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Abstract 
The learning process in Boltzmann Machines is computationally very expensive. The computational 

complexity of the exact algorithm is exponential in the number of neurons. We present a new approximate 

learning algorithm for Boltzmann Machines, which is based on mean field theory and the linear response 

theorem. The computational complexity of the algorithm is cubic in the number of neurons. 

In the absence of hidden units, we show how the weights can be directly computed from the fixed point 

equation of the learning rules. Thus, in this case we do not need to use a gradient descent procedure for 

the learning process. We show that the solutions of this method are close to the optimal solutions and 

give a significant improvement when correlations play a significant role. Finally, we apply the method to 

a pattern completion task and show good performance for networks up to 100 neurons. 

1 Introd uction 

Boltzmann Machines (BMs) (Ackley et al .,  1985), are networks of binary neurons with a stochastic neuron 

dynamics, known as Glauber dynamics. Assuming symmetric connections between neurons, the probability 
distribution over neuron states swill become stationary and will be given by the Boltzmann-Gibbs distribution 
P(S). The Boltzmann distribution is a known function of the weights and thresholds of the network. However, 
exact computation of P{S) or any statistics involving P(S), such as mean firing rates or correlations, requires 
exponential time in the number of neurons . This is due to the fact that P(S) contains a normalization term 
Z, which involves a sum over all states in the network, of which there are exponentially many. This problem 
is particularly important for BM learning. This is because the BM learning rule requires the computation of 
correlations between neurons . Thus, learning in BMs requires exponential time. 

For specific architectures, learning can be dramatically accelerated. For instance (Saul and Jordan, 1994) 
discuss how learning times become linear in the number of neurons for tree-like architectures. (Kappen, 
1995) show how strong inhibition between hidden neurons reduces the computation time to polynomial in the 
number of neurons. 

A well-known approximate method to compute correlations is the Monte Carlo method (Itzykson and 
Drouffe, 1989), which is a stochastic sampling of the state space. Glauber dynamics is an example of such a 
method. The terms in the sum over states are proportional to a 'Boltzmann factor ' exp (-E) . Monte Carlo 
methods can be more effective than the summation of all terms because the sampling is biased towards states 

with lower E .  These terms will give the dominant contribution to the sum over states. This is the approach 
chosen for learning in the original Boltzmann Machine (Ackley et al., 1985). Practical use requires that the 
Markov process converges sufficiently fast, i .e .  in polynomial time, to the equilibrium distribution. This 
property is known as rapid mixing and does probably not hold i n  general for Glauber dynamics (Sinclair, 
1993). Useful results can be obtained with Glauber d ynamics when the network is not too large and has small 
weights. 

In (Peterson and Anderson, 1987), an acceleration method for learning in BMs is proposed. They suggest 
to replace the correlations in the BM learning rule by the naive mean field approximation: (SiSj) = mimj, 
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where mi is the mean field activity of neuron i. The mean fields are given by the solution of a set of n coupled 
mean field equations, with n the number of neurons. The solution can be efficiently obtained by fixed point 
iteration. The method was further elaborated in (Hinton , 1989). In t.his paper, we will show that. the naive 
mean field approximation of the learning rules does not converge in general and explain why. 

Anot.her way to speed-up learning is to observe that the Kullback-Leibler divergence is bounded from 
above by an effective free energy expression using Jensen's inequality. Such an approach can be applied to 
architectures whose probability distribution does not contain a sum over all states for normalization, such as 
the Helmholz Machine (Dayan et al., 1995) and the sigmoid belief network (Saul et al., 1996). The application 
of such an approach to Boltzmann Machines is not as simple because it requires in addition an upper bound 
on Z, which is computationally more complex (Jaakkola and Jordan, 1996). 

We will argue, that in the correct treatment of mean field theory for BMs, the correlations can be computed 
using the linear response theorem (Parisi, 1988). In the context of neural nehvorks this approach was first 
introduced by (Ginzburg and Sompolinsky, 1994) for the computation of time-delayed correlations and later by 
(Kappen, 1997) for the computation of stimulus dependent correlations. "Ve will show, that this approximation 
can be used succesfully to approximate the gradients in the Boltzmann Machine . 

