
Verification of Casper in the Coq Proof Assistant
Karl Palmskog Milos Gligoric

The University of Texas at Austin

{palmskog,gligoric}@utexas.edu

Brandon Moore

Runtime Verification, Inc.

brandon.moore@runtimeverification.com

Lucas Peña

Runtime Verification, Inc.

lucas.pena@runtimeverification.com
University of Illinois at Urbana-Champaign

lpena7@illinois.edu

Grigore Roşu

Runtime Verification, Inc.

grigore.rosu@runtimeverification.com
University of Illinois at Urbana-Champaign

grosu@illinois.edu

Abstract
This report describes our effort to model and verify the

Casper blockchain finality system in the Coq proof assistant.

We outline the salient details on blockchain systems using

Casper, describe previous verification efforts we used as a

starting point, and give an overview of the formal definitions

and properties proved. The Coq source files are available at:

https://github.com/runtimeverification/casper-proofs

1 Introduction
The Ethereum blockchain and platform [18] is increasingly

used as a financial transaction mechanism, in particular by

way of smart contracts. A desirable property of a transac-

tion mechanism is durability—after a user has submitted a

transaction and received initial confirmation, the transaction

should not be rolled back. However, in a blockchain system,

there may be several competing chains of blocks that agree

on the transaction history from the initial genesis block only

up to some point. These so-called forks may arise as a result

of network delays or adversarial behavior by some nodes,

and can lead to transactions disappearing as soon as one of

the forks is preferred by most nodes. To address the problem

of long-ranging blockchain revisions, Buterin and Griffith

proposed Casper [11], a finality system that overlays another

block chain such as Ethereum. When enough participants in

the system are honest, Casper defends both against active

attacks and catastrophic crashes.

For the greatest confidence, proofs about Casper should be

formalized in a mechanical proof assistant, to ensure there

are no unstated assumptions or invalid steps. This report

describes our effort to model and verify Casper in the Coq

proof assistant, both at the abstract protocol level and at the

level of a distributed blockchain system. In the terminology

of Appel et al. [7], the aim is to make the Casper specification

two-sided: implementable in Ethereum nodes and provably

beneficial to Ethereum users. A further goal is to lay the

foundation for making the Casper specification live, i.e., en-
able verifying Ethereum nodes at the level of executable

Project Report, November 15, 2018, Runtime Verification, Inc.
2018.

code, or even generating the code from the specification,

correct-by-construction.

2 Background
This section explains blockchain and Casper terminology,

provides pertinent Coq background, and describes the previ-

ous formalization and verification efforts we build upon.

2.1 Blockchain and Casper Terminology
Abstractly, the global state in a blockchain system is a block
forest, with a unique genesis block that is the root of a special
block tree. Trees not rooted in the genesis block may be possi-

ble but are typically disregarded. As new blocks arrive to the

system, nodes in the system continually establish consensus

on a canonical blockchain defined by one of the leaves in

the special block tree. New blocks are minted through a pro-
posal mechanism, which could be an underlying blockchain

using proof-of-work [16] or proof-of-stake [9] to regulate

block creation. Participating nodes use a local fork choice rule
to decide where to construct a new block onto the current

block tree. Due to, e.g., delays or adversarial behavior, there

may be competing leaf blocks of similar tree height, defining

different blockchain forks.
Casper overlays a blockchain system, and intuitivelyworks

by engaging a group of autonomous validators who attest to,
by broadcasted votes, that certain blocks in the special tree

belong to the designated canonical blockchain. To participate,

validators must demonstrate that they have a stake in the

blockchain system by locking up a deposit of the blockchain’s
cryptocurrency. The deposit will be slashed if the validator

is verifiably reported by other validators to be behaving

adversarially.

For verification, we focus on two properties of Casper that

were proved informally in [11](i.e. without using a mechani-

cal proof assistant): accountable safety and plausible liveness.

Accountable safety intuitively states that conflicting blocks

in different block tree forks cannot both be finalized if more

than
2

3
of validators (by deposit) behave honestly. Plausible

liveness states that regardless of what has happened before,

it is always possible to continue to finalize blocks when more

than
2

3
of validators follow the protocol.

