
ANALYSIS AND IMPROVEMENTS OF
BEHAVIOUR-BASED MALWARE DETECTION
MECHANISMS

by

NADA ALRUHAILY

A thesis submitted to
The University of Birmingham
for the degree of
DOCTOR OF PHILOSOPHY

School of Computer Science
College of Engineering and Physical Sciences
The University of Birmingham
September 2017

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

ABSTRACT

The massive growth of computer usage has led to an increase in the related security

concerns. Malware, such as Viruses, Worms, and Trojans, have become a major issue

due to the serious damages they cause. Since the first malware emerged, there has been

a continuous battle between security researchers and malware writers, where the latter

are constantly trying to evade detection by adopting new functionalities and malicious

techniques.

This thesis focuses on addressing some of the concerns and challenges encountered

when detecting malware, based on their behavioural features observed; for each identified

challenge, an approach that addresses the problem is proposed and evaluated. Firstly,

the thesis provides an in-depth analysis of the underlying causes of malware misclas-

sification when using machine learning-based malware detectors. Such causes need to

be determined, so that the right mitigation can be adopted. The analysis shows that

the misclassification is mostly due to changes in several malware variants without the

family membership or the year of discovery being a factor. In addition, the thesis pro-

poses a probabilistic approach for optimising the scanning performance of Forensic Virtual

Machines (FVMs); which are cloud-based lightweight scanners that perform distributed

monitoring of the cloud’s Virtual Machines (VMs). Finally, a market-inspired prioriti-

sation approach is proposed to balance the trade-off between the consumption of VMs’

resources and accuracy when detecting malware on the cloud’s VMs using Virtual Ma-

chine Introspection-based lightweight monitoring approaches (e.g. FVMs). The thesis

concludes by highlighting future work and new directions that have emerged from the

work presented.

This work is dedicated to my beloved ones:

To my dearest parents, Massoud and

Fatimah, for their unconditional love and

sacrifices;

To my treasured husband, Abdullah for his

support, and my precious children, Leen

and Mohammed;

To my dear brothers, Waleed and Abdullah;

To my dear sisters, Shatha, Banan and

Haneen.

ACKNOWLEDGEMENTS

First and foremost, I thank Allah for giving me the strength, patience and determination

to reach this precious moment, in which I find myself adding the final touches to my

PhD thesis, an indication of a successful completion of a remarkable journey. My PhD

in the School of Computer Science at the University of Birmingham was a journey full

of exciting achievements; difficult, yet, special moments. I was lucky enough to meet so

many great people who will always be a part of such an exceptional experience. The

first person that I wish to express my sincere gratitude to, is my supervisor Dr. Tom

Chothia, who helped me to become a confident researcher, starting from developing my

ideas, writing and structuring my own papers through to presenting the work at several

of the best conferences. Tom, I cannot thank you enough for all your guidance during

my Master’s degree and PhD, for your invaluable ideas, and most importantly, for your

infinite patience.

I would like also to express my special appreciation to Dr. Behzad Bordbar, who was

my second supervisor until September 2016. Thank you for the encouraging discussion

from the start of my PhD till the day you left. Special thanks also goes to my Thesis

Group meeting members for all their suggestions and valuable insights: Dr. Peter Tino,

Dr. Rami Bahasoon and Dr. Marco Cova (who was one of the group members until

September 2016).

Finally, my deepest and unlimited gratitude goes to my family for their unconditional

love and support throughout my whole life; this PhD research would have been impossible

without them. I am indebted to my parents, Massoud and Fatimah, who have been

tremendously supportive in every aspects of my life; to my husband, Abdullah, who has

the greatest faith in me and has provided undaunted support; to my brothers, sisters and

friends in the school of computer science for their persistent encouragement, and most

importantly, to my children, Leen and Mohammed ; without their beautiful smiles, pure

souls, and innocent giggles, my PhD journey would have been monochrome.

CONTENTS

1 Introduction 1

1.1 Overview . 1

1.1.1 Malicious Software (Malware) . 2

1.1.2 Malware Detection . 4

1.2 Research Questions and Objectives . 8

1.3 Research Contributions . 10

1.4 Publications Based on the Thesis . 11

1.5 Thesis Structure . 12

2 Background and Literature Review 15

2.1 Malware Analysis Techniques . 15

2.1.1 Dynamic Analysis Tools and Agents 17

2.2 Malware Detection . 18

2.3 Machine Learning (ML) . 19

2.3.1 Classification Methods . 21

2.3.2 Confusion Matrix Terminology and Evaluation Metrics 25

2.3.3 ML-based Malware Detection Systems 26

2.3.4 The Effect of Malware Evolution on ML-based Detection Systems . 28

2.4 Cloud computing and Virtualisation technology 29

2.4.1 Malware Detection in the Cloud . 31

2.4.2 VMI-based Malware Detection Systems 33

2.5 Probability Theory and Bayes’ Theorem 36

2.5.1 Bayes Theorem . 38

2.6 Information Theory . 39

2.6.1 Mutual Information (MI) . 39

2.7 Market Mechanisms . 41

2.8 Conclusion . 42

3 Developing a Fine-grained Malware Feature Set 45

3.1 Introduction and Motivation . 45

3.2 Sketch of the Approach . 46

3.3 Raw Data Collection . 47

3.4 Feature Extraction . 48

3.4.1 Behaviour Monitoring . 49

3.4.2 Feature Transformation . 52

3.5 Malware Statistics . 54

3.6 Malicious Behaviour Observed . 55

3.6.1 API Call Statistics . 59

3.7 Conclusion . 60

4 Analysis of the Misclassification of Machine Learning-Based Malware

Detection Systems 62

4.1 Introduction and Motivation . 62

4.2 Sketch of the Approach . 63

4.3 Building a Classifier . 65

4.3.1 Feature Extraction . 65

4.3.2 Evaluation Metrics . 66

4.3.3 Classifier Design . 67

4.4 Classifying a Large Grouped Dataset . 71

4.4.1 Classifying Malware Based on the Year of Discovery 71

4.4.2 Classifying Malware Based on Malware Variants 73

4.5 Reasons for Misclassification . 75

4.5.1 Variants Misclassified by both Classifiers 75

4.5.2 Variants Misclassified by Only One Classifier 77

4.5.3 Misclassification at Malware Family Level 78

4.6 Comparison with the Related Work . 79

4.7 Conclusion . 81

5 A Probabilistic Approach for Efficient Detection of Malware in the

Cloud via Forensic Virtual Machines 84

5.1 Introduction and Motivation . 84

5.2 Malicious Symptoms . 86

5.3 The Probabilistic Approach . 88

5.4 The Mobility Algorithm Analyser Framework 91

5.5 Evaluation . 93

5.5.1 Experimental Setup . 94

5.5.2 Results . 97

5.6 Comparison with the Related Work . 101

5.7 Conclusion . 101

6 A Market-Based Approach for Detecting malware in the Cloud via In-

trospection 104

6.1 Introduction and Motivation . 104

6.2 The Market-Based Prioritisation Approach 106

6.3 Evaluation . 111

6.3.1 Experimental Setup . 111

6.3.2 Results . 113

6.4 Comparison with the Related Work . 116

6.5 Conclusion . 117

7 Conclusion and Future Work 121

7.1 Discussion and Reflection . 122

7.2 Future Work . 124

7.3 Closing Statement . 126

List of References 129

LIST OF FIGURES

1.1 Symantec malware naming scheme. 4

1.2 New Malware variants discovered monthly, adopted from [172]. 5

2.1 A classical classification problem. 20

2.2 The optimal hyperplane with the maximum margin for an SVM trained on

data belongs to two classes; adopted from [129]. 22

2.3 A simple decision tree. 23

2.4 VM protection approaches, adopted from [177] 32

2.5 FVMs inspecting customers’ VMs, adapted from [69]. 35

3.1 Downloading and analysing malware samples. 47

3.2 Malware samples categorised by their classes or types. 54

3.3 Malware classes analysed by Anubis and Cuckoo Sandbox. 55

3.4 Activities carried out on the system’s files and registries. 56

4.1 The EBBag model . 69

4.2 Classification rate with different ratio of malware samples to benign. 70

4.3 Malware tested yearly. 72

4.4 A simplified version of the tree constructed by DT algorithm based on one

run of the EBBag classifier. 78

5.1 A high-level view of the proposed approach. 87

5.2 An example of a case study generated. 88

5.3 The Mobility Algorithms Analyser. 92

5.4 The 95% CI of the means for each malware family 97

5.5 The 95% CI of the means for each malware type 98

6.1 High-level architecture of the market-based prioritisation approach. 108

6.2 The 95% CI of the means. 114

LIST OF TABLES

2.1 A Confusion Matrix computed for a two-class problem. 25

3.1 The top 10 malware variants analysed by each sandbox 55

3.2 Overview of the observed registry activities 57

3.3 Unique API calls made only by malware 59

4.1 Classifiers’ performance on different n-gram sizes. 68

4.2 Malware tested by classifiers trained before 2007 74

4.3 Performance on stemmed and un-stemmed features set. 77

5.1 The configurations examined . 86

5.2 Malware families used in the experiment 99

5.3 Malware types used in the experiment . 100

6.1 Most informative registry paths accessed when infected with W32.Sality. . 112

LIST OF ABBREVIATIONS

Malware Malicious Software

MBR Master Boot Record

CARO Computer Anti-virus Researchers Organisation

ML Machine Learning

VMI Virtual Machine Introspection

FVMs Forensic Virtual Machines

AI Artificial Intelligence

SVM Support Vector Machine

DT Decision trees

TP True positive

TN True negative

DT False positive

FN False negative

G-mean Geometric mean

ROC curve receiver operating characteristic curve

AUCROC Area under the ROC curve

DLL Dynamically Linked Libraries

VMM Virtual Machine Monitor

NIST National Institute of Standards and Technology

SaaS Software as a Service

PaaS Platform as a Service

IaaS Infrastructure as a Service

VENOM Virtualised Environment Neglected Operations Manipulation

AV Anti-Virus

IDS Intrusion Detection System

MI Mutual Information

API Application Programming Interface

Opcodes Operation Codes

Bagging Bootstrap aggregating

EBBag Exactly Balanced Bagging

CSP Cloud Service Provider

CHAPTER 1

INTRODUCTION

1.1 Overview

Computers and human bodies are similar in the sense that both of them could be affected

by various illnesses which can be due to a virus infection. Computer and biological viruses

are both considered to be self-replicating entities, which use a host as a means to spread

and replicate; and as a result of their actions, various kinds of damage could be incurred to

the host. Both are also similar in the sense that they could adopt a number of techniques

that make the process of identifying, eliminating and defeating them a difficult task [73].

However, computer viruses are only one form of many ‘malicious software’ that can

be produced with the purpose of stealing, manipulating, or erasing users’ data and other

malicious activities. In fact, with the massive growth of computer usage, the number

of different computer-based attacks accordingly grows, causing considerable damage, and

global data loss incidents. For instance, on the 16th August 2012, a malicious software

named Shamoon [170], known also as Disttrack, targeted the Saudi Arabian oil company

‘Aramco’ [145]. Once a machine is infected, the malicious software will overwrite the

Master Boot Record (MBR) causing severe damage, where the infected machine becomes

unbootable. Another version (a.k.a variant) of the malicious software had also been seen

on the 23th November 2016, with similar, but improved functionalities [171].

Moreover, in June 2010, a malicious software known as Stuxnet revealed a new genera-

1

tion of targeted attack, or a campaign; its purpose was not data erasure or financial gain,

which is the usual aim of most similar attacks; rather, the main aim was to destroy a spe-

cific military target, represented in the Iranian nuclear centrifuges. It has been recorded

as the first cyberwarfare weapon [96].

Damage resulting from malicious software is not limited to computers only; it may

extend to a considerable real life impact, even to the life of individuals. An example is

the US government’s Office of Personnel Management data breach of 2015, which resulted

in the leakage of 21.5 million records of highly sensitive personal information, including

fingerprints [168]; such sensitive data can be used for numerous malicious purposes such

as identity theft.

It was possible to perform all of the aforementioned attacks by using ‘malicious soft-

ware’, or for short a Malware, which facilitate the attack and the planned malicious goals.

1.1.1 Malicious Software (Malware)

The term malware is short for malicious software; it includes any software that enters

a system to perform activities without the user’s consent and with a malicious intention.

The term covers a wide range of classes and types; the most common examples are:

• Virus

This type of malicious software needs a carrier (a.k.a. host program) to spread to other

machines. When the host application is executed the virus starts its malicious activity

by infecting other files, modifying and damaging the data on the infected machine.

• Spyware

This program is installed without the user’s permission; it gathers information related

to the user’s activity, such as browsing information, without the user’s knowledge, to

be sent to a remote server or user. Spyware can also download additional malicious

applications from the internet.

2

• Trojans

These are misleading programs that look like useful and legitimate programs; however,

they are actually made with a malicious intention. They can be used to open a

backdoor on the infected machine, allowing an unauthorised access by a malicious

user or a program; this results in the data on the infected machine being damaged or

stolen.

• Worms

A worm is a standalone, self-replicating program that does not need to attach itself to

a host application in order to propagate. Such programs use a computer network to

cause major damage and slow down traffic within the infected network; their typical

payload is to install a backdoor, which can be used by the attacker to control and gain

continued access to the infected machine.

• Ransomware:

When a machine is infected with such malicious software, the data become inaccessible,

either because the system has been locked, or the data stored has been encrypted until

a ransom is paid to the attacker.

Other malware classes also exist, such as downloaders, wipers and misleading appli-

cations (a more extensive introduction can be found in [173]). This section has listed a

number of malware classes; however, it is important to note that some of the above classes

are not mutually exclusive, which implies that the features of a number of different classes

could be observed in a single malware [62].

Malware Naming

Although anti-malware vendors may have different names for the same sample, they usu-

ally share a similar naming convention where malware can be grouped into families based

on some similarities (code similarity as an example); in turn, each malware family can

have a number of variants, where each variant represents a new strain that is slightly

3

modified. This naming convention was originally based on the malware naming scheme

formed in 1991 by the Computer Anti-virus Researchers Organisation (CARO) [30].

Figure 1.1 shows an example of the naming scheme followed by the company Symantec;

it consists of a prefix, the family name, and a suffix [162]. Throughout this thesis, Syman-

tec’s Listing of Threats and Risks [169] has been used as a source of malware discovery

date, type, malware family and variant name.

Figure 1.1: Symantec malware naming scheme.

1.1.2 Malware Detection

According to the latest Symantec’s Security Response Publications [172], the number of

malware variants currently released can be as high as 96.1 million variants in one month

(as shown in Figure 1.2). In order to protect systems from malware infections, the use

of a malware detector is essential. Malware detectors are programs which scan files and

identify whether or not the files are malicious. Although malware detectors can be based

on different techniques, generally, they fall into two main categories: signature-based and

behaviour-based malware detectors [82, 117]. In the signature-based malware detectors, a

hash, a byte sequence, or more complex signatures in the inspected file is matched to a

database of signatures of known malicious files; the database is maintained and updated

regularly. Those malware detectors, which are signature based, usually have an extremely

low false positive rate [67]. However, this technique of detection cannot protect from new

malware threats (a.k.a zero day malware), as they have not been inspected, therefore, their

signature has not yet been added to the database. Furthermore, signature-based detectors

are known for their considerable usage of resources during scaning [150]; limiting their

practical usage on lightweight computer devices with limited amount of resources.

4

Figure 1.2: New Malware variants discovered monthly, adopted from [172].

As for behaviour-based malware detectors, instead of identifying a file as malicious

based on its signature, the inspected file will be identified as malicious if it performs

any malicious behaviour. Techniques based on behavioural detection can generate be-

havioural models of malware that, in turn, are used to identify previously unseen mal-

ware samples by using advanced methods and algorithms such as machine learning (ML).

ML-based detection systems show that they could provide a high detection rate when

recognising non-previously seen malware samples [65, 209, 72, 97]. However, some mal-

ware can go undetected as a result of changes in behaviour compared to the previously

seen data. Although a large amount of work has been conducted by malware

researchers to propose new ML-based detection systems (As shown later on in

5

Chapter 2 p. 26), the reasons behind the misclassification of malware (a.k.a.

non-detection of malware samples) were rarely documented, resulting in an

ambiguity when trying to interpret the resulting misclassification rate.

Malware infection is not limited to classical computing only; the wide use of cloud

computing and its services also makes it a potential target. Malware detectors that are

placed inside the monitored system, and implement one of the known malware detection

techniques (e.g. signature matching, or ML techniques), have their clear limitations in

terms of resources, and overhead costs when used to detect malware on the cloud. This

is mainly due to the fact that such detectors could cause a disk and network bandwidth

saturation on the hosting system, leading to a situation that is referred to, by the leading

security vendors, as ‘AV storm’ [174, 78]. As a result, a number of cloud-based malware

detection techniques have been proposed to mitigate the costly use of resources. One

of the recent techniques which has been used actively to propose lightweight behaviour-

based malware detection mechanisms is Virtual Machine Introspection (VMI)) [63]. It

relies on virtualisation technology that allows division of the resources between multiple

instances of virtual machines (VMs). VMI techniques enable the software that hosts the

cloud VMs (or a guest VM) to monitor the internal state of another VM from the outside,

when having sufficient privilege. The external monitoring of VMs adds an extra level of

security (i.e. the isolation offered between the malware detector and the inspected VM).

Examples of such lightweight detection mechanisms that are based on VMI technology

include, Bitdefender Hypervisor Introspection (HVI) [22], and the lightweight technique

used in Cloudidea [57].

The task of identifying the malicious behaviour on the cloud using VMI can also be

subdivided among small scanners or mini-VMs (referred to as Forensic Virtual Machines

(FVMs)), which perform distributed monitoring to reduce further the resources used

during the scan. Each FVM is responsible for identifying a single symptom; examples of

symptoms can be turning off a firewall, adding a process to the system auto run list, or

rebooting a machine. The movement of FVMs from one VM to another is determined by

6

a distributed algorithm, called a mobility algorithm. Mobility algorithms can vary from

simple to dynamic algorithms, such as scanning according to a random movement, a pre-

determined order, or more advanced scanning algorithms. Each FVM is initialised with

a specific mobility algorithm; however, to get the full potential of FVMs, there is

a need to identify the most beneficial mobility algorithm which will promote

efficient scanning and detection of malware infections.

Generally speaking, techniques that are based on VMI (e.g. FVMs) offer a lightweight

monitoring option for the cloud’s VMs; they help in minimising the consumption of the

VMs’ resources and in reducing the impact on the VMs performance. However, as

such techniques depend on detecting behavioural symptoms that can be seen

on both infected and non-infected systems, sometimes a clear-cut distinction

would not be easy to identify, leading to wrongly flagging a number of VMs

as infected.

In terms of the features used in the detection process, they can be extracted using

either, static or dynamic analysis techniques. In static analysis, the focus is on the disas-

sembled code, where the features and patterns used in the detection process are extracted

without running the malicious code. This technique provides a high code coverage, where

all the execution paths could be examined. However, malware writers commonly use cus-

tom packers to protect their internal code from being examined [201, 180]; they may also

develop malicious binaries in a way that makes parsing the instructions and understand-

ing the binary control and data flow an extremely complex task. In dynamic analysis, on

the other hand, samples are examined during the execution; thus, this method is not vul-

nerable to such aforementioned malware obfuscation techniques. Throughout this thesis

dynamic analysis techniques were used to generate malware features.

7

1.2 Research Questions and Objectives

The challenges and concerns surrounding the detection of malware, as mentioned in the

previous section, motivate the work presented in this thesis. In general, this thesis is

concerned with the detection of malware, based on their exhibited behaviour and symp-

toms. It develops a better understanding of misclassification causes of malware when

using ML-based malware detection techniques, by investigating possible misclassification

patterns. It also addresses some challenges in using VMI-based techniques to detect mal-

ware according to their observed symptoms. In particular, this thesis proposes solutions

that answer the following research questions:

(RQ1): What are the reasons behind the misclassification of malware?

Machine learning-based malware detection systems have been suggested as a replace-

ment for signature-based detection methods. These systems have shown that they

can provide a high detection rate, even when recognising previously unseen malware

samples. However, in those systems that are based on behavioural features, some

new malware can go undetected, and therefore, is classified wrongly as benign. The

misclassification that occurs might be due to the effect of the choice of the machine

learning method, or due to noisy data, or due to changes in the underlying features

of malware, compared to the training data, where re-training of the system is re-

quired. Determining the misclassification causes helps in interpreting the resulting

misclassification rate, and therefore, identifying the appropriate mitigation method.

Thus, the objective here is to identify the underlying causes of malware misclassifica-

tion by answering the following sub-questions: (i) Does misclassification increase over

a period of time? (ii) Do changes that affect classification occur in malware at the

level of families, where all instances that belong to certain families are hard to detect?

(iii) Alternatively, can such changes be traced back to certain malware variants instead

of families? (iv) When misclassification occurs can we find the reason for it?

8

(RQ2): How can malware scanning performance of Forensic Virtual Ma-

chines be optimised ?

Forensic Virtual Machines is an architecture for using Virtual Machine Introspection

technology. It benefits from mini-VMs that perform distributed monitoring to detect

symptoms of malicious behaviour from outside the target VM. Scanning using these

mini-VMs consumes fewer resources than a full malware scan would, as each FVM ex-

amines a single symptom. In order to reduce the creation cost of FVMs, each is shared

among a number of VMs; and one of many distributed algorithms (referred to as mo-

bility algorithms) is embedded in each FVM to specify how an FVM chooses its next

scanning target. The objective here is to provide a way to analyse those algorithms

in order to nominate the most beneficial one. Although multiple algorithms have been

introduced in the literature, there is no work that addresses the issue of identifying

the most beneficial algorithm prior to the FVM creation process, which is considered

a resource-intensive task.

(RQ3): How can VMI-based lightweight monitoring approaches (e.g. FVMs)

be integrated in a cloud-based malware detection system to develop effi-

cient and effective detection of malware infections?

Traditional Anti-Virus solutions are known for their inability to identify non-previously

seen malware infections that have not been inspected yet; they are also known for

their considerable usage of resources limiting their usefulness especially on the cloud.

In contrast, Virtual Machine Introspection-based lightweight malware monitoring ap-

proaches (e.g. FVMs), which monitor VMs’ state periodically in order to detect any

malicious activities, are known for their minimal impact on the cloud’s VMs. They

consume fewer VM’s resources during the scan than a full malware scan would nor-

mally require. This is mainly because they carry out an external inspection of VMs,

and they examine malicious behaviour that can be shared among multiple malware

families as opposed to matching signatures. However, the fact that such techniques are

based on identifying symptoms that exist in both malicious and normal behaviour, but

9

in different proportions or combinations, makes them prone to false alarms, thereby

limiting their effectiveness. Therefore, the objective here is to address the problem of

balancing the trade-off between the consumption of VMs’ resources, and the detection

accuracy (in terms of false alarms generated), when using such VMI-based lightweight

monitoring approaches to detect malware infections in the cloud environment.

The research questions, and objectives above delimit the scope of the research work and

describe the primary aims of this thesis, which focuses on providing a better understanding

of malware misclassification and introducing new solutions to increase the efficiency and

effectiveness of malware detection in the cloud.

1.3 Research Contributions

The work described in this thesis contributes to the field of malware detection by providing

an in-depth analysis of the causes of malware misclassification, as well as introducing novel

solutions that increase the efficiency and effectiveness of malware detection in the cloud

using VMI-based malware detection techniques.

In summary, this thesis makes the following contributions:

1. Developing a better understanding of the misclassification rate of malware detection

systems that are based on ML techniques, by using a typical implementation of a

machine learning-based detection system. The system is used to analyse misclas-

sified malware instances, and investigate whether there were recognisable patterns

across these misclassifications. The results of this analysis can help researchers to

interpret other papers that present the detection rate of an ML-based system as

their main result. They can also shed some light on how these detection systems

will perform over time, and why some malware avoid detection.

2. Developing a probabilistic approach that helps in identifying the most beneficial

mobility algorithm prior to the initialisation of FVMs. The evaluation conducted

10

showed that there was a considerable difference in the scanning performance when

using different mobility algorithms; consequently, it was possible to identify the most

beneficial algorithm, given parameters that represent the scanned cloud environment

(e.g. the number of VMs, the deployed FVMs and the cost of false positives and

false negatives). Checking which algorithm is the best prior to the initialisation of

FVMs can help in identifying the most critical set of VMs with the minimum use of

the scanning resources, thereby resulting in an efficient use of such a critical system.

3. Proposing a market-based prioritisation approach that utilises lightweight VMI-

based malware scanners to perform an efficient and effective detection of malware

infections. The proposed approach consists of two layers of protection for a more

in-depth scan of the cloud’s VMs. The main novelty of this technique is that it

utilises a market mechanism that guides the lightweight scanners to prioritise the

AV scanning process, by deciding which VM should be thoroughly scanned and

when. It will then trigger a full malware scan on a pre-defined percentage of the

most critical VMs. The evaluation conducted shows that the approach provides a

cost-effective scanning method, while being able to confirm the infection status of

the most critical set of VMs, thus balancing the trade-off between the consumption

of VMs resources, and the false alarms generated.

1.4 Publications Based on the Thesis

• Alruhaily N., Bordbar B. and Chothia T. (2015). ‘Analysis of Mobility Algo-

rithms for Forensic Virtual Machine Based Malware Detection’. In Trustcom/Big-

DataSE/ISPA, 2015 IEEE, pages 766-773 [6], (acceptance rate: 28.4%). This con-

tribution is presented in Chapter 5.

