
 
 
 
 
 

AUGMENTED GROWTH OF HAEMATOCOCCUS PLUVIALIS USING NUTRIENTS FROM 

POST HYDROTHERMAL LIQUEFACTION WASTEWATER (PHWW) 

 

 

 

 

 

 

 

BY 

 

MICHAEL JAMES STABLEIN 

 

 

 

 

 

 

 

THESIS 

 

Submitted in partial fulfillment of the requirements 

for the degree of Master of Science in Technical Systems Management 

in the Graduate College of the 

University of Illinois at Urbana-Champaign, 2018 

 

 

 

 

Urbana, Illinois 

 

 

Master’s Committee: 

 

 Professor Yuanhui Zhang, Chair 

 Lance Schideman, Director of Research 

 Professor Richard Gates 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/161953782?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 ii 

ABSTRACT 
 
 This study was conducted to evaluate if a high-value algae species, Haematococcus 

Pluvialis, could be successfully cultivated utilizing nutrients derived from a concentrated 

wastewater source and produce the potent antioxidant astaxanthin at similar quantities to 

when it is grown on conventional media and nutrient sources. The primary wastewater used 

in this study was the aqueous product of hydrothermal liquefaction (HTL), which is an 

attractive process for the conversion of wet biomass to bio-crude oil. Using recycled 

nutrients from the post HTL wastewater (PHWW) or other wastewater sources for growing 

algae can reduce costs and synthetic nutrient inputs, which improves the sustainability of 

algae cultivation operations.  

 In the first part of this work, we determined an appropriate dilution of PHWW to 

support algal growth and astaxanthin production, while avoiding significant inhibitory 

effects of PHWW that have been previously reported in the literature. PHWW, was 

characterized for nitrogen and phosphorus content and compared with other wastewater 

sources and conventional algal media. Then, H. Pluvialis cells acclimated on Bold’s Basal 

Media (BBM) were inoculated across a 0-2% PHWW gradient in a well plate to identify the 

algae’s tolerance for the PHWW. This result determined that H. Pluvialis cells were able to 

grow well at concentrations of PHWW up to 0.25% when mixed with BBM.  

 In a second experiment designed to investigate algal preferences for different 

chemical forms of nutrients, H Pluvialis was inoculated in BBM having only nitrate or only 

ammoniacal nitrogen as the nitrogen source. The cell counts were measured daily with a 

hemocytometer, and nutrient removal was also measured. This experiment showed no 

significant differences in algal growth based on the chemical form of nitrogen provided. 
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 Using the concentrations of 0.125% and 0.25% PHWW that were determined in the 

first experiment to support good algal growth, another larger scale cultivation experiment 

was performed in three 1L flasks to confirm algal growth results in comparison to the BBM 

only control. In each of the respective media compositions, the total amount of inorganic 

nitrogen was held constant by removing only nitrate from the baseline BBM media recipe, 

replacing it with the corresponding concentration of total ammoniacal nitrogen (TAN) from 

PHWW. For the 0.125% and 0.25% PHWW treatments, the corresponding amount of 

nitrogen replaced was 5 and 10%, respectively. During this experiment, nutrient 

concentrations were measured daily, and the algae were able to reduce nitrogen 

concentrations from the various media mixes by at least 80%. Based on cell counts, the 

PHWW at 0.125% and 0.25% augmented the algae growth by 44% and 17%, respectively.  

 The algae biomass from the BBM control media and the alternative media blends with 

PHWW nutrients was harvested and subjected to stress conditions of elevated light and 

salinity. Stressing the cells was intended to induce increased production of carotenogenic 

antioxidants, including astaxanthin, which was confirmed by a gradual reduction of the 

chlorophyll: carotenoid ratio. After encystment, astaxanthin production was quantified 

using high performance liquid chromatography (HPLC), and these data showed that it was 

reduced by 47.3% and 34.1% in the 0.125% and 0.25% PHWW augmented cultures, 

respectively. Even though the amount of astaxanthin was reduced for the PHWW treatments, 

the final harvest extracts of algae grown with PHWW presented a more diverse and complex 

carotenogenic profile.  

 In conclusion, this study demonstrates that PHWW nutrients can enhance H. Pluvialis 

cell growth, but further work is needed to better understand and control the amount and 



 iv 

types of carotenoids produced by H. Pluvialis. The long-term effects of acclimation and 

adaptation were not studied, and provide additional opportunities for improving overall 

system performance. In particular, acclimation could help mitigate inhibitory effects of the 

PHWW that were observed even when PHWW was added at very low levels. Finally, other 

sources of sustainable nutrients from wastewater with less inhibitory contaminants should 

be investigated to hopefully provide replacement of a larger fraction of the nutrients needed 

for large scale algae cultivation. 
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CHAPTER 1: INTRODUCTION 

 
As our population grows, there will be an ever-increasing demand to renewably 

create food, energy, and water resources to sustain life around the world. Water 

management is of special importance because access to fresh water is limited, and thus, 

innovative wastewater remediation technologies are needed to help recycle these resources 

sustainably. Wastewater treatment plants (WWTP) receive solid materials and more dilute 

concentrations of nutrients, including dissolved carbon, nitrogen, and phosphorous 

nutrients, among others, from natural sources, rainwater, households, and some commercial 

operations. Industrial and agricultural systems producing more concentrated wastewaters, 

which often include other inhibitory compounds and metals, often choose to perform on site 

treatment for economic reasons and the opportunity to reclaim and reuse certain resources.  

High capital and operational costs for advanced remediation can limit the availability 

and effectiveness of wastewater treatment. The Environmental Protection Agency (EPA) 

estimates that in the U.S. more than $90B per year is needed to maintain and upgrade 

wastewater treatment infrastructure for drinking water to reduce the rising 900B gallons of 

untreated sewage that is discharged each year; however, only 40% of this is nationally 

funded for the mostly municipally-run WWTP operations across the country (ASCE, 2011). 

Municipal WWTP are often funded by a combination of local, state, and federal taxes, in 

addition to the local usage fees. In some cases, water treatment may be the only city service 

that generates income for small communities (Drinan et al., 2012).  

Different treatment systems must use appropriate remediation strategies to clean 

wastewaters based on phase separation, pollutant concentrations, and economy of scale, 

while also being financially managed by the local municipality. Many modern wastewater 

treatment systems employ biological processes to remove pathogens and organic material 

to meet EPA and other global regulatory discharge standards. These systems have been 

developed to be robust and primarily for the purpose of reducing pollution discharge, in 

addition to the recovery of nutrients in different municipal, industrial, and agricultural 

streams. Pollutant concentrations and system design largely influence treatment costs, but 

technologies for resource and energy recovery, like methane production from anaerobic 
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digestion that is used in municipal and agricultural systems, can generate renewable value 

in waste management systems (Lettinga, 1995; Weiland, 2006). 

Production of renewable resources from specialized wastewater remediation 

strategies can help to offset treatment costs and, if possible, generate energy or provide an 

additional revenue stream. In one case, the Innovation Center for US Dairy (2013) has 

reported billions of dollars in potential renewable revenue through the recovery of energy 

and nutrients, as presented in Figure 1. Given the additional potential revenue that could be 

recovered from wasted aquatic nutrients, new treatment technologies and systems should 

be developed to adequately remove chemicals of concerns at minimum costs while making 

operations more economically viable.  

 

 
Figure 1: U.S. Dairy Industry’s Report National Market Value of Anaerobic Digester 
Products. (Innovation Center for US Dairy, 2013) 
 
  Although biological systems can be some of the most difficult and costly to maintain, 

they have the advantages of being adaptable and cleaning water by assimilating waste 

nutrients to generate biomass. Carbon, nitrogen, and phosphorous, amongst other 

micronutrients in wastewaters, can be assimilated by microorganisms, most often bacteria, 

to remove pollutants. Such systems often use sequential biochemical processes performed 

by combined or separate biologically engineered processes, listed as equations 1-3 for 
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examples, in sequential tanks or constructed wetlands oxidize incoming nitrogen species for 

cellular uptake and clean water discharge (Water Environment Federation, 2007). 

 

Eq. 1   2NH4+ + 3O2 → 2NO2- + 2H2O + 4𝐻+ 

Eq. 2   2NO2- + O2 →2 NO3-  

Eq. 3  Overall Reaction, NH4+ + 2O2 → NO3- + 2H+ + H2O 

 

Regular biomass harvesting is necessary for a continuous system operation. 

However, these biomasses presenting less redeemable value are often discarded to landfills 

or, in other cases, applied to fields as a fertilizer, providing lesser return value for 

wastewater treatment plants than possible through newer renewable systems. High 

operational costs can be restrictive of industry development, and thus, advancement in the 

industry should aim to lower these costs or derive more renewable resources from 

treatment processes. Investing more energy and resources into wastewater treatment plants 

will improve water quality through nutrient removal (Burdick et al., 1982; Foley Haas, 2010), 

but water resource management must be improved to recover these nutrients making 

wastewater treatment more efficient and sustainable. 

Technologies capable of remediating different types of wastewater through the 

recovery of nutrients and maximizing renewable resource production have the potential to 

benefit a wide range of waste producers and consumer markets. New biological systems 

need to be explored to succeed in different environments and to aid in diverse water 

management contexts around the world. Leveraging wastewater treatment operations to 

create resources through emerging biotechnology can contribute to future prosperity and 

alleviate growing concern for water scarcity. 
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CHAPTER 2: LITERATURE REVIEW 
 
 Microalgae, one of the first life forms on Earth, were instrumental in fixing carbon 

dioxide through photosynthesis, and this process generates as much as 50% of the oxygen 

in our atmosphere. Some have estimated that algae account for approximately 50% of the 

total fixed organic carbon, although they represent <1% of the photosynthetically generated 

biomass annually (Darzins et al., 2010). Algal research for scalable fuel and food production 

dates as far back as the 1940’s in the United States (Borowitzka et al., 2013). As its more 

diverse capabilities were studied, including wastewater treatment, scientists became 

increasingly interested in the engineering of algae in renewable and value recovery systems. 

Studies have expanded worldwide to optimize growth conditions in different environments 

and further understand the processes of nutrient assimilation and photosynthesis for 

cultivating algal biomass continuously at scale. 