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/161954227?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://github.com/runtimeverification/casper-proofs


Project Report, November 15, 2018, Runtime Verification, Inc. K. Palmskog, M. Gligoric, L. Peña, B. Moore, and G. Roşu

2.2 Casper Formalizations
Yoichi Hirai formalized and verified several earlier variants

of Casper in the Isabelle/HOL proof assistant [15]. These for-

malizations are highly abstract, in the sense that they ignore

most details of the structure of hashes, blocks, and validators.

For example, the requirements on the fractions of honest

validators is captured, via Isabelle’s locale mechanism [8],

by postulating abstract types
′q1 and ′q2 to represent col-

lections of sets of validators of at least
2

3
weight and sets of

validators of at least
1

3
weight respectively. Instead of any

numerical details, the Isabelle formalization just assumes the

key intersection property, that any two set of validators each

of at least
2

3
have a common subset of weight at least

1

3
. This

is how that property was expressed in Isabelle:∧
q1 q2 . ∃q3 . ∀v .v ∈2 q3 → v ∈1 q1 ∧v ∈1 q2

Here,

∧
is all-quantification, the subscripted operatorv ∈1 q

means that validator v is a member of a set q which belongs

to the type
′q1 that represents sets of weight at least

2

3
, and

the subscripted operator v ∈2 q means that validator v is a

member of a set q which belongs to the type
′q2 that repre-

sents sets of weight at least
1

3
. In this proposition q1 and q2

have type
′q1 and q3 has type q2. This use of numbered “q”s

as both types and variables is confusing, but exactly follows

the Isabelle definition. While accountable safety is verified

for the most recent Casper, plausible liveness is only proven

for an earlier variant with different inter-validator messages.

Moreover, these proofs were developed in an older version of

Isabelle and already the proof of accountable safety cannot

be checked with Isabelle2017.

2.3 Mathematical Components and Toychain
We employ several existing Coq libraries which already for-

malized the majority of the mathematics we need to define

and reason about Casper. Mathematical Components [4] is a

Coq library based on packaging mathematical structures and

results in the form of Coq canonical structures, which can

be reused and specialized when required [13]. The library

was used by Gonthier et al. to capture finite group theory

and prove fundamental results in abstract algebra [14]. In

addition to structures from abstract algebra, the library also

contains encodings of and results about many standard data

structures, such as numbers, lists, and finite sets.

Toychain [6, 17] is a general formalization of blockchain

systems in Coq using the Mathematical Components library.

It defines blocks, forks, and distributed node state, but ab-

stracts from specific block proposal mechanisms and proce-

dures to let nodes decide between forks. Toychain represents

a block tree as a finite map from hashes to blocks. Toychain

describes the behavior of a blockchain system as a relation

between global states, and establishes that absent adversar-

ial interference, the canonical chain becomes known to all

nodes in the steady state. For example, the Toychain global

state is represented as a Coq record

Record World := mkW { localState : StateMap;

inFlightMsgs : seq Packet; consumedMsgs : seq Packet; }.

where localStatemaps node names to their current block tree

and other local data. We have extended and revised Toychain

in collaboration with its authors to support capturing full

realistic blockchain system specifications such as that for

Bitcoin [2]. Our model of Casper incorporates definitions

and lemmas from this extended version of Toychain.

3 Modeling and Verification Approach
This section outlines our approach to modeling and verifying

Casper in Coq.

We decided to translate Hirai’s Casper definitions and the-

orems [15] from Isabelle/HOL to Coq, and connect the result-

ing Casper definitions with key definitions from Toychain.

At the same time, we leveraged the Toychain definitions

and results to capture the behavior of nodes as found in the

Casper-based beacon chain for Ethereum [1]. For tractabil-

ity, we focused on translating and adapting Hirai’s formal

models with a static validator set, which are simpler (but less

realistic) than the corresponding models with churn among

validators.

We used concepts from the Mathematical Components li-

brary as far as possible. In particular, validators are identified

by fixed-size keys so we represent validators as members

of a finite type (having a finite number of members that

can be enumerated), written Validator : finType. Using the

library’s finType simplifies forming and reasoning about sets

of validators.