This paper is organized as follows. In Section 2, we introduce learning in Boltzmann Machines and show 
why the naive mean field approximation of the gradients does not \'wrk. In Section 3, we derive the mean 
field approximation for the correlat.ions based on the linear response theory. Vle argue that an effective 
self-coupling term can be included to obtain better results. In the absence of hidden units, the fixed point 
equations for the learning rules can be sol ved directly in terms of t.he weights and thresholds of the network. In 
Section 4, we show results of simulations. vVe compare our methods ''''ith the e xact computation of the optimal 

weights and with a factorized probability model that assumes absence of correlations. We use the Kullback­
I.eibler divergence as a criterion for comparison on smaJl networks. Hmvever for large networks , this criterion 
can no longer be computed , because it requires exponential time. "Ve propose an approximate crit.erion for 
comparison on large networks and show that it correlates well with the Kullback-Leibler divergence for small 
problems. Subsequently we show good performance of our method for increasing problem size. 

2 Boltznlann Machine learning 

2.1 General Dynamics of Boltzmann Machines 

The Boltzmann Mac:hine is defined as follows. The possible configurations of the network can be characterized 
by a vector s = (Si, '" Si, '" S71.), where Si is t.he st.ate of the neuron i, and n the total number of the neurons. 
Each neuron can be in two states (Si = ±1) and its dynamics is governed by the following stochastic rule. At 
each time st.ep, a neuron is selected ad random. Its new value is determined as: 

Si = { +1 

l -1 
with g(h;) and hi (local field) defined by 

with probability g(h;) 
with probability 1 - g(hi} 

t 
g(hi} = 

1 + exp{ -2,Bhi)} . 
hi = L WijSj + ()j. 

j;t.i 

(1) 

(2) 

The magnitude Wij (weight) refers to the connection strength between the neuron i and neuron j, and Bi is 
the threshold for neuron i. The weights are chosen symmetric., 1JJij = 'l1'ji. The parameter /3 controls the noise 
in the neuron dynamics. /3 is often interpreted as /3 = �, where T acts like the temperature of a physical 
syst.em. Since /1 is j ust a scaling of the weights and the thresholds, and the latter are optimized through 
learning , we can set ;3 = 1 without loss of generality. 

Let us define the energy of the system for a certain configuration s as 

-E(8) = L WijSiSj + L SiBi. 
;<j 

(3) 

After long times, the probability to find t.he network in a state s becomes independent of time (thermal 
equilibrium) and is given by the Boltzmann distribution 

p(8) = � exp{ -E (S) } . (4) 
Z = Lrexp{ -E(B)} is the partition function which normalizes the probability distribution. 
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2.2 Slow learning in Boltzmann Machines 

A learning rule for Boltzmann Machines was introduced by Ackley, Hinton and Sejnowski (Ackley et al., 
1985). Let us partition the neurons in a set of nu visible units and nh hidden units (nu + nh = n) . Let � 
and f3 label the 2nu visible and 2nh hidden states of the network, respectively. Thus, every state '8 is uniquely 
described by a tuple �f3. Learning consists of adjusting the weighs and thresholds in such a way that the 
BoItzmann distribution on the visible units PlY. = 2.:,6 PIY.(3 approximates a target distribution qo: as closely as 
possible. 

A suitable measure for the difference between the distributions Po: and qa is the Kullback divergence (Kull­
back, 1959) 

J{ = LqO'log 
q
O'. (5) 

a Po: 
It is easy to show that J{ � 0 for all distributions PlY. and J{ = 0 iff Po: = qa for all �. 

Therefore, learning consists of minimizing I< using gradient descent and the learning rules are given 
by (Ackley et al., 1985; Hertz et al., 1991) 

(6) 

The parameter "l is the learning rate. The brackets ( -) and Oe denote the 'free' and 'clamped' expectation 
values, respectively. The 'free' expectation values are defined as usual: 

(Si) Lsf,6Pa(3 
O'{3 

(7) 

The 'clamped' expectation values are obtained by clamping the visible units in a state � and taking the 
expectation value with respect to qo:: 

(Si)e L sf{3 qo:P(3la 
1Y.,6 

(S·S·) • J c (8) 

sf,6 is the value of neuron i when the network is in state af3. P,6la is the conditional probability to observe 
hidden state f3 given that the visible state is a. Note that in Eqs. 6-8, i and j run over both visible and 
hidden units. 

Thus, the BM learning rules contain clamped and free expectation values of the Boltzmann distribution. 
The computation of the free expectation values is intractible, because the sums in Eqs. 7 consist of 2n terms. 
If ga is given in the form of a training set of P patterns, the computation of the clamped expectation values, 
Eqs. 8, contains p2nh terms. This is intractible as well, but usually less expensive than the free expectation 
values. As a result, the BM learning algorithm can not be applied to practical problems. 