• Alruhaily N., Bordbar B. and Chothia T. (2017). ‘Towards an Understanding of

the Misclassification Rates of Machine Learning-based Malware Detection Systems’.

11

In Proceedings of the 3rd International Conference on Information Systems Secu-

rity and Privacy (ICISSP 2017), pages 101-112 [7], (acceptance rate: 21%). This

contribution is presented in Chapter 4.

• Alruhaily, N., Mera-Gómez, C., Chothia, T., and Bahsoon, R. (2017). ‘A Market-

Based Approach for Detecting Malware in the Cloud via Introspection’. In the 15th

International Conference on Service-Oriented Computing (ICSOC 2017), pages 722-

730 [8], (acceptance rate: 18%). This contribution is presented in Chapter 6.

1.5 Thesis Structure

An overview of the remainder of this thesis is outlined below.

Chapter 2

This chapter introduces necessary definitions and discusses the background knowledge

required to follow the research, and the results obtained in the subsequent chapters of

this thesis. It also discusses the related state-of-the-art work on the areas of malware

detection, and provide a comprehensive literature review. However, works that are

directly related to each of the proposed contributions are explored and discussed amply

in each associated chapter.

Chapter 3

In this chapter, we discuss our approach towards developing a representative mal-

ware corpus which was used in the subsequent chapters of this thesis, in addition to

describing how the information collected could be transformed into an intermediate

representation that is ready to be used for detecting malware. The chapter concludes

by giving some statistics related to the knowledge-base that has been generated.

Chapter 4

This chapter presents an in-depth analysis of causes of malware misclassification, by

conducting multiple experiments, which investigate whether there were recognisable

12

patterns across the misclassified malware instances. This chapter shows that the

changes in malware behaviour, which lead to malware instances being misclassified,

are mostly due to changes in several malware variants without the family membership

or the year of discovery being a factor.

Chapter 5

In this chapter, we discuss the development of a probabilistic approach that is proposed

to optimise the Forensic Virtual Machines monitoring process. The approach helps

in nominating the most beneficial mobility algorithm based on probability theory and

Bayes’ theorem, and by utilising the malware knowledge-base developed in Chapter 3.

The approach was evaluated through a comparison of the scanning cost resulting from

using a number of mobility algorithms, which range from simple to more advanced

dynamic ones.

Chapter 6

This chapter discusses our solution towards addressing the trade-off problem between

detection accuracy, and consumption of VMs’ resources when detecting malware in the

cloud, using VMI-based light-weight monitoring techniques. The chapter introduces

a market-based prioritisation approach, which utilises two layers of protection (i.e.

lightweight VMI-based technique and full malware scanning) to promote an efficient

and effective scanning of malware infections in the cloud.

Chapter 7

This chapter elaborates on how the solutions and the approaches proposed have an-

swered the research questions, and delivered contributions to the field of knowledge.

We also present the potential future work and research directions that have emerged

from this thesis. The thesis then concludes by presenting a brief summary.

13

14

CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

In general, two phases distinguish the malware detection process: the feature generation

and extraction phase, which can be accomplished by analysing malware samples using

commonly known malware analysis techniques, and the actual detection phase. In this

chapter, we firstly present an introduction related to those two phases: malware anal-

ysis including their different techniques, and malware detection. We then present some

techniques which have been widely used to implement malware detectors; in particular,

we introduce the following: machine learning, and virtual machine introspection that

is enabled by virtualisation technology in cloud computing. The chapter then presents

some preliminary definitions regarding probability theory, information theory and market

mechanisms that are required to follow the work and contributions presented in the sub-

sequent chapters of this thesis. We should highlight that the work that is directly related

to the contributions made in this thesis, are discussed amply in the main contribution

chapters (i.e. Chapters 4, 5 and 6).

2.1 Malware Analysis Techniques

Many studies have been conducted since malware first emerged, and these have introduced

several analysis tools and techniques to assist researchers to attain a better understanding

of malware, and therefore to enable them to implement efficient detection systems that can

15

minimise the dangers of malware, or even prevent the infection. In general, such analysis

techniques fall into three main categories: static analysis, dynamic analysis and hybrid

analysis techniques (combining both static and dynamic). In static analysis, the focus is

on disassembled code, in which the features and the pattern used in the detection process

are extracted without running the malicious code; then Control Flow Graphs (CFG)

and Data Flow Graphs (DFG) are constructed based on the disassembled code. Such

graphs offer intermediate representation of the behaviour of the analysed binary. Various

static features can also be extracted from the disassembled binary; such as imported API

functions, binary strings and signatures, Opcodes (operation codes), among others [37];

a number of researchers have used these features as a basis for their detection systems

(e.g. [4, 189]).

In dynamic analysis, the malicious binary is analysed by executing the code in an

isolated environment [50, 15, 194] wherein various features can be extracted, including

API calls, system traces and network traffic. Such features have been used to develop

behaviour-based malware detection systems [56, 5, 68].

Both analytical techniques have advantages and disadvantages, and a significant quan-

tity of diverse information about malware behaviour and actions can be obtained using

either. One of the main advantages obtained when using a static analysis technique is that

it provides a high degree of code coverage, which is not limited to one execution path, as

in dynamic analysis. Conversely, static analysis is vulnerable to obfuscation techniques,

wherein the malware writer might develop malicious binaries in a way that makes pars-

ing instructions and understanding a binary control and data flow an extremely complex

task. In addition, if the executable file is found to be packed with an unknown packer,

the analyser might be rendered unable to complete the required analysis. Likewise, when

using static analysis to analyse the malware, the analyser has to assess the entire code,

which could incur considerable time and effort [15, 50].

In contrast, dynamic analysis can save analysers’ time and effort, and facilitate the

analysis process of the packed executables, without the need to determine the packer, since

16

the malware is analysed during the execution. However, several possible disadvantages

could result from using such a technique. For example, malware might determine that it

is running in a virtual environment, as such an environment is used for dynamic analysis

to minimise the risk of infection; therefore, malware can alter its behaviour accordingly

to be non-malicious. In addition, in most dynamic analyses, only a single execution path

is examined, and although some studies have shown that this drawback can be overcome

using a new approach to explore multiple execution paths [114], this method has not been

broadly applied [15, 50].

As static analysis could be easily circumvented, and thus completely bypassed by

using a number of obfuscation techniques (e.g. using a custom or an unknown packer),

dynamic analysis has been widely used to develop more effective malware detection [88].

Therefore, in this thesis the focus will be on the dynamic analysis technique only. The

next section gives an overview of the tools currently used for this type of analysis.

2.1.1 Dynamic Analysis Tools and Agents

As a result of the growing interest in understanding and analysing malware behaviour

over the last decade, a number of tools were introduced to automatically analyse malicious

binaries during execution. However, the quantity of information gathered from using such

dynamic analysis tools can vary, depending on the approach applied. One of the most

popular approaches is to monitor the function calls of a running system by implementing

function-hooking techniques. These techniques intercept running processes to monitor

the execution of the binary. In addition, other approaches are used in order to perform

dynamic analysis; examples include information flow tracking, function parameter analysis

and instruction trace [50].

Generally, dynamic analysis tools are based on one or more of these approaches:

CWSandbox [194], Anubis [15, 16], Norman [124], ThreatExpert [175] and Cuckoo Sand-

box [43], which are all examples of tools utilising one or more of these approaches to

perform a dynamic analysis. Such tools (specially the sandboxes mentioned) share the

17

same functionality: executing malware in a controlled environment and monitoring the

malware execution mainly by applying the API hooking technique in order to report the

behaviour of a binary during the execution. The reports generated can be used in the

development of different defence mechanisms [50].

Throughout this thesis we have utilised two widely used malware analysis tools in

malware research community, namely: Anubis [14, 17, 29, 89], and Cuckoo Sandbox

[137, 60, 68], to analyse malware samples dynamically during the executions phase and

collecting their behaviour traces; therefore, further analysis or evaluation of the proposed

methods could be conducted. Chapter 3 describes the process of collecting and analysing

malware using these tools and gives an overview of the resulting information.

2.2 Malware Detection

In order to protect machines from a malware infection, the use of a malware detector

(a.k.a malware scanner) is essential. Malware detectors are programs that scan files

and identify whether they are malicious or not, based on some malicious activities or

characteristics observed. Although malware detectors can utilise different techniques,

generally speaking, they can fall into two main categories: signature-based and behaviour-

based malware detectors [82, 117]. In the signature-based type, a hash, a byte sequence

in the inspected file, or more advanced signature will be matched to a database that

contains signatures of known malicious files. This database is maintained and updated

regularly. Signature-based malware detectors commonly have a very low false positive

rate; however, this detection technique cannot protect from new malware threats (a.k.a

zero day malware), as they have not been inspected; thus their signature has not yet been

added to the database [36]. Listing 2.1 shows two different types of traditional signatures:

MD5 hashing and Byte sequence with wildcards ‘?’ and disjunctions (8a|86), which are

used to identify specific virus strains; namely W32.Sality.AE [164], Paulus.1804 [182]

and W32.Virut.si [198] respectively:

18

Listing 2.1: Different type of malware signatures

- W32.Sality.AE:
da2b0b17905e8afae0eaca35e831be9e

- Paulus.1804:
B9 D5 00 8B DE ?? ?? 27 06 53 ?? ?? 07 86 CA ?? ?? 86 CA 2E 88 07 4A ??

- ClamAV signature for W32.Virut.si
(8a|86) 06 66 (29|31) (c8|d0|d8|e8|f8) (86|88) 06 46

On behaviour-based detection systems, instead of identifying a file as malicious based

on its static signature, the inspected file will be identified as malicious according to

whether it exhibits any malicious behaviour [117]. Such systems generate rules or be-

havioural models of malware, for use in the detection process, to identify previously

unknown malware samples. Those rules or models can be developed either manually by

an expert [159], or automatically using advanced techniques, such as Artificial Intelli-

gence (AI), machine learning (ML) algorithms, and data mining techniques [148]. This

thesis does not attempt to provide an overview of all behaviour-based malware detection

systems (see [82] for a comprehensive review); however, two behaviour-based detection

approaches, along with the techniques that they have been based on, are covered in this

chapter as they are the focus of this thesis: machine learning-based, and Virtual Machine

Introspection-based malware detection approaches. These approaches, along with the

techniques that they have been based on, are fully described in the following two sections,

Section 2.3 and Section 2.4, respectively.

2.3 Machine Learning (ML)

In this section, we firstly provide some brief, but essential background on machine learn-

ing. The section starts by providing a definition and an overview of the technique, with

a specific focus on the supervised learning and classification methods used to detect mal-

ware. Afterwards, the section presents several measures that are usually used to assess the

performance of the outcomes of a machine learning method. The section is then finished

19

off by discussing how such a technique has been used to introduce more efficient malware

detectors; it also discusses briefly the nature of malware evolution, and the effect of that

on such detection systems.

According to Mitchell [113], the field of machine learning can be defined as the devel-

opment and study of the algorithms used to enhance the process of computer programs’

learning, based on some prior experience. The learning task involved could be referred

to as supervised, when data labels are given during the learning process; if the labels

cannot be made available during the learning phase, the learning task is then said to be

unsupervised. Problems that can be solved using supervised learning algorithms include

classification and regression, whereas unsupervised learning algorithms are generally used

to solve problems such as clustering. The process of detecting malware can be considered

as a supervised learning task (a classification in particular), as the aim is to predict the

class of an ‘unseen’ sample after the system was fed, during the learning phase, with

previously seen and ‘labelled’ malware or benign samples. Therefore, in the following

sections we are focusing on classification tasks and methods only.

Machine Learning
Algorithm

The Estimated Classification
Function: Ŷ = f̂(X)

Labeled
training
examples

New
unseen

instances

Predicted
labels

Figure 2.1: A classical classification problem.

20

2.3.1 Classification Methods

In classification tasks, the learning phase is commonly referred to as the training phase,

while the process of classifying the new data is known as the prediction, or testing phase.

Classification algorithms in the training phase construct a classifier which is a hypothesis

h that gives an approximation of the true function f . Given an input space X, and a label

space Y , the true function f is used to map an unlabelled input xn ∈ X to a predicted

label (a.k.a class) ym ∈ Y , such that ym = f(xn). The prediction phase is concerned with

identifying the newly unseen malware, based on the pattern and information extracted

from the training phase. The meaningful pattern is usually extracted from labelled indi-

viduals (known as instances), which include malware and benign binaries in the case of

the current scenario. Figure 2.1 demonstrates a classical classification task which aims to

identify the new unlabelled data [118].

In the classification task, each instance belongs to a specific class and it is charac-

terised by a number of features. Malware detection is usually considered a text classi-

fication problem, where each input xi represents a vector of features, such that: xi =

(xi
1, xi

2, xi
3, · · · , xid), where d is the dimension of the data point xi.

A number of ML algorithms are widely used for text classification purposes, such

as Naive Bayes, Support vector machines [71], Decision trees [100], and Bagging algo-

rithms [27]. Below, a brief description of some classification algorithms is provided.

• Support Vector Machines

Support Vector Machines (SVMs) are a set of supervised machine learning algorithms,

which are used in classification and regression problems. Each sample in the training data

is plotted as a point in an n-dimensional space where n refers to a sample’s features. The

idea of the SVM algorithms is based on finding the optimal decision boundary (hyper-

plane), which will differentiate or separate the classes in a multidimensional space. The

optimal hyperplane thus is the one that maximises the margin (also known as the distance

between the classes). A wide range of kernel functions could be used for the Classifier

21

Figure 2.2: The optimal hyperplane with the maximum margin for an SVM trained on
data belongs to two classes; adopted from [129].

implementation, such as radial basis function (RBF), linear and polynomial kernels. In

the case of having a linearly separable training space, Support Vector Machine with linear

kernel function could be used as shown in Figure 2.2 [25].

• Decision trees

In this type of classification a tree is constructed, based on the given training examples,

where the constructed tree contains nodes, branches and leaves. The nodes of the tree

represent the samples’ features, while the branches represent the features’ values; the class

labels are then determined on each leaf. An example of a simple decision tree is shown

in Figure 2.3. Therefore, when a new instance is seen and a label needs to be determined,

the classification task will start at the root node moving down the tree through the

corresponding branch, which holds the same value as the new instance. The process is

then repeated at each node, until a label is reached on one of the leaves [138].

• Ensemble Methods

Ensemble methods are machine learning algorithms which construct multiple hypotheses

(classifiers) that are used to classify the new data instances by outputting a weighted

vote of their predictions. Such methods are known to produce more accurate results than

22

Modify files?

Benign Turn off the AV?

Benign Malware

no yes

no yes

Figure 2.3: A simple decision tree.

the normal classifiers as a result of the averaged prediction [45]. The set of classifiers

constructed during the training phase are referred to as base classifiers, which are gener-

ated from known learning algorithms such as decision trees, support vector machines and

others. Two ensemble methods have been widely used in the area of malware detection to

classify malware instances: Bootstrap aggregating (Bagging) [27], which is used to decrease

the variance, and Boosting [146, 59] that is used to decrease the bias. Other ensemble

methods (such as Stacking) are also used in machine learning literature to improve the

overall classification predictions [197]; however, the difficulty of theoretically analysing

the performance and results of such a method makes it less widely used than Bagging

and Boosting [190]. In this thesis we focused on Bagging only as it was shown previously

that such methods could generally outperform other ensemble methods [123], especially

when dealing with an imbalanced dataset (where there is a significant difference between

the number of instances in each class) [87]. The following section gives a brief overview

of the Bagging method.

∗ Bagging Classifiers:

Bagging is a classifier ensemble technique that is based on randomly drawn subsets

of the training data with replications (replacement), based on a uniform probability

distribution. Each time a subset is drawn, a classifier will be constructed to classify

the newly generated subset. The classification procedure is repeated a number of

23

times (for example 100 times) and a majority voting over all predictions is calculated

as the final prediction to ensure the robustness of the results. In other words, given

a training set T with size n, the bagging algorithm will generate a set of training

sets Ti, by sampling examples uniformly and with replacement, where each of the

newly-generated training sets is of size n′ (n′ ≤ n). Bagging is usually used to reduce

the variance of a prediction and to improve the stability and accuracy obtained by

machine learning algorithms.

When classifying a dataset that has classes of an unequal sample size, some modifi-

cations could be integrated to the way that samples are drawn in Bagging. This is

mainly because when the number of instances in each class varies (a.k.a having an im-

balanced dataset) the classifier might become more biased towards the class which

has the majority of the instances, and consequently the misclassified instances tend

to belong to the minority class. Therefore, to decrease the effect of such a problem

on the classification rate, various methods were suggested on the literature to balance

the classes by either: decreasing the majority class (undersampling); replicating in-

stances in the minority class (oversampling); or generating artificial data to increase

the minority class (SMOTE) [35]. Studies also suggested combining such methods with

Bagging, i.e. the entire minority class could be used as an input for each constructed

classifier, along with a randomly generated subset of the majority class, which has

the same size as the minority class, so balancing the data in each drawn subset. This

method is referred to in machine learning literature as Exactly Balanced Bagging

(EBBag) [34, 85, 87]. It was shown that such a method could actually outperform

other similar classification techniques, especially if the subsets have been drawn with-

out replacement [87], meaning that an instance could not be chosen twice in the same

subset.

Different machine learning packages and libraries exist, which can be used to apply

the proposed machine learning algorithms. Examples of these libraries are WEKA [196]

and Scikit-learn [149].

24

2.3.2 Confusion Matrix Terminology and Evaluation Metrics

A confusion matrix is a table which is used to evaluate the performance of a classifier

or a classification algorithm. By constructing such a table, the correctly and incorrectly

classified instances are recorded; the calculation can then be used in further computations

and analysis. Table 2.1 below shows an abstract example of a confusion matrix, with the

following metrics (where the positive class is malware):

• True positive (TP): Number of positive samples correctly labeled as positive.

• True negative (TN): Number of negative samples correctly labeled as negative.

• False positive (FP): Number of negative samples incorrectly labeled as positive.

• False negative (FN) Number of positive samples incorrectly labeled as negative.

True Classes
Positive Negative

Predicted Classes
Positive TP FP
Negative FN TN

Table 2.1: A Confusion Matrix computed for a two-class problem.

Given the previous terms, the accuracy measure of a classifier is given as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(2.1)

Where accuracy is the most commonly used metric, however, when having an im-

balanced dataset (as discussed in the previous section) the normal accuracy presented

in Equation 2.1 could be affected by the imbalance class problem. Therefore, other per-

formance metrics have been proposed in the ML literature to measure the performance of

a classifier in the presence of an imbalanced dataset. Examples of such metrics are the Ge-

ometric mean (G-mean) [99, 85] and the Area under the receiver operating characteristic

curve (i.e. area under the ROC curve) [77].

25

2.3.3 ML-based Malware Detection Systems

As mentioned earlier in Section 2.2, machine learning algorithms can be greatly beneficial

in the field of malware detection; they can be utilised by behaviour-based malware detec-

tion systems to help in identifying new malware threats. In this section, we review some

of the proposed detection systems which can help in understanding the work presented in

this thesis.

Schultz et al. [148] were the first to study the use of ML techniques to detect malware.

They used three different methods to extract static features. The first method was binary

profiling, in which for each binary they generated three different binary vectors: a list of

the Dynamically Linked Libraries (DLL) that the binary called; a list of the functions

that have been called within each DLL; and the number of functions called within each

DLL. The remaining two methods of feature extraction were byte sequence and strings.

They paired each of the described extraction methods to a specific learning algorithm,

using a RIPPER rule based learner in order to extract rules from the binary profiling

features; a Naive Bayes classifier to classify binaries based on the binary strings, and

an ensemble classifier for the binary byte sequence. Of the three learning algorithms

tested, the ensemble classifier achieved the highest detection rate at 97.76%, and when

compared to traditional signature-based detection systems, it was able to achieve double

the detection rate.

Since then, many studies have introduced or evaluated different ML-based detection

systems. For example, the authors in [200, 203, 188] all based their detection systems on

API call sequences extracted using static analysis. However, as mentioned in Section 2.1,

static analysis is known to be questionable as a method for dealing with obfuscation tech-

niques, as the sequence of the instructions might be modified and data locations can be

hidden [115]. Motivated by this, other researchers have based their detection systems on

API call sequences extracted using dynamic analysis [209, 176, 54]. Other behavioural

features have also been used to detect malware using ML-based detection approaches, such

as in Rieck et al. [141], where they proposed a method that involves learning the char-

26

acteristic features of malware and their typical behavioural pattern, which in turn helps

to distinguish each malware family. Their proposed method consisted of three phases. In

the first phase, malware behaviour was monitored, and analysis reports were produced

using CWSandbox. Then, the resulting reports were embedded in high-dimensional vec-

tor space models, in which each represents a specific behavioural pattern. Afterwards,

an SVM classifier was trained, based on the generated malware model, after labelling the

data using the Avira Antivirus engine. In the final phase, distinctive features of each

behavioural pattern were ranked for use in the classification of decisions. Their method

reported 100% detection accuracy, when classifying known malware families against be-

nign software. In addition, the method could predict nearly 70% of unknown malware

from the total labels that were assigned by the Avira engine a month later. Rieck et al.

[142] extended the previous method by introducing a prototype-based framework combin-

ing both classifying and clustering methods, in order to identify known malware families,

as well as to discover novel malware classes. In the classification phase, the nearest pro-

totype classification method was used, whereas in the clustering, the method used was

complete-linkage clustering. The main feature of this framework is that it permits an

incremental malware analysis, so the results of the previous run can be used to determine

the decisions made about the current run, unlike most of the other frameworks proposed,

which are based on batch analysis.

Firdausi et al. [56] compared the detection rate of multiple classifiers, by applying

different ML algorithms to the same set of dynamic reports generated by Anubis Sandbox

and embedded in vector space models. The algorithms used were k-Nearest Neighbours

(kNN), Naive Bayes, J48 Decision Tree, Support Vector Machine (SVM), and Multilayer

Perceptron Neural Network (MLPNN). The study concluded by highlighting that the

highest detection rate was that obtained by the J48 decision Tree, with an accuracy of

96.8%.

It can be seen that detection systems, which are based on ML techniques are superior

in terms of their ability to detect even those samples which have not been inspected before.

27

This is unlike traditional antivirus solutions, where the samples need to be examined and

a signature needs to be determined in order to be able to detect malware. However, a

misclassification could occur on ML-based detection systems due to the presence of noisy

data, or due to changes in the underlying distribution of the features [208]. The latter

changes are due to the fact that malware are evolving and their behaviour could change

over time. The next section discusses briefly the nature of malware evolution, and their

effect on machine learning-based detection systems.

2.3.4 The Effect of Malware Evolution on ML-based Detection
Systems

Since the first malware emerged, there has been a continuous battle between security

researchers and malware writers, where the latter are constantly evolving and trying

to evade detection by adopting new malicious techniques. The evolution in malware

characteristics (or features) over time has led to a non-stationary population, which means

that features change over time. This phenomenon is commonly known in the ML and

data mining context as concept drift [193, 178, 156, 2]. Machine learning-based detection

systems, such as those described in Subsection 2.3.3, could be greatly affected by such

a change, where the model used to classify malware becomes inconsistent with the new

data that has arrived [156].

This problem was the motivation for proposing techniques which aim to track and

detect changes in malware detection [156, 84], and to adapt when a change is detected

[121]. Other researchers have also examined the performance of such detection systems

over time [80, 156, 151], and checked whether a classifier could continue providing a good

detection rate, or whether a retraining of the classifier was required; as a significant

decrease in the classifier performance could be an indicator of concept drift [90, 156].

Although a large number of works have tracked changes in malware, proposed ways

to adapt when changes are detected, and tried to determine when a new learning model

needs to be constructed, we found that little attention has been paid to identifying reasons

28

that led to the misclassification of some malware samples, and that led to the drop in the

detection rate in those systems. Identifying the reasons behind the misclassification of

malware could result in a better understanding of malware behaviour, and the resulting

misclassification rate, thus determining the optimal mitigation method. This problem has

been addressed in Chapter 4, where a typical implementation of a machine learning based

malware detection system has been used to classify malware samples, and analysis of the

resulting misclassification rate have been conducted.

2.4 Cloud computing and Virtualisation technology

Before discussing the problem of malware in the cloud, a brief but essential overview of

the cloud is presented.

Cloud Computing can be defined as a pool of dynamically scalable virtualised com-

puting resources that could be accessed on demand over the internet; it thus offers, to

users and organisations, significant economical benefits compared to traditional comput-

ing [58]. Cloud infrastructure relies on virtualisation technology which allows dividing the

resources between multiple instances of virtual machines (VMs) that, in turn, results in

the efficient use of the existing computing resources [195]. Each virtual machine could be

described as a software implementation of a physical computer system that is hosted by a

native machine and shares its resources to run programs like a real computer system [24].

The host program that is responsible for creating, managing and running VMs and

dividing the resources between the VMs created is the Virtual Machine Monitor (VMM)

or the so-called the Hypervisor. It can be considered as a light-weight operating system

that is responsible of controlling the hardware resources and making them available for

the implemented VMs when needed. In general, VMMs have two main functionalities

which can be highlighted as follows [177]:

• Offering an isolated environment: where all communications between the underlying

hardware resources, and the VMs can go through the VMMs. Therefore, every

29

VM will run as a separate physical machine, and it will not be affected by any

configuration issues or by the instability of the other VMs that share the same

resources.

