orderparameterat H = 0 and T = 0; 1 is measuredrelative to the coherencelength 5c5~ (From
T = 0; 1 is measuredrelative to the coherencelength ~ (1: 1 = 0; 2: Strässlerand Wyder (1951.)
= (ir/1O)~o;3: 1 = 1r~54: 1 = (lOir)~o;5: 1 = ~). (From Strässlerand

Wyder [195].)

4.3.2.3. Trajectory method. In the calculation of the critical field H~by expandingeqs. (4.19) in
eigenfunctionsof the Hamiltonian H, it was implicitly assumedthat the electronsare specularly
reflectedat the boundariesof the particle.De Gennesand Tinkham [198]havediscovereda method
which allows to calculate critical fields for the more realistic caseswherethe electronsare scattered
diffusely at the boundaries.

This methodstartsfrom the Gor’kov relations,eqs. (4.19) and (4.20), as well. It is assumedthat
the order parameterLI is spatially uniform, and that there is a secondorder phasetransitionat I-1
(LI (H~)—*0). The linearizedGor’kov relation,valid for LI —*0, is given by

LI *fr) = (gkTIh) ~ Jdr’ G(r, r’, w~)LI *(rl) G(r, r’, —wa) (4.43)

where G(r, r’, w) is the Green’sfunction of the normal material.The kernel of this integralequation
can be expressedin termsof one-electroncorrelationfunctionsin the normal state[199].Explicitly one
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gets

G(r, r’, w)G(r, r’, —w)= 27rp(SF)VJdte2~tf(r,r’, t) (4.44)

where V is the samplevolume and

f(r
1, r2, t) = (exp(~J A . dl ö(r(0) — r1) ô(r(t) — rs))) (4.45)

where P~= h/2e is the flux quantum.The integral in this equation,

~(t) = 2~ ~2A•dI (4.46)

is takenalongthe classicaltrajectory linking the points r1 and r2 in a time interval t. Eq. (4.45) is valid
only if the magneticfield is so weak that the electrontrajectorycan be consideredas a straight line, i.e.
the curvatureradiusmustbe largecomparedwith the coherencelength ~. In a gaugewhereLI is real
andconstant,onegets for the integral equationdeterminingH~(T)

1 = 2lrkTp(rF) g ~ Jdt e
2I~0ht(e~t)). (4.47)

The average(....) is takenover all initial positionsand all initial orientationsof the velocity for one
electronin the sample.Theproblemis now reducedto thestudyof all classicalone-electrontrajectories
in the normal state.

As discussedin detail by deGennesandTinkham[198],two typesof magneticbehaviourhave to be
distinguished:

caseI: lim (e~°~= � 0 (4.48a)

caseII: lim (e~°) = exp(—t/TK). (4.48b)

Here, i~ and TK are functionsof the appliedfield H, and the subscriptK makesreferenceto the time
reversaloperatorK (cf. section3.3.2).

In caseI, eq. (4.47) takesthe usual BCSform [181]andone gets

kT(H)= l.l4h~exp{—1/pfrF)g?J(H)}. (4.49)

Therefore,caseI leadsto a conventionalsuperconductor,exceptfor the fact that the couplingconstant
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p(e~)g~(H) is a decreasingfunction of the appliedfield H; the transitiontemperatureT~remainsfinite
at all fields but becomesexponentiallysmallfor small i~(H). A similar resulthasbeenfound by Nambu
andTuan [200,201] usingmoreconventionaltechniques.

If the exponentialdecaylaw of caseII is alreadyobeyedat the times t of interest,one gets

1 = 2lrkTp(EF)g ~ 2 1/ (4.50)
W TK

and thisleadsto

ln(T~,))= ~ (4.51)

T~0is the transitiontemperaturewithout a field, T~(H)the transitiontemperaturewith the field, and ~P
is the di-gammafunction defined by ‘P(z) = F’(z)IV(z). TC(TK) decreaseswith decreasing TK and
vanishesfor

1/TK = 1.76kT~/h. (4.52)

Eq. (4.51) is identical to the result for the critical temperatureof a superconductorwith paramagnetic
impurities [196].

A simpleexampleof caseII is asmallparticleof dimensiond muchlargerthanthe meanfree path 1.
Note that in this casethe conditionthat LII is constant,imposesanupperboundon d; for largervalues
of d the orderparameteris not spatially uniform any more,and superconductivitynucleatesat a field
H~2wherethe nuclei havea size of the orderof [~0l(T~0/(T~0— T))]”

2. Therefore,we musthave

T 1/2
l<d<(~0lT c0T) (4.53)

allowing only a rathernarrowrangeof d. From the point of view of the trajectories,the electronwill
haveexplored all regions of the sampleat a time t. The phase4(t) is thereforethe sum of many
uncorrelatedincrementsandonehas

(e’~’~)= e_<~2(~>/2= e_r/TK (for t � r = I/vF) . (4.54)

Carrying out the detailedcalculations,onegets

= ~T(~_~_~)(A2(T)). (4.55)

Here,r is a transportmeanlifetime, andthe average(.. .) is over thevolume of the sample.As usualin
this sort of problems,the choiceof the gaugein eq. (4.55)is imposedby the conditionof LI = constant.
By inspectiononefinds for a sphericalgrain of diameterd in a uniform field

A=~rxB (4.56)
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anda valueof

KA2) = B2d2/40. (4.57)

A nearlyequivalentresulthasbeenobtainedby Maki [194]through an approximatedirect solutionof
the Gor’kov relations,eqs.(4.19) and (4.20).

For a small particle with few imperfections(1 ~‘ d), it is important to define how the electronsare
scatteredat the boundary.If thisscatteringis specular,onefinds thesituationof caseI; thiscaseis more
transparentlytreatedusing Larkin’s method as discussedin section 4.3.2.1. If the scatteringof the
electronson the surfaceis diffuse, thereis again a non-zero randomincrementin phasebetween
successivecollisions on the surfaceandthe behaviourcorrespondsto caseII. The correspondingTK is
now given by [198]

= ~ vFd3 . (4.58)

This leadsto a critical field at T = 0 of

H~(0)= 13.7HB (AL/d) (~
0/d)

1’2. (4.59)

Comparingeq. (4.59)with eq. (4.41), valid for a finite meanfree path 1, we seethat the two resultsagree
if we definean “effective” meanfree path l~= 0.34ddueto the diffuse boundaryreflection. The diffuse
boundarycondition acts like an additional scatteringmechanism,as is well known from size effect
studies.Therefore,the theoreticalresultsfor critical fields for differentmeanfree paths(calculatedfor
specularreflection of the electronsat the boundaries)can be usedfor the caseof diffuse scatteringas
well, if the meanfree path is properly adjusted.

4.3.2.4. Experimental investigations.Unfortunately, not very many quantitative experimental in-
vestigationsof the theoreticalrelationsdiscussedin section4.3.2 do exist. Up to ratherrecently, the
only detailedexperimentalstudiesdealt with the magnetic propertiesof superconductingmercury
colloids and were done by Shoenbergand collaborators[202,203]. Due to the lack of appropriate
theories,theseresultswere interpretedin a more qualitativeway, usingthe sort of London theory as
sketchedin section4.2, combinedwith a Gorter—Casimirtwo fluid model. The advancesof the more
microscopic theory have triggered new experimental investigationsof the magnetizationof small
superconductingparticles [204,205]. Fig. 4.4 showsthe magneticmomentobservedby Morozov and
coworkers[204]on a collection of small tin particlesat temperaturesbetween3.57K and3.09K. The
full curvesrepresentthe theoreticalprediction,basedon Ovchinnikov’s [206]straightforwardextension
of Larkin’s modelas discussedin section4.3.2.1. In the theoreticalcurves,the measuredparticle size
distributionshaveproperlybeentakeninto account.

Probablythe most interestingexperimentalinvestigationson the critical fields of small superconduc-
tors havebeen carriedout by Zeller and Giaever [207,208]. They preparedtunnel junctions which
containsmallSn particlesembeddedin the oxide barrier, andby measuringthe tunnelingcharacteristic
of thesejunctionsthey were able to measurethe critical fields of the small Sn particles.For particles
with a diameterd > 20 nm, their experimentalresultsare in good agreementwith eq. (4.41) or (4.59),
with properdefinition of the meanfree path. However, for particleswith d <20nm, the critical field
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Fig. 4.4. Magneticmomentm of acollectionof isolatedtin particleswith ameandiameterold = 130 nm asafunction of themagneticfield. The full
curvesrepresenttheresult of theoreticalcalculations,basedon an extensionof Larkin’s microscopicmodel, andtaking into accountthe measured
particlesizedistribution.(From Morozov,Naumenkoand Petinov [2041.)

goesup muchfasterthanthe theory predicts(seefig. 4.5). No indication of the Clogstonparamagnetic
limit, asdiscussedin section4.2, was found, as the smallparticleswerestill superconductingin fields of
10 T at 4.2K, while the Clogstonformula would give for Sn a maximumcritical field of ~aoH~’

t(0)=
6.8T. It is possiblethat the paramagneticlimit is muchhigher than predictedby the simple BCS theory
dueto the non-vanishingKnight shift, as indicatedby Wright’s [209]measurements.However,it should
be emphasizedthat this drasticincreaseof the critical field with decreasingparticlesize is unexplained
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Fig. 4.5. Critical field H, asafunction of the inverse averageparticle diameterdJ for small superconducting tin particles, embedded in the oxide
layer of a tunnel junction, asmeasuredby tunneling. The field was appliedparallel to the plane of the tunnel junction. The symbol between
parenthesescorrespondsto a conservativeestimate.(From ZellerandGiaever[2071.)
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as yet; the effect is probably not relatedto QSE, becausetheseeffects (asseenin gapmeasurements
with tunneling[207,208]) only startshowingup for muchsmallerparticles,when d � 10 nm (seesection
4.3.3).

4.3.3. Quantumsizeeffectsin smallsuperconductingparticles
If the superconductingparticlesaregettingsosmall that moremicroscopicdistancescomeinto play,

it is to be expectedthat the basicprinciples for superconductivityitself are influencedby size effects,
andthe questionarisesif thereexistsa lower limit in size for particlesstill to be superconducting.For
suchvery smallparticles,not only the electronicpropertieswill be influenced,but the phononspectrum
(consideredto be responsiblefor superconductivity)will certainly be changedas well [210,211]; in
addition,becauseof the favourablesurfaceto volume ratio in small particles,also possibleelectron—
electroninteractionvia surfacephononsor othersurfaceeffectsshouldbe considered[179,212]. Here,
wewill concentrateon the influenceof the particlesizeon the electronsystemonly.

It hasbeenconjecturedby Anderson[213]sometime ago, that the usualCooperinstability will not
exist any moreandthereforesuperconductivityshoulddisappearif the small superconductingparticles
are in the quantumsize effect regime with the energydifference betweentwo discrete one electron
statescomparableto the energygapof the superconductingstate(Andersoncriterion).This meansthat
small superconductorswith fewer thanabout10~to 10~electronsshouldbe affectedby this effect.

This question is relatedto theoreticalstudies by Blatt and Thompson[214,215] on thin super-
conductingfilms. These authorsusedelectronic wave functions which are spatially quantized,per-
pendicularto the planeof the film, to performthe BCS pairing. Due to this size quantizationin one
direction one gets sharp and pronounced“shape resonances”in the order parameterLI of the
superconductoras a function of the width of the slab.This quantumsize effect hasbeenobservedwith
tunnelingexperimentson tin by Komnik, Bukhshtaband Man’kovskii [216].The relevantsituationin
smallparticleshasbeenstudiedby Shapoval[217],andin greaterdetailby Parmenter[218].

As usual, one has to start from the Gor’kov relations, eqs. (4.19) and (4.20). The transition
temperaturecan be found from the self-consistencyequation

LI (r) (gkT/h)~ F(r, r, w) (4.60)

where the bulk cut-off frequencyw ~
0D (WD: Debye frequency)will be used.Again using Larkin’s

[193] method of expandingthe Gor’kov equationsin terms of the one-electronnormal stateeigen-
functionstfrA of the Hamiltonian,eq. (4.24)can be usedto study the influenceof QSEon superconduc-
tivity:

LI(r)=(gkT/h) ~ I~(r)I2~2 LI 2 LI2~ (4.61)
nA ~0n

Substitutinga constantvalueof the orderparameteron the right handside,onegets

LI (r) = gp(eF)ln ~ eY)LI (IIl’A(r)l) (4.62)

where e7 = 1.781. The squareof the wavefunctionIi//A(r)I is averagedover all statesnearthe Fermi
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surface;whenboundaryeffectsareneglected,this averageis equalto 1/V, as discussedin section4.3.1.
If boundaryeffectsaretakeninto account,IIIA(r)!2 hasto decreasenearthe boundaryof the particle

over a distanceof the order of the de Broglie wavelengthof the conductionelectrons(1~=h/PF) andit
vanishesat the surfaceof the sample.As theintegralof IIA(r)I over thevolume of the particleremains
the same,the meansquareinside the sampleis increasedto

KIIl/A(r)I) = (V— a 11S/pF)1 (4.63)

whereV andS arethe volume andthe surfaceof the sampleanda a numericalconstantof orderunity.
Shapoval[217]arguesthat, in addition,the Fermi levele~= p~I2mis shifteddue to thepresenceof the
boundaryconditions; the effective volume, i.e. the region accessibleto the electrons is now, in
accordancewith eq. (4.63), smaller by an amountailS/p. This leadsto a shift of the Fermi momentum
PF given by

PF P5

/ a \2 2

J ~ljv)P d~=j p dp (4.64)

wherePois the Fermi momentumin the bulk material.Therefore

p = po(i — ahS/2poV) (4.65)

wherePo is the densityof statesfor a sampleof infinite size.If both theseeffectsaretakeninto account,

an effectivedensityof statescan be introducedby

Peff = P~ltl/AI2)V=po(i + ahS/2poV) (4.66)

which can be interpretedas a densityof statesnearthe Fermi surfacedivided by an effectivevolume.
The final equationfor the transition temperature~ for the smallparticle can now be written in the
BCSform as

1 = gpeff ln~ eY) (4.67)

and from this one gets the increase~T of the transition temperaturecomparedwith the transition
temperature7’,, of the bulk materialas

~iT ailS /211WD -~\
T=2Vln~kTe ). (4.68)

For smallparticlesof ordinarymetalswith dimensionsof the orderof 10 nm, this formula predictsan
increaseof 10 to 15% in the critical temperature.

