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Abstract
In real-world Bayesian inference applications, prior assumptions regarding the parameters of interest may be unrepresentative
of their actual values for a given dataset. In particular, if the likelihood is concentrated far out in the wings of the assumed prior
distribution, this can lead to extremely inefficient exploration of the resulting posterior by nested sampling (NS) algorithms,
with unnecessarily high associated computational costs. Simple solutions such as broadening the prior range in such cases
might not be appropriate or possible in real-world applications, for example when one wishes to assume a single standardised
prior across the analysis of a large number of datasets for which the true values of the parameters of interest may vary.
This work therefore introduces a posterior repartitioning (PR) method for NS algorithms, which addresses the problem by
redefining the likelihood and prior while keeping their product fixed, so that the posterior inferences and evidence estimates
remain unchanged but the efficiency of the NS process is significantly increased. Numerical results show that the PR method
provides a simple yet powerful refinement for NS algorithms to address the issue of unrepresentative priors.

Keywords Bayesian modelling · Nested sampling · Unrepresentative prior · Posterior repartitioning

1 Introduction

Bayesian inference (see e.g. MacKay 2003) provides a com-
prehensive framework for estimating unknown parameter(s)
θ of some model with the assistance both of observed dataD
and prior knowledge of θ . One is interested in obtaining the
posterior distribution of θ , and this can be expressed using
Bayes’ theorem as:

Pr(θ |D,M) = Pr(D|θ,M)Pr(θ |M)

Pr(D|M)
, (1)
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where M represents model (or hypothesis) assumption(s),
Pr(θ |D,M) ≡ P(θ) is theposteriorprobability density,
Pr(D|θ,M) ≡ L(θ) is the likelihood, and Pr(θ |M) ≡
π(θ) is the prior of θ . Pr(D|M) ≡ Z is called the
evidence (or marginal likelihood). We then have a sim-
plified expression:

P(θ) = L(θ)π(θ)

Z , (2)

and

Z =
∫

Ψ

L(θ)π(θ)dθ, (3)

where Ψ represents the prior space of θ . The evidence Z is
often used for model selection. It is the average of the likeli-
hood over the prior, considering every possible choice of θ ,
and thus is not a function of the parameters θ . By ignoring the
constant Z , the posterior P(θ) is proportional to the product
of likelihood L(θ) and prior π(θ).

The likelihoodL(θ) is fully determined by the observation
model (or measurement model / forward model) along with
its corresponding noise assumptions. It is common that the
structure of the observationmodel is predefined in real-world
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applications. By contrast, the prior distribution is often less
well defined, and can be chosen in a number of ways, pro-
vided it is consistent with any physical requirements on the
parameters θ (or quantities derived therefrom). One role of
the prior distributionπ(θ) is to localise the appropriate region
of interest in the parameter space, which assists the inference
process. One often chooses a standard distribution (such as
Gaussian or uniform) as the prior when limited information
is available a priori. In particular, the prior should be rep-
resentative of the range of values that the parameters might
take for the dataset(s) under analysis. An interesting discus-
sion related to prior belief in a broader context can be found
in Gelman (2008).

The approach outlined above works well in most scenar-
ios, but it can be problematic if an inappropriate prior is
chosen. In particular, if the true values of the parameters θ

[or, more meaningfully, the location(s) of the peak(s) of the
likelihood] lie very far out in the wings of the prior distribu-
tion π(θ), then this can result in very inefficient exploration
of the parameter space by NS algorithms. In extreme cases,
it can even result in a sampling algorithm failing to con-
verge correctly, usually because of numerical inaccuracies,
and incorrect posterior inferences (a toy examplewill be used
to illustrate this problem in later sections).

This paper seeks to address the unrepresentative
prior problem. One obvious solution is simply to augment
the prior so that it covers a wider range of the parame-
ter space. In some common cases, however, this might not
be applicable. This is particularly true when one wishes to
assume the same prior across a large number of datasets,
for each of which the peak(s) of the likelihood may lie in
very different regions of the parameter space. Moreover,
in practical implementations, the specialists responsible for
defining the prior knowledge, developing the measurement
model, building the software, performing the data anal-
ysis, and testing the solution are often different people.
Thus, there may be a significant overhead in communicat-
ing and understanding the full analysis pipeline before a
new suitable prior could be agreed upon for a given sce-
nario. This is a common occurrence in the analysis of,
for example, production data in the oil and gas indus-
try.

We therefore adopt an approach in this paper that cir-
cumvents the above difficulties. In particular, we present
a posterior repartitioning (PR) method for addressing the
unrepresentative prior problem in the context of NS algo-
rithms (Skilling 2006) for exploring the parameter space.
One important way in which nested sampling differs from
other methods is that it makes use of the likelihood L(θ)

and prior π(θ) separately in its exploration of the param-
eter space, in that samples are drawn from the prior π(θ)

such that they satisfy some likelihood constraint L(θ) > L∗.
By contrast, Markov chain Monte Carlo (MCMC) sampling

methods or genetic algorithm variants are typically blind
to this separation,1 and deal solely in terms of the prod-
uct L(θ)π(θ), which is proportional to the posterior P(θ).
This difference provides an opportunity in the case of NS
to ‘repartition’ the product L(θ)π(θ) by defining a new
effective likelihood L̃(θ) and prior π̃(θ) (which is typically
‘broader’ than the original prior), subject to the condition
L̃(θ)π̃(θ) = L(θ)π(θ), so that the (unnormalised) poste-
rior remains unchanged. Thus, in principle, the inferences
obtained are unaffected by the use of the PR method, but,
as we will demonstrate, the approach can yield significant
improvements in sampling efficiency and also helps to avoid
the convergence problems that can occur in extreme exam-
ples of unrepresentative priors.More generally, this approach
highlights the intrinsic degeneracy between the ‘effective’
likelihood and prior in the formulation of Bayesian infer-
ence problems, which it may prove advantageous to exploit
using NS methods more broadly than in merely addressing
the unrepresentative prior problem, although we will defer
such considerations to future publications. More discussion
about generalised Bayesian prior design is given in Simpson
et al. (2017).

This paper is organized as follows. Section 2 gives a
brief summary of NS. Section3 details the underlying prob-
lem, and illustrates it using a simple toy example. Section4
describes the PR method and its implementation in the
widely-used NS algorithmMultiNest. Section5 shows some
numerical results in simple synthetic examples. Section6
concludes the proposed approach and discusses its advan-
tages and limitations.

2 Nested sampling

NS is a sequential sampling method that can efficiently
explore the posterior distribution by repeatedly finding a
higher likelihood region while keeping the number of sam-
ples the same. It consists of the following steps:

– A certain number (Nlive) of samples of the parameters
θ are drawn from the prior distribution π(θ); these are
termed ‘live points’.

– The likelihoods of these samples are computed through
the likelihood function L(θ).

– The sample with the lowest likelihood is removed and
replaced by a sample again drawn from the prior, but con-
strained to a higher likelihood than that of the discarded
sample.