• Managing the available resources: the VMM can manage and share the hardware

resources between the implemented VMs, where every single physical resources can

be mapped to multiple logical representations. Most importantly, the structure of

these logical partitions is subject to change as demand varies.

According to the National Institute of Standards and Technology (NIST) in [106], the

cloud can be deployed in four different models, namely, private, community, public and

hybrid clouds; the deployment model depends on the group of users who will benefit from

the cloud resources and services offered. In the private clouds, the services are offered to

be exclusively used by a single organisation. They can be managed by the organisation,

by a third party, or by a combination of both; and they can be deployed on or off the

organisation’s premises. In the community cloud, the cloud services and functionality are

shared among a number of organisations which have common concerns or goals and it

is not limited to one organisation only as in the case of the private cloud. It can also

be deployed in one of the organisations or off the organisations’ premisses; and it can be

managed by one or more of the organisations, or by a third party. A public cloud, on

the other hand, is managed by the cloud provider and it offers the cloud services and

resources to the public where they can choose between short or long-term contracts [64].

In the case of the hybrid cloud deployment model, a combination of the first two cloud

models (i.e. private and public) can be obtained in a way that ensures the isolation of

the different cloud entities while facilitating the data and application portability. The

shared and multi-tenant nature of the public cloud model makes it less secure than the

private cloud model, since the resources provided and access are not restricted to a limited

number of tenants, as in the case of a private cloud, which is considered the most secure

model [157].

In addition to the different deployment models, the cloud can also be classified in

30

terms of the services it offers to consumers in one of three different categories: Software

as a Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (IaaS).

Minimum control is offered through the SaaS service model, where the consumer can

access different applications offered by the cloud provider and use them, but without

having any control over the underlying infrastructure, or even over the application used.

On the other hand, consumers will have full control when using the IaaS service model,

as they can deploy their own operating system on the hosted VMs, but without having

control over the underlying cloud infrastructure. The flexibility provided by IaaS comes

at a cost as the VM tenants need to maintain an upgraded system and fully patched

applications; such a service model is therefore considered as more vulnerable to attacks

compared to other service models.

2.4.1 Malware Detection in the Cloud

The risk of malware infection is not limited to classical computing only; cloud computing

and its Virtual Machines are also vulnerable to such a threat, where the security level

provided depends on the deployment and service model requested. The impact of an

infection in the cloud environment could potentially be even greater. When a VM is

compromised by exploiting a vulnerability (e.g. VENOM [42]), the damage might spread

to the entire underlying infrastructure, which hosts not only that VM, but many others;

a large number of VMs can then be used to initiate various malicious activities, such as

Distributed Denial of Service (DDOS) attacks and the sending of spam [18]. This threat

is a well-recognised risk to the cloud community and it was mentioned by NIST in [74].

The configuration of a detection system in a virtual environment can conform to one of

two dominant cases, each of which has its own advantages and disadvantages. In the first

case, the detection system is installed on the system that hosts the VMs. Advantages

provided by such an approach are: (i) reducing the required memory and CPU; and

(ii) offering the necessary isolation between the infected system and the malware scanner,

thus reducing the possibility of the scanner being compromised. However, the detection

31

Figure 2.4: VM protection approaches, adopted from [177]

system in this case would have a limited view over the monitored VMs. The second case

solves the limited context problem by installing a detection system in each VM; thus a

full view over the inspected VMs can be guaranteed. However, two issues may arise in

this case: (i) the CPU and memory consumption in such an approach tends to be very

high; and (ii) the detection system might be susceptible to infection and manipulation as

it is not isolated from the infected system [63].

As a result, several studies have been conducted with the aim of balancing the trade-off

between security enhancement on one hand and the comprehensive view and the efficient

usage of resources on the other hand. In fact, this was the motivation for introducing the

Virtual Machine Introspection technique (VMI), which refers to the process of monitoring

other VMs by checking their memory pages [63]. The novelty of this technique is that it

resolves the known trade-off between the isolation and the comprehensive view during the

inspection, [48] in the way that it benefits from the hardware virtualisation in the cloud,

32

to provide an out-of-the-guest malware analysis and detection. The monitoring process

is carried out by the VMMs or other VMs which are assigned a special privilege. Thus,

instead of having the security software within the customer’s VM, such a system could

be drawn outside the VM. This will give it a good overview of the inspected VM, while

rendering it invulnerable to potential attacks.

VMI has been used in developing a wide range of services and tools such as, cloud’s

IDS [92, 86], malware detectors [79, 155], malware analysis tools [46], and digital foren-

sics [20, 1]. Further research has also been carried out in order to provide introspection-as-

a service in the cloud through introducing written libraries and tools [192, 98, 11]. Other

studies have also proposed VMI-based solutions in the form of in-cloud services to serve

as light-weight agent to end users connected to the internet [125, 126, 70, 3]; however,

these solutions are outside of the scope of this thesis.

The following section provides an overview of the VMI-based malware detection tech-

niques in the cloud environment.

2.4.2 VMI-based Malware Detection Systems

Garfinkel et al. [63] were the first to introduce Virtual Machine Introspection-based detec-

tion systems. They proposed an Intrusion Detection System (IDS), referred to as Livewire,

which was built as a customised version of VMware Workstation for Linux x86. Somewhat

later, Kourai and Chiba [92] introduced an IDS called the HyperSpector which targets

distributed computer systems. The implemented IDS benefits from VMI technology in

isolating the server that it monitors from the IDS to reduce the cost of implementing an

IDS that is physically separated from its hosts.

Since that time, different VMI-based intrusion, and malware detection systems have

been proposed, some of which have relied on guest cooperation, whereby agents or modules

are installed inside the VMs to monitor the guest, and to facilitate the inspection [133,

153, 79, 111, 185]. However, such an approach is susceptible to manipulation by an

attacker, because the malware detector and the protected VM are not isolated from one

33

another [174].

Another type of VMI-based technique is the external approach, where no agent is

installed within the protected guest [83]. According to Nance et al. [120], VMI-based

techniques can also be classified according to the introspection method, either as state

introspection (passive monitoring), or event introspection (active monitoring). In active

monitoring, several predefined events are tracked in order to facilitate interfering with

the threat, rather than being limited to only detecting and reporting the threat. How-

ever, as the state of the inspected VM could be altered in this type of introspection, a

compromised VMI-based tool might undermine the security and integrity of the inspected

VM [154]. In passive monitoring, on the other hand, VMI techniques and tools can be

used to monitor the state of a VM periodically, thus detecting changes that might arise

due to potential malware infections. Examples of such malware monitoring approaches

include Livewire[63], VMwatcher[83], Virtuoso[47], Forensic Virtual Machines[69], and

Bitdefender Hypervisor Introspection (HVI)[22]. For the sake of convenience, we will be

using the phrase VMI-based monitoring approaches in the following chapters of this thesis

to refer to those approaches that perform passive monitoring of the targeted VMs as the

focus will be on those techniques only.

Forensic Virtual Machines (FVMs)

Besides reducing the attack vector by using passive VMI-based approaches to monitor

the VMs, the monitoring task could be subdivided among a number of small scanners or

mini-VMs (referred to as Forensic Virtual Machines), in order to reduce also the scanning

overhead [69]. An FVM is dedicated to identifying the existence of a single symptom given

an assigned time interval which is referred to as Permissible Time to Stay (PT2S); if the

end of this time is reached and the FVM did not find the symptom that it was looking for,

then it will move to a new VM target to scan it. In addition, an FVM is shared among

a number of VMs; therefore, each FVM is initialised with a special distributed algorithm

(referred to as a mobility algorithm), which is responsible for scheduling the movement

34

Figure 2.5: FVMs inspecting customers’ VMs, adapted from [69].

of the FVM from one VM to another. Figure 2.5 shows a number of FVMs, given the

capability to inspect the memory pages of customers’ VMs.

The internal structure of an FVM consists of three components: notification, mobility

and search. The notification module is responsible for reporting a symptom that has

been inspected (either found or not found); the mobility module is the one responsible for

scheduling the movement from one VM to another as FVMs can be shared among many

VMs. The mobility algorithm embedded could vary from simple to dynamic algorithms

such as random movement, scanning according to a pre-determined order, or based on

advanced scanning algorithms (e.g. [69, 154, 9]). The search module allows switching

between a number of different search strategies; some of these are designed to search

within the registry while others can examine the process table [155].

An observation that can be made here is that when using a malware detector on

an open networked environment, such as a cloud environment, the need to identify an

infection as soon as possible is vital; therefore, using light scanners with a low usage of

resources such as FVMs can be beneficial. As mentioned previously, they also provide

the required isolation between the malware scanner and the infected system, making it

harder for the scanners to be compromised. However, to achieve the full potential of such

35

malware scanners, it is important to identify the most efficient mobility algorithm prior

to the scan, which could boost the efficiency of the scanning process, as the creation of

FVMs is a resource-intensive task. This challenge has been addressed in Chapter 5, where

a probabilistic approach was proposed to identify the most beneficial mobility algorithm

that could boost the efficiency of the FVMs used.

Another observation is that the minimum performance impact on the cloud’s VMs

which results from using VMI-based malware detection methods (e.g. FVMs) could be

at the expense of wrongly flagging more VMs as infected. This is because VMI-based

techniques are based on identifying symptoms that exist in both malicious and normal

behaviour, but in different proportions or combinations; where in some cases a clear-cut

distinction between the two behaviours is not easy to identify; thus they can provide a

means for detecting early signs of infections but without providing definitive identification

results. Unlike signature-based methods, which use a fingerprint-like signature to identify

malware threats with an extremely low false positive rate [67], but with the high usage of

the VMs resources during the scan [150]. This issue, of balancing the trade-off between

the accurate identification of infection and the consumption of VMs’ resources, has been

addressed in Chapter 6, where a market-based prioritisation approach that combines light-

weight and heavy-weight malware detection approaches has been proposed to allocate the

heavy-weight scanning resources wisely to the VMs which need them the most; thereby

resulting in a wise use of resources while reducing the false alarms generated.

2.5 Probability Theory and Bayes’ Theorem

Probability theory is the branch of mathematics that is concerned with experiments; it

measures the likelihood that a specific event will occur. In the field of malware detection,

the experiments can refer to the execution of the binary in a controlled environment,

while the event represents the occurrence of malicious behaviour (the occurrence of a

group of malicious symptoms) during the execution of that binary. An example of a

36

single symptom is modifying the registry key to disable the firewall, or creating a new

directory for the malicious file. In an experiment, the set of all possible outcomes o is

referred to as the experiment’s sample space Ω; here we are only interested in discrete

sample spaces. Definitions and theorems mentioned in this section could be found in any

introductory book on probability theory (e.g. [41]).

The probability function P should satisfy the following fundamental axioms (known

as Kolmogorov’s axioms of probability):

Definition 2.1 (Kolmogorov’s axioms).

Axiom 1: (Non-negativity) The probability of an event A occurring is a real, non-

negative number:

P (A) ∈ R P (A) ≥ 0 ∀A ⊆ Ω.

Axiom 2: (Normalisation) The probability of the entire sample space Ω is unity:

P (Ω) = 1.

Axiom 3: (Additivity) For any sequence of events A1, A2, A3, ...An which are mu-

tually exclusive, the probability of all the events equal the sum of the probabilities of

each of those events: P (A1

⋃
A2

⋃
A3 · · ·

⋃
An) =

∑n
i=1 P (Ai)

As consequences of Kolmogorov’s axioms of probability, the following applies:

Theorem 2.1 (Consequences of Kolmogorov’s axioms).

1. P (∅) = 0.

2. A1 ⊆ A2 ⇒ P (A1) ≤ P (A2).

3. P (A) ≤ 1.

4.If ¬A and A are Complementary Events in the sample space Ω, then

P (¬A) = 1− P (A).

As we have multiple symptoms that can occur during the execution of malware, we

are often concerned with the probability of an event occurring given that another event

had been already observed, this leads to the definition of conditional probability which

37

can be written formally as follows:

Definition 2.2 (Conditional probability).

For two discrete events A and B ⊆ Ω, the conditional probability of the event B

given that event A has occurred, can be given by:

P (B|A) =
P (A ∩B)

P (A)
P (A) 6= 0

As a consequence of this definition, the multiplication rule of probability can be defined

as follows:

Theorem 2.2 (Multiplication rule of probability).

For two discrete events A and B ⊆ Ω, the probability of them occurring together can

be given by:

P (A ∩B) = P (B|A) · P (A)

It can be also written as follows when P (B) 6= 0

P (A ∩B) = P (A|B) · P (B)

2.5.1 Bayes Theorem

Bayes’ theorem was originally developed by Thomas Bayes; it can be used to describe

how an initial belief could be updated according to new evidence observed. The theorem

is written formally as follows [128] (derived using Theorem 2.2):

Theorem 2.3 (Bayes theorem).

If A ⊆ Ω, and B ⊆ Ω are two discrete events, and P (B) 6= 0, then:

P (A|B) =
P (B|A) · P (A)

P (B)

Where:

38

• P (A) is the prior probability of having the initial belief or hypothesis A.

• P (A|B) is the posterior probability of a hypothesis A, given that evidence B oc-

curred.

• P (B|A) is the likelihood of evidence B on hypothesis A.

• P (B) is the probability of observing the evidence B.

For two mutually exclusive and exhaustive events A and ¬A, P (B) can be expanded to

the following:

P (B) = P (B|A) · P (A) + P (B|¬A) · P (¬A) (2.2)

Therefore, by using Equation 2.2, Theorem 2.3 can be rewritten as follows:

P (A|B) =
P (B|A) · P (A)

P (B|A) · P (A) + P (B|¬A) · P (¬A)
(2.3)

2.6 Information Theory

Information theory is the branch of mathematics that studies uncertainty and different

information-related measurements and quantities; for example, it provides ways to mea-

sure and quantify the information shared between two random variables. In this thesis,

we are focusing only on the quantities which are required to understand our contributions

to the literature. Definitions and theorems mentioned in this section could be found in

any introductory book on information theory (e.g. [41] and [152]).

2.6.1 Mutual Information (MI)

In the field of information theory, the mutual information (MI) of two discrete random

variables X and Y is the amount of information which can be learnt about one variable

by observing the other. In other words, it is the amount of information that is shared

39

between the two random variables X and Y measured in bits. Mutual information (MI)

can be defined mathematically as follows:

Definition 2.3 (Mutual Information).

The Mutual Information (MI) between two random variables X and Y is given by:

I(X;Y) =
∑
y∈Y

∑
x∈X

P (x, y) · log P (x, y)

P (x)P (y)

However, in some cases, the mutual information between the two variables X and Y

needs to be obtained given that we have observed a third random variable or event Z = z,

this can be given by:

Definition 2.4 (Mutual Information conditioned on Z=z).

The Mutual Information (MI) between two random variables X and Y conditioned

on a third random variable Z=z has occurred is given by:

I(X;Y |Z = z) =
∑
y∈Y

∑
x∈X

P (x, y|z) · log P (x, y|z)

P (x|z)P (y|z)

In the case of conditioning on all the events z ∈ Z, we end up with the definition of

the Conditional Mutual Information.

Definition 2.5 (Conditional Mutual Information).

The Conditional Mutual Information (CMI) between two random variables X and

Y given that a third random variable Z has been observed is given by:

I(X;Y |Z) =
∑
z∈Z

∑
y∈Y

∑
x∈X

P (x, y, z) · log P (z)P (x, y, z)

P (x, z)P (y, z)

40

2.7 Market Mechanisms

In this section, we provide a brief, but essential introduction to market mechanisms.

This introduction is needed to understand the contribution made in Chapter 6, where

a market-based approach has been proposed for the efficient and effective detection of

malware infections in the cloud via introspection.

Computer systems adopt market mechanisms in order to define new ways to allocate

the services or the resources in a shared and decentralised environment such as the cloud

to a number of tasks. This is based on the fact that those tasks that need to be fulfilled are

not of equal priority; therefore, using methods which are influenced by market mechanisms

in such situations helps in prioritising the tasks based on a dynamic price assigned to each

of them during the allocation process [119]. In this chapter, the allocation is concerned

with assigning a number of malware scanners to a different number of VMs; their need to

be scanned can vary based on the symptoms discovered on each of them.

From an economic point of view, a market refers to the place in which goods and ser-

vices could be bought and sold [179]. Sellers and buyers1 are examples of market agents

who carry out their trading based on their own valuation of a good; the decentralised

characteristic of the market results from the competitive and self-interested nature of its

agents [130, 39]. According to Clearwater [38], systems which are based on a market

mechanism or a number of the market-specific features such as their decentralised char-

acteristics, the interactions between the different agents, or the notion of the resources or

services allocated; they are referred to as market-based systems.

The set of rules and protocols used, which define the trading interaction between

the market agents, to match the goods offered to the agent who needs them the most, is

known as the pricing policy or mechanism. It can be categorised, broadly, into two classes:

posted-price mechanisms, and price-discovery mechanisms. According to Elmaghraby

and Keskinocak [51], the difference between the two categories, that is in a posted-price

1Sellers and buyers in the current context refer to the set of FVMs available and the VMs that request
to be scanned, respectively.

41

mechanism, take-it-or-leave-it predetermined prices are offered to sell the goods; on the

other hand, in a price-discovery mechanism the prices of goods are determined during

the transaction, based on a bidding process or an auction. Auctions can offer a dynamic

pricing alternative to the traditional posted-pricing mechanism, when there are no fixed

prices; or where prices cannot be pre-determined for the goods that are offered [32]. In

this thesis we are using a price-discovery mechanism (represented as a bidding process)

to allocate the available FVM instances to the VMs which need them the most; in other

words, we are using the symptoms discovered in each VM at any given time to determine

the criticality of the VM, thus estimating its need for a scan, in addition to determining

the scanning type that is needed (a light inspection by the available FVMs or a full scan).

Decisions in auctions can be determined based on simultaneous or sequential bidding.

In simultaneous bidding, bids are submitted only once, and the prices and allocations are

determined immediately; an example is sealed bid auctions. In sequential bidding, the

bidding process involves various rounds of price and demand alterations, or consecutive

price adjustments, with a pre-defined halting rule [94]. In this thesis we are only con-

cerned with sealed bid auctions because decisions are made instantaneously, resulting in

an efficient allocation of the scanning resources, without causing a considerable overhead

during the allocation process [66].

2.8 Conclusion

This chapter provided background knowledge and reviewed several related notions. It

started by presenting the main analysis types used to analyse malware (i.e. static and dy-

namic analysis). It discussed also the main methods of detecting malware (signature-based

and behaviour-based malware detection methods), and also presented several techniques

utilised by these detection methods (i.e. ML-based and VMI-based malware detection

techniques). The chapter has also looked at some background and definitions that are

necessary to follow the work and contributions made, such as the virtualisation technol-

42

ogy and the cloud, a number of mathematical theories (i.e. probability and information

theory), and market mechanisms.

Before addressing the main research questions posed in Section 1.2, a representative

malware corpus has to be developed in order to facilitate conducting the experiments

needed to answer the research questions previously mentioned, and to evaluate the ap-

proaches presented in this thesis. Therefore, the next chapter presents the process of

collecting, analysing malware, and extracting the required features to be used in the main

chapters of this thesis.

43

44

CHAPTER 3

DEVELOPING A FINE-GRAINED MALWARE
FEATURE SET

3.1 Introduction and Motivation

Malware features (or symptoms) are the main source of information used for implementing

behaviour-based malware detection systems. Collecting a representative malware corpus,

and encompassing a variety of malware types, families and variants is essential, as this will

result in generating a rich and varied feature set, which can enhance the detection process

and covers a large number of malicious activities. This chapter discusses the approach

adopted to develop a fine-grained malware feature set that was used in the subsequent

main contribution chapters of this thesis. In addition, this chapter outlines the process of

developing an abstraction of the behaviour of the samples collected, which is represented

in the textual logs documented during the analysis process. This chapter also provides

some overall statistics regarding the knowledge-base generated.

The chapter’s contents are based partially on two of our papers, Alruhaily et al. [6]

and Alruhaily et al. [7]. It is important to note that the contents of this chapter forms an

important source of information for this thesis, as all the works presented were possible,

and have been evaluated using features from the knowledge-base described in the following

sections.

45

3.2 Sketch of the Approach

In order to achieve the objectives of this research, it was essential to develop a knowledge-

base, which provides the set of symptoms that is expected to be seen in terms of both,

malicious and normal activities. We thus developed a framework that automates the

process of downloading malware samples, analysing and storing the raw features generated

for each of the samples collected. Figure 3.1 depicts a high-level overview of the framework,

where the Python programming language was used for the implementation.

In summary, the implemented framework can be broken down into multiple compo-

nents that perform the following tasks:

1. Raw data collection: in this phase malware samples are downloaded using two

approaches: randomly and based on their family and variant name. This process is

described in detail in Section 3.3.

2. Feature generation and extraction , which includes:

• Behaviour monitoring: in this phase, the malware and benign samples were

analysed with two widely known malware analysis tools: Anubis and Cuckoo

sandbox, in order to collect the raw features to be used for further analysis and

investigation; this process is described in Subsection 3.4.1.

• Feature transformation: this includes transferring the raw data collections gen-

erated in the previous step into a representative set of features to distinguish

malware from benign samples. The details of this process are documented

in Subsection 3.4.2.

These tasks are described in detail in the following sections, where each section delivers

an overview of the procedure followed to fulfil the main goal of each task.

46

Figure 3.1: Downloading and analysing malware samples.

3.3 Raw Data Collection

Initially, the Python-based tools: Mwcrawler and Maltrieve [103, 104] were used to collect

malware samples from a number of sources. This involved parsing multiple malware

websites and retrieving the latest malicious samples uploaded to them. These websites

include: Malc0de, Malware Black List, Malware Domain List, Malware URLs, VX Vault

URLquery, CleanMX and ZeusTracker.

To ensure that the dataset reflected the most common types of malware, we developed

a Python script that collected the top 10 and 20 malware families recorded by Symantec

and Microsoft in their Internet Security Threat reports [166], and Security Intelligence

reports [110], respectively. The script works by pulling all samples resulting from the

search request for each malware family, including all the available variants, from an open

malware database (i.e. Open Malware [127]). In addition, a large number of samples

were also downloaded from the VirusTotal’s website [184] through their intelligence ser-

vice. We note that this method succeeded in getting more samples from the most common

malware families. Overall, we have collected malware samples that varied across approx-

47

imately 800 malware variants, with the date of discovery varying between 08.12.1997

(Infostealer) [160] and 22.10.2015 (W32.Xpiro.I) [161]. During the samples collection

process, we only considered malware and benign samples in the portable executable (PE)

file format. Benign executables were collected from a fresh installation of Windows XP

and several official websites; e.g. Microsoft, Adobe and others. All the executables were

sent to the Virustotal [184] website to retrieve the scanning results from multiple vendors

(e.g. Symantec, Kaspersky, Avira, ClamAV), and to ensure the integrity of the benign

samples.

3.4 Feature Extraction

After samples have been collected, each needs to be analysed using static or dynamic

analysis (as described in Chapter 2); thus, information regarding the behaviour of this

sample could be recorded. The information collected at this stage can be viewed as

raw data. In this thesis, we are concerned only with behaviour-based malware detection

techniques and with analysing and extracting raw features of the malware using dynamic

analysis techniques only.

When the analysis is complete, the required input can be extracted from the raw data

documented; it would then need to be transformed into a reduced representation, so that

each sample in the dataset could be represented by a set of features. In malware detection

tasks, different type of features could be used to represent binary files; the most common

types of features include:

• Application Programming Interface (API): the Windows API describes a set of

functions and routines provided by the Windows operating system, which can be

used by a programmer when developing a Windows application. These functions

offer access to a number of services to facilitate interacting with the operating sys-

tem. Thus, monitoring these functions’ calls and their parameters can give a good

representation of the behaviour of any application including malware [52].

48

• Samples’ actions: This can be documented by some analysis tools, such as Anubis.

The actions recorded include opening or reading a file; creating, deleting or opening

a registry key; connecting to the internet or creating a mutex [14].

• Operational Codes (or Opcodes): These refer to the portion of a machine language

instruction that specifies the operation to be performed [210]; examples include,

mov, push, call, pop . . . etc.

The process of extracting and transforming the raw features is described in Subsec-

tions 3.4.1 and 3.4.2, respectively.

3.4.1 Behaviour Monitoring

In behavioural monitoring, one or more dynamic analysis tools are used to obtain a

detailed trace of the actions the suspicious file performs during its execution. The principal

aim of this procedure is to extract a set of features which can then be used as input for

the malware detection process. We used two well known (as shown in the literature)

malware analysis tools: an open-source, local-based sandbox (i.e. Cuckoo sandbox) and

an online-based sandbox (i.e. Anubis). The following subsections present an overview of

these two tools.

Anubis

Anubis is an online-based dynamic analysis tool, which runs binaries for 4 minutes in an

emulated PC environment in which Windows XP SP3 is installed. The logs generated

by Anubis are saved in XML, HTML and TXT formats, and they contain system actions

and network activities, such as creating, modifying or deleting a file; reading, writing, or

creating a registry key or value, and loading a Dynamic-link library. In order to submit

malicious and benign samples to Anubis, a Python script written by Anubis developers was

used [10]; whereas we developed a script to retrieve XML reports after the analysis phase

was completed. A snapshot of a report generated by Anubis can be seen in Listing 3.1.

49

Listing 3.1: A snapshot of a report generated by Anubis.