Since the formal model for establishing safety by Hirai

mostly uses first-order reasoning, we were able to success-

fully leverage the CoqHammer extension [3, 12] to perform

proofs in Coq that closely followed Isabelle/HOL proofs. At

the same time, we reformulated Isabelle locale variables to

Coq section variables.

In particular, the assumption on abstract set membership

becomes:

Variables quorum_1 quorum_2 : {set {set Validator}}.

Hypothesis qs : ∀ q1 q2, q1 ∈ quorum_1 → q2 ∈ quorum_1 →
∃ q3, q3 ∈ quorum_2 ∧ q3 \subset q1 ∧ q3 \subset q2.

quorum_1 abstracts the collection of sets of validators with

combined deposits (“weight”) of at least
2

3
of the total. A link

will be justified if every validator in some set in quorum_1 has

voted for the link. quorum_2 abstracts the collection of sets of

validators with combined deposits of at least
1

3
of the total.

Casper safety proofs generally show that an attack cannot

succeed without a set of attacking validators of at least this

size being slashed for it.

To abstract a block forest, we assume a parent relationship

on a type Hash (with member genesis).

2



Verification of Casper in the Coq Proof Assistant Project Report, November 15, 2018, Runtime Verification, Inc.

An individual validator v must not publish two

distinct votes,

⟨v, s1, t1,h(s1),h(t1)⟩ and ⟨v, s2, t2,h(s2),h(t2)⟩,
such that either:

I. h(t1) = h(t2). Equivalently, a validator must not

publish two distinct votes for the same target height.

II. h(s1) < h(s2) < h(t2) < h(t1). Equivalently, a validator
must not vote within the span of its other votes

Figure 1. Slashing Conditions of Casper

Variable hash_parent : rel Hash.

Hypothesis hash_at_most_one_parent : ∀ h1 h2 h3,

hash_parent h2 h1 → hash_parent h3 h1 → h2 = h3.

Given the block forest we define the global state as a function

which represents votes cast by validators:

Record State :=

mkSt { vote_msg : Validator → Hash → nat → nat → bool }.

The arguments are the validator making the vote, the hash

and height of the target block, and the height of the source

block. Blocks have at most one parent so the source hash of

any valid vote can be computed.

With votes defined we can then define the slashing condi-

tions of Casper (shown in Figure 1) in terms of conflicting

votes, and define a predicate saying a validator is slashed in

a given global state.

Definition slashed_dbl_vote s n :=

∃ h1 h2, h1 , h2 ∧ ∃ v s1 s2,

vote_msg s n h1 v s1 ∧ vote_msg s n h2 v s2.

Condition I is violated if validator n has voted for two edges

targeting different blocks h1 and h2 at height v.

Definition slashed_surround s n :=

∃ h1 h2 v1 v2 s1 s2, v1 > v2 ∧ s2 > s1

vote_msg s n h1 v1 s1 ∧ vote_msg s n h2 v2 s2.

Condition 2 is violated if validator n has made two votes

so the source height s1 and target height v1 of one strictly

surround the source height s2 to target height v2 range of

the other vote.

Definition slashed s n : Prop :=

slashed_dbl_vote s n ∨ slashed_surround s n.

A validator is slashed if it has violated either slashing condi-

tion.

We can also define justified links between blocks based

on the votes in a state:

Definition justified_link s q parent pre new now :=

q ∈ quorum_1 ∧ (∀ n, n ∈ q → vote_msg s n new now pre) ∧
now > pre ∧ nth_ancestor (now - pre) parent new.

The conjuncts respectively require that set q is large enough

to justify a link, that every validator in q has voted for this

link, that the claimed height now of the target is greater than

the claimed height pre of the source, and that parent is ac-

tually the ancestor the appropriate number of levels above

new.

This allows us to define justified blocks, starting from the

genesis block, and furthermore finalized blocks, as in the

Casper paper.

Inductive justified : State → Hash → nat → Prop :=

| orig : ∀ s, justified s genesis 0

| follow : ∀ s parent pre q new now,

justified s parent pre →
justified_link s q parent pre new now →
justified s new now.