Using the samesort of ideas, Parmenter[218] has calculated,in addition to the transition tem-
perature,the energygap of a small particle of a superconductorin the QSE regime. A small
superconductingcubewith cubeedgeL is studiedwithin the framework of the usual BCS theory,and
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nowinsteadof the continuousone-electronenergyspectrum,the discreteQSE-spectrumis used.Sums
of the form ~k 14r(k) can be rewritten as

~ t/i(k) = (~~)3 ~ J t/i(k) exp(—i(v k)L) d3k (4.69)

where

p = e~,z.’.+ e~v~+ e~v~ (4.70)

e, beingthe unit vectorsalongthe coordinateaxes,and i.’,~beingany integer,positive,negativeor zero.
Eq. (4.69) can be evaluatedby an applicationof the Poissonsum formula. For a bulk superconductor,
all the termsin the summationover v are negligible,exceptfor ii = 0. As the particle size is reduced,
the terms in eq. (4.69) with finite representthe correctionto the BCS theory due to the QSE. The
geometryof a cubeconsideredhereleadsto the well known artificial degeneracy,all termswith ~ 0
will havesinusoidalphasesthat changerapidly as a function of LpF/h. For valuesof L in the orderof
tensof nanometers,it seemsreasonableto assumethat this rapid variation with changein size is an
artefactof the highly symmetricalgeometryof the cube,and that thereforethey can be averagedwith
respectto this rapid changeof phasein the various sumsover k, as they appearin the usual BCS
expression.The rest of the calculationsis straightforwardand follows closely the conventionalBCS
method.Accordingto Parmenter[218],the QSE leadsto correctionsto the BCS resultsin a sensethat
formally the weakcoupling limit goesover into a strongcoupling limit. Following thesecalculations,it
is possibleto introducea characteristiclength dA [218],definedby

dA = (h2~)/p~’3 (4.71)

where~ is the Pippardcoherencelengthat T= 0 and h/PF the de Broglie wavelengthof the electrons
at the Fermi surface.For dimensionsd � dA, QSEshould comeinto play. Essentially,dA is againthe
dimensionof a small particle where the Anderson relation is fulfilled: The order parameterof the
superconductoris equalto theQSEenergylevel splitting,LI = 5(d4.This typeof QSEin theproperties
of smallsuperconductorscan thereforebe expectedif thediameterd of the smallparticleis comparable
to dA:

d dA. (4.72)

As an example, one gets dA 6 nm for aluminium. It seems not unlikely that observationsof
T,,-enhancementin granular films [190—192,219—223] can be explained on the basis of this sort of
theories,although real quantitative comparisonsbetween theory and experiment are missing, and
changesin the phononspectrum(suchas surfacephonons,changesof the phononspectrumdueto the
size effect,etc.) should be consideredas well.

It should be noted that, in the usual BCS-form of the free energy,many-electronwave functions
appearwhich are not eigenfunctionsof the total electron number. This might conceivably lead to
problemsin very small systemsthat contain few conductionelectrons,and where only a few one-
electronenergylevelsarepresentin the energyrangewherethe BCS-pairingoccurs[224].



J.A.A.J.Perenboometa!., Electronicpropertiesof smallmetallicparticles 249

Markowitz [225]hasstudiedtheoreticallysuperconductivityin small particlesin relationwith charge
fluctuations.This approachis relatedto Kubo’s considerationaboutchargeneutrality in normal-state
QSEsystems(seesection3.2.1).To havemaximumcorrelationenergyin asuperconductor,the phaseof
the superconductorshouldbe a constant.However,dueto the uncertaintyrelation,this constantphase
producesinfinitely large fluctuations in the relative number of electrons;on the other hand, for
electrostaticreasons,a uniform chargedensitydistribution would be energeticallymost favourable.
Since the superconductorcannot have both maximum correlation energy and minimum Coulomb
repulsion energy, the two have to be optimized. For small isolated particles, this Coulomb term
becomesimportant; it was calculatednumerically by Markowitz that one should get occupiedsinglet
statesin the ground stateof a small superconductingspherewith a diameterof about 100nm, and
superconductivityshould be destroyedwhen the particlesbecomesmaller than 20 nm, becauseof this
Coulombrepulsionterm.Obviously,thistypeof theory can only be appliedto systemsof smallparticles
wherethe small particlesarehighly isolatedfrom eachotherso that chargeexchangeis prohibited.

From an experimentalpoint of view, the situationaroundthe existenceof QSEin the propertiesof
small superconductingparticles is not very transparent.There seemsto be a generalagreementthat
ultimatelysomesizeeffect will quenchsuperconductivity;it is hardto imaginethat a beadconsistingof
ten atomsshould still be a superconductor,simply becausethereare not enoughelectronsleft. There
can be no doubt that in this size region the usualbulk theory of superconductivitywill lose its meaning;
the questionof a lower size limit for superconductivitydependsthencrucially on the definition of
superconductivityitself. In addition, it is obviousfrom thermodynamicsthat the transition from the
normal to the superconductingstateis washedout if the condensationenergybecomescomparableto
the thermalenergykT [207,208], i.e. if

0H~V~kT~ (4.73)

whereH,, is the bulk critical field and kT,, is the condensationenergyof a single electron.Obviously,
dueto the intimate relationshipof the order parameterLI, densityof statesp, critical temperatureTc,
critical field H,,, volume of the sample V = ~ird~,and OSEparameter8, the criterion eq. (4.73) is again,

asin eq. (4.72),equivalentto statingthat superconductivityshoulddisappearif the energygapis equal
to the QSEenergysplitting (Andersoncriterion [213]):

LI~6. (4.74)

This meansthat at low temperaturesthe thermalfluctuationshaveto be eithersmall comparedwith the
condensationenergyfor large particles,or with the QSE electron level spacingfor small particles.
Therefore,at low temperatures,the particleshould be eithersuperconducting,or in the QSEregime.

The classicalexperimentson small superconductingparticleshavebeencarriedout quitesometime
agoby Shoenberg[202]on the magnetizationandby Reif [226]on the Knight shift in superconductors.
Although in both studiesthe particle size was in a regime,where Markowitz’s electrostaticeffects
shouldbe important,no sucheffectshavebeendetected.Apart from magneticfield effects,all of these
resultscan be discussedmainly in the framework of the usual theory of the bulk superconductor.
Despite quite some intensive and careful work (mainly on I’,,, H,,, and NMR in small particles
[116—120,125, 126,128, 184]), no coherentpictureof the experimentalsituationseemsto emerge.The
most beautiful andinterestinginvestigationsinto the microscopicpropertiesof small superconducting
particles havebeen carried out by Zeller and Giaever [207,208]. They havestudied small metallic
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particlesof Sn in the size rangeof 5 nm ~ d � 200nm. The experimentalarrangementwas suchthat the
Sn particles were evaporatedonto the insulating oxide of a tunnel junction; the Sn agglomerated
into smallparticles,andby carefully controlling the oxidation process,the spacebetweenthe particles
was filled with a ratherthick oxide which embeddedthe particles inside the tunnel junction. Contact
with the particleswasonly madeby electrontunneling.Most of theelectronsflowing acrossthe junction
tunneledinto andout of oneof theembeddedparticles.As the transmissioncoefficient was of the order
of 10_b, the particlescan beconsideredasbeinginsulatedfrom the film electrodesandfrom eachother.
This ingenioustechniquedoes not only allow to check if a particle is superconductingor not (i.e. to
measurethe critical fields of smallparticles,see section4.3.2.4), it is alsopossibleto measuredirectly
the energygapof the superconductorwith tunneling(fig. 4.6). For Sn, the Andersoncriterion of eq.
(4.74) leads to a critical diameter dA 5 nm, while the charge fluctuations of Markowitz should
influence the superconductivebehaviour for d � 100nm and should destroy superconductivityfor
d 20 nm (Markowitz’s calculationsapply for completelyfree particlesandshouldbe modified for this
case,since the Coulomb interaction is screenedby the oxide in which the particlesare embedded).
Zeller and Giaeverhavefound that the energygapin smallSn particlesis only slightly increasedfrom
the bulk value, andalmostsize independentdown to a particlediameterof d 10 nm. Particleswith a
diameterbetween6 and 10 nm still showa gap,but the gapis smearedout and not much information
could be extractedfrom the measurements.Fig. 4.7 showsthe measuredsize dependenceof theenergy
gap comparedwith Parmenter’scalculation based on the QSE; it is obvious that the Parmenter
mechanismcan be ruled out as the dominantmechanismfor particleswith d> 16 nm. The experiments

d?I - -(arbitrary units ) ~ —

- d~=2~nm

~l3nm

18222.630
V) mV)

Fig. 4.6. Sizedependenceof theenergygap A in small superconductingparticles.The figure showsthesecondderivatived
21/d V2of thetunneling

characteristicof tin film junctions,with tin particlesof anaveragediameterd,. embeddedin theoxide layer.For thedifferent curves,thezeroof the
verticalscalehasbeenoffset in stepsof oneunit. Junctionswith particleswith adiameterd,. <6nm did notshowanystructurewhichcouldbeattributed
unambiguouslyto anenergygap.(From Zeller and Giaever[208].)
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Fig.4.7. ZellerandGiaever’smeasurementsof theenergygapA of small superconductingparticlesasafunction of theaveragediameterd~.of the
particles.The measurementswere done by tunnelingon tin film junctions, with the tin particles embeddedin the oxide layer. The solid line is
calculatedfrom Parmenter’stheory basedon QSE; in thesecalculations,thedimension,for which thespacing5 betweentwo QSE energylevels
becomesequalto the bulk energygapA

5~,u,is assumedto be d = 5 urn. (From Zeller andGiaever[208].)

by Zeller and Giaevershow that superconductivitypersistsin particlesdown to the size given by the
Andersoncriterion dA; a lower size limit for superconductivitycould not yet be determined.In the
tunnelingcharacteristicof particleswith d <6 nm, no structurewhich could be attributedto an energy
gapwasobserved.This doesnot necessarilymeanthat such particlesarenot superconducting,it can be
explainedby a smearingout dueto a strongsize dependenceof the energygap.The Markowitz charge
fluctuation mechanismcan be ruled out (which is probably not too surprising since the Coulomb
interaction is partially screenedby the matrix in which the particlesareembedded),andthe Parmenter
QSE seemsnot to explainthe resultsin quantitativelysatisfactoryway. However,thereis no doubt that
somethingvery interesting happensto the superconductivityof particles with a size d sdA; the
propertiesrelatedto superconductivitystart changingdrasticallyas can be seen from the increasing
energygapand the unexpectedhigh riseof the critical magneticfield with decreasingparticlesize (see
section4.3.2.4).

4.4. Fluctuationsin small superconductingparticles

As the characteristiccorrelation length given by eq. (4.2) or eq. (4.3) is rather long, the ther-
modynamicfluctuations in superconductorsare generallyquite small; in most cases,the transition
temperature7’,, can be consideredto mark a sharp dividing point between “normal” and “super-
conducting”behaviour.However,in smallparticlesthe smallnessof the dimensionsof the particleswill
drasticallyreducethe coherencelength ~, and fluctuationsshouldbe visible very clearly. An excellent
review on the whole field of fluctuations in superconductorshas been published by Skocpol and
Tinkham [227].Therefore,herewe will limit our discussionto the essentialpoints only, relevant to
smallparticles.

As the moderntheoryof superconductivityis a meanfield theory,the basicproblemson fluctuations
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can mostclearlybe seenin the well knowntextbooksolutionsof the Ising model [228,229]. As the final
resultsare independentof the specific structureof the Ising model, they can be used for almost all
secondorder phasetransitions,including superconductivity.We will follow closely Strässler’smasterly
tutorial [230]on theseproblems.