1 <reg_value_modified count="1" key="HKU\S
-1-5-21-842925246-1425521274-308236825-500\Software\Microsoft\
Windows\CurrentVersion\Policies\Explorer" value_data="0"
value_name="NofolderOptions"/>

2 <reg_value_modified count="1" key="HKU\S
-1-5-21-842925246-1425521274-308236825-500\Software\Microsoft\
Windows\CurrentVersion\Policies\System" value_data="1" value_name=
"DisableRegistryTools"/>

3 <reg_value_modified count="1" key="HKU\S
-1-5-21-842925246-1425521274-308236825-500\Software\Microsoft\
Windows\CurrentVersion\Policies\System" value_data="0" value_name=
"DisableTaskMgr"/>

4 <reg_value_modified count="1" description="auto_start" key="HKU\S
-1-5-21-842925246-1425521274-308236825-500\Software\Microsoft\
Windows\CurrentVersion\Run" value_data="C:\WINDOWS\system32\regsvr
.exe" value_name="Msn Messsenger"/>

5 <reg_value_read count="1" key="HKLM\SOFTWARE\CLASSES\.EXE" value_data
="exefile" value_name=""/>

Cuckoo Sandbox

Cuckoo Sandbox is an open source automated malware analysis system. The sandbox

executes samples in a controlled environment (Virtual Machines) for 2 minutes, and gen-

erates reports in JSON, HTML and TXT formats, with API calls, system traces, network

activities in .pcap file. To reduce the analysis time, Cuckoo Sandbox was configured to

use three VMs instead of one where all will run simultaneously on a host machine run-

ning Ubuntu 14.04. Windows XP SP3 was selected to be installed on the VMs during the

analysis phase, as all the malware samples collected, from 08.12.1997 up to 22.10.2015,

can run on this system, according to the Symantec’s systems affected information for each

malware family. In addition, Windows XP SP3 is widely used to analyse malware [33, 135]

for numerous reasons, including the fact that it demands less memory and CPU [135].

After the analysis stage is complete, the sandbox saves behavioural logs locally for further

analysis of the executables. A snapshot of a report generated by Cuckoo Sandbox can be

seen in Listing 3.2.

Once the analysis is completed and the reports with the raw logs are received, in

50

Listing 3.2: A snapshot of a report generated by Cuckoo Sandbox.

1 "process_path": "C:\\Documents and Settings\\nnnnnn\\Local Settings\\
Temp\\002
aba90c1034916ee59e3d93d8dd574c0d28319fdc1b0e3478bac5efd47a0c6.exe"
,

2 "calls": [
3 {
4 "category": "registry",
5 "status": 0,
6 "stacktrace": [],
7 "last_error": 0,
8 "nt_status": -1073741515,
9 "api": "NtOpenKey",

10 "return_value": 3221225524,
11 "arguments": {
12 "key_handle": "0x00000000",
13 "desired_access": "0x80000000",
14 "regkey": "HKEY_LOCAL_MACHINE\\Software\\Microsoft\\

Windows NT\\CurrentVersion\\Image File Execution
Options\\ntdll.dll"

15 },
16 "time": 1462563966.375,
17 "tid": 748,
18 "flags": {
19 "desired_access": ""
20 }
21 },

either JSON or XML format, the reports are automatically parsed with the implemented

parser, so that the documented actions of malicious or benign executables, and the other

information recorded in the report can then be added to a local Postgres knowledge-

base to ease the process of retrieving the required information. We also implemented

a Python script to extract all the information found on the Symantec’s Threats, Risks

& Vulnerabilities [169] web pages to collect other valuable information, such as details

regarding malware types, the discovery date of each malware family, the risk level and

the systems affected.

Although the information detailed in the reports has been added to the database in

order to ease the access and simplify the information query process; in cases where data

are to be used as an input for a machine learning-based detection system, it needs to be

51

transformed into a feature vector, that is, a more suitable representation for the learning

algorithm. This process is usually referred to as the feature transformation process. The

following subsection describes this process in detail.

3.4.2 Feature Transformation

After parsing the analysis reports and processing all the raw information included, the

data then needs to be transformed into a suitable set of features or vectors to support

the learning and detection process. The process of transforming the raw features can be

achieved through Tokenisation, and Vectorisation [26]. The following subsections describe

those sub processes in detail.

• Tokenisation

The raw data extracted are used to generate a list of strings of a given size (tokens),

where each individual token is considered as a feature. The set of features at this

stage is referred to as a Bag-of-words or as a Bag of n-grams representation. In

the simplest form of the Bag-of-words (Bag of n-grams) model, a collection of single

words (also known as unigrams) is produced. In this case, only the word counts or

occurrence is important and little attention is paid to the order of the words; this

additional information can be important, especially in a malware detection context,

as the features’ order represents the captured behaviour. Therefore, other n-gram sizes

could be used to extract the tokens, where the token not only contains a single word,

but also preserves sequences of two, three or more words; thus it can be considered as

taking a snapshot of the malware behaviour.

• Vectorisation

When passing the features (i.e. the extracted tokens) to a machine learning algorithm,

the feature set needs to be converted further to a numeric representation, in order to

generate feature vectors, in which different weights for n-grams could be computed,

such as:

52

• Term presence, also called binary vector representation, where ‘0’ refers to the

absence of a specific token and ‘1’ denotes its presence.

• Term frequency, refers to the number of times a token is found in a malware or

benign sample.

In this thesis, according to the detection technique used, different malware features’

types (discussed in Section 3.4), and feature transformation methods were used. These

choices can be summarised briefly:

• In Chapter 4, due to the fact that the features will be used as an input for an ML-

based detection system, we used the API calls, generated by Cuckoo Sandbox, to

represent each executable as they offer a good representation of malware behaviour.

We carried out a comprehensive investigation to identify the most suitable bag-

of-n-grams representation; where unigram, bigram, a combination of unigram and

bigram, and trigram representation have been evaluated. Using unigrams suggests

that the sequence of API words is unimportant, where we simply check if a word

is present or not. By using bigram and trigram, the feature vector will not only

contain a single API word but also preserve the sequence of two and three words,

respectively, which can be considered as taking a snapshot of the malware behaviour.

We used the unigram+bigram as it showed that it can result in more generalisation

compared to other n-gram sizes. The full details of the analysis has been documented

in Subsection 4.3.3.

• In Chapters 5 and 6, instead of passing the behavioural vectors to the malware

detector, individual features were used to detect malware. The features were broken

down into tokens, where each represents a full registry path. The resulting features

were used to identify the existence of a malware infection based on the registry

paths accessed either, to modify, read, create or delete a specific registry key. The

two Chapters mentioned used samples analysed by Anubis sandbox. Full details of

the feature generation process in Chapter 5 and 6 is documented in Section 5.2

53

and Subsection 6.3.1, respectively.

3.5 Malware Statistics

As a result of the work carried out in this chapter, over 18,000 malware samples have been

collected, of which 13,047 samples were analysed using Anubis, and 5,410 were analysed

locally with Cuckoo Sandbox. The resulting knowledge-base contained different classes of

malware, in addition to a number of samples with overlapping characteristics, as malware

classes are known to be not mutually exclusive [62]. The percentage of each malware class

available in the overall knowledge-base is shown in Figure 3.2. Moreover, Figure 3.3 shows

the percentage of malware classes based on the dynamic analysis tool used to generate the

behaviour. The distribution of malware types presented here is comparable to malware

type distribution recorded by known security vendors during the same time period (e.g.

[131, 132]). Table 3.1, on the other hand, shows the top 10 malware variants analysed by

each analysis tool.

Figure 3.2: Malware samples categorised by their classes or types.

54

(a) Anubis (b) Cuckoo

Figure 3.3: Malware classes analysed by Anubis and Cuckoo Sandbox.

Table 3.1: The top 10 malware variants analysed by each sandbox
Anubis Cuckoo Sandbox

Malware Variant # Date Malware Variant # Date

Trojan.Gen 1067 2010/02/19 Trojan.Gen 202 2010/02/19

WS.Reputation.1 808 NA W32.Pilleuz!gen6 138 2010/09/29

Trojan Horse 335 2004/02/19 Trojan.Gen.2 137 2010/08/20

Trojan.ADH 294 2010/03/10 W32.Spybot.Worm 136 2003/04/16

Backdoor.Trojan 280 1999/02/11 Trojan.Gen.3 99 2013/08/06

W32.Spybot.Worm 280 2003/04/16 Downloader 99 2001/08/08

SMG.Heur!cg1 276 2015/08/28 W32.Pilleuz!gen40 98 2013/08/22

Downloader 272 2001/08/08 W32.Almanahe.B!inf 96 2007/04/15

W32.Sality.AE 253 2008/04/20 W32.Sality.AF 93 2014/01/02

Trojan.ADH.2 223 2010/08/30 W32.Sality.Y!inf 91 2007/03/16

3.6 Malicious Behaviour Observed

This section provides an overview of some of the activities carried out by the malicious

samples collected during the analysis process; examples of the activities covered are files

and registry activities. The aim of this section is to provide an insight into malicious

behaviour that is common across the different families and types of malware in our

knoweldge-base, and to show how an observed activity, such as a change in the reg-

55

Figure 3.4: Activities carried out on the system’s files and registries.

istry keys or values, could be used as an indicator of a possible malicious infection as will

be seen later on, in Chapters 5, and 6.

Figure 3.4 shows the percentage of malware samples for each of the malicious activities

carried out on the system’s files and registry. The figure shows that 71% of malware

samples created new files during the infection process; in particular, 436 samples created

a file under the “extensions” folder, which belong to the Firefox browser; this can be for the

purpose of monitoring users’ browsing activities (e.g. stealing their sensitive information,

such as passwords, financial information and others). Also 1173 samples created files under

the “\Temporary Internet Files\Content.IE5” folder. This folder is a preferred place for

malware to download their extra files in preparation for further malicious activities (e.g.

attacking or exploiting vulnerabilities in the infected system). The reason for choosing

such a folder to download the malicious files might be because it is hard for users to

inspect it, due to the large number of cached files present in that location [199, 122].

Figure 3.4 shows a large percentage of the malware deleted files from the infected

56

extensions
\Temporary Internet Files\Content.IE5

system. By analysing most of these deleted files we found the majority were from the

system “temporary” folders, such as “\Temporary Internet Files\Content.IE5”, suggesting

that the malware was trying to hide itself by deleting previously created files.

Table 3.2: Overview of the observed registry activities
ID Registry paths %

Reg1 \SYSTEM\CurrentControlSet\Services\SharedAccess\Parameters\
FirewallPolicy\StandardProfile\AuthorizedApplications\List\

4.21

Reg2 \Software\Microsoft\Windows\CurrentVersion\Run\ 27.21
Reg3 \Software\Microsoft\Windows\CurrentVersion\policies\system\ 10.51
Reg4 \Software\Microsoft\SystemCertificates\TrustedPublisher\Certificates\ 1.06

In terms of the registry activities, Figure 3.4 suggests that malware typically tends to

access registry keys to read a value, while only a small percentage of malware (i.e. 11%)

deleted a value during the infection. Malware can access a single registry path, such as

‘/SOFTWARE/Microsoft/Windows/CurrentVersion/policies/system’ to carry out various

malicious activities, e.g. modifying values like “DisableTaskMgr”=1, “DisableRegistry-

Tools”=1 or “EnableLUA”=0 which indicates, respectively, disabling registry editing

tools known as regedit, the Windows task manager, or the User Account Controls (UAC)

responsible for notifying the user when a program is trying to make changes to the com-

puter like installing software. We have checked whether malware accessed some interesting

registry paths, which are listed on Table 3.2. As mentioned above, each of the listed paths

can be accessed and modified in various ways to adopt different functionalities; malware

can add a new value to Reg1 to bypass the Windows firewall and connect to the inter-

net without making the Windows firewall trigger any warning. While malware access a

registry such as Reg2 either, to infect executables that run at Windows startup, or to

add the malware to the startup list. On the other hand, Reg3 can be modified to disable

the registry editing tools like regedit, the Windows task manager, or the User Account

Controls (UAC), which is responsible for notifying the user when a program is trying to

make some changes to the computer such as installing software. Also, malware can access

Reg4 for installing their own certificate as trusted.

During the analysis process, we have also seen a number of malware samples that tried

57

temporary
\Temporary Internet Files\Content.IE5
\SYSTEM\CurrentControlSet\Services\SharedAccess\Parameters\FirewallPolicy\StandardProfile\AuthorizedApplications\List\
\SYSTEM\CurrentControlSet\Services\SharedAccess\Parameters\FirewallPolicy\StandardProfile\AuthorizedApplications\List\
\Software\Microsoft\Windows\CurrentVersion\Run\
\Software\Microsoft\Windows\CurrentVersion\policies\system\
\Software\Microsoft\SystemCertificates\TrustedPublisher\Certificates\
`/SOFTWARE/Microsoft/Windows/CurrentVersion/policies/system'

Listing 3.3: A snapshot of the report generated by Cuckoo Sandbox for
W32.Ramnit.B!gen2 malware variant.

1 "families": [],
2 "description": "Tries to unhook Windows functions monitored by Cuckoo

",
3 "severity": 3,
4 "marks": [
5 {
6 "call": {
7 "category": "__notification__",
8 "status": 1,
9 "stacktrace": [],

10 "api": "__anomaly__",
11 "return_value": 0,
12 "arguments": {
13 "subcategory": "exception",
14 "tid": 1084,
15 "message": "Encountered 1025 exceptions, quitting.",
16 "function_name": ""
17 },
18 "time": 1463475488.0,
19 "tid": 1084,
20 "flags": {}
21 },
22 "pid": 796,
23 "type": "call",
24 "cid": 1039
25 }
26],
27 "references": [],
28 "name": "antisandbox_unhook"

58

Table 3.3: Unique API calls made only by malware
API call # malware API call # malware

NtCreateThread 38 CreateDirectoryExW 1

RtlCreateUserThread 35 CertOpenSystemStoreW 23

CryptGenKey 5 NtCreateProcess 1

DnsQuery A 27 RtlDecompressBuffer 107

GetBestInterfaceEx 1 Thread32First 233

RtlCompressBuffer 1 InternetWriteFile 1

NtLoadDriver 14 NtSaveKey 11

GetKeyboardState 107 FindFirstFileExA 27

Thread32Next 234 NtMakeTemporaryObject 7

WSASendTo 6 NtDeleteFile 3

GetAddrInfoW 3

to evade being analysed by unhooking Windows functions monitored by the used sandbox

(Cuckoo Sandbox in this case); this caused the sandbox monitor to throw as many as 1025

exceptions. An example of such samples was W32.Ramnit.B!gen2; Listing 3.3 shows a

snapshot of the report generated after analysing the malware sample.

3.6.1 API Call Statistics

Besides the registry and files activities presented in the previous section, we have also

examined the use of API function calls, which have been used as an input for the machine

learning-based detection system presented in Chapter 4. We found that a total of 286 API

functions were called, where most of them were shared among the two classes, malware

and benign. However, after analysing those APIs further, we noticed that some of them

were called by one class only and not the other. In the case of benign samples, there was

only one unique API that was not used by malware, i.e. NtDeleteKey, whereas there

were 21 unique API functions called only by malware. Table 3.3 shows those APIs which

were called only by malware, along with the number of malware samples that made each

call.

59

3.7 Conclusion

In this chapter, we reported the process of collecting a large and representative malware

corpus, which can provide a rich and varied set of features to be used for the purpose

of malware detection. We described the process of downloading, analysing and storing

the raw malware features. We used the information gathered to generate an intermediate

feature representation to be used as an input for different malware detection approaches,

which are presented in the subsequent chapters. The contents of this chapter forms an

important source of information for this thesis, as all the works presented were possible,

and have been evaluated using features from the knowledge-base that has been presented.

60

61

CHAPTER 4

ANALYSIS OF THE MISCLASSIFICATION OF
MACHINE LEARNING-BASED MALWARE

DETECTION SYSTEMS

4.1 Introduction and Motivation

Past research has shown that machine learning-based detection systems can detect new

malware using the knowledge derived from training a classifier on previously discovered

and labeled malware samples (e.g. [12, 56, 136, 68]). However, due to the fact that

malware is evolving and its behaviour can change, as in the case of exploiting a new

vulnerability [187], or an attempt of malware writers to evade detection, malware could

remain undetected, and therefore, be classified incorrectly as benign.

In this chapter we investigate the reasons behind the misclassification of malware, so

that a deeper understanding of the causes could be developed, and therefore, the appro-

priate mitigation method could be used. We tracked changes adopted by the misclassified

malware instances, and we investigated whether there was a recognisable pattern across

these misclassified samples. In summary, in this chapter we have investigated the following

sub-questions:

• Does misclassification increase over a period of time?

• Does misclassification occur in malware at the level of families, where all instances

62

that belong to specific new malware families are misclassified?

• Alternatively, does misclassification occur at the level of variants, and it is not

related to malware families?

• When misclassification does occur can we find the reason for it?

In order to answer these questions, we used 5,410 malware samples, from approxi-

mately 400 variants drawn from 200 malware families. We built a classifier based on

our malware and benign samples. We then conducted multiple experiments: in the first

experiment we ran the classifier on new malware grouped by their year of discovery. In

the second experiment we grouped each new malware family into its available variants.

We recorded the detection rate resulting from each group, in each experiment, in order

to answer the research questions mentioned above. We used two different, widely known

classification algorithms in the context of malware detection (as discussed later on in this

chapter, p. 67): Support Vector Machines (SVM), and Decision Trees (DT) as a base

for our classifier to ensure that the results produced were not dependent on a specific

classification algorithm.

We proceed as follows: Section 4.2 gives a sketch of the approach followed to answer the

questions above. The classifier design, along with the experiments’ results are described

in Sections 4.3 and 4.4, respectively. The analysis is then presented in Section 4.5,whereas

Section 4.6 describes the related work and determines how the current work presented

differs. Section 4.7 discusses the research outcomes and outlines the conclusion.

The contents of this chapter are based primarily on one of our contributions to the

literature (Alruhaily et al. [7]).

4.2 Sketch of the Approach

This section describes the approach employed to fulfil the main objective of this chapter,

which is checking the reasons behind the misclassification. The work presented in this

63

chapter can be divided into the following tasks:

1. Collecting and analysing malware (described previously in detail in Chapter 3).

2. Building a typical ML-based detection system (i.e. a classifier). This task includes:

• Extracting and determining the features that will be used when classifying the

data.

• Assessing the performance of the implemented classifier.

The feature extraction step is described in Subsection 4.3.1, while the system archi-

tecture is illustrated in Subsection 4.3.3.

3. Classifying large grouped datasets. Following the previous task, we classified large

datasets which have been grouped into:

• Years: in order to check whether there is a notable change in malware behaviour

over time, which might result in a change in the classification rate in one of

the years. We chose one year intervals based on the amount of data we have,

as it was the minimum period which was able to produce a stable results.

• Variants: in order to check whether these changes, which affect the detection

rate, could be traced back to specific malware families where all their variants

are hard to detect, or just to particular variants, without the family member-

ship being a factor.

The details of these two experiments are described in detail in Section 4.4.

4. Analysing the misclassified instances, which includes analysis of the misclassification

that occurred, and identification of its reasons. The analysis is discussed in Sec-

tion 4.5.

64

4.3 Building a Classifier

In this section, we discuss the process of extracting the features that were used in addition

to the classification procedure. This section also includes the metrics that were used to

measure the performance throughout this chapter.

4.3.1 Feature Extraction

The different features’ types used for malware have been described in detail in Chapter 3

p. 48. We used the API calls as our dynamic features as they have been widely used as

behavioural features for such systems, and they also show that they can offer an accurate

representation of malware behaviour [53, 54, 176, 136, 68]. Additionally, it is also worth

noting that relying on behavioural analysis helps to avoid problems when dealing with

some cases (such as malware obfuscation). Based on some preliminary tests, we found

that the term frequency weight, (described earlier in Chapter 3, p. 53), of the APIs did

not improve the classification any further, which is similar to the conclusion reached by

[176], where only information related to the presence of an API is important and not the

frequency. Thus we used the binary vector representation of the extracted APIs where ‘0’

refers to the absence of an API call and ‘1’ denotes its presence.

In order to transform the feature from the textual nature to vectors to be used as

an input for a machine learning algorithm, we adopted a bag of n-gram representation

(described in Chapter 3 p. 52) to represent the API call sequence, as it is widely used

as a means for detecting malware and it shows promising results [5, 54], where unigram,

bigram, a combination of unigram and bigram, and trigram have been evaluated. Using

unigrams means that the sequence of API words is unimportant, where we simply check

whether a word is present or not. By using bigram and trigram, the feature vector will

not only contain a single API word; it will preserve the sequence of two and three words,

respectively, which can be considered as taking a snapshot of the malware behaviour. We

have documented the classifier performance when using each of the n-gram representations

65

in Subsection 4.3.3, where the classifier’s design is described, along with the process of

assessing its performance.

We also believe that using a hybrid analysis (both static and dynamic features) can

boost the detection rate further. However, as we intend to use the classifier in check-

ing malware behaviour in different scenarios: over time and with malware grouped into

variants; static analysis is beyond the scope of this chapter.

4.3.2 Evaluation Metrics

To evaluate the performance of the classifier we have used a confusion matrix (described

in Chapter 2 p. 25). Metrics derived from the confusion matrix were used to define four

further performance metrics, which have been used throughout this chapter:

1. Sensitivity (recall): measures the proportion of true positives: Sensitivity = TP
TP+FN

2. Specificity: measures the proportion of true negatives: Specificity = TN
TN+FP

3. The Geometric mean (G-mean): also known as the macro-averaged accuracy [55], is

the geometric mean of recall over all classes. It is recognised in the field of machine

learning as a more accurate measure of performance than the normal accuracy in

an unbalanced classification scenario, as it considers the accuracy of both classes:

the majority and the minority [99][85]. The G-mean can be calculated as follows:

G-mean=
√
Sensitivity · Specificity

4. The area under the receiver operating characteristic curve (i.e. the area under

the ROC curve, or for short AUCROC) [77]: The ROC curve is a graphical plot that

illustrates the performance of a binary classifier. The curve is created by plotting the

true positive rate (sensitivity) against the false positive rate (1-specificity) at various

thresholds. The value of AUCROC can vary between 1.0 and 0, where 1.0 indicates

a perfect classifier with an ideal separation of the two classes, and an AUCROC

of 0.5 represents worthless classifier. AUCROC is insensitive to class imbalance; if

66

the majority labels of the data are positive or negative, a classifier which always

outputs 1 or 0, respectively, will have a 0.5 score although it will achieve a very

high accuracy. We calculated the AUCROC score based on the functions provided

by the Scikit-learn library, where the library offers a wide range of machine learning

algorithms and tools [149].

Both metrics, G-mean and AUCROC, are commonly used to evaluate the imbalanced

data classification performance. However as AUCROC considers all the possible thresholds,

it is commonly used to assess the performance when choosing the best model that will

be used during the classification procedure. Therefore we will be using both G-mean and

AUCROC to assess and choose the best model in Section 4.3.3, while we will be using

the G-mean, which represents the balanced accuracy, as our main metric when classifying

malware based on their year of discovery in Section 4.4.1. In Section 4.4.2 we will be using

sensitivity as our main metric as it conforms with the goal of our second experiment, which

focused on the classifier’s ability to correctly identify malicious instances without adding

any noisy data related to the benign samples.

4.3.3 Classifier Design

For our classifiers, we used Support Vector Machine and Decision Tree algorithms as base

classifiers due to the fact that they are widely known machine learning algorithms [40,

91]. In addition, they have shown State-of-the-Art results in a number of classification

problems, including classifying and recognising new malware [206, 207, 204, 101, 5, 93].

SVM and DT classifiers were implemented based on the linear kernel function, and C4.5

algorithm, respectively. The classifiers were also used with their default parameters as

provided by the Scikit-learn library (version 0.17.1).

As mentioned previously, we have also evaluated their performance with different sizes

of n-grams: unigram, bigram, unigram+bigram and trigram, as shown in Table 4.1, and

we have chosen the best settings for each classifier. In the case of SVM, the bigram and

67

the unigram+bigram both gave us the best results; however, as our aim is to test malware

discovered in the followed years where a match of an exact sequence might not be found,

we thus preferred to use the unigram+bigram, which will result in more generalisation

as it tests the occurrence of a single API word, in addition to a sequence of two APIs

together.

Table 4.1: Classifiers’ performance on different n-gram sizes.
SVM DT

Feature set G-mean AUCROC G-mean AUCROC

APIUni 0.92519 0.97163 0.92796 0.97203
APIBigram 0.93965 0.97681 0.91791 0.96815

APIUni+Bigram 0.94041 0.97692 0.91965 0.96865
APITigram 0.92465 0.97079 0.89926 0.95985

We have an imbalanced dataset; where the malware class represents the majority class.

The class imbalance is a common problem in the area of machine learning in general [202],

and in malware detection in particular [116, 205]. Such a problem occurs when the number

of instances in each class varies (as described in Chapter 2, p. 24). In malware detection

systems, the imbalance problem is due to the fact that malware can be downloaded in

large numbers from open access database such as OpenMalware [127], VXHeaven [186],

VirusShare [183], whereas it is more difficult to gather benign samples [107]. The imbal-

ance problem can affect the classification process as the classifier becomes more biased

towards the majority class. To avoid the effect of this problem, we tested a well-known

approach in the area of machine learning that is referred to as Exactly Balanced Bag-

ging [34, 85, 87], (described in Chapter 2, p. 24). This approach is based on classifying

balanced subsets; it is a modified version of Bagging [27], a method that has been used

extensively in malware detection systems with different base classifiers and which gives a

considerably higher detection rate than the normal classifiers [204], even with an imbal-

anced dataset [134]. To the best of our knowledge, this work is the first that has used

EBBag for malware detection.