1 One exception is the propagation of multiple MCMC chains, for
which it is often advantageous to draw the starting point of each chain
independently from the prior distribution.
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– The above step is repeated until some convergence cri-
teria are met (e.g. the difference in evidence estimates
between two iterations falls below a pre-defined thresh-
old); the final set of samples and the discarded samples
are then used to estimate the evidence Z in model selec-
tion and obtain posterior-weighted samples for use in
parameter estimation.

Pseudo code for the NS algorithm is given below. Note
that it is only one of the various possible NS implementa-
tions. Other implementations share the same structure but
may differ in details, for example in how Xi or wi is cal-
culated, or the method used for drawing new samples. See
Skilling (2006) for details.

Algorithm 1: Nested sampling algorithm

// Nested sampling initialization

1 At iteration i = 0, draw Nlive samples {θn}Nlive
n=1 from prior π(θ)

within prior space Ψ . Initialise evidence Z = 0 and prior volume
X0 = 1.
// NS iterations

2 for i = 1, 2, · · · , I do
3 • Compute likelihood L(θn) for all Nlive samples.
4 • Find the lowest likelihood in live sample and save it in Li .
5 • Calculate weight wi = 1

2 (Xi−1 − Xi+1), where the prior
volume Xi = exp(−i/Nlive).

6 • Increment evidence Z by Liwi .
7 • Replace the individual sample with likelihood Li by a

newly drawn sample from restricted prior space Ψi such that
θ ∈ Ψi satisfies L(θ) > Li .

8 • If max{L(θn)}Xi < exp(tol)Z , then stop.
9 end for

10 Increment Z by
∑Nlive

n=1 L(θn)XI /Nlive.
11 Assign the sample replaced at iteration i the importance weight

pi = Liwi/Z .

In Algorithm 1, X0 represents the whole prior volume of
prior space Ψ , and {Xi }Ii=1 are the constrained prior vol-
umes at each iteration. The number of iterations I depends
on a pre-defined convergence criterion tol on the accuracy
of the final log-evidence value and on the complexity of the
problem.

Among the various implementations of the NS algo-
rithm, two widely used packages are MultiNest (Feroz
et al. 2009, 2013) and PolyChord (Handley et al. 2015).
MultiNest draws the new sample at each iteration using
rejection sampling from within a multi-ellipsoid bound
approximation to the iso-likelihood surface defined by the
discarded point; the bound is constructed from the sam-
ples present at that iteration. PolyChord draws the new
sample at each iteration using a number of successive
slice-sampling steps taken in random directions. Please see
Feroz et al. (2009) and Handley et al. (2015) for more
details.

3 Unrepresentative prior problem

We describe a prior π(θ) as unrepresentative in the analysis
of a particular dataset, if the true values of the parameters [or,
more precisely, the peak(s) of the likelihood L(θ)] for that
dataset lie very far into thewings ofπ(θ). In real-world appli-
cations, this can occur for a number of reasons, for example:
(1) limited prior knowledge may be available, resulting in a
simple tractable distribution being chosen as the prior, which
could be unrepresentative; (2) one may wish to adopt the
same prior across a large number of datasets that might cor-
respond to different true values of the parameters of interest,
and for some of these datasets the prior may be unrepre-
sentative. In any case, as we illustrate below in a simple
example, an unrepresentative prior may result in very inef-
ficient exploration of the parameter space, or failure of the
sampling algorithm to converge correctly in extreme cases.
This can be particularly damaging in applications where one
wishes to perform analyses on many thousands (or even
millions) of different datasets, since those (typically few)
datasets for which the prior is unrepresentative can absorb
a large fraction of the computational resources. Indeed, the
authors have observed this phenomenon in practice in an
industrial geophysical application consisting of only∼ 1000
different datasets.

It is also worth mentioning that one could, of course,
encounter the even more extreme case where the true param-
eter values, or likelihood peak(s), for some dataset(s) lie
outside an assumed prior having compact support. This case,
which one might describe as an unsuitable prior, is not
addressed by our PR method, and is not considered here.

3.1 A univariate toy example

One may demonstrate the unrepresentative prior problem
using a simple one-dimensional toy example. Suppose one
makes N independent measurements (or observations) X =
[x1, . . . , xn, . . . , xN ]� of some quantity θ , such that

xn = θ + ξ, (4)

where ξ denotes the simulated measurement noise, which
is Gaussian distributed ξ ∼ N (μξ , σ

2
ξ ) with mean μξ and

variance σ 2
ξ . For simplicity, wewill assume themeasurement

process is unbiased, so that μξ = 0, and that the variance σ 2
ξ

of the noise is known a priori (although it is a simple matter
to relax these two assumptions).

The likelihood L(θ) is therefore simply the product of N
Gaussian densities:

L(θ) =
N∏

n=1

⎧⎨
⎩

1√
2πσ 2

ξ

exp

[
− (θ − xn)2

2σ 2
ξ

]⎫⎬
⎭ . (5)
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For the purposes of illustration, we will assume the prior
π(θ) also to be a Gaussian, with mean μπ = 0 and standard
deviation σπ = 4, such that a priori one expects θ to lie in
the range [−10, 10] with probability of approximately 0.99.
Since the likelihood and prior are both Gaussian in θ , then
so too is the posterior P(θ).

To illustrate the problem of an unrepresentative prior, we
consider three cases inwhich the true value θ∗ of the unknown
parameter is given, respectively, by: (1) θ∗ = 5, (2) θ∗ = 30
and (3) θ∗ = 40. Thus, case (1) corresponds to a straight-
forward situation in which the true value θ∗ lies comfortably
within the prior, whereas cases (2) and (3) represent the more
unusual eventuality in which the true value lies well into the
wings of the prior distribution. In our simple synthetic exam-
ple, one expects cases (2) and (3) to occur only extremely
rarely. In real-world applications, however, the prior distri-
bution is typically constructed on a case-by-case basis by
analysts, andmay not necessarily support a standard frequen-
tist’s interpretation of the probability of ‘extreme’ events. In
fact, such situations are regularly encountered in real-world
applications,when a large number of datasets are analysed. In
each of the three cases considered, we set the variance of the
simulated measurement noise to be σξ = 1 and the number
of measurements is N = 20. Note that the width of the likeli-
hood in (5) is proportional to 1/

√
N , so the unrepresentative

prior problem becomes more acute as N increases.
Figure1a, c and e show the prior, likelihood and posterior

distributions for the cases (1), (2) and (3), respectively. One
sees that as the true value θ∗ increases and lies further into
the wings of the prior, the posterior lies progressively further
to the left of the likelihood, as expected. As a result, in cases
(2) and (3), the peak of the posterior (red dashed curve) is
displaced to the left of the true value (black dashed line).
This can be clearly observed in the zoomed-in plots within
sub-figures (c) and (e). Figure 1b, d and f show histograms
(blue bins) of the posterior samples obtained using Multi-
Nest for cases (1), (2) and (3), respectively, together with
the corresponding true analytical posterior distributions (red
solid curves). In each case, the MultiNest sampling param-
eters were set to Nlive = 2000, efr = 0.8 and tol = 0.5
(see Feroz et al. 2009 for details), and the algorithm was run
to convergence. A natural estimator θ̂ and uncertainty Δθ ,
respectively, for the value of the unknown parameter are pro-
vided by the mean and standard deviation of the posterior
samples in each case, and are given in Table 1.