The Ising modelessentiallydescribesa very anisotropicferromagnetin which only thez-components
of the spins are coupled. Let the spins at the lattice point r be denotedby o~.;eachffr can takethe
values+ 1 or —1. Thenin the usualdimensionlessunits, the Hamiltonianis given by

ft = —~ B(r)o-~— ~ jr—r’crrtrr’ (4.75)

wherethe first term representsan interactionwith an externalmagneticfield B(r) which is allowed to
vary with r for mathematicalreasons.The secondterm representsan attractiveinteraction between
spins,andcontributesan energy Jr~r’if the spinspoint in the samedirection or +Jr_r’ if theypoint in
oppositedirections.In the meanfield approximationthe problemis reducedto the behaviourof one
single spin in the averagedeffectivefield:

Beff = B + (o) (4.76)

where (...) denotesthe thermodynamicalaverage.The magnetizationof a spin in an effectivefield is
thengiven by

= tanh(Beff/T) (4.77)

which solves the problemwithin the mean field approximation. In order to study the influenceof
fluctuationson differentphysicalquantities,oneusuallyintroducesthe “randomphaseapproximation”
as a trivial generalizationof the meanfield approximationby allowing spatial variation of the effective
field:

Beff(r) = B(r)+ ~ Jr-r’K~~r’). (4.78)

Just as in the mean field approximation,also with this procedureall correlationsbetweenspins are
neglected.Nevertheless,it is now possibleto calculatein first approximationthe influenceof fluctua-
tions on various thermodynamicquantities. This can most clearly be illustrated by calculatingthe
specific heatin zerofield:

~ (4.7 )

With the helpof the randomphaseapproximation,eq. (4.78), it is possibleto calculate

______ = {(cTrur’)— (0r)(tyr’)} (4.80)
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which allows to write the specific heat as

C=Co+Cco,rr (4.81a)

whereCo and C,,01.. aregiven by:

C0 ~jr_r’~~rrXcTr’) (4.81b)

Cr01.1. ~~Jr-r’~ ~ B=0 (4.81c)

As canbe seenfrom eqs.(4.81c)and(4.80), C,201-1, measureshow muchthe spinsfluctuatein acorrelated
way. If we limit ourselvesto temperaturesT> 7’,,, where

T,, = J = ~Jr-r’ (4.82)

onegetsimmediatelyfrom eq. (4.77) (a-) 0, which leadsin eq. (4.81b) to

C0(T)= 0 for 7’> T,,. (4.83)

Justbelow 7’,,, onegetsfrom an expansionof eq. (4.77) in termsof (1 — T/T,,) thewell knownfinite jump
AC0 in the specific heat,characteristicfor the meanfield theory.In this case,this gives

AC0(T,,) = ~N. (4.84)

The contributionC,,0~(for T> 7’,,), dueto the correlations,of the specific heatcan be calculatedfrom
eqs. (4.78) and(4.81c)by a Fourierexpansionof all quantitiesinvolved. One gets

CCOrT(T) = .~(q)~i~i(T —j(q)) for T> T,, (4.85)

wherethe summationwith respectto q goesover the first Bnllouin zone,and

J(q)= ~ J,~e~p (4.86)

In view of the applicationto superconductors,we choosethe following form for the interaction:

Jo Ir—r’I�~d
Jr-r’ = (4.87)

0 Ir—r’I>~d.

This meansthat within a sphereof diameterd, Z spins are coupledto the central spin; for a cubic
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latticewith latticeconstanta, onegetsfor Z

~ird3=Za3. (4.88)

For T � T,, andcloseto T,,, onegetsfor the correlationcontribution

C,,
0~(T)— 1 1.7 — 1.7 I 4 8

AC0 Z\/(T—T,,)/T,, ~ ( . 9)

whereE (T— T,,)/T,,. The temperatureregion s,,, where fluctuationsare important,can be estimated
roughly by putting AC0 = C,,0,,,; this condition leadsto e,, = 3!Z

2. As this result is independentof the
specific structureof the Ising model, it should be true for every meanfield theory. Applied to the
BCS-theoryof superconductivity,onehas

Z—~irnR~ (4.90)

whereR
0 is the rangeof the attractiveelectron—electroninteractionand n is the density of particles

whichinteractwith eachother.
For a superconductorwith a short meanfree path 1, onehasfrom eq. (4.3)

R0—=Vl~ (4.91)

while the Pippardcoherencelength 4~ is given by

~0=~0.18h VF/kTC. (4.92)

The densityof interactingparticlesis given by the electrondensitytimesthe degeneracykT,,/EF:

~PF/CTC (4.93)

This gives as the temperatureregion wherein a bulk superconductorfluctuationsshouldbe important:

(l)~ (~fl• (4.94)

Under the most favourableconditions,one can assumethat (lpF)/h = 10, and (pF~o)!h i0~,so that
10~.Therefore,it is not surprisingthat the BCS meanfield theory of superconductivityis in such

good agreementwith experimentsperformedon bulk superconductors.
In the caseof a small superconductingparticle, all dimensionsare small comparedwith R0 andthe

coherencelength. Therefore,fluctuationscannotvary spatially, and only terms with q = 0 can give a
contributionin eq. (4.85). The specific heatof a smallparticleis then given by

C,,~,.,.= ~(J(0)T,,/(T— T,,)
2) = (4.95)
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Again defining thetemperatureregion wherefluctuationscould be seenby putting C,,01..= AC0, onegets

= (1/3d
3n)~’~ (d ~ R

0), (4.96)

where d is the dimension of the particle. For a typical superconductorwith d 10 nm one gets
10_i. This meansthat fluctuationsshouldbe visible clearly in smallparticles.

These rather generalideashavebeenelaboratedby many workers [227]. It is obvious that in a
superconductorthereareotherpropertiesto bemeasuredwhich aremuchmoresensitiveto fluctuations
thanthespecific heat, like the resistivity; however,for a detailedtheoreticalanalysisof thesequantities,
the randomphaseapproximationhasto begeneralizedfrom equilibrium to dynamicproperties.

For equilibrium properties,Shmidt [231],Parkinson[232]andMühlschlegel,Scalapinoand Denton
[124] have calculated the contribution of fluctuations to the thermodynamicquantitieswithin the
framework sketchedherefor the Ising model. All theseauthorsstart from the Ginzburg-Landauform
of the free energyF, relativeto the normal state,and for a zero-dimensionalsmall superconductorof
volume V. F is thengiven by

F= (aILII
2+~bILII~)V (4.97)

where a = a
0e changessign at T,,; a0 and b are positive constantsapproximatelyindependentof

temperaturenearT,, and which can be calculatedfrom the microscopicBCS-theory,andLI is the order
parameter.a andb are relatedto the thermodynamicalcritical field H,,(T) by

= a
2/2b (4.98)

(see also our discussionof the Ginzburg—Landautheory in section 4.2). According to the standard
methodsof statisticalmechanics,the averagevalue of the squareof the order parameteris then given
by

J (LI (2 e_F~~kT

((LI(2)= (4.99)Je_F~~kT

where d2LI refers to the real and imaginary partsof the complex order parameterLI = (LI I e’4’. These
integralscan be solved analytically [124,231,232], andoneobtains

((LI 2) = (LI
0(

2 (i — -~ h(q)). (4.100)

(LI
0(

2 is the equilibrium value of the squareof the order parameter,and is given from eq. (4.97) with
6F=0:

(LI
0(

2 = —a/b I~I (4.101)

(notethat a = a
0e<0, for T< T,,), and



256 J.A.A.J.Perenboometa!., Electronic propertiesof small metallic particles

(4.102)
v 2ir erfc(—q)

where erfc(x) denotes the normal probability function and q = (a2/bkT)”2. In analogy with the
condition AC

0= C,,01.,, and following Skocpol andTinkham [227],a critical temperatureregion can be
definedwherefluctuationsshouldbe important,by putting the fluctuationenergykT,, equalto the free
energy(F0J

= kT,, (4.103)

which leadsto a critical region with a characteristicwidth

= (2bkT~/a~V)
1~’2. (4.104)

Thefirst termin eq. (4.100)gives theusualequilibriumvalueof (LI (2 obtainedby minimizing F, while the
second term describesthe fluctuations. These die away exponentially below T,,, and roughly as
(T — T~)1aboveT,,. Fig. 4.8 showsthe mean-squaremagnitudeof the orderparameteras a function of
the normalizedtemperature.

The most direct measureof ((LI (2) is the diamagneticsusceptibilityof a small particle. For aparticle
with a diameterd smallerthan the penetrationdepthand the coherencelength, eq. (4.1.1) leadsto a
diamagneticsusceptibilitygiven by

x—~j~ (d’~A,~
0). (4.105)

Following the usual interpretationof ((LI (2) as the averagedensityof Cooperpairs ((LI (2 n = ins, ns

<l~I
2>/~(~)

Fig. 4.8. Mean-square magnitude of the order parameter as a function of the normalized temperature for a small superconducting particle. 4~()e)) is the
mean field value of the order parameter. The dashed line indicates this mean field behaviour, where fluctuations are neglected, it is approached far from
T,.
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denotingthe densityof single electronsin the groundstate),the Londonpenetrationdepthis given by

1/A2= (p.oe*2/m*)((LI 2) (4.106)

wheree*, m* andn~thecharge,massanddensityof the Cooperpairs.Therefore,the susceptibilityis

x d2(ILI (2) (4.107)

This relation hasvery carefully beentestedexperimentallyby Buhrmanand Halperin [2331on small
single-crystalaluminiumparticlesusinga SQUID to measurethe susceptibility.Fluctuationeffects are
observedin the critical region and they are, properly scaled and averagedover the particle size
distribution, in excellentagreementwith the theoreticalpredictions(fig. 4.9).

In a similar way, it is possible to calculate the specific heat in the superconductingstate of
zero-dimensionalparticles[124,231,234—236].The specific heatis given by the thermodynamicrelation

= —-~32(F)/3T2 (4.108)

where(F) is theweightedaverageof thefree energyof eq. (4.97)over all valuesof the orderparameter.
Thishasbeendonein averybasicpaperby Muhlschlegel,ScalapinoandDenton[1241.Theresultsof their
calculationsfor the specific heat of small superconductingparticles in the Ginzburg—Landauapproach
are shownin fig. 4.10. In addition,Muhlschlegelet al. extendedthe microscopiccalculationsby taking

X (arbitrary units)
1.5-

Aluminium particles
o dettrBSOnm

10 - 2e~(o) • d~~99~~ d~j~51flfl1

0.5 I I2~Cl~]

0.92 0.95 1.00 1.06 1.08 1.12
T/r~

Fig. 4.9. Measured diamagnetic susceptibility of small superconducting aluminium particles with different mean particle size in the temperature
region around T,. The solid linesrepresent the resultsof the Ginsburg—Landau theory including fluctuation effectsand properly averaged over the
measuredparticle sizedistribution. The dashedlinesindicate the mean field behaviour below 1’,. The region 2e,(d),where fluctuations should be
present, is indicated by a horizontal bar for thedifferent particle diameters d

15. (From Buhrman and Halperin [233).)
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Fig.4.10. Calculatedtemperaturedependenceof thetotal specificheatC
1 of small superconducting particles normalized to the specific heat C,,N(TC)

in the normalstateat T1. 5= 5/kTr = 2/(p(EF)kT1).For a particlewith d 10 urn, onehasapproximately~= 1. (FromMOhlschlegel,Scalapinoand
Denton[124).)

into accountthe discretestructureof the one-electronspectrumin smallparticles.Usingthe equallevel
schemeas discussedin AppendixII, they employedthe functional-averagingmethodexplicitly usingthe
BCS Hamiltonian under QSE conditions. As usual, the pairing interaction is takenbetween time-
reversedstatesof theelectronsin the smallparticle.The relevantparameterof thissortof calculationis
the ratio of the meansingle-electronlevel spacingS to kT,,:

kT,, = p(EF)kT,,~ (4.109)

Note that this treatment of the QSE retains the influence of static fluctuations, becausethe full
functional integration is performed,in contrastto the results discussedin section4.3.3. Perhapsthe
most importantsmall-particleeffect is the restrictionto fixed electronnumbersas discussedin Kubo’s
treatmentof the QSE in section3.2.1; for superconductingparticles, whereelectronpairing plays a
major role, the restriction to fixed electron number may be even more important. Although some
studiesof this problemhavebeendone in the essentialwork of Mühlschlegel,Scalapinoand Denton
[124] by projecting the canonical ensemblefrom the usual grand canonical ensembleby meansof a
saddle-pointintegration,this problemis still openfor discussions.

In a set of beautiful experiments,TsuboiandSuzuki[237,238] havemeasuredthe electronicspecific
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heat of fine particles of Sn with an averagediameterranging from 25 to 220nm over a temperature
rangefrom 0.4T,, to 1.5T,,, in zeromagneticfield (fig. 4.11)and in fields up to 3 T. An ensembleof Sn
particlesinsulatedfrom eachotherby oxide layerswas preparedby depositingSnislandsin vacuumand
then oxidizing their surfaces,and this procedurewas performedrepeatedly(seesection5.2.3). The Sn
particleswere depositedat room temperature,and the averageparticle size was controlledby using a
well defined amountof Sn for oneshotof evaporation.Between20 and 200 layerswere used for the
different samples,andthe weight of the Sn particleswas of the order of 1 mg. The specific heat was
measuredby using an ac-temperaturecalorimetry technique,the contributionof the Sn particles to
the total heat capacityof the arrangementwas of the orderof 10%. As can be seen in fig. 4.11, the
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Fig. 4.11. Measured normalized difference (Cs—CN)/CN(TC) of the specific heat in the superconductive and normal staterespectively,for tin
particles with different diameters, as a function of the reduced temperature. The measurements are normalized to CN(TC) = yT1, with y =
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2 mol’. The ensemble of tin particles, isolated from each other by oxide layers, was prepared by depositing tin islands in vacuum

and then oxidizing their surfaces, repeatedly. (From Tsuboi and Suzuki (237).)
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measurementsof the “bulk” material (i.e. a Sn film preparedin the sameway as the particles)are in
good agreementwith the BCS results,documentingthe reliability of the experimentalmethod.As the
particlesizedecreases,the broadeningof the transitioninto the superconductingstateis enhanced,the
peakshifts towardslower temperatureanddecreasesin height.Theseeffectsshow clearly the existence
of a wide critical region of temperatureand are in striking, at least qualitative, agreementwith the
theoreticalpredictionsof Mühlschlegel,ScalapinoandDenton [124](fig. (4.10)).The broadeningof the
transitioninto the superconductingstateasmeasuredin magneticfields [238]is explainedby Suzukiand
Tsuboi by assumingthat the thermodynamicalfluctuationsdependon the magneticfield only through
the changeof T,,(H), at leastfor low fields; for increasingfields, the particle size distributionbecomes
the dominantfactordeterminingthe broadening.The temperatureand size dependenceof the critical
field seemsto be in good agreementwith the theory as discussedin section4.3.2.