2.3 The naive mean field approximation 

Peterson and Anderson (Peterson and Anderson, 1987) proposed an approximation to calculate the expectation 
values based on mean field theory. In their approach, the free and clamped expectation values in Eq. 6 are 
approximated by their mean field values 

(Si)�mi' (siSj)�mimj, if::.j, (9) 

where mi is the solution to the set of coupled mean field equations 

mi = tanh (L Wijmj + (}i). ( 10) 
Ni 

We will refer to this method as the naive mean field approximation. In each step of the gradient descent 
procedure, one must solve the mean field equations given by Eq. 10. This can be done quite easily using fixed 
point iteration. In Section 3, we will give more details about mean field theory. 
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Peterson and Anderson found that this method was 10 to 30 times faster than the Monte Carlo method. 
However, there are many data sets for which the naive mean field approximation does not work. Here, we 
show the consequences of their approach in the case that there are no hidden units. 

Consider a network with only tv>'O visible neurons and no hidded neurons. "Ve want to learn the probability 
distribution given by two patterns (1,1) and (-1, -1) \vith equal probability. Thus, (sdc = (S2)c = 0 and 

(SlS2)c = 1. 
On this particular problem, the gradient descent procedure combined with the naive mean field computa­

tion does not converge. The reason is very simple. If we assume that the learning process converges to fixed 
point (�U'ij = 0 and �()i = 0) then we obtain from Eqs. 6 and 9 

(Si)c = mi, (SiSj\ = mimj i #- j. 

Thus, the fixed point equations of the learning process combined \vith the naive mean field approximation 
imply that the data set has no non-trivial correlations. In our example, this condition is clearly violated, since 
0= (Sl)c (S2)c #- (SlS2)c = 1. 

Thus, we expect that if we use the naive mean field approximation for the computation of the gradients, 
the resulting learning process will not converge. This is illustrated in Fig. 1. We compare the exact gradient 
descent method, where the correlations are calculated using Eqs. 7, and gradient descent using the naive 
mean field approximation. Although the mean field met.hod sometimes reaches close t.o optimal solutions, the 
gradients Eqs. 6 are not zero at these points and therefore the solution does not remain there. 

EVOLUTION of KULLBACK DISTANCE 
1-, --�'- -----""- ----""T1 1\ I \ I I 

ill Q,S[J : � I � : o 1 I I 
� 0.6 \ : �: � I 

a \ J I I I: 
u O.4 r I I I , 1 I t'il t I " I :f! � , .. t I "S O.2 r ... . , \ I � \ \ ' , 

Dt� '. 
D 20 40 60 80 

TIME of Learning Process 
EVOLUTION of BIAS 1 

2r����-l ' I ,  i_:/-···\j 
-2 , 

'i _3LI --::-c---��---.J' 
o 20 40 60 80 

Time of learning Process 

EVOLUTION of WEIGHT (W12) 1Or------------] 

J � y>-�� -J1· iJL-�-.---
o 20 40 60 80 

Time ef Laa;r;irig Process 
EVOLUTION of BIAS 2 

Figure 1: Gradient descent learning. The nehvork consists of 2 visible neurons and no hidden neurons. The 
target distribution q is given by two patterns (1,1) and (-1, -1) with equal probability. The solid line shows 
the evolution of the Kullback divergence and the different net:work parameters when the exact gradient descent. 
method is used. The dotted line shows the evolution of the different nehvork parameters when t.he naive mean 
field approximation gradient descent procedure is used. Learning rate TJ = 0.1, momentum a = 0.9 

From this example we conclude that the naive mean field approximation leads to a converging gradient 
descent algorithm only when the dat.a are such that 

(11 ) 

For i and j visible units, this is simply a property of the dat.a. It is equivalent to the statement that the 
target probability distribution qa is factorized in all its variables: q(8) = IIiq;(s;). The quality of the naive 
mean field approximation will depend on to what extend Eq. 1 1  is violated. This conclusion holds regardless 
of whether the network has hidden units or not. 

3 The Inean field nlethod and the linear response correction 

In this Section we introduce an improved method to compute correlat.ions within the mean field framework. 
We will consider the mean field approximation and it.s formulat.ion in the first subsection. In the following 
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subsection we will derive our main result based on the linear response theory. In the special case that the 
network has no hidden units, the optimal weights and thresholds can be computed directly from the fixed 
point equations, i.e. no gradient procedure needs to be applied. 