Definition finalized s q h v child := justified s h v

∧ h <~ child ∧ justified_link s q h v child v.+1.

4 Accountable Safety
This section describes the Coq formalization and verifica-

tion of Casper’s accountable safety property. A major part

of the Casper design is ensuring that an attack cannot fi-

nalize blocks on both sides of a fork in the chain without

the attacker losing a significant amount of money by having

their validator deposits slashed. This is formalized as the

accountable safety theorem, which says that if two blocks

are finalized and neither is an ancestor of the other, then val-

idators having at least
1

3
of the deposits must have violated

the slashing conditions. The difference between slashing vi-

olations and actually losing funds is addressed and handled

with other countermeasures in the Casper paper [11].

Let hash_ancestor be the reflexive-transitive closure of the

hash_parent relation. Building on the definitions of validator

quorums and justification described above, we define a fork

in a state as two conflicting finalized blocks (hashes):

Definition fork s := ∃ h1 h2 q1 q2 v1 v2 c1 c2,

finalized s q1 h1 v1 c1 ∧ finalized s q2 h2 v2 c2 ∧
~ hash_ancestor h2 h1 ∧ ~ hash_ancestor h1 h2 ∧ h1 , h2.

With slashed s v capturing that the slashing conditions in

Figure 1 are true in state s for validator v, we define the

condition of
1

3
of validators by weight being slashed:

Definition quorum_slashed s :=

∃ q, q ∈ quorum_2 ∧ ∀ v, v ∈ q → slashed s v.

This allows us to define and prove accountable safety:

Theorem accountable_safety : ∀ s, fork s → quorum_slashed s.

The proof roughly follows the informal argument [11]. If the

two finalized blocks were at the same height then at least

1

3
weight (or a quorum_2 set) of validators violated slashing

condition I. Otherwise, consider the path of justified links

which justifies the higher finalized block. If any justified

block along this path has the same height as the other jus-

tified block or its justified immediate child then we again

have a sufficiently large set of validators violating slashing

condition I. Otherwise find the justified link along that path

3



Project Report, November 15, 2018, Runtime Verification, Inc. K. Palmskog, M. Gligoric, L. Peña, B. Moore, and G. Roşu

with a source lower than the other justified block and a target

higher than its child. Taking this link along with the justified

link between the lower finalized its child we have a set of

validators violating slashing condition II.

5 Plausible Liveness
The liveness goal for Casper is that as long as at least

2

3
of

validators are following the protocol and block proposals con-

tinue, then further checkpoints can continue to be finalized

regardless of the behavior of the less the
1

3
of misbehaving

validators, without needing any of the honest validators to

violate a slashing condition and sacrifice their deposit to

allow the chain to live.

Our Coq proof is based on the argument given in [11], and

also Yoichi Hirai’s Isabelle/HOL proof of plausible liveness

for an older variant of the Casper protocol [15].

5.1 Context
The proof workswith the samemodel of checkpoint blocks as

the accountable safety proof.We are given a set of checkpoint

block hashes, a parent relationship giving each hash at most

one parent, and a hash of the genesis block. The changing

part of the system states is only the set of votes, because

we do not model the block proposal process or dynamic

validator sets.

Finalization is an essential part of the Casper design for

dynamic validator sets, which uses finalized blocks as the

boundary of the “epochs” where the validator set can change.

Because of this essential role we state and prove liveness in

terms of a hash and height of the most recent previously-

finalized block, even though we are not yet proving liveness

in the presence of dynamic validator sets.

Variable epoch_start : Hash.

Variable epoch_height : nat.

Hypothesis epoch_ancestry :

nth_ancestor epoch_height genesis epoch_start.

Here epoch_start is the hash of that block, epoch_height is its

height, and epoch_ancestry is a proof that the epoch start block

is actually at the claimed height over the genesis block.

To demonstrate a further block can be finalized we only

need to consider justification of blocks descending from the

start of this epoch. We define justification within the epoch

as having a path of super-majority links from the epoch start

up to a block.