 Different bioreactor systems have been proposed for maximizing algae production 

varying in temperature, pH, light intensity, mixing, as well as nutrient composition and 

sourcing, amongst other parameters (Razzak et al., 2013). Light, water, and carbon dioxide 

are the key components for photosynthesis and production of algal biomass (Equation 4). 

Sugars assembled through photosynthesis, along with nitrogen, phosphorous, and other 

micronutrients, are used to build fundamental cellular components including lipids, 

carbohydrates, and proteins, while also generating auxiliary biocompounds in lower 

concentrations. Grobbelaar et al. (2004) presents a general equation for algal biomass that 

can be used to perform mass balances of media nutrients for optimization of algal biomass 

production (CO0.48H1.83N0.1P.01). Concentration of growth nutrients, along with other 

requisites, directly influence cell doubling rate and total biomass production; thus, 

wastewaters could be combined with or replace conventional algal media to lower costs of 

algae production and renewable valuable biomass that could improve economics of 

treatment systems (Mallick, 2002; Grönlund et al. 2004; Behzadi et al. 2007).  

 

Eq. 4  6CO2 + 6H2O + light energy → C6H12O6 + 6O2    
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Combining algae production with wastewater treatment was first proposed in 

California (Oswald, 1957). Since then, coupled systems have been proven to effectively 

remove nitrogen and phosphorous from wastewater streams meeting EPA standards while 

also replacing the need for synthetic nutrients in algae cultivation (Aresta et al., 2005; 

Woertz et al., 2009; Johnson et al., 2010). Woertz (2009) demonstrated ammonia and 

phosphate removal efficiencies up to >99% from municipal waters under a variety of 

operating conditions (Table 1). With respect to wastewater treatment costs, high production 

algal ponds have been estimated to have a cost of up to 70% less than activated sludge 

wastewater plants (Lundquist et al. 2010, EPA 2006), while also achieving enhanced effluent 

quality by removing nutrients more effectively (DOE, 2010; Mata et al., 2010; Yang et al., 

2011). Continually improving results suggest that algae biomass production systems could 

be adapted to function as wastewater treatment systems and, thereby, beneficially reuse 

wastewater nutrients.  

 

Table 1. Nutrient removal from municipal wastewaters (Woertz et al., 2009), HRT = 
Hydraulic Retention Time 

Operating 
Conditions 

 Total Ammoniacal 
Nitrogen (mg·L-1) 

  Phosphate as P 
(mg·L-1) 

 

 Influent Effluent % Removal Influent Effluent % Removal 

CO2, 4 Day 
HRT 

39.0 <0.02 >99 2.1 <0.02 >99 

CO2, 3 Day 
HRT 

39.0 <0.02 >99 2.1 <0.02 >99 

Air, 3 Day 
HRT 

39.0 6.1 (+/-0.89) 84 2.1 <0.02 >99 

CO2, 2 Day 
HRT 

39.0 0.6 (+/- 0.57 98 2.1 0.15 (+/- 0.15) 93 

 

There exists a wide variety of wastewaters with different potencies and compositions, 

each having particular advantages and disadvantages with respect to being used for growth 

of algae. Consideration should be especially given to the concentration of nitrogen and 

phosphorus species within different types of municipal, agricultural, and industrial 

wastewaters, as these nutrients are the most needed for biomass generation apart from 

carbon. 

Expansion and implementation of algal biotechnology is hindered in many respects 

by the cultivation system. Open systems, such as lagoons and ponds, have similarities with 

existent wastewater treatment plant design, making them seemingly interchangeable; 



 6 

however, open algal systems face additional complexities, such as limited light penetration, 

losses from evaporation, and limited diffusion of CO2 from the atmosphere (Xu et al., 1999), 

as well as contamination by bacteria, protozoa, or fungi which can affect treatment efficiency 

and biomass yields (Chaumont, 1993). Closed photobioreactors have thus been increasingly 

explored as a solution to controlling contamination and other limiting effects of open 

systems for maximization of biomass productivity and, in the case of simultaneous 

wastewater treatment or carbon dioxide uptake, effective nutrient assimilation. While also 

presenting some financial difficulty, large capital costs of different renewable algal systems 

are hoped to be offset by the production of the biomass and its derivative biochemicals like 

bio-oils for fuels (Delrue et al., 2012; Fortier et al., 2014).  

Over 35,000 natural species of algae, both unicellular and seaweed like polymers, 

have been identified and few studied for their different capacities to produce large amounts 

of biomass, provide food nutrition, treat wastewater, assimilate carbon dioxide, and 

generate a wide array of biochemicals (Razzak et al. 2013). Since 1980, the global algal 

biomass market, which does include some photosynthetic bacteria like Spirulina and Nostoc, 

has amounted to as much as 5000 tons of dry matter annually and approximately over a $1B 

USD industry, not including processed products (Spolaore et al., 2006). The most recent and 

innovative studies have aimed to improve the expanding algae sector by using alternative 

media to lower costs for biomass production. According to Lundquist (2010), algal derived 

biofuels from newly purchased inputs could cost more than $400/barrel; however, using 

wastewater nutrients and equipment as a substitute could bring production costs to lower 

than $30/barrel, as an example. The synergy of wastewater treatment with algal biomass 

production could bring further growth to the algae industry by replacing the existent supply 

chain for petroleum derived chemicals. 

Algal biomass grown on municipal and agricultural wastewaters at scale for lipid 

production for biofuels have been extensively researched with species like Chlorella and 

Scenedesmus, amongst others (Jiang et al., 2011; Park et al., 2011; Bhatt et al., 2014). These 

species are most often utilized for their fast proliferation rate and ability to grow in a wide 

range of environmental conditions. Bhatt et al. (2014) reports the numerous species with 

their biomass and lipid production rates as well as providing nutrient removal efficiencies 

in Table 2 and 3, respectively. 
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Table 2. Biomass and lipid productivity of microalgae grown in different 
wastewaters (Bhatt et al., 2014) 

Microalgae species Wastewater type Biomass Productivity 
(mg L-1 d-1) 

Lipid Content (%DW) Lipid Productivity 
(mg L-1 d-1) 

Chlorella pyrenoidosa Activated Sludge 

Extract 

11.55 NA NA 

Chlorella pyrenoidosa Digested Sludge 

Extract 

51.82 NA NA 

Chlorella pyrenoidosa Settled Sewage 275 NA NA 

Chlorella pyrenoidosa 

and Scendesmus sp. 

Activated Sewage 92.31 NA NA 

Botryococcus braunii Secondarily Sewage 35.00 NA NA 

Scendesmus sp. Artificial Wastewater 126.54 12.80 16.2 

Poly culture of 

Chlorella sp. 

Micractinium sp 

Actinastrum sp. 

Dairy Wastewater NA 29.00 17 

Poly culture of 

Chlorella sp. 

Micractinium sp 

Actinastrum sp. 

Primary Clarifier 

Effluent 

NA 9.00 24.4 

Chlorella 

asccharophil 

Carpet mill 23 18.10 4.2 

Scendesmus sp. Carpet mill 126.54 12.80 16.2 

Chlorella sp. Centrate 231.4 33.53 77.5 

Hindakie sp. Centrate 275.0 28.30 77.8 

Chlorella sp. Centrate 241.7 30.91 74.7 

Scenedesmus sp. Centrate 247.5 30.09 74.5 

Auxenochlorella 

protothecoides 

Concentrated 

Municipal Wastewater 

268.8 28.9 77.7 

Chlamdomonas 

Mexicana 

Piggery Wastewater NA 33 ± 3.4 0.31 ± 0.03 

Scenedesmus 

obliquus 

Piggery Wastewater NA 31 ± 0.8 0.24 ± 0.03 
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Table 3. Nutrient removal efficiency of microalgal species (Bhatt et al., 2014) 
Microalgal species Wastewater type Nitrogen removal 

efficiency 
Phosphate removal 

efficiency 
COD removal efficiency 

Chlorella vulgaris Textile wastewater 44.4-45.1% 33.1-33.3% 38.3-62.3% 

Scenedesmus sp. LX1 Modified Effluent of a 

wastewater treatment 

plant of an electric 

factory by photo-

membrane bioreactor 

46% 100% NA 

Chlorella sorokiniana 

and aerobic bacteria 

Potato processing 

industry 

>95 80.7 84.8 

Chlorella sorokiniana 

and aerobic bacteria 

Pig manure 82.7 58.0 62.3 

Chlamydomonas sp. 

TAI-2 

Industrial wastewater 100% 33% NA 

Auxenchlorella 

protothecoides UMN280 

Concentrated 

municipal wastewater 

59% 81% 88% 

Chlorella Mexicana Piggery wastewater 62% 28% NA 

Scenedesmus obliquus Piggery Effluent 23-58% 48-69% NA 

Chlamydomonas 

Polypyrenoideum 

Dairy industry 

wastewater 

74%-90% 70% NA 

Euglena Sewage treatment plant 93% 66% NA 

  
 Following biomass harvesting, numerous techniques for efficient drying and 

extraction have been investigated, as biomass collection and treatment prove to be the 

limiting process for these systems. Weschler et al. (2014) ran a study of 122 different 

production scenarios to compare the limitations in producing biofuels from algal biomass. 

They observed that scenarios that avoid thermal drying of wet biomass by using settling or 

membrane filtration presented the greatest energy efficiency. As an alternative, some wet 

extraction strategies have been investigated to remove biochemicals from biomass without 

the need for drying. Notably, more efficient extraction has been successfully performed using 

ultrasound waves to break cells (Adam et al., 2012), distillation procedures (Tanzi et al., 

2013), or novel solvents (Olkiewicz et al., 2015), amongst others. Fortier et al. (2014) also 

concluded that greater energy efficiency could be achieved by using wet biomass in 

thermochemical conversion technologies like hydrothermal liquefaction (HTL). Moreover, 

production of oil from algal biomass via HTL has been shown as an effective way to recycle 

concentrated nutrients for production of more biomass (Zhou et al., 2013). Algal biomass 

producers must, therefore, be conscious of the species and, when necessary, appropriate 

extraction technology to maximize lipid production and energy efficiency for a resource 

recovery scenario. 
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 Some biomass producers aim to grow algae for much higher value chemicals that 

include aquaculture nutrition, pigments, and pharmaceuticals, among others. More specific 

investigation on the biochemical composition of various species has derived more 

knowledge of low concentration metabolites and their production pathways for efficient 

harvest (Pignolet et al., 2013). Notably, different families of algae and the environmental 

conditions greatly affect their growth rates and the production of the desired chemicals. 