In case (1), one sees that the samples obtained are indeed
consistent with being drawn from the true posterior, as
expected. The mean θ̂ and standard deviation Δθ of the
samples listed in Table 1 agree well with the mean μP and
standard deviation σP of the true posterior distribution. In
this case, MultiNest converged relatively quickly, requiring
a total of 13,529 likelihood evaluations. On repeating the

entire analysis a total of 10 times, one obtains statistically
consistent results in each case.

In case (2), one sees that the samples obtained are again
consistent with being drawn from the true posterior. Indeed,
from Table 1, one may verify that the mean and standard
deviation of the samples agree well with those of the true
posterior distribution. In this case, however, the convergence
of MultiNest is much slower, requiring about 6 times the
number of likelihood evaluations needed in case (1). This is
a result of the true value lying far out in the wings of the prior
distribution. Recall that NS begins by drawing Nlive sam-
ples from the prior and at each subsequent iteration replaces
the sample having the lowest likelihood with a sample again
drawn from the prior but constrained to have a higher likeli-
hood. Thus, as the iterations progress, the collection of Nlive

‘live points’ gradually migrates from the prior to the peak of
the likelihood. When the likelihood is concentrated very far
out in the wings of the prior, this process can become very
slow, even if one is able to draw each new sample from the
constrained prior using standardmethods (sometimes termed
perfect nested sampling). In practice, this is usually not pos-
sible, so algorithms such as MultiNest and PolyChord use
othermethods thatmay require several likelihood evaluations
before a new sample is accepted. Depending on the method
used, an unrepresentative prior can also result in a significant
drop in sampling efficiency, thereby increasing the required
number of likelihood evaluations still further. On repeating
the entire analysis a total of 10 times, once again obtains
statistically consistent results in each case.

In case (3), one sees that the samples obtained are clearly
inconsistentwith being drawn from the true posterior. Indeed,
the samples are concentrated at just a single value of θ . This
behaviour may be understood by again considering the oper-
ation of NS. The algorithm begins by drawing Nlive = 2000
samples from the prior, which is a Gaussian with mean
μπ = 0 and standard deviation σπ = 4. Thus, one would
expect approximately only one such sample to lie outside the
range [−14, 14].Moreover, since the likelihood is aGaussian
centred near the true value θ∗ = 40 with standard devia-
tion ∼ 0.25, the live points will typically all lie in a region
over which the likelihood is very small and flat (although, in
this particular example, the values of the log-likelihood for
the live points—which is the quantity used in the numerical
calculations—are still distinguishable to machine precision).

When the point with the lowest likelihood value is dis-
carded, it must be replaced at the next NS iteration by another
drawn from the prior, but with a larger likelihood. How this
replacement sample is obtained depends on the particular NS
implementation being used. As discussed in Sect. 2, Multi-
Nest draws candidate replacement samples at each iteration
using rejection sampling fromwithin amulti-ellipsoid bound
approximation to the iso-likelihood surface defined by the
discarded point, which in just one dimension reduces sim-
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Fig. 1 A univariate toy example illustrating the unrepresentative prior
problem. Sub-figures a, c and e show, respectively, the cases (1), (2)
and (3) discussed in the text; sub-figures c and e contain zoomed-in
plots. The truth θ∗ in each case is θ∗ = 5, θ∗ = 30 and θ∗ = 40, respec-
tively (dashed black lines). The prior (dashed blue curves) is a Gaussian
distribution with μπ = 0 and σπ = 4. The likelihood (dashed green

curves) is a Gaussian (5) with μξ = 1. According to Bayes theorem
(2), the posterior (dashed red curves) is also a Gaussian calculated from
the product of prior and likelihood. Sub-figures b, d and f show, for
each case, the histogram (blue bins) of posterior samples from Multi-
Nest, and the true posterior distribution (solid red curves). (Color figure
online)

ply to a range in θ . Since this bound is constructed from
the samples present at that iteration, it will typically not
extend far beyond the locations of the live points having
the extreme values of the parameter θ . Thus, there is very
limited opportunity to sample candidate replacement points
from much larger values of θ , where the likelihood is sig-
nificantly higher. Hence, as the NS iterations proceed, the
migration of points from the prior towards the likelihood is
extremely slow. Indeed, in this case, the migration is suffi-
ciently slow that the algorithm terminates (in this case after
96512 likelihood evaluations) before reaching the main body
of the likelihood and produces a set of posterior-weighted

samples from the discarded points (see Feroz et al. 2009 for
details). Since thisweighting is proportional to the likelihood,
in this extremecase the recoveredposterior ismerely a ‘spike’
corresponding to the sample with the largest likelihood, as
observed in Fig. 1f. In short, the algorithm has catastroph-
ically failed. On repeating the entire analysis a total of 10
times, one finds similar pathological behaviour in each case.

One may, of course, seek to improve the performance of
NS in such cases in a number of ways. Firstly, onemay adjust
the convergence criterion (tol in MultiNest) so that many
more NS iterations are performed, although there is no guar-
antee in any given problem that this will be sufficient to
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Table 1 MultiNest performance in the toy example illustrated in Fig. 1

Case (1) Case (2) Case (3)

True value θ∗ 5 30 40

True posterior μP 4.984 29.907 39.875

True posterior σP 0.223 0.223 0.223

Likelihood calls 13529 78877 96512

Estimated value θ̂ 4.981 29.902 32.838

Uncertainty Δθ 0.223 0.223 7.6 × 10−6

prevent premature convergence. Perhaps more useful is to
ensure that there is a greater opportunity at each NS iteration
of drawing candidate replacement points from larger values
of θ , where the likelihood is larger. This may be achieved in a
variety of ways. In MultiNest, for example, one may reduce
theefr parameter so that the volume of the ellipsoidal bound
(or the θ -range in this one-dimensional problem) becomes
larger. Alternatively, as in other NS implementations, one
may draw candidate replacement points using either MCMC
sampling (Feroz andHobson 2008) or slice-sampling (Hand-
ley et al. 2015) and increase the number of steps taken before
a candidate point is chosen.

All the of above approaches may mitigate the problem
to some degree in particular cases (as we have verified in
further numerical tests), but only at the cost of a simultane-
ous dramatic drop in sampling efficiency caused precisely
by the changes made in obtaining candidate replacement
points. Moreover, in more extreme cases these measures fail
completely. In particular, if the prior and the likelihood are
extremely widely separated, the differences in the values of
the log-likelihood of the live samples may fall below the
machine accuracy used to perform the calculations. Thus,
the original set of prior-distributed samples are likely to have
log-likelihood values that are indistinguishable to machine
precision. Thus, the ‘lowest likelihood’ sample to be dis-
carded will be chosen effectively at random. Moreover, in
seeking a replacement sample that is drawn from the prior
but having a larger likelihood, the algorithm is very unlikely
to obtain a sample for which the likelihood value is gen-
uinely larger to machine precision. Even if such a sample
is obtained, then the above problems will re-occur in the
next iteration when seeking to replace the next discarded
sample, and so on. In this scenario, the sampling efficiency
again drops dramatically, but more importantly the algo-
rithm essentially becomes stuck andwill catastrophically fail
because of accumulated numerical inaccuracies.