Resultssimilar to the ones of Tsuboi and Suzuki [237] have recently been reported by Filler,
Lindenfeld, Worthington and Deutscher[239] on the heat capacity of granular aluminium films.
Granular aluminium consists of metallic aluminium grains with a particle size of the order of
d = 3 nm, embeddedin a matrix of aluminiumoxide. By changingthe depositionconditions,Filler et al.
were ableto producefilms wherethe normal stateresistivity changedoverthreeordersof magnitude.
They interpretthis increasein resistivity asthe resultof the presenceof an increasingamountof oxide
betweenthe grains,and thereforethe grainsbecomeprogressivelydecoupleduntil they areeffectively
isolated.Theseexperimentsshowthat as the resistivity increases,bulk superconductivityas described
by the transitionin the heatcapacitydisappearsgradually,againin goodqualitativeagreementwith the
predictionsof Mühlschlegel,ScalapinoandDenton[124].

All thesespecific heat experimentssupport the theoreticalconsiderationson fluctuationsin small
superconductingparticles.The fact that in theseexperimentsalmost no transition in the heatcapacity
remains for the smallest particles might indicate that the grains are no longer able to remain
superconducting,at least not in the thermodynamicBCS sense.This could then be interpretedas an
experimentalindication that superconductivityceasesto exist if the particlesare so small that d ~ dA

(seesection4.3.3). However, the behaviourof theseparticle-film systemsin the superconductingstate
might be influenced by the changein the mutual coupling betweenthe particles(percolationtype of
behaviour[240]) or the changedue to the oxide layer present.The many complicationsdue to the
influence of the changein the lattice vibrations or the surfacevibrations [241—243],as well as the
influenceof oxide overlayerson superconductivityshouldbe understoodandanalysedcarefully.

5. Preparation of small particles

In this section we will present a discussionof a number of techniquesused to preparesamples
containing small metallic particles. Small particle systemsinclude colloidal suspensionsof metals
(section5.1), discontinuousthin films (section5.2), gas-evaporatedparticlesandcluster beams(section
5.3), colloidal particlescontainedin photosensitiveglassesor othertypes of matrices(section5.4), and
metaldispersionsforced into the cavitiesof porousmaterials(section5.5). We do not discussthe purely
chemical methodsto producewell defined “molecular clusters” of which a large number hasbeen
describedin recentyears [244,245].

Froman experimentalpoint of view, the smallparticlesmustsatisfysevererequirementsin order to
give meaningful results. Their sizes must be very small and well defined: Dependingon the type of
experimentand the characteristiclengths involved sizesdown to 1 nm are required,while the size



J.A.A.J.Perenboometa!., Electronicpropertiesof sma!! metallicparticles 261

distributionmust beas narrowas possible.In manyexperiments,adeconvolutionof the datais possible
when the size distribution is known; for other experiments,the size distribution must be extremely
narrow: e.g. in section3.5.3 it was shownthat the oscillationsin the far infrared absorptionspectrum
expectedfor the symplecticensembleareeasilywiped out by a small size distributionof the particlesin
the sample.Moreover,poor chemicalpurity of eitherparticles,their surfaces,or the supportingmatrix
will strongly influencethe relaxation times in magneticresonanceexperiments,or lead to spurious
signalsin measurementsof the magneticsusceptibility(e.g. seesection3.5.5).

5.1. Metalcolloids

A very simple systemfor the studyof quantumsize effectsis a suspensionof submicronsizecolloidal
particles.Chemistshavedevoteda large amountof work to the study of colloidal systems,andwell
definedprescriptionsareavailablefor quite a lot of materials:A reducingagentaddedto a solutionof
metal ions causescondensationin the newly formed supersaturatedsolution of metal atoms. By a
properchoiceof concentration,temperatureandreducingagentit is, in somecases,possibleto produce
submicronsize particlesof well defineddimensions.Many hydrosolsarestableas a resultof the action
of anelectricdoublelayerof ions surroundingthe particles,andwhenprotectiveagents,such asgelatin,
areadded,thesuspensionsareevenstableon dehydration.

In 1964 Doremus[21]studiedthe opticalpropertiesof gold hydrosols;soonthereafterMarshall and
Wilenzick [246]publishedresultsof the determinationof the Mössbauerrecoil free fraction for gamma
ray absorptionof colloidal particles of gold. Superparamagneticpropertieswere studied using the
Mössbauereffect in samplespreparedfrom hydrosolsof iron, nickel, cobalt, or their compounds.
Svedberg’s method [247] was used by Tanner, Sievers and Buhnnan [158] to produce colloidal
dispersionsof lead andcopperparticles in acetone;in this case,the particles havebeenformed by
striking high frequencyarcsbetweenmetalchips, under a polar liquid. This method can be used for
manymaterials,but the size distributionobtainedis usuallyquite poor.

5.1.1. Noblemetalhydrosols
The colloidal systemswhich havebeenmost extensivelystudiedare hydrosolsof the noblemetals.

Turkevich,Stevensonand Hillier [248]preparedgold hydrosolswith different chemicalreagentsand
under different conditions.They succeededin growing colloidal gold particleswith a comparatively
narrow size distribution using the following recipe: Prepare950ml of a chlorauric acid solution
containing100mg gold; heat thissolutionto 80°Candadd,instantaneouslyandundervigorousstirring,
50 ml watercontaining 1% by weight sodium citrate. After five to ten minutesthe solution will get a
bluishgrey colour that turns into red. After an hour the solution is dark ruby-redandthe reactionis
completed.The hydrosolmaythenbe stabilizedby addingaprotectiveagent,as e.g. 250mg gelatin.A
typical size distribution for colloidal gold particlesobtainedin this way is given in fig. 5.la; the mean
particle size is d = 14.7±1.3 nm. Turkevich and coworkersfound that the spreadin particle size is
connectedwith a spreadin timeof theformation of nuclei.Therate of formation of the nucleidepends
on the concentration;the nucleationprocessseemsto be inhibited for a concentrationabovea certain
critical concentrationof nuclei.Thenonly the particlegrowth processwill continueuntil, by lack of gold
ions, the reactioncomesto an end.In fig. 5.lb the sizehistogramis given_fora solutionwith only 33%
of the concentrationsgiven above. The meanparticle size increasedto d = 19.1 ±2.1nm in this case.
Fig. 5.2 showsthe dramaticeffectsof heterogeneousnucleationon the width of thesize distribution;the
reducingagentwasaddedslowly to the chlorauricacid solution,drop by drop: Thenucleationprocessis
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Fig. 5.1. Size distributions for colloidal gold particles. (a) For a hydrosol preparedfrom a chlorauric acid solution with sodium citrate:
d = 14.7±1.3 nm. (b) For a hydrosol preparedas in (a), but the chemicalreagentswere more diluted: d — 19.1±2.1 nm. (c) Electron microscope
inicrographcorrespondingto the size histogram(b).
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Fig. 5.2. (a) A size distribution of colloidal gold particles showing clear effects of heterogeneousnucleation: d = 21.5±6nm. (b) Electron
microscopemicrographof thecolloidal particles.

not inhibited,andboth nucleationandparticlegrowth takeplacesimultaneously.Therefore,the length
of the aging time of the individual particlesis not very well determined.

Zsigmondy [162] showedthat larger particlesmay be obtainedby using a seedingtechnique:A
monodispersehydrosolpreparedpreviouslyis addedto a solutioncontainingthe metal ions, andthen a
reducingagentis added.Colloidal gold particlesof averagediameterup to 100nm werepreparedin this
way without degradationof the relativesize distribution [248].
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Smaller particlesmay be formed when the gold solution is reducedby using phosphorus.Particles
with ameandiameterd of 3.4mm anda size distributionas shown in fig. 5.3awereobtainedas follows:
350mg HAuCI4 was solvedin 1000ml waterandthe solutionwasneutralizedusing iN K2C0310 ml of
a saturatedsolutionof phosphorusin diethyletherwas then addedat room temperatureundervigorous
stirring. A suspensionof phosphorusparticlesis created,andon the surfaceof the phosphorusparticles
small gold clustersareformed which act as nuclei for the growth of the colloidal gold particles.After
two hours,the reactionis completed,the hydrosol can then be stabilizedwith 250mg gelatin solvedin
water; to remove all traces of phosphorus,it is necessaryto boil the solution for several hours,
preferablywhile passingthrough it a flow of filteredair.
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Fig. 5.3. (a)Sizedistributionfor colloidal goldparticlespreparedfrom anaqueouschlorauricacidsolutionwith asaturatedsolutionof phosphorusin
diethylether; d = 3.4 ±1.6 nrn. (b) Electron microscope micrographof thecolloidal gold particles.

Ion exchangeanddialysiscan be appliedto cleanthe samplesprior to dehydration,andit wasfound
that thesetechniquesdid not influencethe size distributionof the hydrosolsin a noticeableway.

The preparationof platinum colloidswas reviewedby Wilenzick et al. [249],and recently,Marzke
and coworkers [157,172] used thesetechniquesfor a study of the magneticpropertiesof platinum
particleswith a meandiameterof 2 nm.

5.1.2. Mercurycolloids
Shoenberg[202]and Whitehead[203]studiedthe magneticpropertiesof superconductingmercury

particles.Thecolloidal suspensionof mercurywasobtainedby addinga solutionof mercurousnitrate to
a solutioncontainingaprotectiveagentpreparedfrom eggalbumen;the reducingagentwas hydrazine.
The solutionwas thenacidified with aceticacid andthe protectiveagentcoagulatedand precipitated,
taking down all the mercuryparticles.Aging at room temperaturecausedan increaseof the average
diameter,probablydueto coagulation.

Meier [250]followed a recipeof Feick [251]:0.5ml of 0.5N Hg2(N03)2was dilutedwith 100 ml of a
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0.1% gelatinesolution andthis solution was slightly acidified; 0.iN Na2S2O4was added as reducing
agentand,dependingon the amountof reagentsused,sampleswith an averageparticle diameterwell
below 10nm could be prepared.It wasobservedthat the meanparticlesize of the colloidsdecreasedin
the courseof time, in accordancewith Feick’s observationthat the hydrosolswere lessstablefor bigger
particles.

5.2. Granularmetalfilms

The most versatile way of producing samplescontainingsmall metallic particles is doubtlessthe
methodof thermalevaporation.In this sectionwe will discusssometechniquesto preparethin layersof
finely dispersedmetalparticles.

5.2.1. Discontinuousthin films
It is well knownthat in the first stagesof growthof vacuumdepositedfilms manymetalstendto form

island-likestructures.As early as 1966 Doremus[23] usedthin discontinuousfilms of gold, evaporated
onto glass, for a study of the opticalpropertiesof small gold particles.Later Dupree,Forwoodand
Smith [1511,andMonot, ChâtelainandBorel [152]madeattemptsto observeconductionelectronspin
resonancein gold particles preparedby evaporationof a thin gold film onto sodiumchlorideand
amorphousquartz respectively.

Fromthe point of view of nucleationtheories[252],the physicalprocessesinvolved in the formation
of metalclustersin the initial stagesof thin film growth haveattractedmuch attention.Here, we take
the work of Schmeisser[253]as a startingpoint for the introductionof someof the conceptsused.

Schmeisserstudiedthe processof the formation of gold clustersby evaporationof gold onto (100)
cleavageplanes of a NaCI single crystal in an ultrahighvacuum. Substratetemperature,evaporation
rate and depositiontime were accuratelycontrolled, and theseparameterswere varied over a wide
range. The freshly depositedgold clusterswere stabilizedby covering them with a carbon film. The
substratewas then dissolved in water and the sample was studied under an electron microscope.
Measurementsof the size anddensityof the clustersweremadeusinga Quantimet720 imageanalysing
computerso thataconsiderableamountof information could be handledin an efficientway. In fig. 5.4
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Fig. 5.4. The size distribution of gold clusters deposited in ultrahigh vacuum onto (100) cleavage planes of a NaCI single crystal, for increasing
depositiontimes f. (From Schmeisser (253].)
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typical size distributionsare presented.These resultswere obtainedwith asubstratetemperatureof
600K, an impingementrateR = 4.2x 1017m2 ~ anddepositiontimesof 50 s, 100s and 150s. Under
theseconditions,the nucleationratewas 1.8x 1012m2 s~1.