Inductive justified_this_epoch (st:State)

: Hash → nat → Prop :=

| epoch_justified :

justified_this_epoch st epoch_start epoch_height

| justfied_link : ∀ s s_h t t_h,

justified_this_epoch st s s_h →
hash_ancestor s t →
supermajority_link st s t s_h t_h →
justified_this_epoch st t t_h.

This definition defines justification inductively, from two

cases. A block is justified if it is the epoch start block, or if

it has a justified ancestor and a supermajority of validators

have voted for a link to this block from that ancestor.

Besides the parameterization over the epoch start block,

we do not actually consider the history of any past epochs. In

particular, we assume that the well-behaved nodes have not

made any votes with sources outside the current epoch. We

could work without that assumption, but we would need to

repeat part of the accountable safety proof to argue that an

unslashed validator’s votes from past epochs cannot prevent

them from safely making the votes chosen in out proof.

5.2 Theorem
To formalize a statement of plausible liveness, we follow

our examples and abstract away from any implementation

details of “following the protocol”, and simply require that

our
2

3
good validators have not made certain sorts of bad

votes. For the conclusion we also ignore the details of how

validators decide to make votes, and simply show that there

is some set of votes which the good validators could make

that would finalize a further block and not violate slashing

conditions.

In Hirai’s proof for the previous Casper design it was

sufficient to simply require that the good validators were

unslashed. The current Casper design intentionally removed

any slashing conditions that required knowing the state of

the chain when the votes were made. We found that one of
these conditions was essential to the proof, so our definition of

good behavior for the current Casper protocol requires that

a validator has not made votes with an unjustified source

in addition to requiring that a good validator had not been

slashed.

We define the condition that a super-majority of validators

is good given a set of votes:

Definition two_thirds_good (st : state) :=

∃ good_validators, good_validators ∈ quorum_1

∧ ∀ v, v ∈ good_validators

→ (~ slashed st v ∧ sources_justified st v).

The property sources_justified st v says the source block of

any vote that validator v has made in state st is justified

within the current epoch
1

Definition sources_justified st v :=

∀ s t s_h t_h,

vote_msg st v s t s_h t_h →
hash_ancestor epoch_start s ∧ justified_this_epoch st s s_h.

The other explicit hypothesis of our plausible liveness the-

orem captures the assumption that block proposals continue.

We only need to assume that blocks can be found above the

highest justified block, but we may need to find a block at

arbitrary height. These definitions capture the properties

1
This enforces the assumption above that good nodes only have votes with

sources within the current epoch

4



Verification of Casper in the Coq Proof Assistant Project Report, November 15, 2018, Runtime Verification, Inc.

of being the highest justified block (which will be unique

by accountable safety), and having descendants at arbitrary

heights.

Definition blocks_exist_high_over (base : Hash) : Prop :=

∀ n, ∃ block, nth_ancestor n base block.

Definition highest_justified st b b_h : Prop :=

∀ b' b_h', b_h' >= b_h

→ justified_this_epoch st b' b_h'

→ b' = b ∧ b_h' = b_h.

With these ingredients, this is the statement of plausible

liveness that we prove:

Lemma plausible_liveness :

∀ st, two_thirds_good st →
(∀ b b_h, highest_justified st b b_h

→ blocks_exist_high_over b) →
∃ st', unslashed_can_extend st st'

∧ no_new_slashed st st'

∧ ∃ (new_finalized new_final_child:Hash) new_height,

justified_this_epoch st' new_finalized new_height

∧ epoch_height < new_height

∧ new_finalized <~ new_final_child

∧ supermajority_link st' new_finalized new_final_child

new_height new_height.+1.

The desired conclusion of the theorem is expressed by

stating that there exists a set of votes st', such that any

votes which were not already in st were made by unslashed

validators, that no validators that were unslashed in st are

slashed in st', and that there is a block new_finalized which

is finalized under votes st' and is higher than the previous

finalized block.

The proof proceeds as outlined in [11]:We take the highest

justified checkpoint J which is a descendant of the most

recently finalized block, consider the maximum height of the

target of any existing vote, and use the assumption that block

proposals continue to find a descendant A of J at a greater

height than that, and an immediate child B of A. Then all

good validators will vote for the links J→A and A→B. This

is easily shown to finalize A and require votes only from

good validators. It remains only to prove that this does not

violate any slashing condition. Recall the definitions of the

slashing conditions from Figure 1.