Bagging (as described in Section 2.3.1), is a classifier ensemble technique that is based

68

Figure 4.1: The EBBag model

on randomly drawn subsets of the training data. Each time a subset is drawn, a classifier

will be constructed to classify the newly generated subsets. The classification procedure

is repeated a number of times (we used 100 times, as in [204]) and majority voting over

all predictions is calculated as the final prediction to ensure the robustness of the results.

Our framework implemented the EBBag approach, which is based on Bagging, but

with a minor modification to the way the subsets are drawn. In EBBag, the entire

minority class is used for each classifier, along with randomly generated subsets of the

majority class, which are the same size as the minority class, so balancing the data. The

procedure of generating smaller samples is known as “downsampling”. Figure 4.1 depicts

the classifier model.

We ran five tests to compare Bagging with EBBag, calculating the classification rate

of randomly chosen malware and benign samples, with a malware to benign ratio varying

between 2:1 and 10:1. We performed 10-fold cross validation and compared our adopted

69

Figure 4.2: Classification rate with different ratio of malware samples to benign.

approach, EBBag, to the Bagging approach with the same base classifier (SVM) and the

best n-gram size. The results of these tests are shown in Figure 4.2. The Figure shows

the true positive rate (sensitivity), the true negative rate (specificity) and the AUCROC

recorded for each approach. We note that Bagging becomes increasingly inaccurate as

the data becomes more imbalanced. So the figure indicates that imbalanced data will be

part of the cause of the misclassification rate in papers that use Bagging alone to classify

malware.

By using EBBag, it can be seen that the measures: sensitivity and specificity, which

represent the accuracy of the malicious and benign classes, respectively, have not been

affected by the imbalance problem. Also, the false positive rate (1-specificity) is signifi-

cantly decreased from 0.29 to 0.07, where a false positive occurs when a classifier flags a

benign file as malicious by mistake; this is usually costly as it consumes a considerable

amount of resources and time. Therefore, this analysis shows that EBBag outperforms

Bagging when dealing with an imbalanced dataset; thus we use EBBag for the rest of the

work.

70

4.4 Classifying a Large Grouped Dataset

As mentioned previously, in order to answer the main research questions of this chapter

we have followed two methods when testing the data:

1. Classifying all malware based on the year of discovery.

2. Classifying malware based on malware variants.

Sections 4.4.1 and 4.4.2 describe in detail the process used in these two methods.

4.4.1 Classifying Malware Based on the Year of Discovery

In our first experiment, we tested the classifier using data grouped by year in order to

check whether there was a notable change in malware behaviour over time; this will be

represented as a change in the classification rate (as described in Subsection 2.3.4). We

divided the entire test set into years from 2007 to 2014, based on the discovery date

recorded by Symantec; accordingly, we ended up with 8 testing sets. We chose one year

intervals based on the amount of data we had, as it was the minimum period which was

able to produce stable results; i.e. with a minimum fluctuation in the classification rate,

where the fluctuation was mainly due to the lack of malware samples for smaller intervals

(e.g. months or weeks). The initial training set included samples until 2006. Each time,

the training set was evaluated separately on each of the years followed; so for the initial

training set it was evaluated on malware discovered from 2007 to 2014. We repeated the

experiment by extending the training set to include the year followed and testing on the

remaining years.

Figure 4.3 shows the averaged accuracy (G-mean) recorded by our framework on data

trained on real malware samples. Most of the results showed that the classifier can main-

tain a score above 80%, which is comparable to other works in the area of malware

detection, especially in studies whose focus was to explore the effect of time on the mal-

ware classification rate (e.g. [81]). It can also be seen that the more the data included

71

(a) Using SVM (b) Using DT

Figure 4.3: Malware tested yearly.

in the training phase, the higher the G-mean score for the following year will be, except

for some cases where a new family was introduced (such as in 2009 and 2010), or where

a new variant with a slightly different behaviour was introduced such as in 2012 with

W32.Ramnit.B!gen2. In the case of this family, although some variants of the malware

family W32.Ramnit were introduced before 2012 and the system was trained on some

of them, it seems that the W32.Ramnit.B!gen2 variant which was introduced in 2012

implements some anti-sandboxing techniques, where the malware tried to unhook Win-

dows functions monitored by the sandbox, causing the Cuckoo monitor to throw 1025

exceptions. A snapshot of the report generated for this variant is shown in Chapter 3

p. 58.

However, from Figure 4.3 we can conclude that the detection rate is not consistently

affected by the passage of time; instead, the classifiers, generally, can continue providing

a good detection rate. Thus, to analyse the results further, we carried out another ex-

periment which is explained in the next section. The experiment aimed to check whether

the misclassification caused by the changes in malware behaviour can be traced back to

a number of malware families or even to sub-families (a.k.a variants).

72

4.4.2 Classifying Malware Based on Malware Variants

In this experiment we tested seven malware families (broken down into variants) in order to

check whether the misclassified malware instances were a result of undetected behavioural

changes at the malware family level, or whether they were caused by other changes in the

level of variants.

The experiment was conducted for seven families, namely: W32.Changeup, W32.-

Pilleuz, W32.Imaut, W32.Sality, Trojan.FakeAV, Trojan.Zbot and Trojan.Gen. The

remaining families were not used due to an insufficient amount of samples for each partic-

ular variant in the available data set. These seven families correspond to a total of 2737

malware samples. For testing each of which families, we trained the classifier on malware

data prior to 2007. This is because we would have after this date a reasonable number of

malware families grouped into variants to carry out the testing process.

We used sensitivity here as our main metric in the experiment (referred to in the table

as Sens) to measure the detection rate as it conforms with our goal, which is focusing

on the classifiers’ ability to correctly identify those malicious instances without adding

any noisy data related to the benign samples, unlike the G-mean metric, (i.e. used in the

previous experiment), which provides the averaged accuracy of the two classes.

Table 4.2 shows the results of classifying each of the malware families, including their

available variants. It shows that most of the behavioural changes, which caused the

misclassification of malware, could be traced back to a number of variants without the

family membership being a factor; meaning that in most cases we would not expect the

changes to be replicated across variants of the same malware family. This implies that

we might see a single variant that was hard to detect in a family of malware in which

the other variants could be reliably detected. Therefore, due to the fact that there is no

absolute pattern (as seen in Table 4.2) between the misclassification rate and the malware

family, nor with the discovered year of each of the variants, it could be concluded that,

the misclassification could be mostly linked to several malware variants and it cannot be

traced back to the discovery date of each of the tested variants, nor to changes at the

73

Table 4.2: Malware tested by classifiers trained before 2007
Variants # Date SVM-Sens DT-Sens

C
h
an

ge
u
p

W32.Changeup 41 18/08/09 0.98 0.98
W32.Changeup!gen9 48 02/09/10 1.0 1.0
W32.Changeup!gen10 47 02/02/11 1.0 1.0
W32.Changeup!gen12 47 11/08/11 1.0 1.0
W32.Changeup!gen16 51 20/07/12 1.0 1.0
W32.Changeup!gen44 76 01/08/13 0.99 1.0
W32.Changeup!gen46 67 28/05/14 1.0 1.0
W32.Changeup!gen49 64 20/08/14 0.94 1.0

P
il
le

u
z

W32.Pilleuz!gen1 47 19/01/10 0.77 0.68
W32.Pilleuz!gen6 138 29/09/10 0.88 0.86
W32.Pilleuz!gen19 70 17/01/11 0.97 0.79
W32.Pilleuz!gen21 64 29/03/11 0.28 0.03
W32.Pilleuz!gen30 46 01/02/12 1.0 1.0
W32.Pilleuz!gen36 60 07/02/13 1.0 1.0
W32.Pilleuz!gen40 98 22/08/13 1.0 1.0

Im
au

t

W32.Imaut.AA 68 07/06/07 0.97 0.80
W32.Imaut.AS 45 01/08/07 0.84 0.84
W32.Imaut.CN 73 20/02/08 0.85 0.92
W32.Imaut.E 64 23/12/08 0.88 0.83

W32.Imaut!gen1 46 20/09/10 0.24 0.04

S
al

it
y

W32.Sality.X 46 12/01/07 0.96 0.93
W32.Sality.Y!inf 91 16/03/07 0.98 0.98
W32.Sality.AB 55 11/01/08 0.02 0.02
W32.Sality.AE 71 20/04/08 0.93 0.87
W32.Sality.AM 51 18/04/09 0.80 0.75
W32.Sality!dr 71 31/08/10 0.80 0.80

W32.Sality!dam 54 30/04/13 0.15 0.15
W32.Sality.AF 93 02/01/14 0.90 0.77

F
ak

eA
V

Trojan.FakeAV 41 10/10/07 0.68 0.85
Trojan.FakeAV!gen29 70 07/05/10 0.99 0.93
Trojan.FakeAV!gen99 38 08/03/13 1.0 1.0
Trojan.FakeAV!gen119 42 01/04/14 0.29 0.12

Z
b

ot

Trojan.Zbot 40 10/01/10 0.98 0.28
Trojan.Zbot!gen9 48 16/08/10 1.0 0.94
Trojan.Zbot!gen43 48 26/05/13 0.85 0.88
Trojan.Zbot!gen71 44 23/12/13 1.0 0.11
Trojan.Zbot!gen75 32 05/06/14 0.69 0.97

G
en

Trojan.Gen 202 19/02/10 0.48 0.77
Trojan.Gen.2 137 20/08/10 0.45 0.45
Trojan.Gen.X 52 12/01/12 0.42 0.42

Trojan.Gen.SMH 52 26/10/12 0.62 0.40
Trojan.Gen.3 99 06/08/13 0.61 0.60

74

level of the malware family (which would affect all of that familie’s future variants).

4.5 Reasons for Misclassification

The aim in this section is to analyse the classification results. This includes also outlining

the differences between the correctly classified and the misclassified variants and explain-

ing the reasons that may lead to the misclassification. Generally, from Table 4.2 we can

identify three misclassification cases, although most of the misclassifications occurred at

the level of variants. We can summarise the different misclassification cases as follows:

• Variants misclassified by both classifiers.

• Variants misclassified by only one classifier.

• Misclassification which occurred at the family level instead of variants.

4.5.1 Variants Misclassified by both Classifiers

Table 4.2 shows a case where more than 70% of malware samples that belong to spe-

cific variants were misclassified by both classifiers: SVM and DT. These variants are:

W32.Pilleuze!gen21, W32.Sality.AB, W32.Sality!dam, W32.Imaut!gen1 and Trojan.-

FakeAV!gen119.

In the case of the W32.Pilleuze!gen21, W32.Sality!dam and W32.Sality.AB vari-

ants, it seems that these variants had not performed any behavioural action when being

analysed. This can happen because the samples implemented some anti-virtualisation

techniques, or because they were looking for a specific argument, or because they were

corrupted files. All three variants mentioned terminated the process by calling NtTermi-

nateProcess. In the case of W32.Sality.AB and W32.Sality!dam they also adopted a

stealthiness technique, where they disabled the error messages through calling SetError-

Mode API with the arguments SEM NOGPFAULTERRORBOX — SEM NOOPEN-

FILEERRORBOX. After looking at the W32.Sality!dam page on Symantec [165], it

75

seems that this variant is considered as a corrupted file where it can no longer be exe-

cuted or infect other files. While removing all examples of misclassified corrupted malware

from our dataset would have been possible, we note no other work on malware classifi-

cation does this. Therefore, removing these samples would not reflect other work. The

W32.Imaut!gen1 worm, on the other hand, did not terminate the process; however, it

did not perform any network activity which might lead to its being misclassified. In fact,

only 2 samples out of the 46 carried out some network activities and both of them had

been classified correctly.

In the case of Trojan.FakeAV!gen119, the malware variant used an uncommon API,

(compared to others in our database), to connect to the Internet: InternetOpenW, Inter-

netOpenUrlW, which are the Unicode based API of the high-level Internet API: Windows

Internet (WinINet). The calls used by this variant take arguments in Unicode format,

while the older variants of this malware family used the ASCII based API calls instead: In-

ternetOpenA, InternetOpenUrlA. This raises the question: would normalising the API

by removing the appended characters such as A, W, ExW, and ExA when processing the

features, such as having only InternetOpen in the features set instead of multiple entries

increase the overall accuracy of API based classifiers?

To answer this question, we carried out another experiment by using all of our data

and normalised the Win32 API by removing the appended characters, such as A, W, ExA

and ExW. We then performed 10-fold cross validation to assess the performance of the

classifier, using the stemmed and un-stemmed features set. The results are shown in Ta-

ble 4.3. It can be seen from the Table that removing the appended letters did not have

a considerable impact on the classification rate. However, by removing the appended

characters we ended up with around 230 features instead of 280, without significantly

affecting the detection rate. Such an option can be considered to improve the efficiency of

the classifier and to minimise the time needed for the classification. We note that other

papers [144, 181, 143] use feature selection methods to reduce the number of features in

their datasets; however, they do not use API stemming, which Table 4.3 suggests might

76

be a helpful addition.

It is important to note that conclusions drawn in this section were based on the

assumption that the increase in the misclassification rate were mainly due to changes in

malware behaviour. However, there is another possibility that has not been considered

here, which is the reasonability of the features used by the classifier to predict the true

classes (i.e. malware or benign), and thus the effect of the choice of the classifier on the

misclassification rate. This aspect has been left for future work, as described later on in

Chapter 7, p. 124, where some advanced tools such as LIME [139], could be utilised to

explain the predictions of black box text classification algorithms such as SVMs.

Table 4.3: Performance on stemmed and un-stemmed features set.
un-stemmed

286 API

stemmed

∼∼∼ 230 API

G-mean AUC G-mean AUC
SVM 0.94747 0.94747 0.94681 0.94682
DT 0.92381 0.92393 0.91688 0.91701

4.5.2 Variants Misclassified by Only One Classifier

Another case which we have investigated can be seen in Trojan.Zbot and Trojan.Zbot!-

gen71, where nearly all their instances have been correctly classified by the SVM classifier;

however, DT failed to classify as many as 89% of the samples correctly. We analysed

random trees constructed by the classifier in order to be able to determine the reasons

behind the misclassification (Figure 4.4 shows an example of a simplified version of a

tree constructed by DT classifier). In the case of the Trojan.Zbot, it seems that the

absence of the call: SetWindowsHookExA was the reason for the misclassification on

almost all the variant’s samples. While in the case of the Trojan.Zbot!gen71 variant,

the correctly classified malware called the NtProtectVirtualMemory API to allocate a

read-write-execute memory. This API is usually called by malware binaries during the

unpacking process, and the absence of this call might indicate that the malware sample

77

Figure 4.4: A simplified version of the tree constructed by DT algorithm based on one
run of the EBBag classifier.

was not packed, which, in our case, led to the misclassification of the incorrectly classified

instances.

The analysis results of the misclassification occurred in both cases: when using SVM

classifier alone, or when using both classifiers, could give researchers valuable information

when interpreting the successful rate produced by a machine learning-based detection

system. The results also demonstrate the necessity of utilising a cleaning phase prior to the

classification of malware samples, as the effectiveness of the classification algorithm could

be greatly affected by the features fed into the classifier during the learning process [19].

4.5.3 Misclassification at Malware Family Level

Although most of the misclassification that we have seen occurred at the variant level,

there is a single case where the misclassification can be linked to the family instead, as

can be seen in Table 4.2 in the case of the Trojan.Gen family, where the SVM’s and

DT’s classification rate of all the available variants ranged between 40% and 77%. The

reason that this family is different from the others seems to be due to the fact that

this family is actually a category of varied Trojans whose definitions have not yet been

78

formulated, as mentioned by Symantec on the Trojan.Gen family page [167]. By checking

the misclassified samples and the paths that were taken by samples belonging to this

family, it could be seen that although the samples may share some general characteristics,

they adopted different techniques and thus the samples could behave in various ways

and take different paths on trees generated by DT classifier (approximately 15 different

behavioural paths), unlike other families where their behaviour was very uniform (2 or 3

paths).

As we have said, the behavioural profiles and definitions that resulted from this fam-

ily were varied and thus we are only giving examples for some of the misclassification

cases, as identifying all the reasons for the misclassification for this family would not

be possible. Many of the misclassified instances did not connect to the internet either,

because the malware were applying some anti-virtualisation techniques; an example of

this case is: Trojan.Gen.X; or they were terminating the process as a specific argument

had not been found, as in Trojan.Gen.3. In the case of Trojan.Gen.X, nearly half

of the misclassified samples belonging to this variant were monitoring the user window

by calling GetForegroundWindow and checking the mouse movement by calling the

GetCursorPos API. They also followed these calls by calling GetKeyState to monitor

the following keys constantly: the mouse keys, Alt, Ctrl, and shift key. The execution was

then delayed by going on a loop when monitoring these actions and NtDelayExecution

has also been called. These techniques have been noticed when analysing recent malware,

as reported by malware researchers in order to evade sandbox detection [147], and this

could be the reason why all the variants that used that technique were misclassified.

4.6 Comparison with the Related Work

In the following section we review the literature on malware classification and detection

systems that is directly related to our work, and we indicate how this work differs.

As seen in Chapter 2, most of the proposed ML-based malware detection systems have

79

been tested on either a limited or a current set of malware. This poses the need to examine

the effect of the passage of time on such malware detection systems and explore whether

this could affect the systems’ detection rate. Motivated by this, Islam et al. in [80] showed

that it is possible for current ML-based malware detection systems to maintain a high

detection rate even when classifying new ‘un-seen’ malware samples. They considered

two sets of malware in order to verify this idea, one collected between 2002 and 2007, and

the other collected from 2009 to 2010. In their experiment they dated malware based on

the collection date and they used static, behavioural, and a combination of both features

during their experiment.

Singh et al. [156] used three approaches to detect changes in the distribution of features

of malware, which can be a result of trying to evade the detection. They used relative

similarity, meta-features, and retraining a classifier. They focused in their experiments

on malware static features only, and on three malware families. Although the size of their

malware sample was limited, their work has also provided evidence in favour of negligible

change in regards to the tested features.

Shabtai et al. [151] on the other hand, used Opcode n-grams pattern as features. They

addressed a question concerning the time span within which a classifier would be able to

maintain an acceptably high detection rate, and when it should be updated with new

malware instances (i.e retrained). Their research showed that classifiers can maintain a

reliable level of accuracy. However, when testing malware released in 2007, a significant

decrease in the accuracy was observed. They have stated that this could indicate that

new types of malware were released during that year.

In this chapter we did not intend to propose a new machine learning-based malware

detection system; instead, our aim was to develop a deeper understanding of malware

behaviour and the misclassification rate resulting from using such detection systems. In

summary, our work on this chapter is different from the research mentioned above in the

following respects:

• In addition to looking at malware behaviour over time, we also tracked the misclas-

80

sification and investigated whether it can be traced back to malware families, or

even to variants.

• We also investigated the possible reasons that led to this misclassification and anal-

ysed the results.

4.7 Conclusion

In this chapter, we classified malware grouped by their year of discovery, in addition to

grouping them into malware variants. We tracked the misclassified malware instances

and we investigated whether there were recognisable patterns across these misclassified

samples. From our first experiment we found that classifiers can continue to give a high

detection rate even after a period of time, which means that there is no correlation be-

tween the passage of time and the misclassification that occurred, despite a minor rise

of the detection rate on the following year. We then concluded from our second exper-

iment that, mostly, there were few recognisable patterns between the misclassification

and malware families, as with the discovered year of malware variants. Instead, most

of the misclassifications can be traced back to several malware variants. This variation,

which occurred on the variant level, is due to the fact that some variants apply some anti-

sandboxing techniques, or due to that some samples were looking for a specific argument

to run, or due to the fact that some variants are actually considered as bad data. This

conclusion can help in interpreting the successful rate achieved when proposing a machine

learning-based detection system. It also demonstrates the need for carrying out a cleaning

process before transforming the features and before using them to train a classifier, as

this can affect the effectiveness of the proposed detection system by adding some noise to

the generated features; a fact that is usually not considered when proposing and assessing

the performance of a new malware detection system.

The situation where only some variants were unrecognisable might be due to the fact

that malware writers are not yet trying to evade ML techniques as they are still considered

81

as new techniques to detect malware, and have not been used as widely as the signature-

based ones. If these recognition systems became more common, it might be the case that

we would see more of these techniques to evade the detection by such systems.

82

83

CHAPTER 5

A PROBABILISTIC APPROACH FOR EFFICIENT
DETECTION OF MALWARE IN THE CLOUD VIA

FORENSIC VIRTUAL MACHINES

5.1 Introduction and Motivation

Behaviour-based malware detection systems are heavily dependent on features extracted

and collected from the systems examined (as seen in the previous chapter). It is thus

of the utmost importance that the information gathered is comprehensive, and trustwor-

thy; therefore, the infection status of the target system could be correctly identified. In

the case of cloud computing, a number of Virtual Machine Introspection-based malware

monitoring approaches (described in detail in Chapter 2, p. 31) have been proposed for

inspecting the cloud’s VMs in order to provide such information. These approaches are

characterised by being isolated from the infected system, making them hard to be tam-

pered with (i.e. trustworthy); and by retaining full visibility over the guest’s activities

(i.e. comprehensive). In addition to these advantages, such a VMI-based approach helps

in reducing the amount of VM resources used during the scan, as the monitoring process

is performed externally. The amount of resources used could also be reduced further by

subdividing the monitoring task between small scanners, where each scanner identifies a

single symptom, these small scanners are referred to in the literature as Forensic Virtual

Machines.

84

Forensic Virtual Machines (as described in Chapter 2, p. 34), which is an architecture

for using VMI technology, benefits from mini-VMs that perform a distributed monitoring

to detect symptoms of malicious behaviour from outside the target VM. To reduce the

costly use of resources; a single FVM is used for checking multiple VMs, rather than cre-

ating a dedicated FVM per VM. To arrange an FVM movement from one VM to another,

it is initialised with one of many pre-programmed strategies (i.e. mobility algorithms).

Mobility algorithms can vary from simple to dynamic algorithms such as scanning accord-

ing to a random movement, a pre-determined order, or based on more advanced scanning

algorithms. Although multiple algorithms have been introduced (e.g. in [69, 9]), there is

no work that provides a comparison of these algorithms. Identifying the most beneficial

mobility algorithm prior to the initialisation of FVMs is beneficial, as the creation of

FVMs is known to be a resource-intensive task [23].

This chapter presents a probabilistic approach that helps in identifying the most ben-

eficial mobility algorithm given parameters that represent the scanned environment, such

as the number of VMs, the deployed FVMs and the cost of false positives and false neg-

atives. The evaluation of the proposed approach showed that there was a considerable

difference in the scanning cost when using different mobility algorithm; therefore, the best

algorithm could be identified based on a comparison of the resulting cost of the scan (in

terms of the scanning resources used, and the accurate identification of infections).

We proceed as follows: Section 5.2 describes the symptoms used during the scan.

The main probabilistic approach is described in Section 5.3, while the framework that

was developed based on the approach and used to evaluate it is described in Section 5.4.

The results of the experiment along with the evaluation are then proposed in Section 5.5.

Section 5.6 reviews the related work, and describes how the contribution presented differs.

The chapter is then concluded with Section 5.7.

The contents of this chapter are based primarily on one of our contributions to the

research literature (Alruhaily et al. [6]).

85

Table 5.1: The configurations examined
Family S Registry paths

Popuppers

S1 /Volatile Environment/*

S2
/Software/Microsoft/windows/CurrentVersion/Internet

Settings/Connections/*

S3
Software/Microsoft/Windows/CurrentVersion/Internet

Settings/Zones/*

Rontokbro

S4 /Software/Microsoft/Windows/CurrentVersion/Explorer/Advanced/*

S5
/Software/Microsoft/Windows/CurrentVersion/Policies/Explor-

er/run/*
S6 /System/CurrentControlSet/Control/SafeBoot/*

Sality
S7

/CurrentControlSet/Services/SharedAccess/Parameters/Fire-
wallPolicy/StandardProfile/AuthorizedApplications/List/*

S8 /Software/Microsoft/Windows/CurrentVersion/Run/*
S9 /Software/Microsoft/Windows/CurrentVersion/policies/system/*

FakeAV
S10 /Software/Policies/Microsoft/Windows/Safer/CodeIdentifiers/*
S11 /System/CurrentControlSet/Control/Session Manager/*
S12 /Software/Microsoft/Windows/CurrentVersion/Internet Settings/*

5.2 Malicious Symptoms

In order to fully understand and follow the proposed probabilistic approach presented in

the following sections of this chapter, we describe in this section those symptoms which

will be examined during the scanning process by the set of FVMs. In the context of FVMs,

a symptom refers to a characteristic that might arise as a part of malicious behaviour, such

that its existence could indicate a malicious infection [69]. Examples of symptoms have

been shown earlier in Chapter 3, p. 55; symptoms could include missing processes (e.g.

Antivirus agents)[76], modifying registry keys or values, and changing the file attributes

(e.g. the creation time)[21].

Registry key manipulations have been used here as symptoms, because they offer a

wealth of information as sources of forensic evidence [31, 105]. We grouped the set of

symptoms into configurations (as in [69]), where C = {c1, c2, ..., cm} denotes the set of all

important configurations. Each configuration c ∈ C consists of a set of symptoms that is

used to detect a specific malware infection (a malware family or type); examples of such

sets of symptoms are presented in Table 5.1. The table highlights common registries ma-

nipulated by four malware families, namely: Adware.Popuppers, W32.Rontokbro@mm,

86

Figure 5.1: A high-level view of the proposed approach.