5.2.2. A modelfor islandgrowth in thin films
Accordingto Schmeisser[253],the processof islandgrowth maybe describedas follows: The gold

atomsarriving atthe substratewill be accommodatedinstantaneously,but the meantime Te that sucha
single atom will remainon the substratebeforereevaporationis determinedby the binding forcesas

= To exp(Eb/kT). (5.1)

Here, r
0 is a characteristictime related to the vibrational spectrumof the substratematerial and

expectedto be of the orderof the reciprocalDebyefrequency(in the caseof NaCl: 1.7 x iO’~s); Eb is
the energyof binding to the surface;k and T are the Boltzmannconstantand the temperature,as
usual.In general,the thresholdenergyfor changingsites on the substrateEd is muchsmallçr than the
energyof binding Eb.Therefore,the single atomwill moveoverthe surfacewith acharacteristictime

1~d

beforeit eventuallywill reevaporate;Td is then given by

= rOexp(Ed/kT). (5.2)

Atoms migrating over the surfacemay join an alreadyexistingcluster and thereforecontributeto its
growth. If we consider the migration as a random walk problem and passover to the equivalent
diffusion equation,we find for the diffusive flux of atomsinto a clusterof radiusr:

dN— N
1 Ks(r/\/D’re) 5 3

- 2irrD \/DT~Ko(r/VDi~ (.)

HereN is thenumberof atomscontainedin thecluster,theclusteris assumedto beahemisphereof radius
r; K0 andK1 aremodified Besselfunctionsof thezerothandfirst order;N1 is theconcentrationof single
atomsatthe surface,and D is the diffusionconstant,given by

D = = ~- exp(—Ed/kT) (5.4)

wherea0 is the distancebetweenneighbouringsites.By introducingthe effectivecapturenumbercr(r)

as

K1(r/VDi-~)
cr(r)=2ir — — (5.5)

VDTe Ko(r/\/Di~e)

eq. (5.3) can be rewritten as

=o-(r)DN1. (5.6)t diffusion
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The differentialequationfor the numberof single atomspresenton the surfaceis now:

dN1!dt= R — NtITe oDN~N1. (5.7)

The first term on the right handside is the rateof arrival of new atomsto the surface,the secondterm
gives the loss causedby reevaporation,andthe third term (containingthe densityof clustersN~already
formed) takes into account the diffusion of single atoms into theseclusters. The value of the ratio
(0DNc)I(1/~e)is at most102 to 10~for the rangeof size andcoveragein theexperimentof Schmeisser,
so that the solutionof this differentialequationis given with sufficient accuracyby

N1 = RTe(1— exp(—t/T~)). (5.8)

As Te is typically as small as 10-ti s, eq. (5.8) reducesto N1= RTe.
The increaseof the numberof atomscontainedin a hemisphericalclustercan be written as

dN(r) — 1 dV — 2irr
2 dr 5 9

dt V
1dt V1 dt

where V1 is the volume of onesingle atom. The growth of a cluster is causedby addition of atomsby
surfacediffusion, as describedby eq. (5.6), but also by capture from the vapour phaseby direct
impingement

dN(r)/dt = tr(r) DN1+ irr
2R. (5.10)

From eqs. (5.9) and(5.10), andusingthe approximationleading to eq. (5.8), oneobtains

RV
1 — 1 r

2 dr 511

21TVDi~— (DT~)312~r(r) + irr2/Dre — ( . a)

or, in integral form, andwith the substitutionx =

r/v~J x2 dx= RVi~

o(x)+ 7rx2 2irVDr~

For the rangeof sizeconsidered(0 < r/\/Dr
5 � 1), this integralcan be approximatedby

1/v ~
I x

2 r2

2dx=0.044—. (5.12)
j 0(x)+lTx DT1

D’r~canbe found from eqs.(5.1) and(5.4), so that, finally, oneobtains

2 a0V1Rt fEb—Ed\r = 0.176 exp~2kT (5.13)
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Schmeisserhasfound completequalitativeagreementfor the maximumof the clustersizesobservedas
comparedwith the expressiongiven in eq. (5.13).The parametersusedwere:Eb — Ed = 0.38±0.06eV,
V1 = 17 x 10~°m

3, and a
0 = 0.4nm. R was varied from 0.45x 10~~to 53 x 1017m

2s~,and the
temperatureof the substratewas variedfrom 543 to 723 K.

Accordingto eq. (5.13), the particlediameterincreasesproportionalto the squareroot of the time,
and this would lead to a size distribution which is proportionalto the diameter,and for a constant
nucleationrate, the small size tails of the size distribution curvesshould fall together.From the size
distributions in fig. 5.4 we must thereforeconclude that the concentrationof very small clusters
decreasessystematicallyfor extendeddepositiontime. The third termin eq. (5.7) is too smallto account
for the observeddiscrepancy.Schmeissershowedthat coalescenceof clustersis possible,as a resultof
the mobility of the smallerclusters;then,the migration of clustersas a whole leadsto a decreaseof the
concentrationof the fastest clusters. Only after very long deposition times, the size distributions
developeda tail extendingtowardsthe large particle sizes, indicating that coalescencehadbecome
important. In that case,the log-normalsize distribution is appropriate[254].

Eq. (5.13) also indicatesthat the maximumcluster size is determinedby the total amount of metal
depositedRt. In addition,the particlesize maybe influencedby changingthe substratetemperature:At
higher temperature,but fixed evaporationrate, the nucleationrate decreasesso that lessparticlesare
produced; also, becauseof the temperaturedependentfactor in eq. (5.13), the averagediameter
decreasesand the overall efficiency of the metal depositionis drastically reduced.Increaseof the
evaporationrateat fixed substratetemperaturecausesa strongenhancementof the nucleationrate. In
the rangeof experimentalconditionsin Schmeisser’sstudy,no saturationwasobservedof the maximum
particlesize below the size determinedby eq. (5.13);it must thereforebe concludedthat the increaseof
the numberof particlesis compensatedby a reductionof the loss of atomsthrough reevaporation.For
some combinationsof metal and substrate,critical depositionrates are found (dependenton the
temperature)belowwhichno nucleationis possible,andbelowwhichno film growth is observed.This is
known to occurfor instancewith cadmium,zinc, mercuryandaluminium[255].

5.2.3. Preparationofsamples
The filling factor that can be achievedwith granularmetal films is obviouslyrelatively low, as aresult

of its two-dimensionalcharacter.Monot et al. [152]reportedthat they were able to store 45 cm2 of
samplein the cavity of the electronspin resonancespectrometer;this correspondedtypically to 2 x 1013
particles,well in excessof the limit of sensitivity of 1012 spins. Dupreeand coworkers[151]tried to
improvetheir signal to noiseratio by painting thin films of Durofix ontotheir samplesanddissolvingthe
NaCl substratein water. HammondandKelly [123]useda very thin mylar foil as a substrate,andsmall
particles were depositedby flash evaporation.Samplesfor NMR measurementswere obtainedby
stackingon top of eachotherseveralprecutpiecesof the metalcoveredmylar foil.

An evenbetter particle/substrateratio can be achievedwith the techniqueusedby Hinesand Knight
[122]:Mylar foil wasusedagain,but the metalparticleswereproducedby flash evaporationof a fixed
amount of metalafter which the particleswere coveredwith a layer of siliconmonoxide;by repeated
evaporationof metal, alternatedwith depositionof SiO, sampleswerepreparedcontaining60 layersof
tin particles,andsamplescontainingup to 130 layersof leadparticles.More recently,thistechniquewas
used by Yee and Knight [134] to preparecopperparticles. They deposited400 layers of copper
particles,separatedby siliconmonoxide,on amylar substrate;the mylar foil was finally folded overand
over into a smallpackageof a few mm diameter.

Zeller and Kuse [256] madesamplesconsisting of several layers of flash evaporatedtin particles
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which were isolatedwith alayerof MgF2, andTsuboi [257]madeinsulatedlayers, merelyby oxidizing
the particlesbefore the startof the nextevaporation.Recently,Bezotosnyiandcoworkersreportedthe
useof lasersfor the evaporationof metals [258]; with a laserpulse,very small amountsof metalcan
be evaporatedvery quickly andin a well controlledway. In this way particlescould be obtainedwhich
are significantly smallerthan the onesobtainedwith the conventionalthermalevaporationtechniques.

5.2.4. Granularmetalfilms
Quite a different techniquefor producingfilms with finely dispersedparticleswas usedin the early

investigationsof granular superconductors.Metal films evaporatedonto helium cooled substrates
showeda granularstructure,but thesethin films were unstableat higher temperatures.Cohen and
Abeles [259] havemadestablegranular aluminium films by evaporationof aluminium at a rate of
10 nm/s in a low pressurebackgroundof oxygen (106 to 5 x 10~Torr 02) onto substrateswhich were
both held at room temperatureor cooledto nitrogen temperature.Thepresenceof metaloxidesseems
to inhibit the formationof largergrainsin the depositedfilms and to preventcoalescence.Deutscheret
al. [260]observeda minimumof 3 nm for the averagediameterof the grainswith a substrateat room
temperature,andof 2 nm with nitrogencooled substrates.Under the latter conditions,the grain size
was not very stable.Tin grainswith a diametersmallerthan 7mm were foundwhentin was evaporated
in iO~Torr oxygen onto a substratecooled to 85 K [261].

Abeles and coworkers [262]preparedgranular films of a number of metals with the method of
cosputteringof metalsandinsulators.With this method,the volumefraction of metalcan be variedover
a wide range.Threeregimesmay be distinguishedin thesesystems:In the metallic regime, the metal
grains touch eachother and form a continuumwith dielectric inclusions;in the transition regime, the
dielectric inclusionsbecomeinterconnectedand form a mazestructure;and when the metal volume
fraction is reducedbelow the matrix inversionfraction (40% for gold andplatinum,60% for nickel), the
granular film is in the dielectric regime, where isolated metal particles are dispersedin a dielectric
continuum.This last regimeis well suitedfor numerousexperimentson smallparticles.Typical average
particle sizes are shown in fig. 5.5. It was found that the particle size was insensitive to the choice of
metalor dielectric,andthat it dependedonly on the volumefraction of metal.Moreover,the densityof
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Fig. 5.5. The average particle diameter versus thevolume fraction of metal,for a numberof granularmaterialspreparedby cosputteringof metal
and dielectric. (From Abeles, Ping Sheng, Coutts and Arie (2621.)
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particlesthat can beobtainedin suchgranularfilms is muchhigher thanin the caseof thin films with an

island like structureas discussedin section5.2.1.
5.3. Particlespreparedby the gas-evaporationtechnique

The methodof producingfinely divided particlesby evaporationinto a backgroundgasdatesbackto
the early 1930’swhenPfund madethe nowfamousandwell known metallic blacksof a seriesof metals
[263]: Fine particles of gold, silver, copper, nickel, zinc, lead, bismuth, antimony, selenium and
tellurium were formed upon evaporationof thesemetals into air under a pressureof the order of
1 Torr. At higher pressuresof the backgroundgas and at higher evaporationrates,coarserparticles
were obtained.For thesesamples,the usual shiny metallic appearanceis lost andthe particleshavea
very dark appearance.This is a resultof the absorptionin the visible rangeof the spectrum,dueto the
very wide resonanceappearingin particles and inhomogeneousmaterialswith relevantdimensions
smaller than the wavelengthof the radiation, as is discussedin section 2. Becauseof this selective
absorptionof visible radiation, surfacescoveredwith this sort of particles can be used as effective
absorbersfor solar radiation [64—66]in applicationsfor photothermalconversionof solarenergy.

5.3.1. Evaporationin inert gas
Kubo’s paperof 1962 [3] hasgiven a big impetusto the preparationandexperimentalstudyof small

metallic particles.Kimoto, Kamiya, Nonoyamaand Uyeda[264],and Kimoto and Nishida [265]have
preparedmicrocrystalsof up to twenty different metals.In a conventionalvacuumevaporatorpurified
argongaswas admittedto a pressurein therangefrom 0.5 to 50 Torr andthena smallquantity of metal
wasevaporated.A cloudof smokeparticleswasformed,andit wasdrawnupwardsby the convectionof
the gas,which was heatedby the evaporationsource.The particleswere trappedon coppergrids and
studiedwith electronmicroscopictechniques.

Wada[266] notedthat whenthe metalswere evaporatedinto helium gas,the particleswere almost
ten times smaller than with evaporationinto argonunder otherwisethe sameconditions;when they
wereevaporatedinto xenongas,theygrew threeto four timesbigger in size. Similar resultshavebeen
reportedbefore by Gen, Ziskin andPetrov[267].

Yatsuyaet al. [268,269] madea careful study of the processesthat take place when aluminium is
evaporatedinto a backgroundof helium gas. A cloud of smoke particles developedwhen the
evaporationboat filled with metal was heated,andits appearancedependedboth on the evaporation
temperatureand on the pressureof the backgroundgas. They distinguishedseveralregionsin which
different sizes and forms of crystallites were collected: Inner zone, inner front, and outer zone.The
particlescollected in the inner zonewere nearly uniform in size; the size increasedwith increasing
distancefrom the evaporationsourceuntil the particlesize saturated.At a higher pressureof the inert
gas,the saturationof the particlesizewas foundatasmallerdistancefrom the vapoursource,and the
meanparticlesize was larger.At the samegaspressure,the particlesize increasedwith the evaporation
temperature.