3.1 Mean field formulation 

The basic idea of mean field theory is to replace the quadratic term in the energy, WijSiSj in Eq. 3, by a term 
linear in Si. Such a linearized form allows for efficient computation of the sum over all states, such as Eqs. 7 
and 8 and the partition function Z. We define the mean field energy 

(12) 

where we introduce n mean fields Wi. The mean fields approximate the lateral interaction between neurons. 
The values of Wi must be chosen such that this approximation is as good as possible. How to do this will be 
shown below. 

We define the mean field probability distribution as 

with 

( 0'1 exp{ -EmJ (8)} 
PmJ S, = 

Z 
. 

mJ 

ZmJ = 2:: exp{-EmJ(8)} = II 2cosh(Bi + W;) 
s 

the mean field partition function. 
The expectations values for Si and SiSj in the mean field approximation are given by: 

2:: SiPmJ(8) = tanh(Wi + Bi) == mi, 

2:: SiSjPmJ(8) = mimj i 'I- j, 
s 

(13) 

(14) 

( 15) 

(16) 

where we have introduced the parameters mi, which are still to be fixed because of their dependence on Wi. 
The real partition function Z, Eq. 4, can be computed in the mean field approximation (Itzykson and 

Drouffe, 1989): 

Z 2:: exp( -E) = 2:: exp( -EmJ + EmJ - E) 

ZmJ (exp(EmJ - E))mJ � ZmJ exp( EmJ - E)mJ) = Z'. (17) 

The mean field approximation is in the last step and is related to the convexity of the exponential function 
(exp J) 2: exp (I) (Itzykson and Drouffe, 1989). Note that OmJ denotes expectation with respect to the mean 
field distribution Eq. 13 and not with respect to the Boltzmann distribution Eq. 4 .  Therefore, the free energy 
in the mean field approximation can be easily computed and is given by 

-F = logZ' = 2:: log(2cosh(Bi + W;)) - 2:: Wimi + 2:: Wijmimj 
i<j 

We can calculate the mean fields W;, by minimizing the free energy: 

of 2 "'" 
oW' = (1- mi )(Wi - � Wijmj) = O. 

• Ni 

(18) 

(19) 

It can be shown, that the solutions m; = 1 maximize F. The required minima are therefore given by 
Wi = ENi Wijmj, which, combined with equation Eq. 15, give the mean field equations Eq. 10. These 
equations can be solved for mi in terms of Wij and Bi using fixed point iteration. The mean fields Wi can 
then be directly computed using Eq. 19. 
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3.2 Derivation of linear response correction 

We can go beyond the naive mean field prediction (SiSj )mJ 
observe that the mean firing rates and correlations are 

m,mj of Eq. 16 in the following way. First 

1 dZ 1 dZ' (Si) = z dBj ;:::: Z' dBj , (20) 

We will compute these quantities using the approximation Eq. 17. While computing �;. , using Eq. 18, we 
J 

must be aware that the mean fields W; depend on B. through Eq. 10 and Eq. 19: 

(SjSj) ;:::: 

d . , (f) "" 8Wj () ) , 
dO, log 

Z = f)(}i + 7 (jOj oHlj log Z = m; 

�� (Z'm·) = tn'm' +A .. Z'd(). ! ' J  'J' J 

(21) 

(22) 

with A.ij = �. The last step in Eq. 21 follmvs '.'Ihen we use the mean field equations Eq. 19. Thus, there are ) 
no linear response corrections to the mean firing rate. Eq. 22 is known as the linear response theorem (Parisi, 
1988). The inverse of the matrix A can be directly obtained by differentiating Eq. 10 with respect to Bi. The 
result is: 

(23) 

When the network is divided into visible and hidden units, the above approximation can be directly applied 
to computation of the free expectation values Eqs. 7. 

'When the visible units are clamped , the above derivation can be repeated to compute the expectation 
values for the hidden units. The only difference is that t.he thresholds Bi for the hidden units receive an extra 
contribution from the clamped visible neurons. Let us assume that the visible units are clamped in state a. 