Cuellar-Bermudez et al. (2015) provide a list of some of the valuable microalgae species and 

their derivative high-value metabolites (Table 4). 

 

Table 4. Microalgae species of high-value compounds extraction and applications 
(Cuellar-Bermudez et al., 2015) 

Species Product Application areas 

Chlorella vulgaris Biomass, pigments Health food, food supplement 

Coelastrella striolata var multistriata Lutein, β-carotene Pharmaceuticals, nutrition 

Crypthecodinium conhi Canthaxanthin, astaxanthin, β-carotene Pharmaceuticals, nutrition, cosmetics 

Diacronema vlkiamum Docosahexaenoic acid Pharmaceuticals, nutrition 

Dunaliella salina Fatty acids Pharmaceuticals, nutrition 

Caldiera suphuraria Carotenoids, β-carotene Health food, food supplement, feed 

Haematococcus pluvialis Phycocyanin Pharmaceuticals, nutrition 

Isochrysis galbana Carotenoids, astaxanthin, canthaxanthin, 

lutein 

Health food, pharmaceuticals, nutrition, 

feed additives 

Lyngbya majuscule Fatty acids, carotenoids, fucoxanthin Pharmaceuticals, nutrition, cosmetics, 

animal nutrition 

Muriellopsis sp. Immune modulators Pharmaceuticals, nutrition 

Nannochloropsis gaditana Lutein Pharmaceuticals, nutrition 

Nannochlorpsis sp. Icosapentanoic acid Pharmaceuticals, nutrition 

Odontella aurita Fatty acids Pharmaceuticals, cosmetics, baby food 

Parietochloris incise Arachidonic acid Nutritional supplement 

Phaedactylum tricormutum Lipids, eicosapentaenoic acid, fatty acids Nutrition, fuel production 

Porphyridium cruentum Arachidonic acid, polysaccharides Pharmaceuticals, cosmetics, nutrition 

Scenedesmus almeriensis Lutein, β-carotene Pharmaceuticals, nutrition, cosmetics 

Schizochytrum sp. Docosahexaenoic acid Pharmaceuticals, nutrition 

Spirulina platensis Phycocyanin, γ-Linolenic acid, biomass 

protein 

Health food, cosmetics 

Ulkenta spp. Docosahexaenoic acid Pharmaceuticals, nutrition 

 

Production and recovery of high-value bioproducts from waste feedstocks is 

becoming increasingly studied, as researchers recognize the burgeoning population and high 

demand for agricultural production (Kaur et al., 2013). Amongst the organisms on this list, 

only a few have been studied for their simultaneous treatment of various wastewaters and 

production of bioproducts with value higher than that of lipids for biofuels. Spirulina 
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Platensis is a cyanobacteria that has been studied with respect to wastewater treatment in 

various parts of the world (Hong et al., 1993; Olguin et al., 2003; Wang et al., 2013); however, 

its production of phycocyanin when grown on wastewater was reported in one case 

(Chaiklahan et al., 2010). Considering this, further studies are needed for the production of 

high value algal species and their products when grown on wastewaters. Table 5 goes further 

to list some of the species with their valuable biocompounds, market values, and reported 

production.  

 
Table 5. Different species of photosynthetic organisms with their respective valuable 
biocompounds, market value, and productivity rates (Borowitzka, 1992; Lee, 2001; 
Sreekumar et al., 2016) 

Species Valuable 

Compound 

% Dry Weight Market Value Biomass 

Harvest Rate 

Haematococcus 

Pluvialis 

Astaxanthin 1-6 $2000-7000 · kg-1 5-13 g· m-2 · d-1 

Anthrospira 

Maxima 

Phycocyanin 4-6 $500-10000 · kg-1 20-30 g· m-2 · d-1 

Nostoc Commune UV A/B 

Absorbing 

Pigments 

10 $125· kg-1 40 g· m-2 · d-1 

Dunaliella β-Carotene 8-14 $300-3000· kg-1 30 g· m-2 · d-1 

Chlorella Lipids (Oil) 20-50 $1.60· kg-1 26-30 g· m-2 · d-1 

Scenedesmus Lipids (Oil) 31-60 $1.60 · kg-1 13-49 g· m-2 · d-1 

 
 
 Coupling high value biomass production with wastewater nutrient recovery can 

serve 2 primary functions: First, the productivity of media for production of biomass 

containing valuable biocompounds could be improved, making these algae technologies 

more economical, and secondly, the production of potentially lucrative biomass could help 

to lessen the burden of wastewater treatment costs if performed at scale. This study 

investigates a new scenario for renewable biomass production using wastewater nutrients 

and defines some of the key cultivation parameters necessary to use wastewater for nutrient 

recovery and production of a high value compound. 

 Astaxanthin (C40H52O4) is a xanthophyll pigment that presents in 3 isomeric forms: 

3S-3S’, 3R-3S’, and 3R-3R, which are all oxygenated carotenoids synthesized from isoprenoid 

monomers. It is widely known for its antioxidant properties, being 10 times more effective 
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than other important carotenoids, such as zeaxanthin, lutein, canthaxanthin, and beta-

carotene, and at least 100 times more than alpha-tocopherol (Shimidzu et al., 1996; Higuera-

Ciapara et al., 2006). These various carotenogenic species have similar structures and are 

presented in Figure 2. Carotenoids serve to prevent reactive oxygen species and deactivate 

singlet oxygen during the photosynthetic processes. These molecules are produced by 

certain plants, some microbes, and other organisms as accessory pigments that provide the 

ability to harvest alternative light wavelengths and, thus, increase photosynthetic potential. 

As animals, including humans, cannot synthesize these compounds, they must be consumed 

through food including fruits, vegetables, and seafood (Jackson et al., 2008). 

 

 

Figure 2. Carotenoids that are found in nature (Guerin et al., 2003) 

 

Worldwide, astaxanthin is a carotenoid primarily used in feed mixtures for the 

aquaculture industry that helps to give salmon, trout, and crustaceans reddish colors. 

Although it is only 50-100ppm of salmon feed, it can constitute as much as 10-15% of the 
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total cost (Breithaupt, 2007). Its application as an animal and fish food ingredient has 

growing significantly since 1990, amounting to as much as 72% of the total astaxanthin 

market (Markets and Markets, 2017). More recently, it is also growing in use for 

pharmaceuticals and cosmetics, totaling a projected global market of 670 metric tons and a 

value of $1.1B USD by 2020 (Research and Markets, 2015). As of 2000, petroleum based 

synthetic astaxanthin occupied greater than 95% of the market (Lorenz et al., 2000), but this 

is lessening to closer to 55%, as consumers have shown preference for natural products 

(Markets and Markets, 2017). Additionally, studies have shown that the esterified form 

produced by algae, being more stable and less susceptible to oxidation, is preferable to the 

non-esterified synthetic version (Seabra et al., 2010). Astaxanthin, amongst other related 

carotenogenic compounds shown in Figure 2, has been shown to protect from UV damage, 

have benefits in immune response, and presented improved cellular reproduction, in 

addition to other health benefits (Guerin et al. 2003). More recent studies have shown 

increased application for astaxanthin as a nutritional supplement for its potential to serve as 

an anticancer agent, as well as prevent diabetes, cardiovascular diseases, and 

neurodegenerative disorders (Ambati et al., 2014). Furthermore, the authors reported it has 

new dosage forms that include tablets, capsules, syrups, oils, soft gels, creams, powders, and 

even raw biomass. As market demand and applications increase, industries and stakeholders 

have sought out more natural and sustainable suppliers to further replace the predominant 

petrochemically synthesized sources. 

Astaxanthin has been successfully derived from plants, yeast species, algae, and, at a 

research level, engineered species of E. Coli. However, the most potent natural producer of 

astaxanthin is the freshwater algae species Haematococcus Pluvialis, having up to 5% percent 

of its dry cell weight as astaxanthin when stress is induced to achieve its mature encysted 

form. Wayama et al. (2013) describes the unicellular Chlorophyta species as having two cell 

morphologies, a vegetative green flagellate stage known as a macrozoid and a larger 

encysted red state known as an aplanospore or akinete, as shown in Figure 3. Industrial scale 

production of natural astaxanthin began in the 1990s using H. Pluvialis (Lorenz et al., 2000; 

Oleizola, 2000). Lorenz et al. (2000) describe the mechanisms for carotenoid production and 

the profiles between cell types. Astaxanthin is synthesized through the isoprenoid pathway, 

which accounts for other lipid-soluble molecules like sterols, steroids, prostaglandins, 
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hormones, and some vitamins. Green vegetative cells contain between 75-80% lutein and 

10-20% -carotene, among which are low concentrations of astaxanthin, while red encysted 

akinetes have as much as 80% astaxanthin within the carotenoid fraction of the cell. The 

astaxanthin produced within stressed H Pluvialis cells has multiple forms, being 70% 

monoesters, 25% diesters, and 5% free astaxanthin. As part of the process to produce algal 

biomass and derivatives, companies have sought innovative strategies to manipulate these 

pathways and compound profiles within the cells during their growth. Industrial systems 

have used multiple strategies, such as salt concentration, pH change, increased light 

intensity, and nutrient deprivation, amongst others, to induce encystment for enhanced 

accumulation of astaxanthin within akinete cells (Oleizola et al., 2005).  