The processesleading to the formation of small metalclustersin the gas seemnot to be very well
understood.It is generallyassumedthat the atomsescapingfrom the evaporationsourceare cooled
down by collisions with the atomsof the backgroundgas.In a conventionalvacuum of i0~Torr the
meanfree pathof the metalvapouratoms is so largethat theycam reacha substratemore than 10 cm
away without a significant number of collisions; at a pressureof 1 Ton of the gas the atoms are
scatteredby collisions with the atomsof the backgroundgas after an averagedistanceof the order of
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50 p~m.Due to the rathergood thermalcontactof thebackgroundgaswith the coldersurroundings,a
thermalgradient is built up nearthe evaporationsource,andunlike the caseof a diverging beamin
vacuum,collisions can nowtakeplacebetweenthe metalatomsthemselves:When this gradientis steep
enough, there will be a region where the metal density exceedsthe saturatedvapourdensity and
nucleationof particlesmay occur. Subsequentgrowth takesplace by addition of single atomsand by
collisions of entireclusters;the smallerclusterswith their higher mobility will havethe biggestchance
to be trapped.Granqvistand Buhrman[270,271] havestudiedthe size distributionof metalparticles
obtainedwith this technique,andtheyfound that the logarithmof the particlevolume wasdistributed
very accuratelyaccordingto a Gaussiandistribution. Theyconcludedthat the growthwas dominatedby
coalescenceof clusters.The size distributionspublishedby otherauthorsdo indeedshowa tail towards
largeparticlesizes,characteristicfor particlecoalescence.This log-normalsizedistribution for spherical
particlesof diameterd is given by

f(d) = _~ exp(_0n~_ln(ci))2) (5.14)
V2IT ln(u) 2(ln(o))

The standarddeviationwas foundto beo~= 1.48±0.12 for all the samplesprepared,irrespectiveof the
kind of metal, themeanparticlesize,or the detailsof the methodof evaporation.It seemsthat the half
width of the size distributionis intrinsically rather large.The spreadin particlesize is largerthanwith
someof the other availableparticle preparationtechniques.On the otherhand, the gas evaporation
techniqueseemsto be applicablefor mostmaterials.Apart from the twenty two metalsmentionedin
the reviewpaperby Uyeda[272]on thework of severalJapaneseresearchgroups,particlesof several
othermetals,as Na, Li andGd, werepreparedas well for the study of size effects. Genandcoworkers
havedemonstratedthat it is evenpossibleto prepareparticlesof Ag/Cu alloy [273];similarly Tasakiet
al. found that the composition of particlesof severalalloys of Fe with Ni, Cu, Si, Cr, Gd and Ho
preparedwith thisgasevaporationtechniquewas roughlythesameasthe oneof the motheralloy [274].

Although small particlescan be preparedof any metal with a suitably low melting point, only in a
few investigationsameanparticlesizewell below 10 nm was found;very smallparticleswereobtained
of aluminium [116—118,275,276], copper[133,135], indium [174,177], nickel [277],palladium[278]and
vanadium[243].

It was noted that the size distribution was considerably broaderwhen the particles were not
producedat a constantevaporationtemperature[268,269]. Therefore,in most experimentalset-upsa
shutter is used,and the evaporationsourceand quantity of metal is chosenin such a way that the
changeof temperatureduring evaporationis rathersmall; sometimes,evena temperaturestabilized
ovenwas used [174,177,270,271,279].

In the simple set-upwith a stationaryinert gas used by Yatsuyageometricaleffects have been
observed.Therefore,greatcaremustbe takento collect particlesfrom the inner zoneonly wherethe
size distribution is rathernarrow andwell defined.When the pressureof the backgroundgas and the
evaporationtemperaturearechosenin sucha way that the inner zoneextendsbeyondthe walls of the
evaporationchamber,propercollectionwill probably be guaranteed.As coalescencemay occur also
afterthe particleshavebeendepositedonto the substrateor onto thewails of theevaporationchamber,
thesesurfacesmustbe carefully shieldedfrom the radiationheatof the evaporationsource,andcooled
with wateror evenwith liquid nitrogen[116—118,276,277,280].

Properprecautions,low pressurehelium gas,anda low evaporationrateshouldgive the bestchance
to producewell definedsmallparticleswhen the gasevaporationmethodis used.
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5.3.2. Preparationofsamples
For the studyof QSE, samplesare requiredthat contain manymore particlesthanneededfor the

electronmicroscopeinvestigations,while thesize distributionshouldremainas narrowaspossible.Most
authorssimply collect thedepositsof metallic particlesfrom the wall of the evaporationchamber.In the
caseof aluminium, it is thenpossibleto isolatethe particlesfrom eachotherby admittingoxygenduring
the productionof the particles, or after deposition[116—118];other workers addedoil as a matrix
material [277].Someauthorscollectedthe particleson cooled substrates[270,271] andcoveredthe
depositswith paraffin to preventoxidation of the metal clusters[145,281]. A very elegantprocedure
was reportedby Wadaand Ichikawa [280]:The particleswere depositedon the frozen surfaceof an
organic solvent covering the walls of the evaporationchamber;after depositionof the particles the
solventwas warmedto room temperatureso that the particleswere trappedwell isolatedfrom each
other, andthe solventwasthen againfrozen with liquid nitrogen.The concentrationof particlesin the
solventcould be increasedby usingsuccessiveevaporationcycles.

Morozov, NaumenkoandPetinovpreparedsampleswith ahigh packingdensity (~ 0.6) by pressing
small tin particles together into the form of tablets;the particles were isolated by oxidation, or by
covering themchemicallywith an insulating layer [282].Very often particleswere mixed with paraffin,
and volume concentrationsup to 0.02 havebeenreported;the suspensionof the particles in molten
paraffin was thentreatedwith ultrasonicsandcooledrapidly in orderto ensureauniform distribution of
the particlesover the volume of the specimen[283,284].

5.3.3. Flowing inertgas systems
Continuousoperationandeasierparticlehandlingcan beobtainedwith the useof aflowing inert gas

system.In the simpleset-upusedby Suzdalevandcoworkers[284],the particleswere carriedby the
flowing inert gasandthe streamwas thendrawnthrough a filter to collect the particles;subsequently,
the particleswereshakeninto a glassampouleandmixed with paraffin.Gem andPetinov[141]collected
the particlesdirectly by passing the aerosolthrough molten paraffin. This method was also used by
Meier andWyder[174]to preparesuspensionsof indium particlesin paraffin.The set-upusedis shown
in fig. 5.6: A streamof pureheliumgasis drawnthrougha temperaturestabilizedovenwherethe metal

helium inlet

~ oven

filter

Fig. 5.6. flowing inert gassystem for the production of small metallic particles with the gasevaporation technique. The small metal particles are
carriedby the flowing helium gasand depositedin a filter of molten paraffin. (From Meier [2501.)
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Fig. 5.7. Two typical size distributionsof indium particlesaspreparedwith theset-upshown in fig. 5.6.

is evaporated;the flow can be regulatedwith a needlevalve at the inlet, the setting of this valve
determinesalsothe pressureof the helium gasin the oven.Partof the particlescarried by the streamof
helium areretainedin the paraffin filter which is keptslightly abovethe solidification temperatureof the
paraffin by meansof a temperatureregulatedwater supply. A typical size distribution of particles
preparedwith this set-upis shown in fig. 5.7; in all thesesamples,a significant excessof very small
particleswas found when comparedto the log-normal size distribution proposedby Granqvist and
Buhrman[270,271].

An ovenof a moresophisticateddesignwas usedby Eversoleand Broida [285].A flow of heated
inert gas was passedalong the evaporationsource,carryingthe hot metalvapourthrough a nozzle to
colderregionswherenucleationandgrowth of the particlestook place.Similarly, in the set-upusedby
Rappazand Faes[279],the particleswereproducedin the inert backgroundgasandthen carriedwith
the gasstreamthrough asmalldiaphragminto avacuumchamberwheretheycould bedepositedonto a
cooledsubstrate,togetherwith a suitablematrix material (e.g. carbondioxide).

The schemereportedby Yatsuya,Mihama andUyeda[286]allows continuousoperationas for the
flowing inert gassystems,but in their systemthe metal is evaporatedin vacuumonto a slowly rotating
plate, coveredwith a thin layerof silicon oil. Small metallic particlesgrow at its surface(as with flash
evaporation)andaresubsequentlytrappedin the oil. Oil is fed at thecenterof the rotatingdisc, it flows
outwardsdue to the centrifugal force, and is then collectedin a container.The size of the particles
obtainedwith this schemedependsboth on the viscosity of the oil andthe evaporationrate andseems
to be considerablysmaller(d ~ 10 nm) than obtainedwith the simple gasevaporationtechnique.

5.3.4. Particlespreparedin a beamgeometry
It is well known that clustersare formed on adiabaticexpansionof an unsaturatedvapour in an

ultrasonicjet with a molecularbeamset-up[287—290]. Large clustersof the inert gasesare obtained
easily, but in a metalbeamit is very difficult to obtain a reasonableratio of clustersto single atoms.
Very high levels of supersaturationmust be reached to produce nucleationinto clustersof metal
vapour.However,it is possibleto producemetallic clusterswith the seededbeamtechnique[291—294];
hereinert gas is addedto the metal vapourprior to jet expansion.In fact, this particle preparation
techniqueis very similar to the more conventionalgas-evaporationtechniqueas discussedbefore in
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sections5.3.1 and5.3.3.Smallclustersof potassiumwereproducedsuccessfullywith this beamtechnique
[292], and the production of clusters of various metals (such as indium, lead and bismuth) was
extensivelydiscussedby Stein andYokozeki [293].Very recently, using the seededbeamtechnique,
Sattlerandcoworkers[294]were ableto producemeasurablequantitiesof metalclusterscontainingup
to 500 atoms; in addition, they showedthat the metallic particles are accessiblefor experimental
investigationsif they are separatedaccordingto their massusing a time of flight (TOF) arrangement.
The useof a molecularbeamset-upgives new andvery promisingpossibilities,andit is to be expected
that this techniquewill be used as the most elegantand clean way to producewell defined small
particles for the study of QSE in the near future. Some basic experimentsas electron diffraction
[290,293] andStern—Gerlachdeflection[292],havealreadybeencarriedout very successfully.This field
of researchis rapidly growing, ascan be seene.g.from the proceedingsof the InternationalMeetingson
Small Particles[5,6].

5.4. Particlespreparedby nucleationand growth in a matrix

5.4.1. Photosensitiveand stainedglasses
It was discoveredlong agoby Faradaythat the beautiful coloursof sometypesof glasseswere dueto

finely dispersedclustersof gold. The opticalpropertiesof glassescontainingsmall clustersof gold [21],
or silver [22,24,25,28,29] haverepeatedlybeeninvestigated.Moreover,this sort of sampleshasbeen
usedto look for the existenceof possiblequantumsize effectsin the electricpolarizability as predicted
by Gor’kov and Eliashberg[4]. This was done by Dupreeand Smithard[170] for silver particles in
photosensitiveglass,andby Meier andWyder [169]for similar gold particles.

Meier andWyderhaveuseda recipegiven by Maurer [295]:Small amountsof gold (0.1% to 1.0% by
weight, in the form of HAuCLCnH2O) were addedto the componentsof a glass consistingof 71.5%
Si02, 23% Na20,4% Al203, 1% ZnO, 0.13% CeO2, and0.3% Sb203.This mixture was heatedto
1400°Cfor 8 hours, and aftercooling down, a colourlessandtransparentglasswas obtained.However,
if the glassis first irradiatedwith ultraviolet light, it will becomeruby-redwhenheated.The nucleation
and growthof the gold particleswerediscussedin detailby Stookey[296]andMaurer [295]:When the
glassis irradiatedwith ultraviolet light, the photosensitiveagentCeO2canreducesomeof the gold ions;
at ambienttemperature,the gold atoms will remain fixed in the glass matrix, but when the glass is
heatedtheycan actas nuclei for the growth of metallic particles.In thisway, the numberof nucleation
sites can be controlled with the dose of the radiation. As the glass is strongly absorbing in the
ultraviolet, it is preferableto usegamma-raysto obtain a more homogeneousirradiation andcon-
sequentlya homogeneousconcentrationof nucleationsitesin the whole volume of the sample.When
after the irradiation the sample is heatedto the softeningtemperatureof the glass (approximately
530°C),gold andantimony ions can diffuse through the latticeand they will eventuallybe trappedby
nuclei or clusters.The antimony,which actsas a thermoreducingagent,will thenreducethe gold ions
accordingto the redox reaction

Sb~
3+ 2Au~~± Sb’5+ 2Au°. (5.15)

The growth processis very slow. It is limited by the diffusion of Au~and maybe stoppedat will by
cooling the sampledown to room temperature.Therefore,the numberof particlescan be controlled
with the radiationdose,andthe size of the particleswill be determinedmainly by the durationof the
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annealingprocess.The averagediameterof the particlescanbe increasedin severalsuccessivestepsfor
one sampleuntil the gold is depleted.

The concentrationof gold particles is severelylimited by the total amountof gold which can be
addedto the glass-melt:Already at a concentrationof 1%, Meier andWyderobserveda considerable
broadeningof the size distribution; this was attributed to the fact that still new nuclei were formed
spontaneouslyduring the annealingprocess.With a similar process,Smithard and Dupree [170]
preparedsampleswith a volume fraction of silverup to 2.5x i0~.They irradiatedtheir sampleswith
ultraviolet light in glassescarefully cut to slices of 0.5mm thickness.This processof nucleationand
growth of silverparticles in photosensitiveglasseswasrecently discussedagainby Kreibig [297].More
stagesof the growth processwere now identified: In the first stage,the Ag°centers,formed after the
irradiation, quickly coagulateto clusterscontaining of the order of hundred atoms; this processis
completedafter the first few minutesof tempering.After a secondintermediategrowth stageof which
the growth kineticsare still unclear, a third stagewas identified wherethe growth was determinedby
the processof diffusion limited growth mentionedabove. Therefore,it has to be concludedthat it is
impossibleto preparesampleswith extremelysmallparticlesusingthis technique,despitethe very slow
growth of the particles.