3.2 Simple ‘solutions’

A number of potential simple ‘solutions’ to the unrepresen-
tative prior problem are immediately apparent. For example,
one might consider the following:

– modify the prior distribution across one’s analysis, either
by increasing its standard deviation σπ , or even by
adopting a different functional form, so that it should
comfortably encompass the likelihood for all datasets;

– perform the analysis using the original prior for all the
datasets, identify the datasets forwhich it is unrepresenta-
tive bymonitoring the sampling efficiency and examining
the final set of posterior samples for pathologies, and then
modify the prior as above for these datasets.

Unfortunately, neither of these approaches is appropri-
ate or realistic. The former approach is inapplicable since
the prior may be representative for the vast majority of the
datasets under analysis, and one should use this information
in deriving inferences.Also, the former solution sacrifices the
overall speed and computational efficiency, as the augmented
prior is applied to all cases but not only the problematic ones.
Choosing a proper trade-off between the efficiency and the
coverage of prior is difficult when a large number of experi-
ments need to be examined.

The latter solution requires one to identify various outlier
cases (as the outlier cases could be very different from one
to another), and also perform re-runs of those identified. It
becomes a non-trivial computational problem when a single
algorithm run requires a considerable amount of run time, or
when the results of the outlier cases are needed for the next
step computation, i.e. the whole process waits for the outlier
cases to proceed. This could be trivial for some applications
and could be very difficult for others in which many different
outlier cases exist.

4 Posterior repartitioningmethod

The posterior repartitioning (PR) method addresses the
unrepresentative prior problem in the context of NS algo-
rithms (Skilling 2006) for exploring the parameter space,
without sacrificing computational speed or changing the
inference obtained.

4.1 General expressions

In general, the ‘repartition’ of the product L(θ)π(θ) can be
expressed as:

L(θ)π(θ) = L̃(θ)π̃(θ), (6)

where L̃(θ) and π̃(θ) are the new effectivelikelihood and
prior, respectively. As a result, the (unnormalised) poste-
rior remains unchanged. Themodified prior π̃(θ) can be any
tractable distribution, which we assume to be appropriately
normalised to unit volume. The possibility of repartitioning
the posterior in NSwas first mentioned in Feroz et al. (2009),
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but Eq. (6) can also be viewed as the vanilla case (when the
importanceweight function equals to 1) of nested importance
sampling proposed in Chopin and Robert (2010).

One general advantage of NS is that the evidence (or
marginal likelihood), which is intractable in most cases, can
be accurately approximated. This is achieved by first defin-
ingV(l) as the prior volumewithin the iso-likelihood contour
L(θ) = l, namely

V(l) =
∫
L(θ)>l

π(θ)dθ, (7)

where l is a real number that gradually rises from zero to the
maximum of L(θ) as the NS iterations progress, so that V(l)
monotonically decreases from unity to zero. After PR, π(θ)

is replaced by π̃(θ), and the evidence can be calculated as

Z =
∫

L(θ)π(θ)dθ =
∫

L̃(θ)π̃(θ)dθ =
∫ 1

0
L(V)dV .

(8)

It is worth noting, however, that in the case where π̃(θ) is
not properly normalised, the ‘modified evidence’Z ′ obtained
after PR is simply related to the original evidence by

Z = Z ′
∫

π̃(θ)dθ. (9)

Provided one can evaluate the volume of the modified prior
π̃(θ), one may therefore straightforwardly recover the orig-
inal evidence, if required. For many simple choices of π̃(θ),
this is possible analytically, but may require numerical inte-
gration in general. It should be noted, however, that the
normalistion of the modified prior is irrelevant for obtaining
posterior samples. We now discuss some particular special
choices for π̃(θ).

4.2 Power posterior repartitioning

Rather than introducing a completely new prior distribution
into the problem, a sensible choice is often simply to take
π̃(θ) to be the original prior π(θ) raised to some power, and
then renormalised to unit volume, such that

π̃(θ) = π(θ)β

Zπ (β)
, (10)

L̃(θ) = L(θ)π(θ)(1−β)Zπ (β), (11)

where β ∈ [0, 1] and Zπ (β) ≡ ∫
π(θ)βdθ . By altering the

value of β, the modified prior can be chosen from a range
between the original prior (β = 1) and the uniform distri-
bution (β = 0). As long as the equality in Eq. (6) holds, the
PR method can be applied separately for multiple unknown
parameters with different forms of prior distributions.

Fig. 2 One dimensional prior evolution for β ∈ [0, 1]. The original
prior is a Gaussian distribution with σπ = 4 (truncated in the range
[− 50, 50]) when β = 1 (dashed blue curve), and is an uniform distri-
bution when β = 0 (dashed black curve). The remaining three curves
correspond to β = 0.5 (green curve), 0.25 (red curve), 0.01 (light blue
curve), respectively. (Color figure online)

Figure 2 illustrates how the prior changes for different
values of β in a one-dimensional problem. As the parameter
β decreases from 1 to 0, the prior distribution evolves from
a Gaussian centred on zero with standard deviation σπ = 4
to a uniform distribution, where the normalisation depends
on the assumed support [−50, 50] of the unknown parameter
θ . Indeed, the uniform modified prior π̃(θ) ∼ U(a, b) is a
special case, but often a useful choice. One advantage of this
choice is that the range [a, b] can be easily set such that it
accommodates the range of θ values required to overcome
the unrepresentative prior problem, and the modified prior is
trivially normalised. It can cause the sampling to be ineffi-
cient, however, since it essentially maximally broadens the
search space (within the desired range).

The above approach is easily extended to multivariate
problems with parameter vector θ = (θ1, θ2, . . . , θN )T. It is
worth noting in particular the casewhere the original prior is a
multivariate Gaussian, such that π(θ) = N (μ,Σ), where μ

is the vector of means for each variable and Σ is the covari-
ance matrix. The power modified prior π̃(θ) is then given
simply by N (μ, β−1Σ) over the assumed supported region
R of the parameter space, and

Zπ (β) = (2π)
N
2 (1−β)|Σ | (1−β)

2 β−N
2

∫
R
N (μ, β−1Σ)dθ .

(12)

There is unfortunately no robust universal guideline for
choosing an appropriate value for β, since this depends on
the dimensionality and complexity of the posterior and on
the initial prior distribution assumed.Nonetheless, as demon-
strated in the numerical examples presented in Sect. 5, there
is a straightforward approach for employing the PR method
in more realistic problems, in which the true posterior is not
known. Namely, starting from β = 1 (which corresponds
to the original prior), one can obtain inferences for progres-
sively smaller values of β, according to some pre-defined or
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dynamic ‘annealing schedule’, until the results converge to
a statistically consistent solution. The precise nature of the
annealing schedule is unimportant, although either linearly
or exponentially decreasing values ofβ seem themost natural
approaches.