Figure 3. Life cycle and cell morphologies of H. Pluvialis (Wayama et al. 2013) 

 

One of the biggest challenges when growing H. Pluvialis, as is with many other types 

of slow growing microbes, is susceptibility to contamination by other organisms. This can be 

the case with bacteria, fungi, protozoa, or other types of algae because contaminant species 

outcompete the organism of interest for available nutrients. A study comparing algal 

antibiosis used 5 different common freshwater algae at different inoculation ratios to 

determine which species could outcompete others for light and nutrients, as well as by 

secreting inhibitory compounds that prevented the growth of lesser dominant species. H. 
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Pluvialis was shown to be the least likely to thrive, especially against the two more robust 

growing species, Chlorella and Scenedesmus (Proctor, 1957). Thus, producers have had to 

implement considerable measures to limit the potential of such contaminants. Many 

strategies involve use of sub-micron filters or continual sterilization of bioreactor materials 

while working in scale up batches. For H. Pluvialis, vegetative cells are grown in smaller 

vessels with semi batch conditions to preserve an axenic culture before exposing them to 

stress conditions for encystment, usually in a more open environment. By this time in the 

industrial growth cycle, organisms do not need to compete for nutrients nor cultures need 

to be axenic because a contaminant cannot take over the culture before astaxanthin 

synthesis is complete (Shah et al., 2016). Upon contamination, however, it can be difficult to 

isolate H. Pluvialis due to its relative low cell density. As an alternative, Reinecke et al. (2009) 

sought mechanisms to eliminate contaminant species from large scale cultures. Despite 

giving Haematococcus an advantage in inoculation percentage, they also found that the 

species could not outcompete contaminant Scenedesmus. Several treatments including 

environmental stresses, such as high light intensity, nutrient deprivation, pH, or 

temperature, as well as inhibitory compounds like Rose Bengal and hydrogen peroxide, 

could eliminate most of the contaminant without also killing all H Pluvialis cells, however, 

this is not always successful nor the best strategy. Heliae (2015), an applied life sciences 

technology company that develops commercial scale platforms for algae systems, patented 

a hydrogen peroxide treatment for cultures to eliminate some contaminants. If a 

contaminant cannot be eliminated, algae batches and scale up process might need to be 

started a new, and additionally, potential revenue could be lost. These challenges present a 

significant bottleneck in the cultivation of some species of algae, including H. Pluvialis. 

Nguyen (2013) performed a sustainability analysis to compare the different 

production methods, shown in Table 6. Production via algae has several benefits as 

compared to other microorganisms and the predominant chemical synthesis. Natural 

sources are seemingly healthier as they are safe for human consumption as well as having a 

higher oxygen radical absorbance capacity (ORAC) value (Chew et al, 2004; Palozza et al., 

2009). Moreover, synthetic astaxanthin has not been approved for direct consumption by 

humans in food or supplements (Li et al., 2011). However, the table data suggests that 

natural production of astaxanthin via microorganisms might still be too costly but could be 
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more widely accepted if the production costs can be brought down to compete with the price 

of petrochemical synthesis. In Table 6, the difference in cost for raw materials and air 

emissions appear to be the major costs limiting factor for the algae derived astaxanthin; thus, 

eliminating or replacing these inputs could make these natural biological systems more 

competitive in the market. Moreover, biological production via algae could have additional 

environmental benefits if greenhouse gases like carbon dioxide can be sequestered or 

alternatively nutrient sources were used for biomass production.  

 

Table 6. Comparison of Production Methods for Astaxanthin (Nguyen, 2013), ORAC = 
Oxygen Radical Absorbance Capacity 

 
 

 Various studies have sought to optimize biomass production using different media 

and environmental conditions, as nutrient source, vitamin concentration, light, and aeration, 

among other factors, can all effect biomass production (Borowitzka et al, 1991; Gong et al., 

1997; Goskan et al., 2011). Typically, conditions vary in nitrate compound concentrations 

between 0.25 and 1.0 g·L-1, vitamin concentrations for thiamine (B1), biotin (B7), and 

cyanocobalamin (B12) of 0.3, 0.4, and 0.75 mg·L-1, respectively, and light irradiance between 

10-150 µmol·m-2·s-1, resulting in the highest growth rates and cell densities between 1-10 x 

105 cells·mL-1. Treatments outside the range of these conditions resulted in lower cell 

densities and premature encystment of cells, due to environmental stress. Amongst the 

highest cell densities reported, Hong et al. (2010) compared the use of BG-11, OHM, and RM 

media and concluded that RM was the best for a strain isolated in Vietnam, growing to a 

maximum density of 5.1 x 104 cells·mL-1 when replenishing nutrients every other day. 

Imamoglu et al. (2007) also achieved a relatively high cell density of 9.5 x 105 cells·mL-1 when 

using RM media under a light intensity of 40 µmol·m-2·s-1. These factors range widely across 

studies and are conducted for small, batch cultures. While some nutrients and vitamins are 

requisite and others irreplaceable, nitrogen and carbon sources appear to be 
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interchangeable for batch cultures. This suggests that media components could be 

substituted with less costly alternatives, without losing cell density or astaxanthin 

production. 

 Amongst studies manipulating different nutrient concentrations, light intensities, and 

other environmental factors to maximize cell production, researchers have measured 

chlorophyll and carotenoid densities, especially astaxanthin, to observe the growth of H. 

Pluvialis. One study that manipulated light intensity, nutrient concentrations of nitrate, 

phosphate, and iron, and salt concentration, concluded that the reduction in nutrients, 

especially in combination with increased light, were the most effective. Cell densities only 

reached 2.5 x 105 while astaxanthin concentration was greater than 300pg per cell when 

nitrate was limited in the original algal media (Harker et al., 1995). Boussiba et al. (1999) 

cultivated cells in a conventional media BG-11 while measuring cell concentration, dry 

weight, and astaxanthin and chlorophyll concentrations. Upon reaching the maximum cell 

concentration, cells were transferred to a nitrogen and phosphorous deprived medium to 

observe astaxanthin accumulation, reaching up to 4% of dry biomass. Orosa et al. (2005) 

studied different concentration of nitrate to observe the difference in cell numbers while also 

measuring the ratio of chlorophyll/carotenoids. Nitrogen deprivation, a commonly used cell 

stress mechanism, resulted in rapid production of carotenoids and a significant change in 

the ratio after an extended maturation period of over 15 days.  

Some researchers have investigated the possibility of using less costly nutrients as an 

alternative to the conventional media. Tocquin et al. (2011) performed a medium screening 

with hydroponic fertilizer resulting in a higher than normal cell density of 2x106 cells·mL-1. 

It is also noteworthy that they determined lower N:P levels caused vegetative cells to have a 

prolonged state and, thus, achieve higher cell density. Sipauba-Tavares et al. (2015) used 

NPK fertilizer as an alternative to commercial media WC, while evaluating the uptake of 

nutrients and growth rate of H Pluvialis cells. The NPK media proved to give a slightly greater 

cell productivity of 5.4 x 105 cells·mL-1, while reducing the cost of media by 65%. Moreover, 

it should be noted that the cells were able to use ammonia in lieu of nitrate, more commonly 

used in media, as a nitrogen source; however, utilization of phosphorus seemed to be poor 

in this study. This media proved to be efficient in a batch scenario without the high cost of 
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commercial media nutrients. Further experimentation with alternative media could yield 

more results to lower the cost of natural algae based astaxanthin. 

Further studies are needed to determine how production of valuable chemicals like 

astaxanthin could make these waste-to-energy systems more environmentally sustainable 

and cost effective. Studies on H. Pluvialis growth in waste streams are significantly limited as 

compared to other species studies with less valuable algal biomass production with 

wastewater nutrients. There is only one published study in which a wastewater was used as 

alternative media to cultivate H Pluvialis. Kang et al. (2006) used different concentrations of 

primary treated sewage and piggery wastewaters to test the assimilation of nitrogen and 

phosphorus into biomass for the production of biomass and subsequent extraction of 

astaxanthin. For wastewaters diluted at least 4 times, nitrate was consumed completely 

within 7 days, being the primary nitrogen source, and up to 12 mg·L-1 of phosphate was 

consumed during the same interval. Cell biomass more than tripled during encystment upon 

depletion of nitrogen resources within the previously mentioned diluted media cultures, and 

the resulting astaxanthin concentrations reached between 5-6% (Kang et al., 2006). It is thus 

promising to further evaluate the potential for H. Pluvialis to assimilate nutrients from other 

potentially valuable waste sources, using similar methods to maintain high productivity of 

astaxanthin. 

Studies overview a variety of stress mechanisms and intensities to induce enhanced 

growth or specific metabolite production in microorganism. Minhas et al. (2016) published 

a recent review suggesting that temperature, light, salinity, and carbon, nitrogen, or 

phosphate deprivation, can affect autotrophic growth, while carbon sources like glucose and 

glycerol, amongst others, can change metabolic rates for mixotrophic growth in algal species. 

Several of these factors during the growth phase or encystment stage of H Pluvialis biomass 

production can ultimately influence the production of astaxanthin in matured cells. Sarada 

et al. (2002) proposed pH as an environmental stressor and concluded that biomass and 

astaxanthin production could be limited outside of the range of pH 6-8. Amongst the different 

stress mechanisms reported in the literature, nutrient deprivation and high light intensity 

were the most productive (Brinda et al., 2004). Recht et al. (2014) used metabolic models to 

explain that the deprivation of nitrogen and high light environment change stimulates 
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accumulation of carbohydrates and fatty acids, along with astaxanthin, because of increased 

carbon repartitioning in the TCA cycle. 

Given the complexities of algal cultivation in general, studies focused on nutrient 

recovery from wastewater that also potentiate diverse value recovery from wastewater 

systems are needed. Moreover, since some higher value species and production require 

further consideration for growth research development, this study evaluated at a new 

nutrient source for algae H. Pluvialis and astaxanthin production. 
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CHAPTER 3: MATERIALS AND METHODS 

 

 The set of experiments to evaluate the growth of H. Pluvialis using alterative nutrients 

from wastewater were conducted between the laboratories of the Agricultural and Biological 

Engineering Department of University of Illinois Urbana-Champaign in Urbana (UIUC), 

Illinois, USA and the Food Engineering Department of the University of Sao Paulo, Faculty of 

Animal Sciences and Food Engineering (USP-FZEA) in Pirassununga, São Paulo, Brazil. 

Experiments were conducted first to characterize wastewaters for comparison of 

different concentrations and nutrient recovery potentials. The high value algae, H Pluvialis, 

was chosen for its limited application in wastewater growth and grown across a dilution 

gradient to assess its tolerance for inhibitory compounds in Post Hydrothermal Liquefaction 

Wastewater (PHWW). Later, repeating this experiment at a larger scale allowed for larger 

samples to monitor growth, nutrient reductions, carotenogenesis, and lastly collect biomass 

to study the comparative production of the desired extract, astaxanthin. 

 

Wastewater Nutrient Comparison 

 Several wastewaters were evaluated using Hach kit methods (Total Ammoniacal 

Nitrogen (TAN): 8038, Nitrate: 8039, Total Nitrogen: 10072, Total Phosphorus: 10127; 

Water Analysis Handbook, 2003) to determine the concentration of nutrients for 

comparison to a standard algal growth medium BBM, as well as the other wastewaters. 