Samplescontainingup to 1% by volume of silverparticleswerepreparedby stainingglassat 600°Cin
a bath of AgCl [170].In this case,the silver concentrationin the sampleswas strongly correlatedwith
the Sb203contentof the glass; it was observedthat Ag* diffusesinto the glass to a concentrationof
approximately0.5% by weight. If the glass containsantimony, the silver ions will be reducedand
precipitate into silver clusters.The processcomes to an end when the antimony is exhausted,and a
colouredzoneproceededslowly through the glass sample,giVing the sameparticleconcentrationand
averageparticlesize throughoutthe sample.

5.4.2. Simultaneousevaporationofmetaland matrix
The methodof simultaneousevaporationof the metal and a supporting matrix which was usedby

Borel and coworkers[146,154—156] to preparesmall metal particles showssomesimilarity with the
techniquediscussedin section5.4.1 above.The metalwas evaporatedonto a nitrogencooled surface,
and simultaneously,CO2 or benzenewas condensedfrom the gas phase.When the sampleswere
annealedat 195K, the metal atoms, dispersedin the matrix, precipitatedand formed small particles
with a diameterof the order of 1 nm. The presenceof thesevery small crystallitesmay explain the
successin observingCESRin such samples,in accordancewith the theoreticalpredictions,whereasno
resonancesignalswere observedin silver particlesdispersedin a glassmatrix [29]or in colloidalgold
particlespreparedin the author’s laboratory.

Very small clusterscan be formed when silver atomsor other metals are dispersedin inert gas
matrices[298,299]. When the silver is dispersedto a very low concentrationin argon,verysmall clusters
of Ag~(with n � 10) are formed which could be identified by spectroscopictechniques.For a high
concentrationof silver in the argonmatrix, colloidal particleswith a diameterin the orderof 1 mm were
formedwhich showedthe broadabsorptionbandtypical for smallmetallic particles [299].

5.4.3. Alkali halide crystals
Alkali halide crystals containing small metallic particles have been the object of several in-

vestigations.Charvolin et al. [112],Taupin [115],and Wattsand Cousins[144]studiedthe propertiesof
colloidal lithium clusters in lithium-fluoride by meansof ESR and NMR techniques.Irradiation of
lithium-fluoride with thermalneutronsresultsin lattice defectsandin interstitial lithium atoms.These
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lithium atoms tend to coagulatewhen the radiation doseexceeds3 X 1021 neutrons/m2[113,300]. At
room temperature,and at this dose of irradiation plate like clustersof lithium are formed, several
atomic layersthick andwith an areaof the orderof 25 nm2. When the samplesareannealedat 200°C,
the plateletsdisappearand crystallites are formed with a lower surfaceto volume ratio. When the
radiation doseis higher (over 5 x 1022 neutrons/m2),globularclustersareformedwith a diameterin the
size range from 10 to 100nm; when the crystal is held at 77 K, however,also in this caseof high
irradiation the formation of plateletsis favoured.

It is well known that metal colloidsare formed in additively colouredalkali halide crystals.These
crystals are additively doped by heating to 600 or 700°Cin alkali metal vapour and in complete
darkness;thentheyarequenchedto room temperature.Whensuchcrystalsare thenheatedin the dark,
andannealedat temperaturesbetween150 and450°C,the absorptionpeakdueto the F-centersshiftsto
longer wavelengths:This behaviouris attributedto the formation of small clustersof the alkali metal.
Colloidal metal particles developwhen the initial F-centerconcentrationexceedsa typical value of
10~m3.

The mechanismof the growth of thesemicrocrystalswas studied in great detail by Calleja and
Agullo-Lopez[301].In KC1, potassiumcolloids with a meanparticlediameterof 20 nm were formedat
an annealing temperatureof 250°C,and the diameter increasedto 100nm for higher annealing
temperatures.After a first stageof rapid clustering,the averagesize of the colloidal particlescontinued
to increaseslowly, at the expenseof the number of particles.In addition,at higher temperaturesa
considerablefraction of the alkali metalatomswas lost dueto diffusion of the metalout of the crystal.

The optical propertiesof alkali metal particles of the type discussedherehavebeen studied by
differentworkers[30,302]. Experimentshavealsobeenreportedon silverparticlesformedin additively
colouredKC1 : Ag [32,153]. The size distributionof the silver colloidswas determineddirectly with an
electronmicroscope.The averagediameterwas found to be 33 and46 nm for samplesthat had been
annealedat 700°Cfor 30 and 60 minutes, respectively.These particle sizes observedare in good
agreementwith the modelof diffusion limited growth usedby CallejaandAgullo-Lopez[303,304].The
size distribution of the alkali metal clusterswas not determineddirectly by electron microscopy,but
averagesizes,deducedfrom opticalmeasurements,arefound to be in the rangefrom a few nm up to
lOOnm.

5.5. Impregnatedporousmaterials

A very simple impregnation techniquewas used to preparesmall nickel particles in silicagel.
Lindquist and coworkers [305] preparednickel particles with an averagediameter of 6±2mm by
impregnationof “W.R. Gracegrade950” silicagelwith a solution of NiNO

3 the samplewas dried in
air, and reducedwith hydrogenat 540°C.With similar techniques,supportednickel and platinum
catalystswith particlesize down to 2 nm havebeenprepared.

An extensiveseriesof experimentshasbeenperformedon porousglassesfilled with metals:Novotny
et al. havestudiedlatticedynamicaleffectsfor smallparticlesin porousglassby meansof heatcapacity
[241,242] andneutron scattering[306] experiments.They prepared2.2nm diameterindium particles
andleadparticleswith an averagediameterof 2.2, 3.7 and 6.0mm, with a methodthat was usedvery
successfullybefore by Watson [223,307]. Porousglass sampleswere preparedby leaching a phase
separatedalkali-borosilicateglass in such a way that the boron-richphasewas removedand a porous
body was left. Typical porousglassescontain96% Si02,3% B203, smallamountsof Na20, A1203, and
other oxides.The resulting porousglass maybe thoughtof as consistingof acombinationof loosely
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packedSiO2 spheresof diameterof the orderof 30 nm; the averageporosity is 15 to 25%. When the
glassis immersedin a bath of molten metalwith apressureof the orderof 10~Pa metalcan beforced
into the pores. Becauseof the high uniformity of the porediameterandconsequentlythe narrowsize
distributionof the particlescontainedin the glass,thesesystemsarevery attractivefor experimentson
size effects. Note that becauseof the fact that the thermalcontractionof the glassis muchsmallerthan
the contractionof the metallicparticles, the surfaceof the particlesmight possiblybe consideredasfree
when the sample is cooled to low temperatures.On the other hand, the broadeningof the X-ray
diffraction linesindicatesa coherencelength largerthanthe particlesize; thereforeit mustbeconcluded
that the particles are not entirely free from one another. Watson [223,307] preparedsamples
impregnatedwith indium, lead and thallium. Bogomolov et al. [308,309] also preparedsamples
containingmercury,tin, andgallium.

A large number of inorganic crystalscontain regular cavities or vacanciesforming networks or
parallelchannels;e.g.for zeolites,the size of the cavitiesis in the rangefrom 0.2 to 1.2 nm. Usually, the
sizesof the cavitiesarevery uniform, althoughin generaltherecan be different typesof cavitieswith
different size. Moreover, thereare several typesof zeolitesavailable(such as NaA-, or NaX-zeolite),
with a different threedimensionalarrangementof the cavities.Severalmetals,as mercuryandgallium,
were forced into thesecavities [310,311] and the propertiesof the resulting particleswere studied.In
zeolites,the cavitiesare so small that particlescan be obtainedin the size ranged < 1 nm; in someof
thesecavities,clusterscontainingonly a few atomscan be accommodated.

Appendix I. Thermodynamiccalculationsfor Kubo’s smallparticle

AI.1. Setup of thepartition function [312]

If E1 are the energyeigenvaluesof the total electronsystem,the partition function is definedas

Z = ~ exp(—E,,/kT). (AI.1)
j=1,2.

In the caseof noninteractingelectrons,eachE1 can berepresentedasa sumof single particleenergiess~

E, = n,,e,. (AI.2)

As there are N electrons in the particle, exactly N single electron statesare occupied in each
configuration:

N = n9, for all j. (AI.3)

Consequently,the partition function Z can be written (with $ = 1/kT) as:

(N)

N = ~ exp(—f3(n1~e1+ n21e2~ ~)) (AI.4)
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wherethe meaningof (N) in the summationsymbol is, that eachterm in the sum must haveexactlyN
valuesn,~different from zero.As we aredealingwith electrons,~ = 0 or 1, dependingon whetherstate
e is occupiedor not.Z is a functionof the particlenumberN andthe temperatureT andwill be called
Z(T,N). Onecan setup a generatingfunction

f(A)= ~Z(T,N)AN. (AI.5)

With the definition of Z(T,N) onegets:

(N)

= ~ (~exp(—/3(n~1ei+ n21e2+ .))A(mr5~22rf’)). (AI.6)

In f(A) all possibleconfigurationsexp(—$(ni1ei+ n2~.e2+~ . .)) A (nhI~”2j~) appearexactlyonce,but now

without restriction for the total numberof electrons.Therefore:

f(A) = fl (~exp(—$n0e1)A = fl (1 + A exp(J3s~)). (AI.7)

Becausef(A) is analyticin the wholecomplexplane,the residuetheoremallows to projectout Z(T,N)
from the physically meaninglessf(A):

Z(T,N) = ~L J ~MdA. (AI.8)
origin

In the presenceof a magneticfield H, the single electronlevelsareredefinedas:

SI±~Lo/LBH i>0,i.e.s1>0

~o = 0 Fermi energy (AI.9)

C1 ±/.Lo/.L8H = e,±/.Lo/L~H 1<0, i.e. e1 <0, e >0.

With H = 0, eachstatee~is spin (i.e. twice) degenerate.f(A) can be written as:

Z(T,N) = ~ J~ fl (1+ A exp(—$(e1— ~Lo/LBH)))JJ (1+ A exp(—/3fr1+
j�1

x fl (1 + A exp(—f3(ek— /.LO/LBH))) fl (1 + A exp(—$(e,+ /J,O/LBH))). (AI.10)
k~O l~O

The (N + 1) A’s in the denominatorare distributedon the terms with k, 1 � 0. When N is an odd
number,(N+ 1) is evenandthereis for eachfactoroneA. WhenN is even, thereis onefactor A left.
Here appearsin mathematicallanguagethe differencebetweenparticleswith an even and an odd
numberof electrons.With A~,which can takethe valuesA or 1, onecan write:
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Z(T,N) = ~J~ fl (1+ A exp(—f3(e~— p~o~LBH)))fl (1 + A exp(—$(s3+ p~op~BH)))
i�1 j�1

x fl (~-+exp(—$(ek—~ao/.LBH)))fl (~-+exp(—$(ri+/2o/28H))). (AI.11)
k�O l~O

Puttingy = eXP(J3~LO~LBH)andmaking useof eq. (AI.9) one getsafterslight rearrangement:

~ dA 1Z(T,N) = Jx~(i +fl(i +~—)JJ(1 + Ay exp(—/
3e

1))

xfl (1+~exp(_$Cj))j~(~—exp(—$e’k)+1)fl (~exp(_-$e)+1). (AI.12)
j�1 Y k�—t Y I�—1

E(0) is the total energywith all statesoccupiedup to the Fermi energy CF: for the “even” case:
E(0)= ~ 2e. a can taketwo values:

a = 0, for “odd” case

a = 1, for “even” case.

The free energyis given by:

F(T, N) = —kT(lnZ(T,N)) (AI.13)

wherethe bracketsindicatean averageover the statisticallevel distributionof eq. (3.18).An additional

averagingmust becarriedout when an assemblyof particleswith unequalsize is considered.

AI.2. Someaverages

We presentexpressionsfor someaveragevalueswhich will beneededlater. For an arbitraryfunction
~(r), the following theoremson averagevalues (...) are valid if the nearestlevel spacingsare Poisson
distributed:

(~~(e~))= (~~(e~)) = J~t~(e)de. (AI.14)
i>O k<O

0

This can easilybe seenby consideringthe average

(e~’)=(exp(_s~~i))= (e~’~ . . e~
4). (AI.15)

Becausethe 4, areindependentof eachother,onehas

(e~) = ~e~Xe~42). . . (e~). (AI.16)
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Eachfactor on the right is equalto

t~Je~e~’~d4}=(1+sô)1.