The mean firing rates of the hidden units are denoted by (Si IQ( = m.i, i E If where m? satisfy the mean field 
equations 

m't = tanh(L u'ijmj + L Wijsj + (}i), i EH. 
.iEH jEV 

(24) 

V and If denote the subsets of visible and hidden units, respectively. l\'ote, that mi depends on the clamped 
state a. The correlations (8i8j)Q( are given as follows: 

i,j E If 

iE�l,jEIf 

i,j E V 

1 _ (�")2 - Wij 
, I 

(25) 
(26) 
(27) 

(28) 

Finally, the clamped expectation values are given by taking the expectation value over qo:: (Si)c = Eo: (8;)0: qo: 
and (SiSj)c = LQ( (8;8j)0< qQ' 

Thus, our approximation consists of replacing the clamped and free expectation values in Eqs. 6 by their 
linear response approximations. Eqs. 10, 21-23 and Eqs. 24-28 define the linear response approximations 
in the free phase and the clamped phase, respectively. The complexity of the method is dominated by the 
computations in the free phase. The computation of the linear response correlations involves the inversion 
of the matrix A, w-hich requires O(n3) operations. The computation of the mean firing rates through fixed 
point iteration of Eq. 10 requires O(n2) or O(n2 log n) operations, depending on whether fixed precision in 
the components of mi or in the vector norm L; m; is required . Thus, the full mean field approximation, 
including the linear response correction , computes t.he gradients in O(n3) operations. 

3.3 TAP correction to the mean field equations 

It is well-known that the standard mean field description Eq. 18 is inadequate for the description of frustrated 
systems. In general, terms involving higher powers of the coupling matrix Wij must be included. For example, 
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for the Sherrington-Kirkpatrick (SK) model the appropriate mean field free energy becomes (Thouless et al., 
1977) 

"'" "'" 1 "'" 1 "'" 2 2 2 -F = L,., log(2 cosh(B; + Wi)) - L,., Wimi +"2 L,., Wijm;mj + 4" L,., W;j(l- m;)(l- mj), 
i i i,j ij 

and the corresponding mean field equations become the TAP equations: 

mi = tanh (2: Wijmj + Bi - mi 2: wlj (l- mj)) . 
jti ji.i 

(29) 

(30) 

The additional term is called the Onsager reaction term (Onsager, 1936). It describes how the mean firing of 
neuron i affects the polarization of the surrounding spins and thus affect the local field of spin i. The effect 
of this additional term, but in the absence of the linear response correction, was studied by (Galland, 1993). 
In general there is an infinite sum of terms, each involving a higher power of the couplings Wij (Fischer and 
Hertz, 1991). It is interesting to note that all higher order terms in the fixed point equation are proportional 
to mi and thus represent corrections to the self-coupling term. In the case of the SK model, it can be shown 
that all terms beyond the Onsager term are negligible (Plefka, 1982). (For unfrustrated systems, like the Ising 
model, the Onsager term itself is negligible). 

One can obtain the linear response corrections for TAP and higher order mean field corrections in a similar 
way as was described above, i.e. by variation around the TAP equations. These extensions will be explored in 
a future publication. In this paper, we will restrict ourselves to the linear response corrections to the lowest 
order mean field equations and ignore higher order corrections. However, we will consider the effect of an 
effective self-coupling term Wiimi. The mean field equations Eq. 10 become 

mi = tanh (I: Wijmj + B;), 
j 

(31) 

where the sum now includes the diagonal term. The derivation of the linear response correction is unaltered, 
except that Wij has now non-zero diagonal terms (e.g. in Eq. 23). We propose to fix the value of Wii through 
learning. We will demonstrate that the inclusion of the self-coupling term is 1) beneficial to obtain a closed 
form solution for the learning problem in the absence of hidden units and 2) gives significantly better results 
than without the self-coupling term. 

3.4 No hidden units 

For the special case of a network without hidden units and with the effective self-coupling we can make 
significant simplifications. In this case, the gradients Eqs. 6 can be set equal to zero and can be solved 
directly in terms of the weights and thresholds, i.e. no 'gradient based learning' is required. F irst note, that 
(Si)c and (SiSj)c can be computed exactly from the data for all i arid j. Let us define Cij = (SiSj)c - (Si)c (Sj )c' 

The fixed point equation for b.Bi gives 

(32) 

The fixed point equation for b.wij, using Eq. 32, gives 

(33) 

Because we have introduced n self-coupling parameters, we must specify n additional constraints. An obvious 
choice is to ensure that (sr> = 1 is also true in the linear response approximation: 1 = (snlr = m; + Aii {:? 
Ai; = Ci;. Then, Eq. 33 is equivalent to (A-I)ij = (C-l)ij ifC is invertible. Using Eq. 23 we obtain 

iSij -1 11Jij = -1--2 - (C )ij 
- mi 

(34) 

In this way we have solved mi and Wij directly from the fixed point equations. The thresholds B" can now be 
computed from Eq. 10: 

()i = tanh-1(m;) - I: Wijmj 
j 
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Note, t.hat this method does not require fixed point iterations to obtain mean firing rates rni in terms of lL';j 
and Gi. Instead, the 'inverse' computation of Gi given mi and l1Jij is required in Eq. 35. Note also, that the 
thresholds depend on the diagonal weights. The solution of the example task of two neurons discussed in 
section 2.3 is computed in the appendix. 