Measurements were performed with 3-5 replicates amongst different experiments to 

determine average values and standard deviations. 

 

PHWW Inhibition Assay 

 Once PHWW was determined to be the most potent source of nitrogen nutrients, an 

inhibition assay was performed in a Thermo Scientifc microplate at varying concentrations 

of the wastewater (0, 0.125, 0.25, 0.5, 1, and 2%) mixed with BBM, without nutrient 

substitution., to ensure that ideal conditions would support growth under normal 

conditions. The growth was measured over 10 days with a 2800 Tecan Spectrophotometer 

at 680nm in triplicate. 
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H Pluvialis Reactor Design 

 A Biological Oxygen Demand (BOD) refrigerator was cleaned and sterilized with 

bleach prior to experimentation. All materials, including the media, glassware, and tubing 

were sterilized in an autoclave at 115˚C at 15 psi prior to placing into the sterile space for 

algal growth. Mixing was provided by an aerator connected to a carbon dioxide tank, which 

was passed through a filter before being evenly distributed to the cultures inside the 

refrigerator. A light fixture was constructed to provide light to cultures and, then, be 

intensified for the maturation phase. This reactor configuration is presented in Figure 4 

below. 

 

 

 

Figure 4. Schematic and pictures of BOD Refrigerator used as growing algae cultures 
under controlled environmental conditions 
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H Pluvialis Growth Conditions 

 Haematococcus pluvialis Flowtow culture was obtained from the Sipauba-Tavares 

laboratory at the São Paulo State University (UNESP) campus in Jaboticabal, São Paulo, 

Brazil. The algae inoculum was seeded in Bold’s Basal Media (BBM) containing the following 

nutrients at the given concentrations: 250 mg·L-1 Sodium Nitrate (NaNO3), 25 mg·L-1 Calcium 

Chloride (CaCl2·2H20), 75 mg·L-1 Magnesium Sulfate (MgSO4·7H20), 75 mg·L-1 Potassium 

Phosphate Dibasic (K2HPO4), 175 mg·L-1 Potassium Phosphate Monobasic (KH2PO4), 25 

mg·L-1 Sodium Chloride (NaCl), 25 mg·L-1 Ethylenediaminetetracetic acid (EDTA), 25 mg·L-1 

Potassium Hydroxide (KOH), 5 mg·L-1 Ferric Chloride (FeCl3·6H20), 11.5 mg·L-1 Boric Acid 

(H3BO3), with trace elements: 8.75 mg·L-1 Zinc Sulfate (ZnSO4·7H20), 1.4 mg·L-1 Manganese 

Chloride (MnCl2·4H20), 0.7 mg·L-1 Molybdenum Trioxide (MoO3), 1.6 mg·L-1 Cupric Sulfate 

(CuSO4·5H20), 0.5 mg·L-1 Cobalt Nitrate (Co(NO3)6·6H20), and a vitamin mix containing 7 

µg·L-1 Vitamin B1, 7 µg·L-1 Vitamin B2, 5 µg·L-1 Vitamin B6, 5 µg·L-1 Vitamin B12, and 7 µg·L-1 

Vitamin H. Cultures were maintained under light conditions of 10 µmol·m-2·s-1 in 12:12 light 

dark cycle at 24˚C in the temperature-controlled BOD refrigerator, which also served to 

provide the sterile environment. For the following growth experiments, the cell cultures 

were agitated by 0.45µm filtered air, augmented to have 5% CO2 (w/v), at a rate of 50 mL· 

min-1 (0.005g CO2 · min-1·L-1) per flask, which helped to maintain the pH at approximately 

6.5-7.  

  

H Pluvialis Growth on Nitrate vs Ammoniacal Nitrogen 

 A growth comparison was conducted to evaluate the growth of H Pluvialis using either 

nitrate (as normally provided by BBM and other algal media) or ammoniacal nitrogen 

(typical nitrogen species measured in wastewater). BBM was prepared without nitrate and 

an equivalent concentration of total ammoniacal nitrogen (TAN) was provided to the culture. 

Growth was measure with cell counts using a Brightline Neubauer Hemocytometer and 

nutrient reduction of nitrate, ammoniacal nitrogen, and phosphorous using calorimetric 

methodologies (Cataldo et al., 1975; Hach Method 8038; Chen et al., 1956) were measured 

daily over 7 days, described in further detail below.  
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H Pluvialis Growth on PHWW 

A four-day old seed culture in its exponential growth phase was inoculated at a 10% 

(v/v) portion into 1L flasks containing BBM with different concentrations of sterilized 

PHWW of 0%, 0.125%, and 0.25% (BBM, mBBM0.125, mBBM0.25). For the conditions 

containing PHWW, the BBM media was maintained with respect to all components except 

for nitrogen. The nitrate in the original BBM was partially replaced with the corresponding 

ammoniacal nitrogen sourced from the wastewater, being 5 and 10% of the inorganic 

nitrogen for the 0.125 and 0.25% PHWW conditions, respectively. As presented in Table 7, 

this setup was chosen to balance the available inorganic nitrogen to the algae, noting that the 

PHWW also contains additional nutrients that could improve cell production via mixotrophic 

growth. Cultures were grown in triplicate with the same aeration parameters. It should also 

be noted that at this dilution, many other constituents of the PHWW, including organics and 

inhibitory compounds, are considerably reduced and should not affect the balance of 

nitrogen proposed for this study. 

 
Table 7. Balance of available inorganic nitrogen sources in 3 media compositions for 
comparison of H Pluvialis growth on a BBM control and BBM augmented with PHWW 

Treatment % PHWW Growth Type Total Ammoniacal 
Nitrogen (TAN) 

(mg·L-1) 

Nitrate 
NO3-N 

(mg·L1) 

Total Inorganic 
Nitrogen 
(mg·L-1) 

BBM 0 Autotrophic 0 75 75 

mBBM0.125 0.125 Mixotrophic 3.75 71.25 75 

mBBM0.25 0.25 Mixotrophic 7.5 67.5 75 

 

 Daily samples of 10mL were taken to measure biomass growth and nutrient content. 

Cells were counted using a Brightline Neubauer Hemocytometer with a BEL Phototonics 

brightfield microscope, and pictures were taken using a Digilab microscope camera. In 

addition to total cell counts, different cell types (macrozoid, palmelloid, and akinete) were 

counted as an indicator of cell maturity and stress. 

 In regard to the cell doubling time, the daily cell counts applied to the following 

equation and doubling rate was calculated:  

 

Eq. 5    = doubling·day-1 = ln N(n) – ln N(i)/ ln 2(tn − ti) 
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 where ti and tn are the start and end times of parts of the growth phase, expressed in 

hours, and N(i) and N(n) are the starting and ending cell counts, respectively. 

 Afterwards, cells were centrifuged at 5˚C at 3000rpm for 5 minutes to spin down 

biomass. Supernatant was collected for measuring nutrient concentrations and diluted as 

necessary to achieve concentrations within the ranges for each of the tests. 

 

H Pluvialis Nutrient Assimilation from PHWW Augmented Media 

Colorimetric nitrate (NO3--N) determination was performed using salicyclic acid 

according to Cataldo et al. (1975). Reagent 1 was prepared with 5% (w/v) in concentrated 

sulfuric acid and stored in a dark bottle. Reagent 2 was 2M NaOH made with 40g of solid 

NaOH in 500 mL of deionized water. For each sample or standard, .2mL was mixed with .8mL 

of reagent 1 in a clean tube and mixed with a vortex. Tubes were let to react for 20 minutes 

at room temperature. Next, 19 mL of reagent 3 was added and mixed with a vortex. Tubes 

were left to cool to room temperature. Tubes were measured for absorption at 410nm. A 

calibration curve was performed resulting in R2=0.99435 and the regression equation 

y=359.84x-9.1587. 

Ammoniacal nitrogen was measured using a modified version of the Hach Method 

8038 using Nessler’s Reagent. 2.5mL of sample or standard was pipetted into a clean tube. 3 

drops of mineral stabilizer were added and tube contexts were mixed. 3 drops of polyvinyl 

alcohol were added and tube contexts were mixed. Then, 1mL of Nesslers reagent was added 

to each tube and vortex again. Samples were left to react for 1 minute prior to measuring 

absorbance at 425nm. The calibration curve performed for testing ammoniacal nitrogen 

resulted in R2=0.9995 and the regression equation y=6.5355x-0.0061. 

An ascorbic acid method was used to measure phosphate (PO4-) according to Chen et 

al. (1956). Reagent A was prepared as 2% (w/v) of ascorbic acid to be mixed with Reagent B 

which was 0.5% ammonium molybdate and diluted with concentrated sulfuric acid upon 

testing of samples or standards. Curves were performed individually with each of the 

readings for this test as it is dependent on the reaction time. Samples were read between 3-

5 minutes after mixing samples with reaction solution. The calibration curve derived for the 
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main experiment, which paralleled the measurements for all other phosphate 

measurements, resulted in R2=0.9997 and the regression equation y = 2.6633x + 0.0202. 

Each nutrient was calibrated with standard solutions of the nutrients and tested with 

the media, as well as deionized water as a blank, to ensure dependable measurements during 

algal growth phases. All calibration curves are presented in the discussion section with their 

respective R2 values and regression equations. All nutrient measurements were conducted 

using a Hach DR 2800 spectrophotometer. 

 

H Pluvialis Carotenogenic Profile when Grown on PHWW Augmented Media 

 During the secondary phase after assimilation of detectable nutrients and visible 

encystment phase of maximized cell density, cultures were harvested from original 

wastewater by centrifugation at 5˚C at 3000rpm for 5 minutes. Original nutrient-rich and 

wastewater media were replaced with 2.5% salt water at pH 7 for nutrient deprivation and 

cells were set in increased light conditions of 100 µmol·m-2·s-1 while aeration and 

temperature was maintained the same as in vegetative growth conditions. Daily samples 

were taken and used for quantification of astaxanthin within cells. 

 Cell pellet biomass was treated with N,N-dimethtlformamide (DMF) and measured 

photometrically with the same Hach DR 2800 spectrophotometer to quantify chlorophyll a/b 

(Ca/b) and carotenoids using the following equations, per Lichtenthaler et al. (1987).  