W32.Sality and Trojan.FakeAV. Each registry path Si could be accessed and modified

in various ways, allowing a wide range of functionalities.

Taking registries accessed by the Sality malware family as an example, malware could

add a new value to S7 to bypass the Windows firewall, connecting to the internet and

preventing the Windows firewall from triggering a warning. While it uses registries such as

S8 to infect executables that run at Windows startup, it might also add the malware to the

startup list. S9 can be modified to disable registry editing tools like regedit, the Windows

task manager or the User Account Controls (UAC), which are responsible for notifying

the user when a program tries to make changes to the computer, as when installing

software. For some of the previous symptoms such as S8, the occurrence of the symptom

might not always mean that a machine is infected, as some benign applications tend to

access the same registry path and modify related registry values to add themselves to the

startup list. The proposed approach, described in detail in Section 5.3, is based on Bayes’

theorem; therefore, by using a configuration such as one of those presented in Table 5.1,

it could be asserted that a Virtual Machine is infected, based on, the probability of it

being compromised, given an inspected symptom (Si), or a set of symptoms (S) observed

concurrently.

87

5.3 The Probabilistic Approach

The main problem that this chapter addresses is identifying the optimum mobility algo-

rithm, which could be used in the scanning process, prior to the initialisation of FVMs.

We have benefited from the knowledge-base (presented in Chapter 3) in proposing an

approach that could be used to simulate the process of FVM scanning and identify the

most beneficial mobility algorithm for each given environment.

Figure 5.2: An example of a case study generated.

The proposed probabilistic approach is obtained based on probability theory and

Bayes’ theorem; Figure 5.1 illustrates the steps involved in the approach. It mainly

benefits from information derived from the knowledge-base, such as the probability of

seeing an exact set of symptoms when there is a malware infection or not. The infor-

mation derived is used to develop a sample environment (or a case study, as shown in

Figure 5.2) with a number of infected and non-infected VMs along with a number of

symptoms, that can be seen on them in either case. A number of parameters need to

be determined before developing the case studies and initiating the scan, such as the

number of scanned VMs, the cost of false positives and false negatives, and the initial

belief of a malware infection P (Malware). The scan is then carried out on the given

case study by a number of deployed FVMs, which are initialised with a specific mobility

algorithm. During the scanning process, the initial belief of the infection P (Malware)

will be updated, according to the new evidence gathered, using Bayes’ rule. The evidence

88

in this case is like confirming or denying the existence of a symptom Si on a specific VM.

Updating the initial belief after each step of the scan will help in determining which VMs

are probably infected, given the set of identified symptoms (either found or not). Based

on the VMs’ status identified, the cost of the scan could then be determined (in terms of

the scanning resources used, and the accurate identification of infections); therefore, the

most beneficial mobility algorithm could be identified by a comparison of the resulting

cost.

The reminder of this section presents the mathematical formulation of the approach;

it can be described amply as follows:

Definition 5.1 (Set of all symptom sub-assignments).

For a set c of boolean symptoms: S1, . . . Sn (which may be true or

false), set of all symptom sub-assignments is defined as:

AS =
⋃

S∈P (c)

allAssignments(S) (5.1)

Where:

• allAssignments(∅) = {∅}

• allAssignments({Si} ∪ S) = mapUnion(Si = True, allAssignments(S \

{Si})) ∪mapUnion(Si = False, allAssignments(S \ {Si})) where Si ∈ S

• mapUnion(b, ∅) = ∅

• mapUnion(b, {Ai}∪A) = {{b}∪Ai}∪ mapUnion(b, A\{Ai}) where Ai ∈ A

Given a configuration such as the one used to examine whether VMs are infected with

the Sality malware family (as shown in Table 5.1), an example of a resulting set from

Definition 5.1 could be: {S7 = True, S8 = False, S9 = True}, which is a member of AS.

After generating the set, we could then derive the following information, for all S ∈ AS,

by making use of the knowledge-base (presented in Chapter 3):

89

• P (S | Malware) : is the probability of seeing S when there is malware.

• P (S | Benign) : is the probability of seeing S when malware is not present

Therefore, during the scanning process, Bayes’ theorem (mentioned in Chapter 2,

p. 38), is used to calculate the degree of belief in a malware infection P (Malware|S),

taking into account the likelihood of evidence occurring in a VM, and the initial belief

P (Malware) as follows:

P (Malware|S) =
P (S | Malware) . P (Malware)

P (S)
(5.2)

where P (S), the probability of seeing a group of symptoms S, can be calculated as follows

(based on Equation 2.2, p. 39):

P (S) = P (S | Malware) . P (Malware) + P (S | Benign) . (1− P (Malware)) (5.3)

As a result, depending on the value of P (Malware|S), we can claim that there is malware

on the VM scanned if P (Malware|S) ≥ a predefined threshold. We will be using the

value (0.5) as a threshold in the following experiment, based on some preliminary tests,

where 0.5 gave us an appropriate separation between the two classes1. Therefore, we could

describe the VM’s status as follows:

P (Malware|S)


≥ 0.5, there is a malware

< 0.5, there is no malware

(5.4)

Subsequently, we could say that the cost of false positive and false negative can be calcu-

lated based on P (Malware|S); and therefore, the cost of inspecting a set of symptoms S

on a VM using the proposed approach could be calculated as follows:

1A more thorough analysis could also be carried out to identify the best threshold for any given
situation.

90

Definition 5.2 (Cost of inspecting a group of symptoms).

Let the cost of false positive represented as FPC, and the cost of

false negative as FNC and the cost of reading S as SC, the cost of

identifying a group of symptoms S in a VM is:

Cost(S) =


SC + (1− P (Malware|S)) · FPC, P (Malware|S) ≥ 0.5

SC + P (Malware|S) · FNC, P (Malware|S) < 0.5

(5.5)

where:

• P (Malware|S), refers to the degree of belief that there is an infection on the scanned

VM, given the set of symptoms S which have been observed.

• FPC, refers to the cost of incorrectly identifying a VM as infected.

• FNC, refers to the cost of incorrectly identifying a VM as non-infected.

A conclusion can then be drawn based on the overall cost of the scan; and thus the most

efficient mobility algorithm, which helps in finding the sets of symptoms with the lowest

cost, could be identified. The following section details the architecture of the the Mobility

Algorithms Analyser framework which was developed based on the probabilistic approach

described earlier in this section.

5.4 The Mobility Algorithm Analyser Framework

In this section, we focused on evaluating the feasibility of the approach proposed in

isolation from the cloud’s environmental factors, such as data transfer, spin-up times or

placement [28]. Therefore, we developed a proof of concept (referred to as The Mobility

Algorithm Analyser Framework) to evaluate the proposed approach and to simulate the

91

FVM scanning process rather than using other simulation framework (e.g. [28]) which

could introduce unnecessary complexities to our evaluation.

The Mobility Algorithm Analyser Framework was developed in Python based on the

probabilistic approach presented in Section 5.3. The overall architecture of the Mobility

Algorithm Analyser framework is shown in Figure 5.3, and it could be broken down into

the following components:

Figure 5.3: The Mobility Algorithms Analyser.

1. The knowledge-base. An overview of the process employed to develop the knowledge-

base is described in (Chapter 3). The set of symptoms used is described in Sec-

tion 5.2.

2. The Environment Modeller. It is comprised of two sub-components which perform

the following tasks:

92

(i) Retrieving symptoms’ probabilities from the knowledge-base in order to pro-

duce a realistic case study. This includes calculating the probabilities of seeing

different sets of symptoms in case there is an infection or not.

(ii) Initialising the framework and producing the case study (as shown in Fig-

ure 5.2) based on the probabilities calculated in (i), and given a number of

parameters that represent the scanned environment (e.g. number of VMs

scanned, FVMs deployed, the cost of false positive and false negative, and

the initial belief of a malware infection P (Malware)).

3. A discrete-time simulator. It is used to simulate the FVM’s scanning process (ac-

cording to an embedded mobility algorithm), using the case study generated by the

Environment Modeller component. The simulator will update the initial belief of

the infection P (Malware), given the set of symptoms S that is identified during the

scan on each VM. The process of updating the initial belief, and calculating the cost

is described in detail in Section 5.3. We opted to implement this Python-based simu-

lator not only because we want to facilitate the integration between the framework’s

components, but also because we were not aware of any available discrete-time sim-

ulation tool that could be used at the time of developing the framework presented.

At the end of the scan, the most beneficial mobility algorithm could be identified through

a comparison of the resulting scanning cost when using each algorithm. The evaluation

presented in Section 5.5 demonstrated this, where a number of mobility algorithms were

compared, and the one that resulted in the minimum scanning cost was identified.

5.5 Evaluation

This section describes the experimental setup, results, and discussion of the evaluation

conducted. The objective of this evaluation is to assess the feasibility of the approach

through a comparison of multiple mobility algorithms, when scanning for different mal-

93

ware infections.

5.5.1 Experimental Setup

During the experiment, we have made the following assumptions:

1. We are not considering the case wherein a system state changes from infected to

non-infected, or vice versa during a scan, because we assume we are dealing with

only a snapshot of a system.

2. When an FVM scans for a specific symptom, it will eventually identify it.

3. We are assuming discrete time steps in which the scans of each symptom take the

same length of time.

In addition to the above assumptions, it is important to state that the results pre-

sented depend on malware data examined during the experiment. We have used the most

informative registry keys for each malware family, based on those mostly recorded by

Symantec [169], and Microsoft [109] (as described previously in Section 5.2, and shown

in Table 5.1). We have evaluated the proposed approach using a sample environment

comprised of 10 virtual machines and 3 Forensic Virtual Machines, where each scans for a

different symptom. We have looked here at changes performed on three registry paths, as

from looking at the information provided by Symantec and Microsoft (e.g. in [108, 163]),

it seems that the presence of a malware infection could be inferred in a system with as low

as two symptoms (or registry paths); also, given the large number of malware families and

variants a cloud provider needs to scan for, the minimum number of FVMs (which could

sufficiently identify the early signs of malware infections) is expected to be allocated for

each malware family. The evaluation is obtained through a comparison of the cost result-

ing from the scan using 4 different mobility algorithms, as the main aim of this chapter is

to provide a way to compare mobility algorithms and nominate the most beneficial one.

The algorithms1 used in the experiment can be described as follows:

1The term algorithm is often used interchangeably in this chapter with the term strategy.

94

1. Strategy 1: In this strategy, a VM will be chosen randomly from a subset of VMs;

the subset contains a predefined percentage of VMs, which have the highest ratio

of the discovered symptoms, to the total number of symptoms we are scanning for.

In the documented experiments we have obtained the subset by taking the top 40%

VMs that have the highest ratio. This strategy is inspired by the mobility algorithm

proposed by [69], which has been described later on in this section (in Strategy 4),

with setting the scaling factor (ω) to 0.

2. Strategy 2 and 3: In both, each FVM is assigned different pre-programmed pri-

orities, and it chooses its next scanning targets based on those priorities. The

priorities in both strategies are set based on the probability of having malware,

given a group of identified symptoms S; where this has been calculated based on

information gathered from the knowledge-base developed in Chapter 3. Therefore,

when an FVM that scans for symptom Sp is informed that Sm and Sn have been

found on two different VMs (vi and vj respectively), the FVM then has to check

its pre-set priority to determine which VM has the symptom that (when combined

with the symptom that it is scanning for) results in the highest probability between

the two, P (Malware | Sp ∩ Sm) and P (Malware | Sp ∩ Sn)1. It will then set this

VM as the next scanning target. The only difference between those two strategies,

is that the former will set its next scanning target based on the probability of hav-

ing malware, given only two symptoms, whereas the latter will consider all three

symptoms instead. However, if the symptoms considered have not been inspected

yet, the VM target will be then be chosen completely at random.

3. Strategy 4: Harrison et al. [69] proposed a mobility algorithm which is based on

calculating the following for every v ∈ A, where A is a subset of VMs (that represent

1We have also considered the set of symptoms that minimises P (Benign | S) at the same time.

95

the potential scanning targets):

F (v) =
K∑
i=1

Disc(c, v)

size(c)
val(c)

+ ω [CurrentT ime− LastV isited(v)],

(5.6)

where:

• Disc(c,v)
size(c)

is the ratio of the number of discovered symptoms that belong to the config-

uration c, to the total number of symptoms in the same configuration; an example

of a configuration is presented in Table 5.1.

• val(c) is the severity value of configuration c assigned by a security expert.

• [CurrentT ime− LastV isited(v)] is the time elapsed since a VM has been scanned

or visited by any FVM.

• ω is the Loneliness Parameter where ω > 0, and the lower the number we set this

parameter to, the less important the timing of the last visiting will be.

After all F (v) are calculated based on Equation 5.6, a pre-determined percentage of VMs

with the top F (v) values will be retrieved, and given this reduced set, a random VM will

be nominated for the scan.

We tested the mobility algorithms mentioned on four malware families, and three

malware types chosen randomly from the malware database. The results of the experiment

were obtained by conducting a number of trials. On each trial the framework was used to

perform the following: (i) generate a large number of case studies (based on the probability

of an infection (i.e. P (Malware)), and the distribution of symptoms whether there is an

infection or not); and (ii) simulate the FVMs’ scans on each case study generated for a

fixed number of steps; and (iii) average the cost over all the scans performed to attain a

more robust results.

The Cost function (presented on Equation 5.5) is calculated based on the previously

mentioned assumptions and given the following values, 15 and 5 for FNC and FPC

96

1 2 3 4
8

9

10

11

12

13

14

15

16
Th

e
av

er
ag

e
co

st
 o

f 8
00

 ru
ns

Scanning strategies

a) Adware.Popuppers

15.5061

12.0142

9.79359

8.63154

1 2 3 4
14

15

16

17

18

Th
e

av
er

ag
e

co
st

 o
f 8

00
 ru

ns

Scanning strategies

c) W32.Sality

17.9813

14.6457

15.2707

14.2752

1 2 3 4
8

9

10

11

12

13

14

15

16

Th
e

av
er

ag
e

co
st

 o
f 8

00
 ru

ns

Scanning strategies

b) W32.Rontokbro.U@mm

15.5307

11.9980

10.0458

8.86450

1 2 3 4
15.0

15.5

16.0

16.5

17.0

17.5

Th
e

av
er

ag
e

co
st

 o
f 8

00
 ru

ns

Scanning strategies

d) Trojan.FakeAV

17.2424

16.0424

15.3195

15.5793

Figure 5.4: The 95% CI of the means for each malware family

respectively; assuming a case, where failing to report a malware correctly is more costly

than reporting an infection where there is none. It is worth noting that the exact values

were chosen here entirely arbitrarily, and an organisation could consider more realistic

values, based on quantifying different type of impacts; e.g. based on the financial impact

of false positives and negatives.

5.5.2 Results

In each test, FVMs were initialised with one of the mobility algorithms presented on p. 95.

They were then used to scan for a possible infection with a malware family (or type), by

identifying a set of distinctive registry key changes (the set of registries used are presented

in Table 5.1, p. 86). Based on a comparison of the 95% confidence interval (CI) of the cost

means, the most beneficial mobility algorithm could then be identified in each malware

family and type; the cost recorded is shown in Figure 5.4 and Figure 5.5. In order to make

97

1 2 3 4
9

10

11

12

13

14

15

16

17

Th
e

av
er

ag
e

co
st

 o
f 8

00
 ru

ns

Scanning strategies

1) Adware

15.7118

12.2499

10.5046

9.46039

1 2 3 4

22.5

23.0

23.5

24.0

24.5

Th
e

av
er

ag
e

co
st

 o
f 8

00
 ru

ns

Scanning strategies

2) Worms

24.0758

23.1405
23.2902

22.6828

1 2 3 4

17.5

18.0

18.5

19.0

19.5

20.0

Th
e

av
er

ag
e

co
st

 o
f 8

00
 ru

ns

Scanning strategies

3) Viruses

19.8268

19.0625

18.3950

17.7501

Figure 5.5: The 95% CI of the means for each malware type

98

Table 5.2: Malware families used in the experiment
Malware Family # Samples Malware Type
Adware.Popuppers 167 Adware

W32.Rontokbro@mm 210 Worm
W32.Sality 109 Virus

Trojan.FakeAV 102 Trojan

sure that the graphs shown and the confidence intervals calculated represent a reasonable

estimate, we calculated the CIs based on a number of trials. In each trial, we averaged

the cost over a large number of runs (as described on p. 96), instead of calculating the CIs

based on a number of single runs. More thorough evaluation of the probabilistic model

proposed could also be conducted using probabilistic model checking techniques; however,

this has been left for future work as discussed later on in Section 5.7.

Using the Mobility Algorithms Analyser framework, we firstly tested the FVMs with

4 malware families; Table 5.2 shows the tested malware families, along with the number

of malware samples used during the experiment, in addition to the type of malware that

each family belongs to. During the testing of malware families, we recorded the results

of 20 trials. In each trial we simulated 800 scans. From Figure 5.4, it can be seen that

there was a considerable difference in the resulting scanning cost when different mobility

algorithms were used. Also, it can be seen that none of the recorded confidence intervals of

the algorithms showed any overlap when each malware family was tested. This indicates

that there was a significant difference in the performance between the strategies. Based

on Figure 5.4, we can conclude that the optimum algorithm for Adware.Popuppers,

Rontokbro and Sality is Strategy 4, as it gave the lowest scanning cost, whereas Strategy

2 showed the lowest scanning cost when used to scan for Trojan.FakeAV. Figure 5.4 also

shows that Strategy 1 always resulted in the highest cost.

We have also evaluated the strategies given different malware types, in order to deter-

mine whether the most efficient strategy could vary. Table 5.3 shows the malware types

tested, the families tested in each type, along with the number of malware samples used

during the experiment. The distinctive symptoms used during the FVMs’ initialisation

99

Table 5.3: Malware types used in the experiment
Malware type families tested within this type # Samples

Adware

Adware.Popuppers
Adware.Clkpotato!gen3

Adware.Istbar
Adware.Slagent

Adware.ZenoSearch

167
32
26
26
14

Worms

W32.Rontokbro@mm
W32.Spybot.Worm

W32.Benjamin.Worm
W32.Mabezat.B!inf

W32.SillyFDC

210
196
88
35
25

Viruses

W32.Sality
W32.Virut

W32.Whybo!inf
W32.Licum
W32.Xpaj.C

109
97
88
27
21

when testing malware families, were also used when testing the corresponding malware

type. This relies on the assumption that all malware families of the same type share

similar symptoms. The results shown on Figure 5.5 were obtained by recording the cost

of 12 trials, where in each the cost was averaged over 800 scans.

Figure 5.5 shows that the most efficient mobility algorithm for all the tested malware

types tended to be Strategy 4, while the highest cost was observed when the scan was

performed using Strategy 1. It can also be seen in the case of Adware, that the dependency

between the symptoms is relatively strong, which might induce the gap between the results

for Strategy 1 and both strategies 2 and 3. The gap observed between Strategy 1 & 4

might be due to the disparities in the scanning coverage. As the coverage obtained by

Strategy 1 is expected to be limited, due to that this strategy guides FVMs to scan those

VMs which have more discovered symptoms, unlike Strategy 4 that aims to avoid lonely

VMs, which have not been inspected for a long time.

100

5.6 Comparison with the Related Work

In the following section we review the literature that is directly related to our work, and

we indicate how this work differs.

Since Forensic Virtual Machines were introduced by Harrison et al. [69], a number of

mobility algorithms, that define the movements of FVMs from one VM to another, have

been introduced. For example, FVMs can be prompted to scan VMs randomly, according

to a specific order, or based on a dynamic mobility algorithm.

Harrison et al. [69] introduced the mobility algorithms presented previously in Equa-

tion 5.6 (page 96). The proposed mobility algorithm aims mostly to reduce cases where

a VM is left for a long time without being scanned. Another mobility algorithm has been

proposed by Alshamrani et al. [9], where the target VM is chosen based on the time since

the VM was last scanned, in addition to the weight assigned to the VM.

Our work in this chapter mainly addresses some unanswered questions regarding the

development of a technique that helps to choose the most efficient mobility algorithm to

be used by FVMs during the scanning process, thereby nominating in advance the one

that can minimise the cost of the scan for the environment in question. This helps in

promoting a prudent use of the available scanning resources, as the creation of FVMs

is a resource-intensive process [23]. We have also introduced two mobility algorithms,

represented in Strategy 2 and 3 (as described in p. 95) to be used in the evaluation phase

of the framework proposed.

5.7 Conclusion

Before initialising an FVM, it is important to be able to recognise the most beneficial mo-

bility algorithm, which helps in identifying the most critical set of VMs with the minimum

consumed cost. This chapter presented a probabilistic approach for nominating the most

cost-wise mobility algorithm for each given environment. The chapter has demonstrated

the feasibility of the proposed technique, where the most cost-wise mobility algorithm for

101

each given environment could be identified. The evaluation of the approach was based on

a comparison of the 95% confidence intervals for the cost means of a number of mobility

algorithms; however, in future research we aim at conducting a more thorough evalua-

tion of the model proposed by making use of probabilistic model checking techniques (e.g.

PRISM [95]). There are also other cases we have not considered which will demand future

work. For example, we have not considered the case when a system state changes from

infected to non-infected or vice versa during a scan. We have also, for the purpose of

simplification, considered only those cases in which all the VMs on the system’s current

snapshot are infected with the same family or type of malware. However, considering the

size of the cloud, a VM could be subject to multiple attacks; having multiple malware

families or type on the same time should therefore be taken into account.

102

103

CHAPTER 6

A MARKET-BASED APPROACH FOR
DETECTING MALWARE IN THE CLOUD VIA

INTROSPECTION

6.1 Introduction and Motivation

In the previous Chapter, we targeted some unanswered questions regarding optimising the

scanning performance of a recently proposed malware monitoring technique, which targets

the cloud environment (i.e. Forensic Virtual Machines). This technique leverages Virtual

Machine Introspection technology, which enables the monitoring of VMs externally, in

order to carry out a fast and light-weight scanning of the targeted VMs.

As described earlier in Chapters 2 and 5, VMI-based malware monitoring techniques

offer significant advantages over traditional malware scanners: (i) they increase the level

of security as they isolate the inspected system from the malware scanner, and (ii) they

limit the usage of resources and the performance impact on the inspected VM, as external

monitoring of a VM’s internal state is performed. Moreover, the fact that they can

detect behavioural symptoms (which are shared among a number of malware families), as

opposed to matching signatures on traditional AV solutions, makes them an ideal solution

for monitoring early signs of infection. This feature also provides them with the capability

of detecting unseen malware threats, as well as making the scanners much less demanding

for frequent updates.

104

However, the reduced usage of resources could be at the expense of wrongly flagging

more VMs as infected. This is because such techniques are based on identifying symp-

toms that exist in both malicious and normal behaviour, but in different proportions or

combinations; where in some cases a clear-cut distinction between the two behaviours is

not easy to identify. Thus, although these techniques can provide a means for detecting

early signs of infections, they do not provide definitive identification results. In contrast,

signature-based malware detection systems are known to accurately identify known mal-

ware threats with an extremely low rate of false alarms due to their usage of unique

signatures [67], but at the cost of using a relatively high percentage of the VM’s resources

during the scan.

This chapter provides a way to integrate VMI-based light-weight scanners (e.g. FVMs)

to improve the efficiency of malware detection on the cloud without sacrificing the accu-

racy of detection. This outcome could be achieved by addressing the issue of balancing

the trade-off between scanning performance (in terms of the scanning resources used) and

accuracy (in terms of the false alarms generated), when detecting malware infections on

a multi-tenant cloud environment (where resources, e.g. VMs, are delivered to multiple

cloud users or customers [49]).

Towards fulfilling this objective, this chapter proposes an early prioritisation approach,

which consists of two layers of protection (i.e. light-weight and full malware scanning)

for a more in-depth scan of customers’ VMs. The proposed approach benefits from the

fast and light scanning performance of FVMs to identify, at any given time, a pre-defined

percentage of VMs that are most likely to contain malware. It will then trigger a full

malware scan on this set of VMs. The novelty of this technique is that it utilises a

market mechanism to guide the full scanning process, based on the criticality of the

pieces of information gathered by the distributed monitoring carried out using the VMI-

based light-weight scanners. The use of signature-based detection methods here might

imply that the approach presented inherits the high rate of false negatives due to the fact

that such malware detection methods are known for their inability to recognise malware

105

infections that have not previously been seen; however, this issue has been mitigated by

combining two different detection techniques that are expected to complement each other

(as discussed later on, see p. 118): signature-based (i.e. full malware scanning), and

behaviour-based (i.e. FVMs).

We proceed as follows: Section 6.2 describes the proposed approach in detail. The

results of the experiment along with the evaluation are then presented in section 6.3.

Afterwards, Section 6.4 reviews the related work and describes how the contribution

presented differs. This chapter then discusses the research outcomes and outlines the

conclusion in Section 6.5.

The contents of this chapter are based primarily on one of our contributions to the

literature (Alruhaily et al. [8]).

6.2 The Market-Based Prioritisation Approach

The proposed approach relies on a market-based mechanism to prioritise the VM scanning

process. Such a mechanism promotes both an optimal resource allocation [102], and a

highly distributed operation [191], which in our context leads to a scalable prioritisation of

limited FVMs to scan a larger number of VMs. It aims to balance the trade-off between the

scanning performance and the accuracy of detection by achieving the following subgoals:

(i) maximising the number of VMs scanned using light-weight scanners (i.e. FVMs);

(ii) minimising false alarms generated, by identifying the most critical VMs and scanning

them thoroughly.