4.3 More general posterior repartitioning

Raising the original prior to some power β merely provides
a convenient way of defining the modified prior, since it
essentially just broadens the original prior by some speci-
fied amount. In general, however, π̃(θ) can be any tractable
distribution. For example, there is no requirement for the
modified prior to be centred at the same parameter value as
the original prior. One could, therefore, choose a modified
prior that broadens and/or shifts the original one, or a mod-
ified prior that has a different form from the original. Note
that, in this generalised setting, the modified prior should at
least be non-zero everywhere that the original prior is non-
zero.

4.4 Diagnostics of the unrepresentative prior
problem

This paper focuses primarily on how to mitigate the unrep-
resentative prior problem using PR. Another critical issue,
however, is how one may determine when the prior is unrep-
resentative in the course the analysis of some (large number
of) dataset(s). We comment briefly on this issue here.

Diagnosing the unrepresentative prior problem before-
hand is generally difficult. Thus, designing a practical
engineering-oriented solution is helpful in addressing most
such problems. The goal of this diagnostic is to identify
abnormal cases amongst a number of datasets during the
analysis procedure. We assume that at least a few ‘reliable’
(sometimes called ‘gold standard’) datasets, which do not
suffer from the unrepresentative prior problem, have been
analysed before the diagnostics. The reliability threshold of
a dataset varies depending on different scenarios, but (ide-
ally) a gold standard dataset should: (1) be recognised as such
by field experts; (2) have all of its noise sources clearly iden-
tified and characterised; (3) yield parameter estimates that
are consistent with true values either known a priori or deter-
mined by othermeans. These provide us with some rough but
reliable information and prior knowledge, such as runtime,
convergence rate, and the shape of posterior distribution. We
denote this information as the available knowledge for the
problem of interest.

One may then employ a diagnostic scheme of the type
illustrated in Fig. 3, which is composed of two parts: on-the-
fly diagnostics and after-run diagnostics. On-the-fly diagnos-
tics involve monitoring the runtime and convergence status
during the analysis of each dataset. Specifically, runtime

Fig. 3 Aflowchart of a designeddiagnostic process. The twomain steps
of the diagnostic process are highlighted in dark blue. The process starts
by running a sampling algorithm for Bayesian parameter estimation (the
top small block), and proceedswith two hierarchical diagnostics steps to
evaluate the trail of interest. ‘Available knowledge’ is defined as reliable
experimental information and prior knowledge that one could obtain in
advance. (Color figure online)

monitoring involves simply checking whether the runtime
of an individual analysis is greatly different from those of
the available knowledge. Similarly, convergence rate checks
compare the speed of convergence between the current run
and the available knowledge. If both results are consistent
with those in the available knowledge, the diagnostic process
proceeds to after-run diagnostics. Note that the quantitative
consistency check can be defined in various ways. A simple
method is to set a threshold for the difference between avail-
able knowledge and individual runs. For instance, the result
from an individual run can be considered as a reliable one if
the error between the individual run result and the mean of
the available knowledge is within a certain threshold. Such
criteria should be carefully discussed by field experts on a
case-by-case basis.

After-run diagnostics compare the computed posterior
with the available knowledge. One plausible after-run diag-
nostic is to evaluate some ‘distance’ measure between the
assumed prior and the posterior distribution resulting from
the analysis. An obvious choice is to employ the Kullback–
Leibler (KL) divergence (see, e.g., Bishop 2006). The KL
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divergence quantifies the difference between two probabil-
ity distributions by calculating their relative entropy. A larger
KL divergence indicates a greater difference between the two
distributions. The KL divergence is, however, an asymmet-
ric measure and its value is not bounded. To overcome these
drawbacks, one could also consider the Jensen–Shannon
divergence (Endres and Schindelin 2003), which is a sym-
metric variant of the KL divergence. The posterior may also
be compared with the available knowledge in the outlier
check step.

Finally, we note that a diagnostic analysis is valid when
it is performed using the same algorithm specifications. For
instance, Nlive, efr, and tol settings should be the same in
MultiNest when performing diagnostic analysis. In any case,
once a reasonable diagnosticmetric is constructed, the abnor-
mal trials can be identified according to some predetermined
criteria and examined, and the proposed PR scheme can be
applied on a case-by-case basis. A simple illustration of this
process is presented in the bivariate example case in the next
section.

5 Numerical examples

We begin by illustrating the PR method in two numerical
examples, one univariate and the other a bivariate Gaussian
posterior. Our investigation is then extended to higher dimen-
sional (from 3 to 15 dimensions) Gaussian posteriors, to
explore its stability to the ‘curse of dimensionality’. Finally,
we consider a bivariate non-Gaussian example. In particu-
lar, we compare the performance of the MultiNest sampler
before and after applying PR.

We use the open-source MultiNest package (Feroz et al.
2009) and set efficiency parameter efr = 0.8, conver-
gence tolerance parameter tol = 0.5, multi-modal parameter
mmode = False, random seed control parameter seed = −1,
and the constant efficiency mode ceff = False for all the fol-
lowing examples. The number of live samples Nlive varies in
different cases. We keep the other MultiNest tuning options
in their default values. See (Feroz et al. 2009) and its cor-
responding MultiNest Fortran package for details of these
default settings.

In some of the multi-dimensional cases, we also com-
pare the MultiNest performance with MCMC. Specifically,
a standardMetropolis–Hastings sampler is implemented and
applied to the same numerical examples. Other MCMC
samplers such as No-U-Turn Sampler (NUTS), and slice
samplers give similar performance in the numerical exam-
ples. One popular Python implementation of these samplers
can be found in PyMC3 (Salvatier et al. 2016) package. In
some cases, we also compare the performance of importance
sampling (Neal 2001; Tokdar and Kass 2010; Martino et al.

2018), using a standard IS implementation fromPythonpack-
age ‘pypmc’ (Jahn et al. 2018).

5.1 Toy univariate example revisited

Here we re-use case (3) of the toy example discussed in
Sect. 3.1, for which MultiNest was shown to fail without
applying PR. In this case, the true value of the unknown
parameter is θ∗ = 40 and the number of observations is set
to N = 20 (see Fig. 4a).

We use power prior redefinition and consider the β values
0, 0.2, 0.4, 0.6, 0.8 and 1; note that β = 1 is equivalent to the
original method implemented in the toy example, and β = 0
corresponds to using a uniform distribution as the modified
prior. The range of the uniform prior for β = 0 is set as
θ ∈ [0, 50] in this example.

Figure 4 shows the performance of MultiNest assisted by
the PR method. Panels (b) to (f) show the MultiNest perfor-
mance with decreasing β. One sees that as β decreases, the
posterior samples obtained approximate the true posterior
with increasing accuracy, although in this extreme example
one requires β = 0.4 or lower to obtain consistent results.