• Condition I is not violated because a good validator’s

two new votes have targets at different heights, and

any previous votes have a target at a lower height than

A, by choice of A.

• Condition II is not violated because the two new votes

of good validators do not nest, a previous vote can-

not have a range surrounding a new vote because all

previous votes have targets below A by choice of A,

and a previous vote cannot nest within the vote for

J→A because it would have a source above J, we as-

sume existing votes from good validators have justified

sources, and J is the highest justified block.

5.3 Unslashed is not enough
One might wonder if a different voting strategy could prove

plausible liveness while only needing to require that the

good validators be unslashed. To show that there cannot be

such a proof, we give an example where all validators are

unslashed but it is impossible to justify any further blocks

(let alone finalize a further block). Every validator in this

example has made one vote with an unjustified source.

F

A1

A2

B1

B2

Figure 2. Unslashed Progress Counterexample

The example is shown in Figure 2. F is the most recent

finalized block, A1 and B1 immediate children of F , and A2

and B2 immediate children (respectively) of A1 and A2. Half

of the validators have voted for the edges F→A1 andA1→A2

(dotted arrows) and the other half of the validators have

voted for F→B1 and B1→B2 (dashed arrows). It is impossible

to make a super-majority link from F to any other block

without some validators being slashed. A new edge from F
to a block one or two levels above F would violate slashing

Condition I, because every validator already has votes with

a target at that level. An edge from F to a block at any higher

level would violate Condition II, with the inner vote being

that validator’s vote for A1→A2 or B1→B2.

6 Instantiating Hypotheses and
Parameters

The definitions and proven properties in the abstract models

of Casper are quite far from those in the Casper paper [11],

partly due to proof engineering concerns described above. To

bring our results closer to the paper, and thus to actual imple-

mentations, we instantiate the key abstractions. In particular,

we assume an arbitrary function which maps validators to

their deposits:

Variable deposit : Validator → nat.

Using the support for big operators in Mathematical Compo-

nents [10], we then define the total deposits of all validators:

Definition deposits := \sum_(v : Validator) (deposit v).

We also define a function from a natural number n to the set

of sets of validators which have total deposit at least n:

Definition gdset n := [set x in powerset [set: Validator] |

\sum_(v in x) (deposit v) >= n].

Writing m %/ d for the quotient of the Euclidean division of m

by d, we define two sets:

5



Project Report, November 15, 2018, Runtime Verification, Inc. K. Palmskog, M. Gligoric, L. Peña, B. Moore, and G. Roşu

Definition deposit_bot := gdset (deposits %/ 3).+1.

Definition deposit_top := gdset ((2 * deposits) %/ 3).+1.

which allows us to prove:

Lemma deposit_validator_intersection : ∀ q1 q2,

q1 ∈ deposit_top → q2 ∈ deposit_top →
∃ q3, q3 ∈ deposit_bot ∧ q3 \subset q1 ∧ q3 \subset q2.

using the arithmetical lemma

Lemma thirds : ∀ n, (n %/ 3).+1 + n <= 2 * (2 * n %/ 3).+1.

This intersection lemma shows that we can instantiate the

abstract quorum_1 and quorum_2 used in our proofs with specific

sets deposit_top and deposit_bot.

6.1 Block Trees and Transition System
Working from the other end of the abstraction spectrum, we

define functions and datatypes in Coq resembling those in

the beacon chain implementation [1], to be used when defin-

ing global system state and node-local behavior. In particular,

following Toychain, we abstracted a block to a Coq record

type containing, most notably, a hash of the previous block

and a collection of attestations by validators:

Record Attestation := mkAR { distance_src : nat;

attester : Validator; }.

Record Block := mkB { parent_hash : Hash;

attestations : seq Attestation;

distance : nat; }.

Using notions from the FCSL PCM library [5], we then define

block forests as finite maps from hashes to blocks:

Definition Blockforest := union_map Hash Block.