Although the above choice of constraint is particular convenient , ''le should keep in mind that in principle 
other choices could be made, leading to other solutions. The justification for our choice is that it gives a 
closed form solution of high quality, as we will show. 

4 Results 

In this Section we will compare the accuracy of the linear response correction with and ,vithout self-coupling 
with the exact method and with a factorized model that ignores correlations. ';Ye restrict ourselves to networks 
without. hidden units. Of course, there are many probability estimation problems, for \vhich the BM without 
hidden units is a poor model. Our main concern is whether the linear response approximation will give a 
solution which is sufficiently close to the optimal solution, and not whether the optimal solution is good or 
bad. 

The correct way to compare our method to the exact method is by means of the Kul1back divergence. 
However, this comparison can only be done for small networks. The reason is that the computation of the 
Kullback divergence requires the computation of the Boltzmann distribution, Eq. 4, ,,,hich requires exponential 
time due to the partition function Z. In addition, the exact learning method requires exponential time. The 
comparison by Kullback divergence on small problems is the subject of Section 4.l. 

For networks with a large number of units, we will demonstrate the quality of the linear response method 
by means of a patter n  completion task i.e. the network must be able to generate the rest of a pattern, when 
part of the pattern is shown. The comparison of pattern completion on larger problems is the subject of 
Section 4.2. 

4.1 Comparison using Kullback divergence 

In order to show the performance of the linear response correction, we have compared it with the results 
obtained with a factorized model and with the exact method. 

For the exact method (ex) 've have used conj ugate gradient. The mean firing rates and correlations are 
computed using Eqs. 7. For the linear response method without self-coupling term (lrO) we have solved the 
fixed point Eqs. 33 for i i- j using lea.<;t squares and the Levenberg-Marquardt method. The matrix A is 
given by Eq. 23 with lJ)ii = O. For the linear response method with self-coupling (lr) we obtain the weights 
and thresholds from Eq. 34 and Eq. 35. This method can be applied when det(C) > O. When det(C)=O, we 
have solved the fixed point Eqs. 33 for all i, j using least squares and the Levenberg-Marquardt method. The 
matrix A is given by Eq. 23 with Wji free parameters. 

In the case of the factorized model we assume 

(36) 

The mean firing rates are given by rni = (Si)c' The four methods are compared by computing the Kullback 
divergence, using Eq. 5. 

In Fig. 2, we present the results for a network of 6 neurons. The number of patterns in the training set is 
varied from p = 1 until p = 64. For each p, 5 data set.s were randomly generated. Each of the p patterns in 
the data set is assigned a random probability such that the total probability on the p patterns sums to l. 

The lr method used least squares minimization for 2 ::; p ::; 6. For the methods lrO and lr we observed for 
2 ::; p ::; 6 in approximately 10 % of the cases that the fixed point equations could not be solved. This can 
of course happen because the equations are approximations to the true gradients and therefore do not need 
to have a fixed point solution. These cases were deleted from the computation of the average Kullbacks in 
Fig. 2. 

We see that the exact method approaches the target distribution (K = 0) for very small number of 
patterns and for p -+ 2". For p = 1, the correlations in the target distribution are absent, and all methods 
yield K ullback zero. For p -+ 2" the factorized model approaches the exact model. This is because the 
target distribution becomes more or less constant over all patterns and correlations are absent in the constant 
distribution. The most difficult learning tasks are for low and intermediate values of p. The difference between 
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Figure 2: Average Kullback divergence over 5 random training sets as a function of the number of patterns 
in the trainingset. The network consists of 6 neurons. 

Km! and Kex shows that correlations play a significant role. The linear response solutions with and without 
the self-coupling term give a significant improvement. Linear response with self-coupling term gives the best 
approximation. In the remaining of the numerical studies we will only consider the linear response method 
with self-coupling. 