 
Eq. 6  Ca (µg·mL-1) = 11.24 A661.6 – 2.04 A644.8 
 
Eq. 7  Cb (µg·mL-1) = 20.13 A644.8 – 4.19 A661.6 
 
Eq. 8  Concentration X+C (µg·mL-1) = (1000 A470 – 1.90 Ca – 63.14 Cb)/ 214 
 

 A sample of the final biomass harvest was taken from each replicate and centrifuged 

at 5˚C at 3000 rpm for 5 minutes to concentrate biomass to cell pellet. Supernatant was 

discarded and cells were resuspended in 70˚C 2M Hydrochloric Acid (HCl) for ten minutes 

to disrupt the cell wall, in accordance with findings of Sarada et al. (2006). After heated acid 

treatment, cells were recentrifuged at 5˚C at 3000 rpm for 5 minutes, and HCl was discarded. 

Cells were resuspended in acetone before being centrifuged again to separate biomass from 

the extract to perform High Pressure Liquid Chromatography (HPLC). Injections of 20µL 
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were run in a mobile phase of 90% acetonitrile and 10% methanol at 1mL·min-1 through a 

C18 Column Ultra C18 100A (250mm x 4.6mm). Resultant peaks were compared against a 

standard astaxanthin sample purchased from Sigma Aldrich (SML0982). The calibration 

curve for astaxanthin was run over the concentrations of 0-20mg·L-1, resulting in 

R2=0.98678 and a linear regression of y=8.0·10-5 x - 0.1691, also presented in the discussion. 

Statistical analysis was performed using Excel 2016. The final cell count and 

astaxanthin product analysis were subjected to a one-way ANOVA (p≥0.05) to test for 

differences between means of conditions.  
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CHAPTER 4: RESULTS AND DISCUSSION 
 

As a means of comparing alternative sources of nutrients for algae, a range of 

wastewaters were measured for pH, as well as nitrogen and phosphorus content. Table 8 

presents different types of wastewaters as compared to conventional algae media, BBM. It is 

evident that these wastewaters present a wide range of nutrient concentrations. In 

consideration of these various levels of nutrient concentrations, different wastewater 

nutrient sources can be identified as suitable sources for augmented algal growth. Post 

Hydrothermal Liquefaction wastewater (PHWW), while being more variable in its 

composition dependent on the feedstock used for the thermochemical process, has the 

greatest density of nutrients that could be utilized in cultivation of algae. This nutrient-rich 

PHWW media, however, has been reported to have certain toxic or inhibitory compounds 

that can significantly inhibit growth of a variety of microorganisms. (Pham et al., 2013; 

Garcia Alba et al., 2013; Gai et al., 2015; Zheng et al., 2017). 

 

Table 8. Different wastewater sources nutrient concentrations in comparison to a 
standard algae growth medium, Bold’s Basal Media (BBM). 

Nutrient Source pH Total Ammoniacal 
Nitrogen (TAN) 

(mg·L-1) 

Nitrate 
NO3-N 

(mg·L-1) 

Total 
Nitrogen 
(mg·L-1) 

Total 
Phosphorus 

(mg·L-1) 

Bold’s Basal Media 
(BBM) 

6.5 .5 75 80 150 

Urbana-Champaign 
Sanitary District 
(UCSD) Primary 
Clarifier Effluent 

8.65 ± 
0.20 

25.0 ± 2.12 1.18 ± 0.22 26.1 ± 0.78 0.52 ± 0.11 

UCSD Tertiary 
Effluent 

8.61 ± 
0.34 

0.25 ± 0.09 35.23 ± .89 35.67 ± 1.91 1.67 ± 0.22 

Swine Lagoon 
Wastewater 

8.74 ± 
0.15 

462.67 ± 13.51 20.45 ± .63 683.23 ± 14.52 111.58 ± 5.48 

Anaerobic Digester 
(AnMBR) 

9.13 ± 
0.41 

580.14 ± 15.62 40.76 ± 2.03 842.09 ± 23.65 213.11 ± 6.73 

Post Hydrothermal 
Liquefaction Aqueous 
Phase (PHWW) from 

Swine Manure 

8.25 ± 
0.31 

4133.2 ± 156.1 85.83 ± 3.14 5305.4 ± 116.2 2187.9 ± 58.61 
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As a preliminary test for tolerance to the mentioned inhibitory compounds, H 

Pluvialis cells were inoculated into various concentrations (0, 0.125, 0.25, 0.5, 1, 2%) of 

PHWW diluted into BBM. 680nm was chosen as the wavelength to measure the growth of 

algae in the various media compositions (Biller et al., 2012; Alba et al., 2013). As shown in 

Figure 5, comparing culture growth with PHWW to a control, the cells only tolerated up to 

0.25% PHWW without inhibition. The absorbance data are accompanied with pictures of the 

growth plates on day 0, 5, and 10 (Figure 6), where it can also be observed that the conditions 

permitting cell growth resulted in a green coloration of the triplicated wells. It should also 

be noted that the 0.5% concentration seemed to present some growth after 150 hours based 

on the increased absorbance values, but total growth was still much smaller in this case. 

Thus, 0, 0.125, and 0.25% PHWW was chosen for further experiments. The resultant 

concentrations were similar to previous findings for growth of Chlorella (Jena et al., 2011; 

Biller et al., 2012) and Scenedesmus (Biller et al., 2012) on PHWW. Recognizing that there are 

many types of possible inhibitory compounds in the PHWW (phenols, cyclic nitrogen 

compounds, concentrated ammonia, etc.) (Pham et al. 2013), it was necessary to determine 

whether H. Pluvialis was intolerant of ammoniacal nitrogen concentrations or the other 

compounds generated by the liquefaction process.  
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Figure 5. Absorbance readings at 680nm for H. Pluvialis grown at different 
concentrations of PHWW mixed in BBM (0% = Red, 0.125% PHWW = Green, 0.25% 
PHWW = Purple, 0.5% PHWW = Yellow, 1% PHWW = Orange, 2% PHWW = Dark 
Blue) 
 
 

 
Figure 6. Pictures of PHWW inhibition assay taken on (a)day 0, (b) day 5, and (c) day 
10 
 

Referring back to Table 7, wastewaters predominantly contain ammoniacal nitrogen 

instead of nitrate as the readily available form of inorganic nitrogen. Thus, in a second 

growth experiment, it was necessary to compare the growth of H. Pluvialis utilizing the two 

different nitrogen sources, determining the suitability of using ammoniacal nitrogen from 
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wastewater for cultivation of this species of algae, H Pluvialis. The results for growth, 

measured in terms of cells·mL-1 with a hemocytometer, are presented in Figure 7. As can be 

seen, there was little difference obtained for growth of H Pluvialis when varying the nitrogen 

source. Moreover, this growth is within the range of reported concentration for cells grown 

in BBM and other common algal media (Tripathi et al., 1999; Goksan et al., 2011; Sipauba-

Tavares et al., 2013;). 

It should be noted that the pH drops as a result ammoniacal nitrogen assimilation by 

algae, which releases H+ ions, and on the other hand, pH can increase when OH- is expelled 

by cells during the uptake of NO3 (Goldman et al., 1982). As such, it is necessary to control 

the pH. CO2 is continuously added to prevent the pH from increasing above 7 when 

cultivating algae, as suggested in the review by Singh and Singh (2013). For the following 

growth experiments, the cell cultures were agitated by a 0.45µm filtered mixture of air 

augmented to have 5% CO2 (m/v) at a rate of 50 mL· min-1 (0.02g CO2 · min-1·L-1), which 

helped to maintain the pH at approximately 7. 

 

 
Figure 7. Hemocytometer cell counts for H. Pluvialis grown in Bold’s Basal Media 
with either Nitrate or Ammoniacal Nitrogen as Nitrogen Source (Squares =TAN 
Treatment; Circles = NO3 Treatment) 
 
 The nutrient concentrations observed during the cultivation phase were measured 

with the previously described Hach methods (Water Analysis Handbook, 2003). A standard 

solution was prepared for each nutrient and diluted to varying concentrations for reaction 
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and subsequent reading of absorbance at the corresponding wavelength. The following 

calibration results, presented below in Figure 8, gave reasonable certainty that the measured 

absorbance values were reliable for calculating concentration of the nutrients in the media 

samples: Nitrate calibration: R2=0.99435; Ammoniacal nitrogen calibration: R2=0.9995; and 

Phosphate calibration: R2=0.9997. 

 Regarding the reduction of nutrients from the medium, this was also very promising 

as both ammoniacal nitrogen and nitrate were reduced between 85-90% across all the 

replicates, as shown in Figures 9 and 10, respectively. However, it was noticed that on day 7 

in the ammoniacal nitrogen treatments, there was an increase at the end of the growth. This 

might suggest that any nitrogen assimilated by the algae from the media would be converted 

into organic compounds, such as proteins, which would be expelled in the event of cell death 

or lysing. Dong et al. (2007) suggested that ammonium species can be excreted by cells in 

different nitrogen and light intensities. If the cells were reaching the end of the growth phase 

and entering the maturation phase, degradation of proteins to channel carbon into 

astaxanthin with subsequent expulsion of ammoniacal nitrogen species could explain this 

increase. 

 In comparison with other algae and wastewaters, more complete reduction of 

nitrogen species can be achieved (Woertz et al., 2009). With regard to recovery of nutrients 

in this study, it could be suggested that the environmental conditions were limiting for this 

species or that other microorganisms might be more effective for the reduction of these 

constituents in a wastewater remediation scenario. 
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Figure 8. Calibration curves for (a)NO3, (b) TAN, and (c) PO4, accompanied by 
corresponding R2 values and regression equations. 
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Figure 9. Concentration of Nitrate in media for H. Pluvialis grown in BBM with Nitrate 
as Nitrogen Source (Circles = NO3 Treatment) 
 

 
Figure 10. Concentration of total ammoniacal nitrogen (TAN) in media for H. Pluvialis 
grown in BBM with TAN as Nitrogen Source (Squares =TAN Treatment) 
 
 Figure 11 presents the removal of phosphorus, which showed considerably less 

reduction during the growth of H Pluvialis. Although there was not a significant reduction in 

the phosphorus present in the BBM, Kang et al. (2006) showed that phosphate removal from 
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various dilutions of primary treated swine wastewater was similar on a mass basis to those 

quantities as observed in this experiment. This suggests that at lower concentrations, H 

Pluvialis could be able to perform more complete recovery of phosphorus species, given that 

the reduced phosphorous content did not otherwise alter the media stability or limit the 

growth of the algae. Seemingly, wastewaters would have sufficient phosphorus to not 

present concern for limiting the growth of the algae when replacing conventional media 

nutrients, even at these significant dilutions. 