Figure 6.1 depicts the high-level architecture of the proposed market-based prioritisation

approach; the approach consists of two protection layers, whereby a bidding process is

performed on each.

Consider a set of Virtual Machines V = {v1, v2,, vm} and a set of FVMs, F =

{f1, f2, · · · , fn}, where n < m. At each time step, information gathered previously by

106

the set of FVMs at the first protection layer will be used to guide the full malware scan

initiated at the second protection layer, whereby each VM submits a sealed-bid, to be

scanned thoroughly by an AV. To minimise the number of costly scans, only a pre-defined

percentage (µ) of the VMs most likely to be infected will be scanned using AV instances.

In the meantime, the remaining set of VMs, which have not been assigned to be scanned

by AV instances, will submit a sealed-bid, requesting to be inspected further by FVMs,

in order to guide the full malware scan at the next time step.

In our scenario, the relationship among the VMs is competitive and non-cooperative;

therefore, sealed bidding (described in Chapter 2, p. 41) has been used in order to promote

efficient allocation of the scanning resources. The efficient allocation of the resources is due

to the fact that decisions are made instantaneously, without resulting in a considerable

overhead during the allocation process [66]. An important feature of bidding is their

dynamic pricing-discovery property where the price is determined based on the criticality

of the buyers’ status (i.e. VMs). For example, when an FVM identifies a symptom on

a VM, where this symptom by its own is not definitive, but it can be associated with a

malware infection, this will increase the bidding price of that VM. Consequently, the VM

will be more likely to be scanned in the second protection layer by an AV instance, in

order to confirm whether or not the VM is infected. On the other hand, the absence of

such a symptom on a VM can decrease its bidding price; meaning it will be less likely to

be scanned by an AV instance at the second layer of protection.

The remainder of this section describes in detail the bidding process at the two pro-

tection layers.

First Protection Layer: scanning VMs with FVMs.

The monitoring task is subdivided between FVMs, where each FVM scans for a single

symptom. It is thus of the utmost importance to identify which symptom should be

inspected next on each VM. This is crucial as it will lead to an optimal allocation of the

light-weight scanning resources, leading to an efficient use of the AV instances which are

107

Figure 6.1: High-level architecture of the market-based prioritisation approach.

influenced by the information gathered at this layer. Therefore, before an FVM moves to

a new VM target, it will enter into a deciding state, where every VM submits a sealed

bid for each type of FVMs. Given the set of FVMs, F , where each scans for different

symptoms (i.e. f1 scans for S1, f2 scans for S2 · · · , and fn scans for Sn), the bid submitted

by each v ∈ V to each fj is given as follows:

Bid(fj, v) = E(v) + λ · I(X;Sj|Z = Sv) · t(v), (6.1)

where:

• E(v) refers to the expected impact when the VM becomes infected. It is estimated

based on P (Malware|Sv), the probability of having a malware infection given the

set of identified symptoms Sv, and Im(v), the impact resulting when the VM is

compromised and becomes infected. This value Im(v) can be used to quantify

different types of impacts (e.g. financial and reputational impacts); in the current

108

scenario, it was assumed to take a value between ‘0’, representing no impact, and

‘5’, representing the maximum impact. The expected impact E(v) is then given as

follows:

E(v) = P (Malware|Sv) · Im(v), (6.2)

• x ∈X (i.e. X= {Malware,Benign}).

• Sj is the new symptom inspected by the corresponding fj (i.e. Sj ∈ {True, False}).

• Sv is a set of previously scanned symptoms on each v ∈ V (either found or not

found), one example might be: {S2 = True, S5 = False, S8 = True}. The sets of

the scanned symptoms are retrieved before initiating the bidding at each time step.

• I(X;Sj|Z = Sv) (Definition 2.4, mentioned in p. 40) is the mutual information

of the two random values X and Sj, except in this case we are always condition-

ing on observing the event Z = Sv. We refer to this mathematical expression as

‘event-specific conditional mutual information’; it denotes the amount of informa-

tion obtained between the two variables X and Sj given the observation of the third

random variable Z = Sv. It can be written mathematically as follows:

I(X;Sj|Z = Sv) =
∑
y∈Sj

∑
x∈X

P (x, y|Sv) · log
P (x, y|Sv)

P (x|Sv)P (y|Sv) (6.3)

• t(v) is the time elapsed since the VM was visited by any FVM.

• λ is a scaling factor where λ > 0; it is used to adjust the importance of the informa-

tion gathered (in terms of its relatedness and recentness) with the impact associated

when a VM being compromised .

After the bids are collected at each time step, the price of an FVM type is determined,

based on the highest bid submitted; the VMs with the highest bid will then be scanned

109

by that type of FVMs. The symptoms scanned at this layer will help prioritise the full

VM scan initiated at the next step.

Second Protection Layer: scanning the VMs that are most likely to be infected
with AV instances.

On this layer, VMs will bid for a full malware scan, which will confirm whether they

are infected. To minimise the costly use of resources, only a predefined VM percentage

(i.e. µ) of the most critical VMs will be thoroughly scanned by an AV instance. The

percentage µ could be adjusted by the Cloud Service Provider to fulfil two primary goals:

(i) maximising the scanning coverage by the available FVMs; and

(ii) minimising cases where a costly full malware scan is triggered on a non-critical VM,

thus minimising the unnecessary usage of the scanning resources.

At this layer, every v ∈ V will submit a sealed-bid requesting a thorough scan by a

signature-based AV instance, as follows:

Bid(AV, v) = P (Malware|Sv), (6.4)

where:

• P (Malware|Sv) is the probability of having a malware infection given the set of

identified symptoms, Sv; the probability is calculated according to Bayes’ Theorem

(Theorem 2.3, mentioned in p. 38).

The remaining set of VMs that have not been scanned using signature-based AV

instances will then be inspected further by re-entering the bidding process carried out at

the first protection layer.

110

6.3 Evaluation

This section describes the experimental setup, results, and discussion of the experiments

conducted. The objective of this evaluation is to assess the performance of the proposed

market-inspired prioritisation mechanism by checking whether it balances the trade-off

between the consumption of resources and the false alarms.

6.3.1 Experimental Setup

As in Chapter 5, the focus here is on evaluating the approach proposed in isolation from

the cloud’s environmental factors (e.g. data transfer, spin-up times, or placement [28]).

Therfore, a proof of concept was developed, which extended the framework from our

previous work (presented in Chapter 5) with the proposed market-based approach. In

addition to the assumptions made, when developing the simulation, on p. 94 (i.e. the

discrete time steps, unchanging status of the infection, and FVMs’ ability to identify

the existence of symptoms), we have also assumed here that the signature-based AV is

up-to-date, and that a signature of the malware exists in the AV database of signatures.

This additional assumption is based on our focus on reducing the false alarm error in the

evaluation presented; however, in terms of the false negative error which signature-based

AV solutions are usually susceptible to (i.e. failure to identify an infection when in fact

there is), it is expected that the two approaches complement each other as described later

on in this chapter (p. 117).

The proposed market-based approach was compared to the use of VMI-based light-

weight scanners alone (i.e. FVM scanners) under the same settings. In particular, the

simulator was initialised with 100 VMs, and 8 FVM types, with each type composed

of 6 FVM instances. The same set of symptoms was also used, represented on the 8

most informative registry paths, accessed to modify, add, delete or read a subkey value

when infected with a variant of the W32.Sality malware family, which has long been

ranked as one of the top 20 malware families in [166]. The most informative registries

111

Table 6.1: Most informative registry paths accessed when infected with W32.Sality.
Symptom ID Registry paths accessed

S1 HKLM\SOFTWARE\Microsoft\Security Center

S2 HKLM\SOFTWARE\Microsoft\Security Center\Svc

S3 HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\
System

S4 HKLM\SYSTEM\CurrentControlSet\Services\SharedAccess\
Parameters\FirewallPolicy\StandardProfile\AuthorizedApplications\
List

S5 HKLM\SYSTEM\CurrentControlSet\Services\Winsock\Parameters

S6 HKLM\SYSTEM\CurrentControlSet\Services\Winsock\Parameters\
Namespace Catalog

S7 HKLM\SYSTEM\CurrentControlSet\Services\Winsock\Parameters\
Protocol Catalog

S8 HKLM\SYSTEM\CurrentControlSet\Services\Winsock\Parameters\
Protocol Catalog\Catalog Entries

have been determined by utilising the latest Scikit-learn Python library [149], where

a feature selection process was performed using the ANOVA F-value feature selection

method; Table 6.1 lists the set of the symptoms used. The experiments were also based

on a 0.11 probability of malware infection. This was determined based on the most recent

report obtained by [13] when conducting the experiments. The value of µ was set to 1,

meaning that only 1% of the VMs most likely to be infected would be scanned by AV

instances at each time step1.

We have used the following measures to assess the performance of the detection: the

True Positive Rate and False Positive Rate (which are referred to as the Detection Rate,

and False Alarm Rate, respectively, in the intrusion detection community [150]). We were

mainly interested in confirming the infection status of the VMs most likely to be infected,

in order to reduce the false alarm; however, the results of the two aforementioned metrics

have been recorded due to the fact that there is a known trade-off between them [61]; the

metrics are given as follows:

1Ceil function was used to ensure that at least 1 VM is scanned at each time step.

112

HKLM\SOFTWARE\Microsoft\Security Center
HKLM\SOFTWARE\Microsoft\Security Center\Svc
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System
HKLM\SYSTEM\CurrentControlSet\Services\SharedAccess\Parameters\FirewallPolicy\StandardProfile\AuthorizedApplications\List
HKLM\SYSTEM\CurrentControlSet\Services\SharedAccess\Parameters\FirewallPolicy\StandardProfile\AuthorizedApplications\List
HKLM\SYSTEM\CurrentControlSet\Services\SharedAccess\Parameters\FirewallPolicy\StandardProfile\AuthorizedApplications\List
HKLM\SYSTEM\CurrentControlSet\Services\Winsock\Parameters
HKLM\SYSTEM\CurrentControlSet\Services\Winsock\Parameters\Namespace_Catalog
HKLM\SYSTEM\CurrentControlSet\Services\Winsock\Parameters\Namespace_Catalog
HKLM\SYSTEM\CurrentControlSet\Services\Winsock\Parameters\Protocol_Catalog
HKLM\SYSTEM\CurrentControlSet\Services\Winsock\Parameters\Protocol_Catalog
HKLM\SYSTEM\CurrentControlSet\Services\Winsock\Parameters\Protocol_Catalog\Catalog_Entries
HKLM\SYSTEM\CurrentControlSet\Services\Winsock\Parameters\Protocol_Catalog\Catalog_Entries

False Alarm Rate =
FP

number of negative samples
=

FP

TN + FP
, and

Detection Rate =
TP

number of positive samples
=

TP

TP + FN
,

(6.5)

where:

• True positive (TP): Number of infected VMs correctly labeled as infected.

• True negative (TN): Number of not infected VMs correctly labeled as not infected.

• False positive (FP): Number of VMs not infected incorrectly labeled as infected.

• False negative (FN): Number of infected VMs incorrectly labeled as not infected.

6.3.2 Results

The main objective of the evaluation was to assess the performance of the proposed

approach, and to determine whether it balances the trade-off between the consumption of

resources and the accuracy of detection (in terms of false alarms). As a step towards this

objective, this section presents the results of testing the proposed approach with respect

to two dimensions: (i) the accuracy of the detection (represented on the disparity of false

alarms generated), and (ii) the consumption of the VMs’ resources.

Accuracy of the Detection

The detection performance of the proposed approach was evaluated through a comparison

of the 95% confidence interval (95% CI) for the mean of the Detection Rate and False

Alarms Rate, derived by simulating the scanning process of the proposed market-based

approach, and the light-weight monitoring approach alone. Figure 6.2 was obtained by

recording the results of 15 trials, whereby in each trial, the metrics averaged over 25

completed scans.

113

(a) Detection Rate

(b) False Alarm Rate

Figure 6.2: The 95% CI of the means.

114

The fact that there is no overlap in the 95% confidence interval for the mean of both

documented rates, demonstrates that with statistical significance, a lower rate of false

alarm and a higher detection rate could be achieved using the proposed approach, as

shown in Figure 6.2(a) and Figure 6.2(b), respectively, with as low as only 1% usage of

the heavy-weight scanning resources at each time step. This indicates that the proposed

market-inspired prioritisation approach managed to guide the full scanning process (repre-

sented on the 27 AV instances) to confirm the infection status of those VMs that exhibited

suspicious behaviour. Consequently, balancing the trade-off appropriately, by accurately

identifying malware infections on these suspicious VMs, while promoting lower consump-

tion of the cloud’s VMs resources as a limited number of the heavy-weight scanning have

been performed.

The heavy-weight scanning can also be guided to scan those VMs which are considered

as more important (e.g. from an economic point of view), by reducing the value of λ

in Equation 6.1. However, as our aim in this chapter was to make the best use of the

small scanners to confirm the infection status of those VMs which have high probability

of being infected (thus reducing the false positive generated), this part of the evaluation

has been left for future work as discussed later in Chapter 7, p. 125.

Consumption of VMs’ Resources

In order to check whether a reasonable balance had been achieved using the proposed

approach, we compared the detection rate derived from the proposed market-based ap-

proach, with the detection rate expected to be achieved by using AV solutions alone based

on the consumption of the same amount of VMs resources (in terms of CPU usage). We

have assumed a CPU consumption of 19% and 0.3% per VM, when using an AV instance

and an FVM, respectively. The choice of 19% CPU consumption is based on the fact that

it was the minimum CPU consumption achieved according to [44], where they present a

comparison between three leading AV solutions running inside a VM. While in the case

of FVMs, the significantly lower consumption of resources is due to the fact that they

115

adopt a memory mapping approach to access the current status of a VM, this is expected

to result in a considerably low performance impact on the inspected VMs [158], and a

minimum amount of the VMs resources are consumed in that case.

In the previous section, the proposed approach was initialised with a value of µ=1%.

Therefore, on average 27 full AV scans, and 648 FVMs scans were performed to detect

malware infections on all the available VMs. This means that by using the amount of

resources which was expected to be consumed by approximately 38 AV scanners, the

proposed approach was able to achieve a detection rate of 0.766081 (as shown on the

previous section). By using the same number of AV scanners to simulate performing a

full malware scan of a random set of VMs, we were able to achieve a detection rate of only

0.333333 (averaged over 1000 runs). This indicates that by scanning the target VMs using

AV solutions alone, a larger number of full scans was needed, and thus more resources are

expected to be consumed in order to achieve a similar detection rate.

The low usage of resources that characterises the proposed approach helps in perform-

ing a large scale scanning, while keeping the consumption of the resources relatively low

compared to that of using heavy-weight detectors only.

6.4 Comparison with the Related Work

In the following section we review the literature on malware detection in the cloud that

is directly related to our work, and we indicate how this work differs.

A number of security vendors propose using light-weight in-VM agents to collect in-

formation and to facilitate the VM scanning process, while the heavy operations will be

shifted to a scanning engine deployed on a dedicated VM (as discussed in Chapter 2,

p. 33). Such an approach is susceptible to manipulation by an attacker, due to the lack

of isolation, as protecting a VM is heavily dependent on the light-weight agent installed

inside the VMs [75]. Therefore, researchers propose out-of-the-guest, VMI-based light-

weight scanners to inspect the cloud’s VMs from the outside [63, 92, 86].

116

VMI-based light-weight scanners provide a means to monitor early signs of infections;

however, no internal change in the inspected VM is performed by such tools (as it is

based on monitoring VMs passively as described in Chapter 2, p. 33). This can ensure

the integrity of the inspected VM, even when those tools have been compromised; however,

it means that for such a tool to be beneficial it needs to be integrated in a way that boosts

the efficiency and effectiveness of the detection system.

Fischer et al. [57] proposed using a system comprising light-weight and heavy-weight

detection engines which detect abnormal activities on the hosted VMs using introspec-

tion technology and machine learning-based methods. Although the proposed system

provides the cloud infrastructure with the capacity to detect stealthy threats, and offers

the required level of isolation, it relies mainly on behaviour-based monitoring approaches

to detect threats, which makes it vulnerable to the high false alarms rate; it can also

miss-detect a number of threats that are activated according to a specific argument or

time (e.g. time-bomb malware). This problem has been addressed by utilising signature-

based malware detection systems to detect such threats and to identify accurately known

malware behaviour, therefore limiting the number of false alarms. Furthermore, our work

proceeded one step further by providing a way to allocate the heavy-weight scanners

efficiently using a market-inspired mechanism.

There are also other VMI-based approaches that are concerned with identifying in-

fections accurately by using in-memory signatures (e.g. [174]), as opposed to identifying

behavioural symptoms; however, these are beyond the scope of this work as using such

techniques alone means that we could still inherent the limitations exist in signature-based

detection systems (e.g. they cannot detect unknown malware infections).

6.5 Conclusion

This chapter has proposed a novel, market-inspired prioritisation approach, which utilises

light-weight cloud-based scanners to guide the full VM malware scanning process, thus

117

promoting lower consumption of the cloud’s VM resources, while accurately identifying

malware infections. As the two layers of protection implement different detection tech-

niques, they are expected to complement each other. The light-weight scanners, which

perform external monitoring, will identify those VMs that need to be thoroughly scanned,

without significantly affecting their performance. They will also ensure the integrity of

the AV instances installed. Conversely, signature-based AV instances are used to confirm

the infection status, due to their ability to accurately identify known malware infections.

In order to reduce the overhead and complexities that might result from the bidding pro-

cess in the market-based mechanism, bidding could be relaxed and simple prioritisation

techniques could be used in cases where the number of VMs scanning candidates is dra-

matically reduced and choices become straightforward. The evaluation demonstrates the

feasibility of the approach in terms of balancing the trade-off between scanning perfor-

mance and the accuracy of the detection.

Although cases where VMs are infected with a malware whose signature is not yet

added to the database (e.g. polymorphic and zero day malware) were not considered in the

experiments, the proposed approach benefits from two layers of protection that implement

different detection techniques: signature-based and behaviour-based (i.e. FVMs); these

protection layers are expected to complement each other. Thus, if we encounter the case

where a full malware scan is trigged on a VM, based on the malicious features identified,

while the scanning result of the AV shows that the targeted VM is not infected, further

analysis of the VM is still needed in order to identify the reasons behind the malicious

activities observed; especially if the probability P (Malware|S) is found to be very high.

Forensic Virtual Machines has been used here as a case study, however, other light-

weight VMI-based monitoring approaches could be used as an alternative; the cloud

provider could then adjust the heavy-weight scanning usage (i.e. µ) appropriately, so

a lower amount of resources would be consumed without sacrificing the accuracy of the

detection. In addition, when performing the experiments all FVMs were treated as idle,

where in each bidding round all of them were expected to participate on the current

118

bidding process. This is based on the assumption that FVMs are assigned a similar

Permissible Time to Stay (PT2S) (described in Section 2.4.2), and there is a negligible

difference on the time spent to identify the symptoms (as mentioned in Subsection 6.3.1).

However, when this is not the case, a time-based bidding strategy could be adopted,

where each bidding round is performed within a given time frame, and only idle FVMs

will participate in the current bidding process.

119

120

CHAPTER 7

CONCLUSION AND FUTURE WORK

The generation and spread of malware is a major concern in computer systems and net-

works. The danger associated with such a threat may result not only in a financial loss,

but also threaten the life of individuals; for example, a data breach could expose sensitive

data of individuals to identity theft and fraud. In addition, an infection which locks or

wipes data could incur a great cost and irretrievable damage (e.g. wiping the individ-

ual’s medical records as in WannaCry Ransomware [112]). Therefore, researchers have

endeavoured to detect and mitigate such a threat by introducing methods and tools that

facilitate the process of analysing, detecting and preventing malware infections.

This thesis has addressed some open and unanswered questions in the field of malware

detection. Therefore, a number of contributions have been proposed and evaluated in

this thesis as solutions to the research questions (previously stated in Chapter 1, p. 8).

We proceed as follows: Section 7.1 elaborates on how the solutions and the proposed

approaches in the previous chapters have answered the research questions. The possible

future research directions are then highlighted in Section 7.2. The thesis is then concluded

in Section 7.3 with a brief summary.

121

7.1 Discussion and Reflection

The following section reflects on the contributions made, and revisits each research ques-

tion stated in the first chapter of this thesis, and thereby determines whether the overall

objectives have been met.

Question 1: What are the reasons behind the misclassification of malware?

In Chapter 4 we carried out a number of experiments to answer this question; in

particular, we classified malware grouped by year of discovery, in addition to grouping

them into malware variants. Based on our experiments, we found no significant, long-

term correlation between the time since a classifier was built and the misclassification

rate of new malware (i.e. after a small initial drop off, the behavioural changes in

the new malware did not reduce the accuracy of the classifier). Our research also

showed that most of the behavioural changes that affected the classification rate of

malware could be traced back to particular malware variants, and in most cases these

changes are not replicated across malware families. This finding means that we would

see a single variant that was hard to detect in a family of malware in which the other

variants could be reliably detected.

We have also found that the misclassifications were mostly due to the adoption of

anti-virtualisation techniques, or to the fact that particular variants were looking for

a specific argument to run, or to the fact that some variants were actually considered

as corrupted files. While removing all examples of misclassified corrupted malware

from our dataset would have been possible, we note that no other work on malware

classification does this, so removing these samples would not reflect other work.

The results presented could help the reader to interpret other papers that present

the detection rate of a machine learning classification system as their main result.

Furthermore, our work sheds light on how these detection systems will perform over

time, and why some malware avoids detection.

122

Question 2: How can malware scanning performance of Forensic Virtual

Machines be optimised ?

In Chapter 5 we proposed a probabilistic approach which identifies the most benefi-

cial mobility algorithm to be used by Forensic Virtual Machines, when scanning for

malicious symptoms, that arise due to malware infections. To evaluate the proposed

approach, a framework, named the Mobility Algorithm Analyser was developed. The

framework was used to simulate the process of FVMs scanning and calculate the cost

results from using each mobility algorithm, based on symptoms derived from 4 mal-

ware families and 3 malware types. The results showed that there was a considerable

difference in the scanning cost when using different mobility algorithms, which are

embedded on each FVM to schedule the movement of FVMs from one VM to another.

Using the proposed probabilistic approach, we were able to determine the most ben-

eficial mobility algorithm, given a number of parameters that represent the status of

the scanned environment; such as the number of VMs, the deployed FVMs and the

cost of false positives and false negatives.

The approach proposed in this chapter could help in identifying the most beneficial

mobility algorithm prior to the scan and the initialisation of FVMs, thus reducing the

cost of FVM’s creation, which is considered as a resource-intensive task.

Question 3: How can VMI-based lightweight monitoring approaches (e.g.

FVMs) be integrated in a cloud-based malware detection system to develop

efficient and effective detection of infections?

In Chapter 6 we proposed a market-inspired prioritisation approach which combined

two layers of protection (i.e. signature-based and lightweight behavioural scanners) to

prioritise the full malware scanning of VMs given information gathered by the small

lightweight scanners. The light inspection was used to decide when and which VM

should be thoroughly scanned by an AV solution; it will then trigger the full malware

scan on a pre-defined percentage of the most critical VMs to accurately determine

their infection status. A simulation was used to evaluate the approach; we found that

123

the proposed prioritisation approach helped to balance the trade-off appropriately,

by confirming the infection status of these suspicious VMs, while promoting lower

consumption of the cloud’s VMs resources.

The approach proposed in this chapter could help in reducing the cost and resources

resulting from both, flagging a machine wrongly as infected, which can incur a consid-

erable time and effort; and using costly AV solutions to scan all the target VMs. The

fact that the proposed approach combined two different malware detection methods

(i.e. signature-based and behavioural-based), could offer a more effective identifica-

tion of infections, as such methods are expected to complement each other. Such

an integrative protection is also expected to have considerable benefit from another

perspective, where VMs are protected using in-VM AV solutions and out-of-the-guest

monitoring approaches, thus protecting from false conclusions that might be derived

when using compromised AV solutions.

7.2 Future Work

This section discusses possible future research directions arising from Chapters 4, 5 and

6; it also identifies open questions that have emerged from this thesis.

1. Further possible extensions to the contributions presented:

• Chapter 4: in this chapter we have provided an analysis of the causes of

malware misclassification when using machine learning-based malware detection

systems that are built, based on some of the widely used ML algorithms in the

area of malware detection (as seen in Chapter 4, p. 67). The analysis shows

that some malware samples did not behave as expected which might lead to

the misclassification of those malware instances. Another possibility that can

lead to malware samples being misclassified, which has not been considered in

this chapter, is the choice of the classifier used, especially in the case of using

124

black box machine learning algorithms, such as SVM classifiers. This is due

to the fact that a high classification rate might not necessarily mean that the

class was predicted based on meaningful features [140]. Therefore, a possible

research direction could involve conducting a thorough analysis using some recent

advanced tools such as LIME [140, 139]. Such a tool can provide an additional

and comprehensive interpretation of the classifier performance and results. It

could also provide more guidance on whether the classifier was able to predict

the true class based on reasonable features.

• Chapter 5: this chapter provided a probabilistic approach to analyse the

performance of the mobility algorithms embedded on each FVM scanner, and

nominated the most beneficial one. A number of extensions could be developed

by taking into consideration cases that have not been covered in that chapter.