To evaluate the performance of the PR method further,
MultiNest was run on 10 realisations for each value of β.
The resulting histograms of MultiNest’s posterior samples
were then fitted with a standard Gaussian distribution. For
each value of β, the average of the means of the fitted Gaus-
sian distributions and the root mean squared error (RMSE)
between these estimates and the true value are presented in
Table 2, along with the average number of likelihood calls
for MultiNest to converge; since the time spent for each like-
lihood calculation is similar, this quantity is proportional to
the runtime. The RMSE clearly decreases as β decreases
from unity to zero, which demonstrates that a wider prior
allows MultiNest to obtain more accurate results, even in
this extreme example of an unrepresentative prior. Also, one
sees that the averaged number of likelihood evaluations also
decreases significantly with β, so that the computational effi-
ciency is also increased as the effective prior widens.

These results illustrate the general procedure mentioned
at the end of Sect. 4.2, in which one obtains inferences for
progressively smaller values of β, according to some pre-
defined or dynamic ‘annealing schedule’, until the results
converge to a statistically consistent solution.This is explored
further in the example considered in the next section.

Before moving on, however, it is also of interest to inves-
tigate the evidence values obtained with and without the PR
method. For completeness, we reconsider all three cases of
the toy example discussed in Sect. 3.1, namely: (1) θ∗ = 5;
(2) θ∗ = 30; and θ∗ = 40. In each case, we calcu-
late the mean and standard deviation of the log-evidence
reported by MultiNest over 20 realisations of the data for
β = 0, 0.2, 0.4, 0.6, 0.8, 1, respectively. The results are
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Fig. 4 MultiNest performance using the PR method with different
β values, applied to case (3) (θ∗ = 40) of the toy example dis-
cussed in Sect. 3.1; all other settings remain unaltered. The values
β = 0.8, 0.6, 0.4, 0.2, 0 are tested. a Shows the distribution of the
prior (blue dashed curve), likelihood (green dashed curve), ground truth

(black dashed line), and posterior (red dashed curve). The remaining
five figures show the histograms (blue bins) of the posterior-weighted
samples for the β values tested and the true posterior distribution (red
curve). (Color figure online)

shown in Fig. 5, in which the blue solid line and the light blue
shaded area indicate, respectively, the average and standard
deviation of the log-evidence values produced by MultiNest
without PR (β = 1), and the red marker black cap errorbar
shows the corresponding quantities produced using PR with
other β-values.

For case (1), the red dashed curve fluctuates around the
benchmark blue line at − 22.0182 (β = 1 case), and the
evidence estimates have similar size uncertainties, as one
would expect. For case (2), however, one sees that the mean
evidence values do change slightly as β is decreased from
unity, converging on a final value for β < 0.8 that is ∼
0.1 log-units larger than its mean value for β = 1. This
indicates that case (2) also suffers (to a small extent) from

the unrepresentative prior issue, despite this not being evident
from the posterior samples plotted in Fig. 1d. For case (3), as
expected, one sees that the mean log-evidence values change
vastly as β is decreased from unity, converging for β < 0.6
on a value that is ∼ 500 log-units higher than for β = 1.
This large difference means that the error-bars are not visible
in this case, so the mean and standard deviation of the log-
evidence for each β value are also reported in the last column
of the Table 2.

These results demonstrate that the PR method also works
effectively for evidence approximation in nested sampling, as
well as producing posterior samples. Indeed, it also suggests
that the evidence might be a useful statistic to monitor for
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Table 2 A numerical comparison of the results in the univariate toy
example of the PR method for different values of β (where β = 1
corresponds to the standard method)

β μ̄ RMSE Nlike Z

1 32.838 7.037 96378 − 567.5679 ± 0.1346

0.8 36.714 3.161 93492 − 170.3971 ± 0.1347

0.6 39.870 0.005 83619 − 71.1709 ± 0.1276

0.4 39.872 0.003 61796 − 70.9523 ± 0.1269

0.2 39.874 0.001 39013 − 70.9795 ± 0.0810

0 39.875 0.001 15897 − 71.0134 ± 0.0441

The quantity μ̄ denotes the averaged mean value of the fitted Gaus-
sian distribution to the posterior histogram over 10 realisations. RMSE
denotes the root mean squared error between the ground truth value
and μ̄. Nlike is the averaged number of likelihood evaluations, and Z
denotes the averaged estimated log-evidence and its uncertainty given
by MultiNest

convergence as one gradually lowers the value of β in the PR
method.

5.2 Bivariate example

As our second example we consider a bivariate generalisa-
tion of our previous example, since it is straightforward to
visualise. The bivariate case can easily be extended to higher
dimensionality.

Suppose one makes N independent measurements X =
[x1, . . . , xn, . . . , xN ]� of some two-dimensional quantity
θ = (θ1, θ2)

�, such that in an analogous manner to that
considered in Eq. (4) one has

xn = θ + ξ , (13)

where ξ = (ξ1, ξ2) denotes the simulated measurement
noise, which is Gaussian distributed ξ ∼ N (μξ ,Σξ ) with
mean μξ and covariance matrix Σξ . For simplicity, we will
again assume the measurement process is unbiased, so that
μξ = (0, 0), and that the covariance matrix is diagonal
Σξ = diag(σ 2

ξ1
, σ 2

ξ2
), so that there is no correlation between

ξ1 and ξ2, and the individual variances are known a priori.
We also assume a bivariate Gaussian form for the prior θ ∼
N (μθ ,Σθ ), where μθ = (0, 0) and Σθ = diag(σ 2

θ1
, σ 2

θ2
).

We consider three cases, where the true values of the
unknown parameters are, respectively, given by: (1) θ∗ =
(0.5, 0.5); (2) θ∗ = (1.5, 1.5); and (3) θ∗ = (2.0, 2.0).
In each case, we assume the noise standard deviation to
be σξ1 = σξ2 = 0.1, and the width of the prior to be
σθ1 = σθ2 = 0.4. We assume one observation for each case,
i.e., N = 1.

In each case, the MultiNest sampling parameters were set
to Nlive = 100, efr = 0.8 and tol = 0.5 (see Feroz et al.
2009 for details), and the algorithm was run to convergence.

Fig. 5 Evidence estimation versus β for cases (1)–(3) of the univariate
toy example. The blue solid line and the light blue shaded area indicate,
respectively, the average and standard deviation of the log-evidence
values produced by MultiNest without PR (β = 1) from 20 realisations
of the data. The red marker black cap errorbar shows the corresponding
quantities produced using PR with β = 0, 0.2, 0.4, 0.6, 0.8, 1. (Color
figure online)

The results obtained without apply the PR method (which is
equivalent to settingβ = 1) are shown in Fig. 6. One sees that
the MultiNest samples are consistent with the true posterior
distribution for case (1), but the sampler fails in cases (2) and
(3) in which the ground truth lies far into the wings of the
prior.