 

 
Figure 11. Concentration of Phosphate in media for H. Pluvialis grown in Bold’s Basal 
Media comparing Nitrate and TAN as Nitrogen Source (Squares =TAN Treatments; 
Circles = NO3 Treatments) 
 
 The following experiment and graphs present the growth of H Pluvialis in three 

different concentrations of PHWW (0%, 0.125%, and 0.5%), which was used to replace some 

of the nitrogen nutrients in BBM. Figure 12 exhibits the growth of the cells as measured by 

cell counts with a hemocytometer. It is clear that the wastewater nutrients, as a whole, 

increased the growth of the algae, however, the 0.25% PHWW treatment presented more 

inhibition than the 0.125% PHWW condition, which resulted in the best growth among the 

3 dilutions and nutrient conditions tested. These results are in accordance with Biller et al. 

(2012), who tested the growth of Chlorella and Scenedesmus in PHWW augmented media, 

achieving the highest concentrations of cells at PHWW dilutions below 0.5%. 
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 The enhanced growth of H Pluvialis in the PHWW treatments results from additional 

nutrients present in the PHWW that contribute to heterotrophic and mixotrophic growth of 

algae. Biller et al. (2012) quantified different nutrients in PHWW produced from HTL of algae 

biomass and determined the available carbon and nitrogen, as well as some metals and 

inhibitory compounds, that could affect subsequent algal growth. These constituents that 

contribute to mixotrophic growth can lead to higher biomass production (Bhatnagar et al., 

2011), as also observed in the present study. 

 

 
Figure 12. Growth of H. Pluvialis grown in Bold’s Basal Media augmented with 
different concentrations of PHWW (Circles = BBM Control; Squares = BBM + 
0.125%PHWW; Triangles = BBM + 0.25%PHWW) 
 

Using the statistical functions in the Excel software, a one-way ANOVA was conducted 

to test the difference in final cell concentration amongst the three conditions. Table 9 shows 

there was a statistical difference between the three treatment groups at a p value of 0.05. 

This suggests that the use of PHWW at the 0.125 and 0.25% results in a statistically 

significant improvement in growth, as compared to the control BBM without any PHWW 

added. 
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Table 9. One-way ANOVA for the difference in cell counts between three growth 
conditions 

 
 
 

The growth rate of the cells each day, measured as doublings·day-1, is listed in Table 

10 below. The arrow colors and direction indicate the increase or decrease in the growth 

rate between daily measurements of cell density in the cultures. It can be observed that the 

greatest growth rates were achieved between the 50 and 95 hour mark for the all condition 

replicates with the greatest rates in the media augmented with the wastewater nutrients. 

The max growth rate achieved, as an average of 3 replicates of the 0.125% PHWW treatment, 

was =0.201515 doublings·day-1, achieved between the 50 and 72-hour measurement for 

the PHW 0.125% treatment. Given the concentration of total available nitrogen, these 

doubling rates are comparable to observations by Orosa et al. (2000), who reported a 

doubling time of 0.17 doublings·day-1 at 0 mg·L-1 of nitrate and as much as 0.65 

doublings·day-1 with 150mg·L-1 of nitrate, being more than twice the value measured in the 

conditions for this experiment. 
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Table 10. Daily growth rates of H Pluvialis grown in different media composition 
mixtures of BBM and PHWW. Green, yellow, and red arrows indicate change in 
growth rate as significant increase, stagnant, or significant decrease (* indicates that 
flask was contaminated) 

 
 
 As an added component to the counting and study of cells using the hemocytometer, 

cells were categorized based on their morphology, which was categorized based on cell size 

and color (Kobayashi, et al., 1997; Hoang et al., 2011; Ohnuki et al., 2013). Figure 13 presents 

the change in cell morphologies over the course of the growth period, as categorized based 

on the cell types presented in Table 10. It is evident that as cell concentration increased and 

nutrients decreased, the cultures shifted from being predominantly macrozoid cells to 

immotile palmelloid cells, which suggests the end of the growth phase and beginning of 

maturation with subsequent production of astaxanthin, amongst other carotenogenic 

compounds. Boussiba and Vonshak (1991) suggested that maturation can be induced by 

several environmental factors, with nitrogen deprivation and higher light irradiance being 

among the most effective methods. Across the 3 conditions studied in this experiment, there 

appears to be little difference in the types of cells during the growth period. This suggests 

that although the different concentrations of PHWW could improve the total concentration 

of cells, it did not have a major effect on the maturation process of the cells. In future studies, 

it could be worthwhile to further increase the light intensity so that more maturation and 

astaxanthin production is induced earlier on and, then, verify if the alternative nutrients 

from PHWW and varying nitrogen or inhibitory compounds would affect the maturation rate 

of H Pluvialis. 
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 In addition to the bar graphs for the cell morphology distributions, a set of photos 

from the Digilab microscope camera are included to better understand how cells were 

observed and categorized during the experiment. Referring back to Table 11 that includes a 

scale for sizing of cells using width and length of grids in hemocytometer, Figure 14 provides 

an example of microscope view of the cells on the hemocytometer grid for cell counting to 

categorize these cells. Borowitzka et al. (1991) also studied the effect of different nutrients 

on the prevalence of cells types within a culture, but the authors observed that either 

temperature or NaCl resulted in notable increases in formation of palmelloid or aplanospore 

(akinete) cells. In the current study, it was concluded that while the inhibitory phenolic and 

cyclic nitrogen compounds were able to limit H Pluvialis to growth in concentrations of 

0.25% PHW, these compounds did not induce the desired carotenoid production in the given 

environmental conditions.  

 

Table 11. Description of different H Pluvialis cell morphologies for categorization 
during cell counts (Boussiba and Vonshak., 1991; Boussiba et al., 1999; Orosa et al., 
2005)  

Cell Type Cell Size Cell Mass ATX· cell-1 ATX Production Rate Mobility 

Macrozoid 10μm ± 5 2.5 ng 45pg 0.0244· hr-1  Y 

Palmelloid 30μm ± 10 8.25 ng 20pg 0.0243· hr-1 N 

Akinete 45μm ± 5 >10 ng 150pg 0.5833· hr-1 N 
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Figure 13: Distribution of H Pluvialis cell morphologies grown in (a) BBM control 
treatment; (b) BBM+0.125% PHWW treatment; (c) BBM+0.25% PHWW treatment 
(Macrozoid = Blue; Palmelloid = Green Stripes; Akinete = Solid Red) 
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Figure 14: (a) Picture of cells in hemocytometer from BBM on Day 6 under 100X 
magnification; (b) Picture of cells in hemocytometer from BBM on Day 7 under 100X 
magnification 
 
 Figure 15 and 16 show the removal of the nitrate and total ammoniacal nitrogen from 

the varying media compositions. The total inorganic nitrogen (NO3- + TAN) was kept 

constant for all three media formulation at approximately 75mg·L-1 across all conditions. As 

shown in the Figure 15, there was between an 80-90% reduction of nitrate after 140h across 

all the conditions and replicates. This finding corroborates the high nitrate removal reported 

by Kang et al. (2006) who grew H Pluvialis on wastewater from diluted primary-treated 

piggery effluent collected from a wastewater disposal plant employing a membrane 

bioreactor with a four-stage Bardenpho system and intermediary clarifier. However, the 

previous study reported complete removal of nitrate species at higher concentrations in the 

same number of days during the growth phase. This finding can be explained by two factors. 

First, there was a significantly higher number of cells used for the inoculum of the 

experiment, which suggests that the higher reported number of cells could assimilate 

nutrients in greater quantities. Secondly, and in conjunction with the first reason, the higher 

light incidence would enhance cell growth and the uptake of the nitrate species.  
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Figure 15. Concentration of nitrate in media during H. Pluvialis cultivation in BBM 
and different concentrations of PHWW (Circles = BBM Control; Squares = BBM 
+0.125% PHWW; Triangles = BBM + 0.25%PHWW) 
 
 The TAN species, contributed in different concentration by the different amounts of 

PHWW used, were reduced from the wastewater amended media but increased slightly in 

the BBM only condition. This increase in TAN at the end of the growth phase could suggest 

that ammonia was being excreted by cells, as suggested by Dong et al. (2007). While no 

akinete cells were found in the cell counts, it appears that the rate of ammonia expulsion was 

already detected, and this could also indicate that the maturation phase had begun, even 

though the cells had not matured enough to be classified as akinete cells at the respective 

levels of nitrogen in the various conditions. 

 Observing that the TAN concentrations seem to approach a similar final value 

between 1-4 mg·L-1, it could be recommended that the use of this algae for removal of 

wastewater nutrients would need to be monitored more closely at the transition between 

growth and maturation to avoid release of TAN. These values of ammonia in the wastewater 

are above the typical discharge limits of 1 mg·L-1 (Sedlak, 1991). Given that this organism 

can assimilate notable quantities of either nitrogen source, it could be used to recover these 

nutrients at higher concentration of TAN and then be followed by additional treatment steps 

to remove residual species for discharge. Alternatively, algae system effluent could be 
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recycled to the head of the plant for dilution and retreatment with the main stream 

wastewater influent. Recycling is commonly practiced with wastewater side streams that 

have elevated nutrient levels. 