This allows us to instantiate a suitably concrete parent rela-

tion over hashes:

Definition hash_parent_bf (bf : Blockforest) : rel Hash :=

[rel x y | (x ∈ dom bf) && (y ∈ dom bf) &&

if find y bf is Some b then parent_hash b == x else false].

for which we can instantiate the desired hypothesis:

Lemma hash_parent_bf_eq : ∀ f h1 h2 h3,

hash_parent_bf f h2 h1 → hash_parent_bf f h3 h1 → h2 = h3.

We can now consider a block forest as a concrete global

state, and define a mapping from from block forests to a

vote_msg function:

Definition vote_msg_bf bf v h distance distance_src : bool :=

if find h bf is Some b then

(distance b == distance) &&

((mkAR distance_src v) ∈ attestations b)

else false.

The initial state of the system is simply the finite map taking

the genesis block hash to the genesis block:

mkSt (vote_msg_bf (#GenesisBlock \\→ GenesisBlock))

Finally, we define a transition system that given a block b,

updates the global state bf with b:

mkSt (vote_msg_bf (#b \\→ b \+ bf))

Accountable safety holds for every state in this transition

system, and we believe it can serve as a specification for the

Casper beacon chain implementation [1], and is closer to

the level of detail needed generate a correct-by-construction

implementation from the specification.

6.2 Beacon Node
The state of the beacon chain [1] is split into two main parts,

an active state and a crystallized state. The active state is up-

dated every block, while the crystallized state is only updated

according to a cycle length parameter of the protocol, which

is set to 64 slots in the beacon chain implementation [1].

In our Coq formulation, we define the state of a node in

the beacon chain as a record containing the blockforest and

this beacon chain state. It also includes other parameters of

the system, such as the cycle length mentioned above.

Record State {Hash : ordType} :=

Node {

id : NodeId;

peers : peers_t;

blocks : Blockforest;

cstate : @CrystallizedState Hash;

astate : @ActiveState Hash;

(* set to 1024 shards, see beacon chain implementation *)

shardCount : nat;

(* set to 64 slots, see beacon chain implementation *)

cycleLength : nat;

}.

When a block arrives on a node, the crystallized and active

states are updated via the state transition function speci-

fied in [1]. The update of the crystallized state is where

most of the Casper functionality occurs. Should the slot

number of the block be at least 64 past the last recalcula-

tion slot, the crystallized state is updated by applying the

rewards and penalties for the validators, as well as manag-

ing the justification and finalization of blocks. For exam-

ple, the Coq code for the state update has functions such as

applyRewardsAndPenalties below, which calculates and updates

the balances for all active validators given the current state

and block.

Definition applyRewardsAndPenalties

(crystallizedState :

@CrystallizedState [ordType of Hash])

(activeState : @ActiveState [ordType of Hash])

(blk : block)

(cycleLength : nat) :=

(* ... omitted ... *)

In addition to updating the crystallized and active states, the

arrived block is also appended to the block forest, and the

new state is returned, along with a message from the node

that received the block to all of its peers.

Definition procInt (st : @State [ordType of Hash])

(tr : InternalTransition) (ts : Timestamp) :=

6



Verification of Casper in the Coq Proof Assistant Project Report, November 15, 2018, Runtime Verification, Inc.

let: Node n prs bf cst ast cl := st in

match tr with

| BlockT b ⇒
let: parentBlock := get_block bf (parent_hash b) in

let: (crystallizedState, activeState) :=

computeStateTransition cst ast parentBlock b cl in

let: newBf := bfExtend bf b in

pair (Node n prs newBf crystallizedState activeState cl)

(emitBroadcast n prs (BlockMsg b))

end.

These definitions tighten the correspondence between our

Coq code and the Beacon chain implementation in [1]. Along

with our abstract safety and liveness proofs, these definitions

will allow us to perform verification at this low level, provid-

ing as much assurance as possible for the correctness of the

Casper protocol.

7 Conclusion
We presented a formalization of Casper in Coq, and proofs

of accountable safety and plausible liveness. These proofs

clarified the assumptions needed for the properties stated

in the Casper paper [11], especially what assumptions on

validator behavior are needed for plausible liveness. Our for-

malization work paves the way for transferring accountable

safety and plausible liveness from Hirai’s abstract models to

hold for steps over the Toychain global state according to a

step relation and node state definition matching those in the

Ethereum reference beacon chain node implementation [1].