The MultiNest posterior samples obtained using the PR
method, with β = 0.6, 0.3, 0.1, respectively, are shown in
Fig. 7 for case (2) and case (3). In each case, one sees that
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Fig. 6 Two-dimensional histograms of MultiNest posterior samples
(color scale) obtained without PR in the bivariate example, for cases
(1)–(3). The colour map from light yellow to dark blue denotes low to

high posterior sample density. The 68% and 95% contours of the true
posterior distribution is each case are also shown. (Color figure online)

Fig. 7 MultiNest performance with PR method in the bivariate toy
example for case (2) θ∗ = (1.5, 1.5) (top four sub-figures) and case (3)
θ∗ = (2.0, 2.0) (bottom four sub-figures). As indicated, the panels cor-

respond to β values of 0.6, 0.3, and 0.1, respectively. The colour map
from light yellow to dark blue denotes low to high posterior sample
density. (Color figure online)

as β decreases the samples become consistent with the true
posterior. In practice, it is thus necessary to reduce the value
of β until the inferences converge to a sufficient accuracy.

Table 3 summarises the inference accuracy and the compu-
tational efficiency for all three cases for MultiNest without
PR (which corresponds to β = 1) and with PR for β =
0.4, 0.2, 0.1, 0.05, 10−5. One sees that for case (1) θ∗ =
(0.5, 0.5), applying PR to MultiNest has only a weak effect
on theRMSEperformance and the number of likelihood eval-
uations, with both changing by about a factor of about two (in
opposite directions) across the range of β values considered.
For case (2) θ∗ = (1.5, 1.5) and case (3) θ∗ = (2, 2), how-
ever,MultiNest without PR suffers from the unrepresentative
prior problem and the corresponding RMSE and number
of likelihood evaluations are considerably higher than in
case (1). Nonetheless, by combining MultiNest with the PR
method, the RMSE and number of likelihood evaluations

can be made consistent across the three cases considered.
One sees that the RMSE decreases as β decreases and the
maximum accuracy is obtained when β = 10−5 (for which
the modified prior is very close to uniform). This should be
contrasted with the total number of likelihood evaluations,
which increases as β decreases. Indeed, it is clear that the
minimum number of likelihood evaluations are required for
intermediate values ofβ. These results show that a reasonable
compromise between accuracy and computational efficiency
is obtained for β = 0.05 in this problem, which also pro-
vides the best consistency for both RMSE and the number of
likelihood evaluations across all three cases.

5.2.1 Other sampling algorithms

Since our focus here is to introduce the PRmethod to improve
NS performance in problems with unrepresentative priors,
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Table 3 Acomparison betweenMultiNestwith andwithout PRmethod
(for various values of β, and 100 live samples), standard MCMC
algorithm (termed as ‘MCMC’), and standard importance sampling
algorithm (termed as ’IS’) in the bivariate toy example for all three

cases. The top half of the table is a comparison of RMSE, and the sec-
ond half is for the number of likelihood evaluations (Nlike) per individual
algorithm run

MN (β = 1) β = 0.4 β = 0.2 β = 0.1 β = 0.05 β = 10−5 MCMC IS

RMSE

Case (1) 0.0066 0.0046 0.0055 0.0043 0.0038 0.0037 0.0293 0.0252

Case (2) 0.3495 0.0518 0.0117 0.0052 0.0049 0.0046 0.0797 0.4117

Case (3) 0.5586 0.3785 0.0276 0.0055 0.0045 0.0044 0.0992 0.8386

Nlike

Case (1) 908 847 909 959 1052 2246 1100 1100

Case (2) 2232 1553 1221 1127 1118 2271 1100 1100

Case (3) 3466 1922 1516 1280 1188 2348 1100 1100

For β = 0.05 (highlighted in bold) MultiNest achieves relatively better and consistent RMSE and Nlike performance across the three cases. The
number of posterior samples from the competing algorithms (MCMC and IS) are fixed to values around 1100 in order to obtain a similar number
of likelihood evaluations as required by MultiNest for β = 0.05

a full comparison between MultiNest and other compet-
ing sampling algorithms is beyond the scope of this paper.
Nonetheless, we report here on some results of a brief such
comparison on the same bivariate example. In particular, we
perform a comparison of MultiNest with PR, in terms both
of the RMSE and the number of likelihood evaluations, with
our own implementation of standard MCMC sampling using
theMetropolis–Hastings algorithmwith a Gaussian proposal
distribution and also with importance sampling (IS), using a
standard IS implementation from Python package ‘pypmc’
(Jahn et al. 2018).

The results obtained using MCMC and IS are shown in
the final two columns of Table 3. For β = 0.05 MultiNest
achieves relatively better and consistent RMSE andNlike per-
formance across the three cases. The number of posterior
samples from the competing algorithms (MCMC and IS) are
fixed to values around 1100 in order to obtain a similar num-
ber of likelihood evaluations as required by MultiNest for
β = 0.05. For case (1), the performance of IS is comparable
to that of MCMC. However, in cases (2) and (3), IS is com-
parable to MultiNest with β = 1, so it is clear that IS also
suffers from the unrepresentative prior problem.

The detailed comparison of different sampling algorithms
is a broad topic that has been widely discussed and explored
in the literature. For example, importance sampling was
formulated as a special case of bridge sampling, and was
compared in Gronau et al. (2017). An importance nested
sampling was proposed to incorporate importance sampling
into NS evidence calculation step in Feroz et al. (2013). A
comparison between NS and MCMC was discussed in Alli-
son and Dunkley (2013). A review of importance sampling
is presented in Tokdar and Kass (2010).

5.2.2 Diagnostics for bivariate example

We take the opportunity here to illustrate the diagnostics pro-
cess discussed in Sect. 4.4 using the bivariate example. Since
case (1) does not suffer from the unrepresentative prior prob-
lem, it can be treated as a reliable example andwe assume that
the ‘available knowledge’ is gained by analysing this case.
As shown in Table 3, the number of likelihood evaluations
(which is proportional to the runtime) for MultiNest without
PR (β = 1) increases significantly from case (1) to case (3).
Thus, the unrepresentative prior problem can be identified
on-the-fly by monitoring the runtime. An on-the-fly conver-
gence rate checkmay also be straightforwardly applied using
existing rate of convergencemethods (Süli andMayers 2003)
to the problem. In either case, one may identify that case (2)
and case (3) differ significantly from the available knowl-
edge, and hence the PR method should be applied.

However, for some sampling methods, on-the-fly diag-
nostic of monitoring the runtime would fail in the case
(adopted here) in which the number of likelihood evaluations
is fixed. In this case, one must therefore rely on an after-run
diagnostic, such as the KL divergence, which quantifies the
differences between the assumed prior and the corresponding
posterior obtained in the analysis. Figure 8 shows MultiNest
samples from the prior and the posterior for case (1) and case
(2), respectively, of the bivariate example. By computing the
standard KL divergence, we find a value (termed KL score)
of 169 for case (1) (the available knowledge) and 1833 for
case (2). It is clear that the KL score for the unrepresentative
prior problem is much larger than normal case, and so case
(2) could be flagged as an outlier according to some prede-
fined criterion on KL score. Similarly considerations apply
to case (3).
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Fig. 8 Demonstration of the KL divergence diagnostic for case (1) and case (2) in the bivariate example. The blue dots represent random samples
drawn from the prior distribution, and the red dots are posterior samples from MultiNest with β = 0.01 and Nlive = 100. (Color figure online)

Fig. 9 Performance of MultiNest with the PR method applied to the
case (2) bivariate toy example extended to higher dimensions. The β

values considered are 0.05, 0.1, 0.4, from top to bottom in each subfig-
ure, respectively. The truth for each dimension is set to a same value
θ∗ = 1.5. The RMSE (left-hand column) and number of likelihood

evaluations (right-hand column) are calculated over 20 repeated reali-
sations with same settings as those in bivariate example case (2). The
red line represents the mean value of the repeated realisations, and the
blue error bar indicates the standard deviation. (Color figure online)

5.3 Higher-dimensional examples

In order to investigate the performanceofPR inhigher dimen-
sionality, we reconsider case (2) in the bivariate example, but
extend the dimensionality over the range 3–15 dimensions. In
particular, we consider the performance with β = 0.05, 0.1,
and 0.4. Each of the experiments is repeated 20 times, and
the test results are evaluated by calculating the mean and
standard deviation of the RMSE over these 20 realisations.