 

 
Figure 16. Concentration of TAN in media during H. Pluvialis cultivation in BBM and 
different concentrations of PHWW (Circles = BBM Control; Squares = BBM +0.125% 
PHWW; Triangles = BBM + 0.25%PHWW) 
 
 Figure 17 presents the concentration of phosphorus across the different PHWW 

cultivation conditions. This experiment also showed considerably less reduction than 

nitrogen across the varying wastewater concentrations during growth of H. Pluvialis. As 

suggested before, H Pluvialis could be able to recover a higher percentage of phosphorus if 

the concentration was lower in the media or only provided from the wastewater. While 

phosphorus can be included in value and nutrient recovery, this study was focused primarily 

on the difference in growth when using wastewater and the recovery of nitrogen at tolerable 

concentrations of PHWW for the algae.  
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Figure 17. Concentration of Phosphate in media during H. Pluvialis cultivation in 
BBM and different concentrations of PHWW (Circles = BBM Control; Squares = BBM 
+0.125% PHWW; Triangles = BBM + 0.25%PHWW) 
 

After the growth phase of 7 days (168 hours), the cells were exposed to greater light 

incidence, nitrogen deprivation, and resuspension in 2.5% saltwater (w/v) conditions to 

induce carotenoid production. Using DMF as the solvent and the equations provided by 

Lichtenthaler et al. (1987), the concentrations of chlorophyll and carotenoids were 

calculated to determine the degree of encystment. Figure 18 shows pictures of the cells on 

day 0 and day ten of the encystment phase. Each one of the 16 smaller square units per box 

on the hemocytometer has a width and length of 50m, as presented with a red scalar for 

measurement of cell diameter based on the hemocytometer grid. It is clear that the size and 

red coloration of the akinete cells was an indicator of this encystment and carotenoid 

production. 
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Figure 18 (a). Picture of cells in hemocytometer from day 0 of encystment under 
400X magnification; (b) Picture of cells in hemocytometer from day 10 of encystment 
under 400X magnification 
 

Figure 19 presents the chlorophyll:carotenoid ratio for the cell extracts during the 

maturation phase for all treatments, and the measured data follows an exponential decrease 

in the concentration of chlorophyll during the production of carotenoids in the cells. Orosa 

et al. (2000) reported that a chlorophyll/carotenoids value of greater than 4 indicates 

sufficient nitrogen in the media for further growth or lack of environmental stress otherwise. 

The total cells harvested from the cultivation state exhibited no signs of stress, as indicated 

by the lack of akinete cells and the high chlorophyll:carotenoid ratio number, however, these 

values dropped over the 300 hours that they were measured for this ratio during the 

maturation phase. The results from this study match the previous observations over 12 days 

of encystment, where the chlorophyll/carotenoids ratios fell below 3 and in most cases, 

below 2 (Orosa et al., 2000). Ultimately, the control condition had the lowest ratio, and the 

wastewater conditions were more similar to each other. However, this ratio and the total 

carotenoids measurement does not specify which carotenogenic compounds was prominent 

in the cells after maturation. Thus, HPLC was used to quantify astaxanthin concentration and 

determine the presence of other carotenoids. 
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Figure 19. Ratio of total chlorophyll to total carotenoids for biomass harvest and 
introduced into stress conditions (Circles = BBM Control; Squares = BBM 
+0.125%PHWW; Triangles = BBM + 0.25%PHWW) 
 
 The methods developed by Sarada et al. (2006) were used to extract the pigments 

from the encysted cells. Figure 20 presents photos from the microscopic analysis of each step 

of the extraction process. It can be seen that the encysted cells in photo A contained the 

carotenoid pigments, as indicated by the large size and color. After treatment in 2M HCl at 

70˚C for ten minutes, the membranes of the cells appear to leak the inner contents of the 

cells, making them more available for extraction. As described in the methodology, acetone 

was used after centrifuging out the biomass to separate the pigments from the cellular debris 

for measurement using HPLC. 
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Figure 20. Stress induced cells (a) without treatment, (b) after 2M HCl at 70˚C for 10 
min, (c) after acetone extraction  
 

 As described in the materials and methods section, a calibration of the astaxanthin 

using the HPLC was performed with a high-purity analytical standard in order to reliably 

quantify the concentration of astaxanthin. This calibration curve, presented as Figure 21, 

was based on peak height values of the HPLC with measured pure astaxanthin samples 

(Sigma Aldrich SML0982), resulting in an R2 =0.98678. The calibration gave reasonable 

certainty that the measured peak height absorbance values were reliable for calculating 

concentration of astaxanthin in the final extract samples. 
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Figure 21. Calibration curves for astaxanthin peak height absorbance units as 
measured with HPLC, accompanied by corresponding R2 values and regression  
equations. 
   

 Figure 22 presents the HPLC chromatograms from each cultivation for the extracts, 

as well as a standard peak generated from the purified sample used in different 

concentrations to build the calibration curve (Figure 22a). Figure 22 b-d present results for 

carotenoid extracts from each of the media compositions, 0, 0.125, and 0.25%, respectively. 

The BBM only condition presented the most easily identified set of peaks, suggesting that the 

desired trans-astaxanthin product was produced without interference from other isomeric 

forms or alternative carotenoids. However, the encysted H Pluvialis cells grown in media 

with PHWW nutrients produced various other peaks at 477nm. All astaxanthin extracts had 

an average retention time of 5.47240.015 minutes when passing through the HPLC under 

the HPLC operational conditions, as described earlier. Additional chromatograms, including 

the negative control with only PHWW run through the HPLC, are provided in Appendix A. 

Additional peaks were also observed by various other authors studying carotenoid 

and astaxanthin production in algae and fungus (Del Campo et al., 2003; Holtin et al., 2009; 

Lu et al., 2010), who observed the astaxanthin esters and other carotenoid species in similar 

chromatographic analyses. Ranga et al., 2009, working with H. Pluvialis identified these 

peaks with purified standards and reported the existence of several astaxanthin esters, 

identified as the wider peaks appearing after the purified trans astaxanthin species. This is 

logical because ester groups that bound to astaxanthin molecules would make its total size 
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larger, and, therefore, in most chromatograph operating conditions, it would require more 

time to pass through the column in HPLC identification. In this study, identification of other 

compounds in the HPLC chromatograms was not attempted. However, these molecules could 

certainly be identified using known standards or coupling chromatography with a mass 

spectroscopy (MS) and an appropriate library to define the mass of these extract 

constituents. 

 

 
Figure 22. HPLC Chromatograms for (a) Trans-Astaxanthin Analytical Standard; (b) 
BBM biomass extract; (c) 0.125%PHWW biomass extract; (d) 0.25%PHWW biomass 
extract 
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 The final astaxanthin contents of the cells grown on the various media compositions 

are provided in Figure 23 below. These concentrations values were reported based on peak 

height, which is more typically used for this HPLC method. The peak heights identify that the 

BBM condition (0% PHWW) resulted in the greatest astaxanthin concentration, but it also 

presented lesser quantities of other carotenoids in the extract. The peak heights of 

astaxanthin peaks correspond to concentrations between 2 and 5 mg·L-1 in the final biomass 

extracts. Overall, we see that the control condition resulted in the greatest concentration of 

astaxanthin, given its peak height. Other HPLC peaks suggested that additional 

carotenogenic compounds were present in considerable quantities in the biomass extracts 

from the PHWW wastewater conditions.  

 

 

Figure 23. Comparison of astaxanthin concentration in final H Pluvialis extract 
between different media compositions, based on peak height in HPLC  
 

Using the Excel statistical software, a one-way ANOVA was conducted to test the 

difference in final astaxanthin production amongst the three conditions. Table 12 shows 

there was a statistical difference between groups at a p value of 0.05. Although there was a 

more complex carotenoid profile in the wastewater samples, as shown by the 

chromatograms, the concentrations for trans-astaxanthin product was statistically greater 

in the control as compared to the other PHWW growth conditions. 
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Table 12. One-way ANOVA for the difference in astaxanthin production between three 
growth conditions, based on height 
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CHAPTER 5: CONCLUSIONS  
   
 H Pluvialis demonstrated near equivalent growth in terms of cell counts when using 

only nitrate or only ammoniacal nitrogen as the nitrogen source in BBM. This evidenced that 

the ammoniacal nitrogen in the PHWW was not the inhibitory compound limiting the growth 

of the algae on PHWW. In the 0.125% and 0.25% PHWW conditions that were determined 

to allow for algal growth in the inhibition assay, the growth of H Pluvialis increased by as 

much as 44% in terms of cell counts, noting that the additional nutrients from the 

wastewater resulted in mixotrophic growth. The balanced inorganic nitrogen, in the forms 

of nitrate or TAN, presented a removal of 80-90% for the cultivation conditions utilized. The 

harvested cells were treated with increased 2.5% salt concentration (w/v) and light 

intensity, in addition to nutrient deprivation, which resulted in the chlorophyll/carotenoid 

concentration dropping from above 3 after vegetative growth to below 2 for all treatments 

exposed to these encystment conditions over 300 hours. Astaxanthin production, quantified 

using HPLC with a purified standard, showed that it was reduced by 47.3% and 34.1% in the 

0.125% and 0.25% PHWW augmented cultures, respectively. However, it was observed that 

the growth with wastewater may have induced production of a more complex carotenogenic 

profile, as observed in the chromatographs. This study determined that wastewater is a 

viable source of nutrients for H Pluvialis when making sure that inhibitory compounds from 

PHWW do not limit its growth and also reports that use of the wastewater may result in an 

alternative carotenogenic profile.  
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CHAPTER 6: FUTURE WORK  

  

 Acclimation and adaptation of H Pluvialis to PHWW were not studied but is highly 

recommended for studying the improved growth of this algae on wastewater over time. This 

could especially help to mitigate inhibitory effects of the PHWW observed even at very low 

levels. Other wastewater nutrient sources can also be considered for enhanced and more 

sustainable production of algal biomass and its derivative metabolites. With respect to the 

astaxanthin production, further work is needed to understand the mechanisms by which the 

carotenoids are produced in this species during stress, as well as how nutrient sourcing or 

inhibitory compounds might affect these processes. 
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APPENDIX A: HPLC CHROMATOGRAMS 
 

 
Figure 24. Astaxanthin Standard with 0.25% PHWW 
 

 
Figure 25. PHWW alone used as negative control 
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Figure 26. H Pluvialis Extract after hydrolysis in 2M HCl at 70C for 10 min 
 
 


	TABLE OF CONTENTS
	CHAPTER 1: INTRODUCTION
	CHAPTER 2: LITERATURE REVIEW
	CHAPTER 3: MATERIALS AND METHODS
	CHAPTER 4: RESULTS AND DISCUSSION
	CHAPTER 5: CONCLUSIONS
	CHAPTER 6: FUTURE WORK
	CHAPTER 7: REFERENCES
	APPENDIX A: HPLC CHROMATOGRAMS