References
[1] 2018. Beacon Chain. https://github.com/ethereum/beacon_chain/
[2] 2018. Bitoychain. https://github.com/palmskog/bitoychain
[3] 2018. CoqHammer. https://github.com/lukaszcz/coqhammer
[4] 2018. Mathematical Components Project. https://math-comp.github.

io/math-comp/
[5] 2018. PCM library. https://github.com/imdea-software/fcsl-pcm
[6] 2018. Toychain. https://github.com/certichain/toychain
[7] Andrew W. Appel, Lennart Beringer, Adam Chlipala, Benjamin C.

Pierce, Zhong Shao, Stephanie Weirich, and Steve Zdancewic. 2017.

Position paper: the science of deep specification. Philosophical Trans-
actions of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences 375, 2104 (2017).

[8] Clemens Ballarin. 2014. Locales: A Module System for Mathematical

Theories. Journal of Automated Reasoning 52, 2 (01 Feb 2014), 123–153.
[9] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. 2016. Cryptocurrencies

Without Proof of Work. In Financial Cryptography and Data Secu-
rity, Jeremy Clark, Sarah Meiklejohn, Peter Y.A. Ryan, Dan Wallach,

Michael Brenner, and Kurt Rohloff (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 142–157.

[10] Yves Bertot, Georges Gonthier, Sidi Ould Biha, and Ioana Pasca. 2008.

Canonical Big Operators. In Theorem Proving in Higher Order Logics.
86–101. https://doi.org/10.1007/978-3-540-71067-7_11

[11] Vitalik Buterin and Virgil Griffith. 2017. Casper the Friendly Finality

Gadget. CoRR abs/1710.09437 (2017).

[12] Łukasz Czajka and Cezary Kaliszyk. 2018. Hammer for Coq: Automa-

tion for Dependent Type Theory. Journal of Automated Reasoning 61,

1 (2018), 423–453.

[13] François Garillot, Georges Gonthier, Assia Mahboubi, and Laurence

Rideau. 2009. Packaging Mathematical Structures. In Theorem Proving
in Higher Order Logics. 327–342.

[14] Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril

Cohen, François Garillot, Stéphane Le Roux, Assia Mahboubi, Rus-

sell O’Connor, Sidi Ould Biha, Ioana Pasca, Laurence Rideau, Alexey

Solovyev, Enrico Tassi, and Laurent Théry. 2013. A Machine-Checked

Proof of the Odd Order Theorem. In Interactive Theorem Proving. 163–
179.

[15] Yoichi Hirai. 2018. A repository for PoS related formal methods. https:
//github.com/palmskog/pos

[16] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash sys-

tem. http://www.bitcoin.org/bitcoin.pdf
[17] George Pîrlea and Ilya Sergey. 2018. Mechanising blockchain consen-

sus. In Certified Programs and Proofs. 78–90.
[18] Gavin Wood. 2014. Ethereum: A secure decentralised generalised

transaction ledger. (2014). http://gavwood.com/paper.pdf

7

https://github.com/ethereum/beacon_chain/
https://github.com/palmskog/bitoychain
https://github.com/lukaszcz/coqhammer
https://math-comp.github.io/math-comp/
https://math-comp.github.io/math-comp/
https://github.com/imdea-software/fcsl-pcm
https://github.com/certichain/toychain
https://doi.org/10.1007/978-3-540-71067-7_11
https://github.com/palmskog/pos
https://github.com/palmskog/pos
http://www.bitcoin.org/bitcoin.pdf
http://gavwood.com/paper.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Blockchain and Casper Terminology
	2.2 Casper Formalizations
	2.3 Mathematical Components and Toychain

	3 Modeling and Verification Approach
	4 Accountable Safety
	5 Plausible Liveness
	5.1 Context
	5.2 Theorem
	5.3 Unslashed is not enough

	6 Instantiating Hypotheses and Parameters
	6.1 Block Trees and Transition System
	6.2 Beacon Node

	7 Conclusion
	References