As shown in Fig. 9a, with an increase of dimensionality,
the RMSE error-bar undergoes an obvious increase for both
β = 0.05 and 0.1 cases. For the case β = 0.4, the RMSE
increases at lower dimensionality, but then remains at a stable
level for higher dimensionality. Overall, the RMSE perfor-
mance in higher dimensions is consistent with that in the
bivariate example in terms of its order of magnitude, which
demonstrates that the PR method is stable and effective for
problems with higher dimensionality.

Figure 9b shows a set of equivalent plots for the number of
likelihood evaluations. This clearly shows that for a smaller
β value MultiNest makes a larger number of likelihood eval-
uations. This is not surprising as a smaller β corresponds to
a broader modified prior space. We note that the number of
likelihood evaluations required for β = 0.05 is almost twice
that for β = 0.1.

Figure 10 shows the RMSE comparison between Multi-
Nest with PR (β = 0.05) and MCMC methods for the
same higher dimensional examples. Note that the RMSE is
computed using a comparable number of likelihood evalua-
tions for the two methods for each dimensionality. As can be
observed from the figure, MCMC remains stable and accu-
rate (albeit with a slight increase in RMSE with dimension),
but has a higher RMSE than MultiNest with PR across the
dimensionalities considered. By contrast, for MultiNest with
PR, the RMSE increases more noticably with the number of
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Fig. 10 RMSE boxplot for high dimensionality comparison between
MultiNestwith thePRmethod (100 live samples,β = 0.05) andMCMC
for case (2) θ∗ = 1.5. The boxes range from the 25th to 75th quantiles.
MultiNest results are in blue, andMCMCin red.Theblue and reddashed
lines within the box are the median RMSE over 20 realisations for
each method. The blue diamond and red solid circles represent outliers
among the 20 realizations. For each dimension, the two methods are
computed with a comparable number of likelihood evaluations. (Color
figure online)

dimensions, as might be expected from a NS algorithm that
is based on a form rejection sampling.

5.4 Non-Gaussian bivariate example

As our final numerical example, we consider a non-Gaussian
bivariate likelihood function. In particular, we adapt the
Gaussian bivariate likelihood considered in Sect. 5.2 by
replacing the product of Gaussian distributions in each
dimension by a product of Laplace distributions
Laplace(μ, b), so that in each dimension the Gaussian form
(5) is re-written as:

L(θ) =
N∏

n=1

{
1

2b
exp

(
−|θ − xn|

b

)}
, (14)

where xn is the nth measurement (although N = 1 in this
example), which acts as the location parameter similar to

in a Gaussian distribution, and b is the scale parameter in
the Laplace distribution analogous to σξ in (5). We choose
the Laplace distribution as our non-Gaussian test example
since: (1) it is valid for both positive and negative values of
the parameter θ , unlike Beta/Gamma distributions; and (2) a
Laplace distribution with a small b-value has a similar tail to
that of aGaussian (i.e. it is not heavy-tailed), which facilitates
easier comparison.

The prior distribution is identical to that used Sect. 5.2, i.e.
the sameGaussian distribution. Indeed, all of the other exper-
imental settings are kept the same as those in Sect. 5.2, and
we again consider MultiNest with and without PR method in
all three cases.

The results of the analysis are given in Table 4 for runs
with Nlive = 100. Comparing the Nlive = 100 results with
the corresponding ones given in Table 3 for the Gaussian
bivariate example, ones sees that the trends for both RMSE
and Nlike are similar to those in the Gaussian bivariate cases,
but are in general higher for the Laplace distribution. This is
because the peak of the Laplace distribution is sharper than
that of a Gaussian. Again reasonable results are obtained for
β = 0.05.

Figure 11 shows the RMSE resulting from different Nlive

values for β = 0.05 and 10−5, respectively. Comparing
these RMSE values with those given in Table 3, which were
obtained for the Gaussian bivariate example with Nlive =
100, one sees that higher Nlive values are required for the
Laplace distribution to achieve similar levels of accuracy.

6 Conclusions

This paper addresses the unrepresentative prior problem in
Bayesian inference problems using NS, by introducing the
posterior repartitioning method.

The key advantages of themethod are that: (1) it is general
in nature and can be applied to any such inference problem;
(2) it is simple to implement; and (3) the posterior distribution

Table 4 The performance of
MultiNest with and without PR
method (for various values of β,
and both 100 live samples) for
all three cases of the
non-Gaussian bivariate example

MN (β = 1) β = 0.4 β = 0.2 β = 0.1 β = 0.05 β = 10−5

RMSE

Case (1) 0.0091 0.0085 0.0065 0.0067 0.0066 0.0055

Case (2) 0.2042 0.0655 0.0186 0.0136 0.0135 0.0125

Case (3) 0.1403 0.2057 0.0705 0.0207 0.0196 0.0191

Nlike

Case (1) 949 926 987 1049 1117 1313

Case (2) 2017 1356 1143 1068 1047 1151

Case (3) 2921 1337 1067 889 858 996

The top half of the table is a comparison of RMSE, and the second half is the number of likelihood evaluations
(Nlike) per individual algorithm run. For β = 0.05 (highlighted in bold) MultiNest achieves relatively better
and consistent RMSE and Nlike performance across the three cases
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Fig. 11 RMSEperformance ofMultiNest in the non-Gaussian bivariate
example with different Nlive and β values for case (2) and (3)

is unaltered and hence so too are the inferences. The method
is demonstrated in univariate and bivariate numerical exam-
ples on Gaussian posteriors, and its performance is further
validated and compared with MCMC sampling methods in
examples up to 15 dimensions. Themethod is also tested on a
non-Gaussian bivariate example. In all cases,we demonstrate
that NS algorithms, assisted by the PR method, can achieve
accurate posterior estimation and evidence approximation in
problems with an unrepresentative prior.

The proposed scheme does, however, have some limita-
tions: (1) if the prior and likelihood are extremely widely
separated, the sampling can still be inefficient and slow,
because of the large augmented search space for very small
β; (2) the approach cannot be readily applied to problems
with discrete parameters; and (3) the normalisation of the
modified prior will in general not be possible analytically,
but require numerical integration.
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