We compare the performance of the various methods on networks with 3 to 10 neurons in Fig. 3. For 
each problem size, training data were randomly generated with p = 2n. Each neuron value sr = ±1, i = 

1, . . . , n, I-' = 1, ... , p is generated randomly and independently with equal probability. For each data set we 
compute Klr - Kex and Km! - Kex. In the Figure, we show these values averaged over all data sets, as well 
as their variances. From the difference between Kex and Km! we see that correlations play an increasingly 
important role. The linear response approximation is often quite close to the exact result. The quality of the 
approximation does not deteriorate with increasing problem size. 

1.B 

0.2 

0U-____ L_ __ � ____ -L ____ L-__ � ____ _L ____ _U 
3 6 7 

Number of neurons 

Figure 3: Kullback divergence relative to exact method, for mean field approximation (open circles) and linear 
response method with self-coupling (closed circles) . The number of patterns p = 2n. Results are averaged 
over 4 data sets. The error bars indicate the variance over the data sets. 
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4.2 Comparison on pattern completion 

In this subsection, ,ve demonstrate the quality of the linear response method for larger networks. As ,ve 
mentioned above, this can not be done by comparison of t.he Kullback divergence. Therefore, we propose to 
compare the different methods on n pattern completion tasks. 

We first train the networks as before as if the problem were a joint probability estimation problem, i.e. with 
no distinction between 'input' and 'output'. Subsequently, we measure the quality of the different solutions 
by computing 

Q = -� 2)og(p(sflsf)), np ifJ. 
S-fJ. -(",fJ. sfJ. sfJ. sfJ.) i - U1' '" ;-1: ;+1> '" n (37) 

The quantity p(s; I sf) is the conditional probability of finding neuron ·i in the state si: given t.hat the rest of 
the state is si. 'Ve can do this for the exact method (for small networks) for the linear response method and 
for the factorized model. Note, that the computation of Q is fast because it does not require the computation 
of the partition function. 

:::rl ---'--�y 0.7,------�-�-�-_. 

0.6 

0.5 

. . . 

0.5 1 1.5 
KuUback Distance (Kml-KIt) 

Figure 4: Variation of the pattern completion quality Q ,vith respect to the Kullback divergence f{: for 200 
data sets on 6 neurons . Each data set consists of 10 patterns. In the left graph, the plus signs represent the 
linear response method and the open circles represent the factorized model. In the right graph we plot. the 
difference between the tivo pattern completion qualities (Qm] - Qlr) versus the difference of the Kullback 
di vergence (J( m] - f{lr) for the same data sets. 

In order to use Q to assess the quality of the various methods, we must establish that low Q implies low 
Kullback divergence J( and vice versa. This is shown in Fig. 4. The left graph shows for the linear response 
solutions and for t.he factorized model solutions separately that there is a more or less linear relation between 
the quality in terms of f{ and in terms of Q. In the right graph we show for the same data sets the difference 
in pattern completion quality, Qm] - Qlr, versus the difference in Kullback divergence , Km] - Klr. From this 
we see that if one method has a lmver Q than another method , 1ve can expect that it.s Kullback divergence is 
lower as well. 

Thus, one can use the more or less linear relation between Q and f{ to test the performance of the linear 
response method for problems 1vith a large number of neurons. In Fig. 5, ,ve show the pattern completion 
quality for the different methods as a function of the network size. The exact method was only computed 
up to 10 neurons, because of the time required . (Depending on the stop criterion , the exact method requires 
approximately 10-30 minutes on a network of 10 neurons on a SPAR.e 5). "Ve can see that the linear response 
method is very close to the exact method. The much higher value of the factorized model indicates the obvious 

fact that correlations play an important role in this task. Note that the mean field method approaches q = log 2 
for large n, which is due to the fact that the mean field method assigns p(sf) � t (m; � 0) for all i and p. 

iD 



0.4 

0.35 

0.3 . 

0. 25"-2 -�-L..-'-�-'-'-',---�20---�50---J1 00 
Number of neurons 

Figure 5 :  Prediction quality for 27 different random problems with different number of neurons. In every 
problems the number of patterns p = 2n . The plus signs represent the linear response correction (Qlr ) . The 
open circles represent the factorized model (Qm! ) ' The closed circles represent the exact method (Qex) . 

5 Discussion 

We have proposed a new efficient method for learning in Boltzmann Machines . The method is generally 

applicable to networks with or without hidden units. It makes use of the linear response theorem for the 
computation of the correlations within the mean field framework . 