Consequently,if Re s > 0: (exp(—se
1))= (1 + sô)~furthermore,if 1/(1 + s3)< 1,

(~exp(—sej))= ~ (1 + s5)~=

Assumingthat thereis an integralrepresentationof 4i(e) of the form

= Je~~(s) ds (AI.17)

then:

(~~(Ct)) = (~Je~(s)ds)= J ~ ~(s) ds

= J~(Je~(s)ds) de = J~(e)de (AI.18)

andthis provesthe theorem.
Similarly for ~(e1,e2):

~ ~ e,))= ~ ~ ~ s~)=J~J~~(e,e’) (AI.19)
i=1 j>i k=—1 t<k

0 e

~ ~(e~~e~))=J~J~~fr,e’). (AI.20)
i>O k<0

0 0

AI.3. High temperaturelimit $t5 ~ 1 (noOSE)

The producttermsof eq. (AI.12) can bewritten as ~ where

+ ~ ~ln(i + ~_ e~8~)+ In (i + ~e’~)}. (AI.21)
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Therefore:

~ dA 1

Z(T, N) = e J ~-~- (i + fl (i + i—) ~ (AI.22)

When f36 4 1, the sumsin eq. (AI.21) may be replacedby integrals; the function e’~stayspractically
constantbetweenexp(—f3s1) and exp(—$s1+1),where CI+I — e is (on the average)equal to 8. For
instance,the first term in ~(A, y, f3) is

~1(A,y, /3) = ~ ln(1 + Aye~) J~ ln(1 + Aye~)P(CF)de (AI.23)
j�1

wherep(CF) is the densityof statesat the Fermi energyEF (p(CF) = 2/6). Over the rangewherethe
integral is substantiallydifferent from zero, p(e) hasbeenassumedto be constantandequalto p(EF).

‘P(A, y, f3) is an analytic function in the complex A-plane and has a saddlepoint at A = 1 because
(3~/c9A)At= 0. (For an expositionof this saddlepoint method,seee.g. [313].)The valueof ‘~(1,y,$)
can be madearbitrarily largefor $8 —*0. By putting x = e~onegets,againfor 1,

~1(A,y, /3) = ~ J ln(1 + <ky e~)de = ~ J ~- ln(1 + Ayx) dx = ~1(A’y). (AI.24)

The remainingterms I-~showthe samebehaviour.Therefore,when the contourintegral is replacedby
thevalueof the integralat A = 1 andthe logarithmis formedin order to get the free energy,in the high
temperaturelimit $8 4 1 only the factor e~’~”~in eq. (AI.22) contributessignificantly. Consequently:

In Z(T,N) ~(1, y, /3). (AI.25)

Usingeqs. (AI.14) and (AI.21) oneobtainsfor A = 1:

KIn Z(T, N)) = Jde {ln(1 + y e~)+In (i +-~-e~)}. (AI.26)

For y = 1 (i.e. H = 0) onegets

(In Z(T, N)) = Jde ln(1 + e~)= (AI.27)

andthe heatcapacitybecomes

C,,. = —T8
2F/3T2= ~1T2k2Tp(sF) (AI.28)

which is the well known bulk result [80].Similarly for /38 —*0 andH� 0
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Z(H, 1’, N) = e J~4(i + ~)(i + exp(~Jde ~ln(1+ Ày e~)

+ in (i +~e~)+ in (i +~e~)+ln (i +~_e~)}). (AI.29)

With the methodof steepestdescent[313],we only needto considerthe contributionfor A = 1 in the
integrandof ~ so that we can write:

(In Z(H, T, N)) = /3E(0)+ ln (y +-~-)+ ~ J de {ln(1 + y e~)+ In (i + ~-e~)}. (AI.30)

The secondterm comesin only for a = 0 (odd numberof electrons),so that:

1 32F kT a2
x = -— = — (In Z(H, T,N))

a i /y—1/y\ 2 / 1+y \1
= ~ 1~B~y + 1/y) + /L~kTln ~ + 1/~)J (for y 1)

2 ~
/.LO/.LBLL 2

- kT ~

3O/J’R.

The first term in eq. (AI.31) is negligible comparedwith the secondwhen /38 4 1, and the usual result
for the bulk Pauli spin paramagnetismis obtained[314]

x = p~O/s~p(sF). (AI.32)

AI.4. Low temperaturelimit /38 ~> 1 (QSE)

The partitionfunction of eq.(AI.12) will be averagedoverthe Poissonlevel distributionof eq. (3.18);
it is then possibleto expand(Z(T,N)) in a powerseriesof the argument(J36)’; aswe areinterestedin
the situationwith $8 ~ 1, we calculateonly the first term andneglecttermsof the order (J36)

2 andof
higher order.The correctionsdue to the (J38)2-termareexplicitly calculatedin Kubo’spaper[3]. From
eq. (AI.14), the following averagesareobtained:

(~exp(_/3e~))= exp(—/3e = J exp(—f3e) ~. (AI.33)
i>0 1<0 F-’

0

Similarly,

~ exp(—/3(e,+ s,)))= ~ exp(—$(s.+ i;))) = 2(P6\2 (AI.34)
j�1 j>j k~—1!<k ‘SF-’ /
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Going back to the original expressionfor the partition function Z(T,N) (eq. (AI.12)) only those
termsarecollectedwhich give averagesof the order (J38)1:

z(T,N) = e~0)J~ (i +~)(1 +~-_) {i + (y +-~)(A ~ exp(—/3C~)

Ak~t exp(_f3s~))+A2~exp(—2$ej)+~s~exp(—2$e~)+.. .}. (AI.35)

All additionaltermscontain more than one level e~or e~.Using the fact that only the term with 1/A
gives a contribution when the integration aroundthe origin is carried out, one getsfor a = 0 (odd
numberof electrons):

~ dA 1 1Z(T,N)IOdd = 2lTi I ~{(~~ + (‘y +—) (~exp(—$e~)+kl exp(—f3e~)+~.

= e (0){(y+~~_)(i+~ exp(—$e
1)+~exp(—/3e~)+...)}. (AI.36)

For a = 1 (even number of electrons) the analogous expression is

z(T,N)Ieven= e$~0){1 + (~+~~)2~exp(—f3e,)+ ~ exp(—2$e,)+~ ~}. (AI.37)

In making theseexpansions,it was assumedthat y 4/36, i.e. ~LO1LBH<8; for y//36> 1, termsof order
higher than (J38)

1 can no longer beneglected.The averagingprocedureis now very simple:

(ln Z(T,N)I~d)= $E(0)+ ln(~+ + (~n(i + ~ exp(-$ej) + k~t exp(-$e~)

= f3E(0)+ In (~+ I) + KIn (i + ~ exp(—$ei))(i + k~1exp(_$e~)))

= /3E(0)+ in (y + -~-)+ Jdx In(1 + e_x)

(AI.38)

Here,useis madeof the fact, that the expression(ln(~~�
1exp(—f3E1)~k~-1 exp(—f3e~)))may beset equal

to zeroas it containsmorethan one seriesof levels.For a = 1 one obtains:

(ln Z(T, ~ = /3E(0) + J dx In (i + (v + 1)2 e_x + e_2x). (AI.39)

Now we areable to give explicit expressionsfor the specific heat andthe magnetizationin the QSE
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limit. Taking H = 0, onegetsfor the specific heat in the “odd” and “even” case respectively:

~ 82 1 ~2 ir2k2

8T2 = ~ 1.645k2Tp(EF) (AI.40)

Ceven= 2.512k2Tp(EF). (AI.41)

Theseresultshaveto be comparedwith the electronicspecific heat of the bulk metal as given by eq.
(AI.28).

To calculateexplicitly the magnetization,the condition~LOP~BH4 8 hasto befulfilled. For the “odd”
caseonegetsaccordingto (AI.38):

1 8F ~ kT —~— ln(exp(J3/L
0/L~H)+ exp(—/3~to~i~H))M~d=-—~=

= /.LB tanh(jiOIaBH/kT). (AI.42)

For H —*0, the susceptibilityis given by

8M1 ___
Xodd = = (AI.43)3H1H0 kT

In the “even” case,the analogousquantitiesaregiven by:

44uB 2/3~o~BH)f dt (AI.44)Meven= sinh( 1 + 4t cosh
2J3~tO~sBH)+ t2

0

,Yeven 1.521/Lo/.L~pfr~). (AI.45)

Appendix II. Thermodynamic calculations for the particlewith equallevel spacing

The canonicalpartition function of a particle with a constantand equal level spacingcan be
calculatedexactly [88].

With the definition of AppendixI, the startingpoint to calculatethe partition function is given by eq.
(AI.12). ReplacingA by e’~and y by eh, whereh = /3ILo/LBH, onegetsfor the “odd” case(a = 0):

2ir

e~~°~Z(T,N) = ~-~-— ~ ie”~d4(1+ e_~~~4h)(1+ e’~”)
lTi J

0

x fl (1 + e”~”e~~”)(1+ e~”e~”)(1— e~”)
n�1

x fl (1+e~ e~~)(1+ e’~ e~”)(1— e~~)Z~. (AII.1)
n�1
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ThefactorZ~= H.~(1— e~’)2compensatesfor thetwo factorsH~.
1(1— e~”)in eq. (AII.1). These

factorsareintroducedin orderto apply somepropertiesof the 0-function [315]:

q”
4 ~ ~{(n±l/2~} cos((2n+ 1)Z)= fl (1— q2~)(1+ q2ne±i2Z)(1+ q2fl e~2Z). (AII.2)

Puttingq2 = e~andZ = ~/2 + h/2i, oneobtainsfrom eq. (AII.2):

(1— e~~)(1+ e’~~e~~)(1+ e_~_he~~)

= cos(~/2+h/2i) ~ e~ 1)nh2cos((2n+ 1) (~4)). (AII.3)
Similarly, with q2 = e~andZ = 4/2 — h/2i, one gets:

(1 — e~)(1+ e~_he~~)(1+ ~ e~~)

= cos(~/2—h/
2i)~0e cos((2n+ i)(~_~)). (AII.4)The cos-termsin the denominatorof eqs. (AII.3) and (AII.4) cancel (up to a factor 4/e~)with the

factors(1 + e~~)(1+ e~~’)in eq. (AII.1). Eq. (AII.1) can now be written as:

exp(—$EN(0))ZN(T. H) = J e~d~-4~{ (~e~’~
2 cos((2n+ I) (~+~)))

x (~e~m+t)m/2cos((2m + 1)

= ~— J d4 ~ ~ esm(m±1~2

n=O ,,,

x {e’”~’~ e(~~m~+ ei(~~m~e~”~”~’~”+ ei(m_~~e(_m_~~_~

+ e’~”~~ e(m_~~~}z~. (AII.5)

Obviously,eq. (AII.5) hasnon-zerotermsonly for n = m. Therefore, for the equal spacing model, the
partition function Z~7~(T,H) is given by

exp(—$EN(0)) Z~’1(T,H) = 2 ~ e~’”~’~cosh((2n + 1)h) Z~ (AII.6)
n 0

in the same way one finds for the “even” case:
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exp(—$EN(0))Z~°(T,H) = {i +2 ~ e(~~+1~cosh(2(n+ 1)h)}Z~. (AII.7)

The susceptibilityx is easily calculated from the partition function given in eqs. (AII.6) and
(AII.7):

1 OF —~----~—lnZN(T,H). (AII.8)

M=

~03H 13/L0OH
Foran odd numberof electronswe obtain:

M = ~ /3/Lo/L~~ {EN(o)+ ln(Z~)+ln (±e’(e~
2~4~”+ e~2~1~~))}

~ e~’~1~(2n+ 1)(e~2”~1~— e2~’~”) (AII.9)
= /.LB ,ç~ e_n±1)(e(2~~1~~+ e~2~~°”)

‘-‘n 0

If h —*0, this reducesto:

M~d= $j~~H4 ~n=O (n + 1~2~ (AII.10)
~

For an evennumberof electrons,onegetsin a similarway:

~ = f3jLop~H8~“° e”~”~(n + 1)2 (AII.11)
1 + 2 ~ e~”~1~

The expressions(AII.10) and(AII.11) can be evaluatedfor the limiting cases/36 4 1 and/36 ~‘ 1. In
the hightemperaturelimit (/384 1), the summationscan be replacedby integrals,which areof the form
f°°°x~exp(—x2)dx = Vir/4, or f~°~exp(—x2)dx = \/ir/2. In this limit, onegetsfor the casewith an odd
numberof electrons:

(4e~~’~/4f36)\/ir/f38— _____ — o/L~p(EF) (AII.12)
Xodd f3/Lo~LL~s ~e$8I’4V1r/$6 — 8

andsimilarly, for the casewith an evennumberof electrons:

Xeven = /32 (8/4/36)\/ir/f38— 2~ois~— 2 (AII.13)
1+\/ - 6 P’OP’B

where,again,theusualbulk result for the Pauli spin paramagnetismis obtained,for both cases.
In the QSE limit (/38 ~ 1) only very few levelscan bereached,andhenceonly thelowesttermsin the

summationneedto be consideredfor eqs. (AII.6) and(AII.7). For thiscase,eqs. (AII.10) and(AII.11)
reduceto:
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1 + 9e~+ O(e608)

Xodd = /3p~j~1+e2~+ O(e6~)= f3~~~{1+ 8e2~+

= + Xt’uu (~4exp(_~.ç;)) (AII.14)

and:

Xeven = I3/.Lo/.L~1+2e~+O(e~)~f3/~LoiLL~{8e~+ O(e2~)}

/46 / 6\\
=XbUIk~exP~—~-~)). (AII.15)

The bulk Pauli spin paramagnetismis attenuatedexponentially,and for odd numberof electronsthe
low temperaturesusceptibilityis dominatedby the susceptibilityof the onefree spin per particle.
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