In our numerical experiments we have restricted ourselves to networks without hidden units. We argue 

that this is sufficient to show the advantage of the method, since the 'free' expectation values are the most 
time consuming part of the computation. 

We have observed numerically that the inclusion of self-coupling is important to get good results . This is 
probably also true in the presence of hidden units. In that case, a gradient based procedure is required and 
no closed form solution exists .  The presence of self-coupling was motivated from the TAP equations. A full 
treatment of the linear response correction in this case is the subject of a future publication . 

In the presence of hidden units, both the exact method and the linear response method require a gradient 
descent algorithm . The advantage of our method is that the gradients can be computed in O(n3 ) ,  instead of 
in O(2n ) ,  time. The required number of iterations may be somewhat more for the linear response method, 
because the gradients are only computed approximately. 

This brings us to an interesting point, which is the convergence of the gradient descent algorithm in the 
linear response approximation. Convergence requires the existence of a Lyapunov function . The Kullback 
divergence is clearly a Lyapunov function for the exact method, but we were not able to find a Lyapunov 
function for the linear response approximation. In fact , one would like to construct a cost function such that 
its gradients are equal to the gradients of I<. in the linear response approximation. Whether such a function 
exists is unknown to our knowledge . 

In addition to probability estimation, Boltzmann Machines have been proposed for combinatoric optimiza­
tion (Hopfield and Tank, 1985;  Durbin and Willshaw, 1987;  Yuille and Kosowsky, 1994) . For optimization the 
naive mean field framework can be succesfully applied to combinatoric optimization problems (Yuille et al . ,  
199 1 ;  Kosowsky and Yuille, 1994) . This method i s  known as deterministic annealing. Clearly, the situation 
is different here, since one is mainly concerned with the quality of the solution 'at the end' of the annealing 
schedule, i .e .  when T -+ O. Correlation vanish in this limit in unfrustrated systems but can be quite complex 
in spin glasses (see for instance (Young, 1983) for numerical results) . Whether the linear response correction 
can improve deterministic annealing is an open question . 

As mentioned in the introduction, the naive mean field approach arises as a special case of the variational 
techniques that have been recently proposed. It should be further investigated whether the linear response 
correction can be applied in this context as well. 
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6 Appendix 

In this appendix we illustrate the consequences of the linear response method for the simple case of two 
neurons. This problem was considered numerically in section 2.3. 
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The general probability distribution in 2 neurons is parametrized by 3 numbers. Consider the symmetric 
case where (Sl ) = (S2 ) .  Then only two parameters are needed, which we choose such that 

p(+, +) 
p(+ , -)  
p(- , -)  

1 
= -( 1  + m) - a 

2 

p(- ,  +) = a 

1 2' ( 1 - m) - a .  

We must require that 0 < a < � and 2a - 1 < m < 1 - 2a  to ensure that all probabilities are positive. In 
this parametrization (Sl S2 ) = 1 - 4a and (Sl ) = (S2 ) = m. The special case of section 2.3 is obtained for 
m = a = O. The matrix C as defined in section 3 .4 is given as 

Eq. 34 gives directly 

( 1 - m2 1 - 4a - m2 ) C = 
2 2 1 - 4a - m 1 - m 

W - _ 1-m' 1 1 - m2 - 4a ( - 1  + � 1 ) 
-

8a 1 - m2 - 2a 1 - 1 + 1��' 
and the thresholds are computed using Eq. 35. Note, that the diagonal weights play an important role in the 
computation of the thresholds. 

One can also compute the optimal weigths and thresholds using the exact method. Setting D.wij = 0 and 
D.Bi = 0 in Eq. 6 we obtain 

()i 

10 ( ( 1 - 2a)2 - m2 ) g 
4a2 

- tanh- ---
1 1 (  m ) 

2 1 - 2a 

The differences are illustrated for m = 0 . 1  and m = 0.5 for all allowed values of a in Fig. 6 
Note that the linear response approximation is very good in those instances where the optimal weights are 

small. For larger weights the difference between the two methods increases. However, in the regions of l arge 
weights the difference has an exponentially vanishing infuence on the value of the the probability distribution 
and thus on the quality of the solution as measured by the Kullback diverence. The same statements are 
more or less true for the thresholds. 
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Figure 6: Examples of lateral connection and threshold(s) obtained by exact method and linear response 
method (LR) for a network of two neurons with m = 0.1 and m = 0 .5  
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