Examples include, considering the case when a system state changes from infected

to non-infected or vice versa during a scan, and the case of having multiple

malware infections at the same time. The approach presented could also be

evaluated further using probabilistic model checking techniques.

• Chapter 6: in this chapter we showed that the proposed market-based approach

could be guided to scan a set of VMs which are considered more critical in terms

of their infection status. This approach results in the most efficient use of the

lightweight scanners, where less attention is paid to the economic value of each

of the scanned VMs. This is based on the assumption that the malware infection

could jeopardise the underlying cloud infrastructure; therefore, the focus was on

identifying accurately those infected VMs. However, if the purpose is to give more

weight to the protection of those VMs that are recognised as more economically

important, the heavy-weight scanning resources could be guided to scan those

VMs by reducing the value of λ in Equation 6.1 (p. 108). It would then be

interesting to evaluate the decisions provided by the proposed approach from an

economic perspective, and investigate how such a perspective might influence the

125

security decisions made. The evaluation in this case could be achieved through

the use of a case study-based evaluation method; it requires a detailed analysis of

the environment in question and the expected attack scenarios. Based on that, a

trade-off analysis between the malware scanning cost and attack cost will be the

output of such an evaluation.

2. Using dynamically extracted features with machine-learning techniques

to distinguish malware from benign samples when ostensibly similar func-

tionality is shared:

Machine learning-based malware detectors show promising results when used to dis-

tinguish malware from benign samples (as seen previously in Chapters 2 and 4). How-

ever, a number of open questions are worth investigating, especially with the current

change of malware distribution where Ransomeware became the most dominant mal-

ware type. One possible direction is checking whether we could use machine learning

methods with features generated using dynamic analysis to distinguish benign from

malware samples when ostensibly similar functionality and behaviour is shared (such

as in the case of legitimate encryption tools and Ransomware). As the behaviour

generated by both of them is expected to be more or less the same (a large number

of files are accessed simultaneously as the encryption process starts), the only clear

difference is in the possession of the encryption keys. A classifier (such as the one

presented in Chapter 4, p. 67) could be used to classify the samples and an analysis

of the misclassified instances could be performed to determine whether the dynamic

features generated would be sufficient, or static features might reveal more in such a

case.

7.3 Closing Statement

This thesis has contributed to the development of a better understanding of malware

behaviour and presented several improvements in the field of behaviour-based malware

126

detection. In summary, we have made three main contributions in this thesis: (i) iden-

tifying and analysing reasons that lead to malware samples being misclassified; (ii) opti-

mising the scanning performance of Forensic Virtual Machines, and identifying the most

beneficial mobility algorithm that could be used prior to the creation of FVMs; (iii) bal-

ancing the trade-off between detection accuracy and consumption of VMs’ resources when

using lightweight monitoring techniques, which are based on Virtual Machine Introspec-

tion technology. We believe that the improvements proposed in this thesis could help

to improve malware detection by: 1. helping other researchers who intend to propose

an ML-based detection system by interpreting the resulting misclassification rate, there-

fore, developing more robust ML-based detection systems; 2. optimising the performance

of identifying malware according to their respective symptoms, by choosing the most

beneficial distributed algorithm. 3. improving the detection of malware in the cloud envi-

ronment through increasing the efficiency and effectiveness of mechanisms based on VMI

technology.

127

128

LIST OF REFERENCES

[1] V. systems. volatility. https://www.volatilesystems.com, 2015.

[2] Zahraa S Abdallah, Mohamed Medhat Gaber, Bala Srinivasan, and Shonali Krish-

naswamy. Anynovel: detection of novel concepts in evolving data streams. Evolving

Systems, 7(2):73–93, 2016.

[3] Shahid Alam, Ibrahim Sogukpinar, Issa Traore, and Yvonne Coady. In-cloud mal-

ware analysis and detection: State of the art. In Proceedings of the 7th International

Conference on Security of Information and Networks, page 473. ACM, 2014.

[4] Mamoun Alazab, Sitalakshmi Venkatraman, Paul Watters, and Moutaz Alazab.

Zero-day malware detection based on supervised learning algorithms of api call sig-

natures. In Proceedings of the Ninth Australasian Data Mining Conference-Volume

121, pages 171–182. Australian Computer Society, Inc., 2011.

[5] Manoun Alazab, Robert Layton, Sitalakshmi Venkataraman, and Paul Watters.

Malware detection based on structural and behavioural features of api calls. 2010.

[6] Nada Alruhaily, Behzad Bordbar, and Tom Chothia. Analysis of mobility algo-

rithms for forensic virtual machine based malware detection. In Trustcom/Big-

DataSE/ISPA, 2015 IEEE, volume 1, pages 766–773. IEEE, 2015.

[7] Nada Alruhaily, Behzad Bordbar, and Tom Chothia. Towards an understanding of

the misclassification rates of machine learning-based malware detection systems. In

Proceedings of the 3rd International Conference on Information Systems Security

and Privacy - Volume 1: ICISSP,, pages 101–112, 2017. ISBN 978-989-758-209-7.

129

https://www.volatilesystems.com

[8] Nada Alruhaily, Carlos Mera-Gómez, Tom Chothia, and Rami Bahsoon. A market-

based approach for detecting malware in the cloud via introspection. In International

Conference on Service-Oriented Computing, pages 722–730. Springer, 2017.

[9] Sultan S Alshamrani, Dariusz R Kowalski, and Leszek A Gasieniec. Efficient dis-

covery of malicious symptoms in clouds via monitoring virtual machines. In Com-

puter and Information Technology; Ubiquitous Computing and Communications;

Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Comput-

ing (CIT/IUCC/DASC/PICOM), 2015 IEEE International Conference on, pages

1703–1710. IEEE, 2015.

[10] Anubis. Submit to anubis script. http://analysis.iseclab.org/Resources/submit to

anubis.py, 2009.

[11] Hyun Wook Baek, A. Srivastava, and J. van der Merwe. Cloudvmi: Virtual machine

introspection as a cloud service. In Cloud Engineering (IC2E), 2014 IEEE Interna-

tional Conference on, pages 153–158, March 2014. doi: 10.1109/IC2E.2014.82.

[12] Michael Bailey, Jon Oberheide, Jon Andersen, Z Morley Mao, Farnam Jahanian,

and Jose Nazario. Automated classification and analysis of internet malware. In

Recent Advances in Intrusion Detection, pages 178–197. Springer, 2007.

[13] Jamie Barnett. June 2016 - worldwide cloud report, 2017. URL https://resources.

netskope.com/h/i/262738806-june-2016-worldwide-cloud-report.

[14] Ulrich Bayer, Christopher Kruegel, and Engin Kirda. TTAnalyze: A tool for ana-

lyzing malware. 2006.

[15] Ulrich Bayer, Andreas Moser, Christopher Kruegel, and Engin Kirda. Dynamic

analysis of malicious code. Journal in Computer Virology, 2(1):67–77, 2006.

[16] Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek, Christopher Kruegel,

130

http://analysis.iseclab.org/Resources/submit_to_anubis.py
http://analysis.iseclab.org/Resources/submit_to_anubis.py
https://resources.netskope.com/h/i/262738806-june-2016-worldwide-cloud-report
https://resources.netskope.com/h/i/262738806-june-2016-worldwide-cloud-report

and Engin Kirda. Scalable, behavior-based malware clustering. In NDSS, volume 9,

pages 8–11. Citeseer, 2009.

[17] Ulrich Bayer, Imam Habibi, Davide Balzarotti, Engin Kirda, and Christopher

Kruegel. A view on current malware behaviors. In USENIX workshop on large-

scale exploits and emergent threats (LEET), 2009.

[18] Mohammad Bazm, Rida Khatoun, Youcef Begriche, Lyes Khoukhi, Xiuzhen Chen,

and Ahmed Serhrouchni. Malicious virtual machines detection through a clustering

approach. In Cloud Technologies and Applications (CloudTech), 2015 International

Conference on, pages 1–8. IEEE, 2015.

[19] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A

review and new perspectives. IEEE transactions on pattern analysis and machine

intelligence, 35(8):1798–1828, 2013.

[20] C. Benninger, S.W. Neville, Y.O. Yazir, C. Matthews, and Y. Coady. Maitland:

Lighter-weight vm introspection to support cyber-security in the cloud. In Cloud

Computing (CLOUD), 2012 IEEE 5th International Conference on, pages 471–478,

June 2012. doi: 10.1109/CLOUD.2012.145.

[21] Hamad Binsalleeh, Thomas Ormerod, Amine Boukhtouta, Prosenjit Sinha, Amr

Youssef, Mourad Debbabi, and Lingyu Wang. On the analysis of the zeus bot-

net crimeware toolkit. In Privacy Security and Trust (PST), 2010 Eighth Annual

International Conference on, pages 31–38. IEEE, 2010.

[22] Bitdefender. Hypervisor introspection. https://www.bitdefender.com/business/

hypervisor-introspection.html, June 17 2013.

[23] Behzad Bordbar and Philip Weber. Automated prevention of failure in complex

and large systems: Fighting fire with fire. Informatics Society, page 97.

131

https://www.bitdefender.com/business/hypervisor-introspection.html
https://www.bitdefender.com/business/hypervisor-introspection.html

[24] Sunanda Bose, Atrayee Gupta, Sriyanjana Adhikary, and Nandini Mukherjee. To-

wards a sensor-cloud infrastructure with sensor virtualization. In Proceedings of the

Second Workshop on Mobile Sensing, Computing and Communication, pages 25–30.

ACM, 2015.

[25] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training algo-

rithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on

Computational learning theory, pages 144–152. ACM, 1992.

[26] Farid Bourennani, Ken Q Pu, and Ying Zhu. Visualization and integration of

databases using self-organizing map. In Advances in Databases, Knowledge, and

Data Applications, 2009. DBKDA’09. First International Conference on, pages 155–

160. IEEE, 2009.

[27] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[28] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF De Rose, and

Rajkumar Buyya. Cloudsim: a toolkit for modeling and simulation of cloud com-

puting environments and evaluation of resource provisioning algorithms. Software:

Practice and experience, 41(1):23–50, 2011.

[29] Julio Canto, Marc Dacier, Engin Kirda, and Corrado Leita. Large scale malware

collection: lessons learned. In IEEE SRDS Workshop on Sharing Field Data and Ex-

periment Measurements on Resilience of Distributed Computing Systems. Citeseer,

2008.

[30] CARO. Computer antivirus research organization. http://www.caro.org/index.html,

2001.

[31] Harlan Carvey. The windows registry as a forensic resource. Digital Investigation,

2(3):201–205, 2005.

[32] Ralph Cassady. Auctions and auctioneering. Univ of California Press, 1967.

132

http://www.caro.org/index.html

[33] João Marcelo Ceron, Ćıntia Borges Margi, and Lisandro Zambenedetti Granville.

Mars: An sdn-based malware analysis solution. In 2016 IEEE Symposium on Com-

puters and Communication (ISCC), pages 525–530. IEEE, 2016.

[34] Edward Y Chang, Beitao Li, Gang Wu, and Kingshy Goh. Statistical learning for

effective visual information retrieval. In ICIP (3), pages 609–612. Citeseer, 2003.

[35] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.

Smote: synthetic minority over-sampling technique. Journal of artificial intelligence

research, 16:321–357, 2002.

[36] M Christiansen. Bypassing malware defenses. SANS Institute InfoSec Reading

Room, pages 3–4, 2010.

[37] Mihai Christodorescu and Somesh Jha. Static analysis of executables to detect

malicious patterns. Technical report, DTIC Document, 2006.

[38] Scott H Clearwater. Market-based control: A paradigm for distributed resource

allocation. World Scientific, 1996.

[39] Dave Cliff and Janet Bruten. Simple bargaining agents for decentralized market-

based control. Hewlett-Packard Laboratories, 1998.

[40] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,

20(3):273–297, 1995.

[41] Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley

& Sons, 2012.

[42] CrowdStrike. Venom: Virtualised environment neglected operations manipulation.

http://venom.crowdstrike.com, June 17 2015.

[43] Cuckoo Sandbox. Automated malware analysis - cuckoo sandbox. http://www.

cuckoosandbox.org/, 2015.

133

http://venom.crowdstrike.com
http://www.cuckoosandbox.org/
http://www.cuckoosandbox.org/

[44] Jingsong Cui, Hao Xiang, Chi Guo, and Kun Hou. Agentless processes monitoring

architecture on cloud platform. In Cloud Computing and Big Data (CCBD), 2014

International Conference on, pages 1–7. IEEE, 2014.

[45] Thomas G Dietterich. Ensemble methods in machine learning. In International

workshop on multiple classifier systems, pages 1–15. Springer, 2000.

[46] Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. Ether: malware

analysis via hardware virtualization extensions. In Proceedings of the 15th ACM

conference on Computer and communications security, pages 51–62. ACM, 2008.

[47] Brendan Dolan-Gavitt, Tim Leek, Michael Zhivich, Jonathon Giffin, and Wenke

Lee. Virtuoso: Narrowing the semantic gap in virtual machine introspection. In

Security and Privacy (SP), 2011 IEEE Symposium on, pages 297–312. IEEE, 2011.

[48] Shaun Donaldson, Andrei Florescu, Kurt Roemer, and Martin Zugec. Secure

browsing powered by citrix xenapp, citrix xenserver direct inspect apis and

bitdefender hvi. White paper, Bitdefender. URL https://download.bitdefender.

com/resources/media/materials/hypervisor-introspection/en/Bitdefender-Business-

2015-WhitePaper SecRemBro-Citrix-Crea894-en EN-screen.pdf.

[49] Juan Du, Xiaohui Gu, and Douglas S Reeves. Highly available component sharing

in large-scale multi-tenant cloud systems. In Proceedings of the 19th ACM Interna-

tional Symposium on High Performance Distributed Computing, pages 85–94. ACM,

2010.

[50] Manuel Egele, Theodoor Scholte, Engin Kirda, and Christopher Kruegel. A survey

on automated dynamic malware-analysis techniques and tools. ACM Computing

Surveys (CSUR), 44(2):6, 2012.

[51] Wedad Elmaghraby and Pinar Keskinocak. Dynamic pricing in the presence of in-

ventory considerations: Research overview, current practices, and future directions.

134

https://download.bitdefender.com/resources/media/materials/hypervisor-introspection/en/Bitdefender-Business-2015-WhitePaper_SecRemBro-Citrix-Crea894-en_EN-screen.pdf
https://download.bitdefender.com/resources/media/materials/hypervisor-introspection/en/Bitdefender-Business-2015-WhitePaper_SecRemBro-Citrix-Crea894-en_EN-screen.pdf
https://download.bitdefender.com/resources/media/materials/hypervisor-introspection/en/Bitdefender-Business-2015-WhitePaper_SecRemBro-Citrix-Crea894-en_EN-screen.pdf

Management Science, 49(10):1287–1309, 2003. ISSN 00251909, 15265501. URL

http://www.jstor.org/stable/4134007.

[52] Mojtaba Eskandari and Sattar Hashemi. A graph mining approach for detecting

unknown malwares. Journal of Visual Languages & Computing, 23(3):154–162,

2012.

[53] Chun-I Fan, Han-Wei Hsiao, Chun-Han Chou, and Yi-Fan Tseng. Malware detection

systems based on api log data mining. In Computer Software and Applications

Conference (COMPSAC), 2015 IEEE 39th Annual, volume 3, pages 255–260. IEEE,

2015.

[54] Parvez Faruki, Vijay Laxmi, Manoj Singh Gaur, and P Vinod. Behavioural detec-

tion with api call-grams to identify malicious pe files. In Proceedings of the First

International Conference on Security of Internet of Things, pages 85–91. ACM,

2012.

[55] César Ferri, José Hernández-Orallo, and R Modroiu. An experimental comparison

of performance measures for classification. Pattern Recognition Letters, 30(1):27–38,

2009.

[56] Ivan Firdausi, Charles Lim, Alva Erwin, and Anto Satriyo Nugroho. Analysis of

machine learning techniques used in behavior-based malware detection. In Advances

in Computing, Control and Telecommunication Technologies (ACT), 2010 Second

International Conference on, pages 201–203. IEEE, 2010.

[57] Andreas Fischer, Thomas Kittel, Bojan Kolosnjaji, Tamas K Lengyel, Waseem

Mandarawi, Hermann de Meer, Tilo Müller, Mykola Protsenko, Hans P Reiser,

Benjamin Taubmann, et al. Cloudidea: A malware defense architecture for cloud

data centers. In OTM Confederated International Conferences” On the Move to

Meaningful Internet Systems”, pages 594–611. Springer, 2015.

135

http://www.jstor.org/stable/4134007

[58] Ian Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu. Cloud computing and grid com-

puting 360-degree compared. In Grid Computing Environments Workshop, 2008.

GCE’08, pages 1–10. Ieee, 2008.

[59] Yoav Freund, Robert E Schapire, et al. Experiments with a new boosting algorithm.

In icml, volume 96, pages 148–156, 1996.

[60] Akinori Fujino, Junichi Murakami, and Tatsuya Mori. Discovering similar mal-

ware samples using api call topics. In Consumer Communications and Networking

Conference (CCNC), 2015 12th Annual IEEE, pages 140–147. IEEE, 2015.

[61] Yoshiro Fukushima, Akihiro Sakai, Yoshiaki Hori, and Kouichi Sakurai. A behavior

based malware detection scheme for avoiding false positive. In Secure Network

Protocols (NPSec), 2010 6th IEEE Workshop on, pages 79–84. IEEE, 2010.

[62] Ekta Gandotra, Divya Bansal, and Sanjeev Sofat. Malware analysis and classifica-

tion: A survey. Journal of Information Security, 2014, 2014.

[63] Tal Garfinkel, Mendel Rosenblum, et al. A virtual machine introspection based

architecture for intrusion detection. In NDSS, 2003.

[64] Saurabh Kumar Garg and Rajkumar Buyya. Green cloud computing and envi-

ronmental sustainability. Harnessing Green IT: Principles and Practices, pages

315–340, 2012.

[65] Dragos Gavrilut, Mihai Cimpoesu, Dan Anton, and Liviu Ciortuz. Malware de-

tection using machine learning. In Computer Science and Information Technology,

2009. IMCSIT’09. International Multiconference on, pages 735–741. IEEE, 2009.

[66] MA Gibney, Nicholas R Jennings, NJ Vriend, and José-Marie Griffiths. Market-

based call routing in telecommunications networks using adaptive pricing and real

bidding. In International Workshop on Intelligent Agents for Telecommunication

Applications, pages 46–61. Springer, 1999.

136

[67] Kent Griffin, Scott Schneider, Xin Hu, and Tzi-Cker Chiueh. Automatic generation

of string signatures for malware detection. In International Workshop on Recent

Advances in Intrusion Detection, pages 101–120. Springer, 2009.

[68] Steven Strandlund Hansen, Thor Mark Tampus Larsen, Matija Stevanovic, and

Jens Myrup Pedersen. An approach for detection and family classification of mal-

ware based on behavioral analysis. In 2016 International Conference on Computing,

Networking and Communications (ICNC), pages 1–5. IEEE, 2016.

[69] Keith Harrison, Behzad Bordbar, Syed TT Ali, Chris I Dalton, and Andrew Nor-

man. A framework for detecting malware in cloud by identifying symptoms. In

Enterprise Distributed Object Computing Conference (EDOC), 2012 IEEE 16th In-

ternational, pages 164–172. IEEE, 2012.

[70] Safaa Salam Hatem, Mahmoud M El-Khouly, et al. Malware detection in cloud

computing. Int J Adv Comput Sci Appl, 5(4), 2014.

[71] Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt, and Bernhard

Scholkopf. Support vector machines. IEEE Intelligent Systems and their appli-

cations, 13(4):18–28, 1998.

[72] Jozsef Hegedus, Yoan Miche, Alexander Ilin, and Amaury Lendasse. Methodology

for behavioral-based malware analysis and detection using random projections and

k-nearest neighbors classifiers. In Computational Intelligence and Security (CIS),

2011 Seventh International Conference on, pages 1016–1023. IEEE, 2011.

[73] Stefan Helmreich. Flexible infections: computer viruses, human bodies, nation-

states, evolutionary capitalism. Science, Technology, & Human Values, 25(4):472–

491, 2000.

[74] P Hoffman, K Scarfone, and M Souppaya. Guide to security for full virtualization

technologies. National Institute of Standards and Technology (NIST), pages 800–

125, 2011.

137

[75] Tang Hongwei, Feng Shengzhong, Zhao Xiaofang, and Jin Yan. Virtav: An agentless

antivirus system based on in-memory signature scanning for virtual machine. In Ad-

vanced Communication Technology (ICACT), 2016 18th International Conference

on, pages 1–2. IEEE, 2016.

[76] Fu-Hau Hsu, Min-Hao Wu, Chang-Kuo Tso, Chi-Hsien Hsu, and Chieh-Wen Chen.

Antivirus software shield against antivirus terminators. IEEE Transactions on In-

formation Forensics and Security, 7(5):1439–1447, 2012.

[77] Jin Huang and Charles X Ling. Using auc and accuracy in evaluating learning

algorithms. IEEE Transactions on knowledge and Data Engineering, 17(3):299–

310, 2005.

[78] Tongwook Hwang, Youngsang Shin, Kyungho Son, and Haeryong Park. Design

of a hypervisor-based rootkit detection method for virtualized systems in cloud

computing environments. In Proceedings of the 2013 AASRI Winter International

Conference on Engineering and Technology, pages 27–32, 2013.

[79] Amani S Ibrahim, James Hamlyn-Harris, John Grundy, and Mohamed Almorsy.

Cloudsec: a security monitoring appliance for virtual machines in the iaas cloud

model. In Network and System Security (NSS), 2011 5th International Conference

on, pages 113–120. IEEE, 2011.

[80] Rafiqul Islam, Ronghua Tian, Veelasha Moonsamy, and Lynn Batten. A comparison

of the classification of disparate malware collected in different time periods. Journal

of networks, 7(6):946–955, 2012.

[81] Rafiqul Islam, Irfan Altas, and Md Saiful Islam. Exploring timeline-based malware

classification. In IFIP International Information Security Conference, pages 1–13.

Springer, 2013.

[82] Grégoire Jacob, Hervé Debar, and Eric Filiol. Behavioral detection of malware:

138

from a survey towards an established taxonomy. Journal in computer Virology, 4

(3):251–266, 2008.

[83] Xuxian Jiang, Xinyuan Wang, and Dongyan Xu. Stealthy malware detection

through vmm-based out-of-the-box semantic view reconstruction. In Proceedings

of the 14th ACM conference on Computer and communications security, pages 128–

138. ACM, 2007.

[84] Roberto Jordaney, Kumar Sharad, Santanu K. Dash, Zhi Wang, Davide Papini,

Ilia Nouretdinov, and Lorenzo Cavallaro. Transcend: Detecting concept drift in

malware classification models. In 26th USENIX Security Symposium (USENIX

Security 17), pages 625–642, Vancouver, BC, 2017. USENIX Association. ISBN 978-

1-931971-40-9. URL https://www.usenix.org/conference/usenixsecurity17/technical-

sessions/presentation/jordaney.

[85] Pilsung Kang and Sungzoon Cho. Eus svms: Ensemble of under-sampled svms

for data imbalance problems. In International Conference on Neural Information

Processing, pages 837–846. Springer, 2006.

[86] Masoudeh Keshavarzi. Traditional host based intrusion detection systems’ chal-

lenges in cloud computing. Advances in Computer Science: an International Jour-

nal, 3(2):133–138, 2014.

[87] Taghi M Khoshgoftaar, Jason Van Hulse, and Amri Napolitano. Comparing boost-

ing and bagging techniques with noisy and imbalanced data. IEEE Transactions

on Systems, Man, and Cybernetics-Part A: Systems and Humans, 41(3):552–568,

2011.

[88] Youngjoon Ki, Eunjin Kim, and Huy Kang Kim. A novel approach to detect mal-

ware based on api call sequence analysis. International Journal of Distributed Sensor

Networks, 11(6):659101, 2015.

139

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/jordaney
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/jordaney

[89] Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel. Barecloud: Bare-metal

analysis-based evasive malware detection. In USENIX Security Symposium, pages

287–301, 2014.

[90] Ralf Klinkenberg and Ingrid Renz. Adaptive information filtering: Learning in the

presence of concept drifts. Learning for Text Categorization, pages 33–40, 1998.

[91] Sotiris B Kotsiantis, I Zaharakis, and P Pintelas. Supervised machine learning: A

review of classification techniques, 2007.

[92] Kenichi Kourai and Shigeru Chiba. Hyperspector: virtual distributed monitoring

environments for secure intrusion detection. In Proceedings of the 1st ACM/USENIX

international conference on Virtual execution environments, pages 197–207. ACM,

2005.

[93] Michal Kruczkowski and Ewa Niewiadomska Szynkiewicz. Support vector machine

for malware analysis and classification. In Proceedings of the 2014 IEEE/WIC/ACM

International Joint Conferences on Web Intelligence (WI) and Intelligent Agent

Technologies (IAT)-Volume 02, pages 415–420. IEEE Computer Society, 2014.

[94] Anthony M Kwasnica and Katerina Sherstyuk. Multiunit auctions. Journal of

economic surveys, 27(3):461–490, 2013.

[95] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of proba-

bilistic real-time systems. In G. Gopalakrishnan and S. Qadeer, editors, Proc. 23rd

International Conference on Computer Aided Verification (CAV’11), volume 6806

of LNCS, pages 585–591. Springer, 2011.

[96] Ralph Langner. Stuxnet: Dissecting a cyberwarfare weapon. IEEE Security &

Privacy, 9(3):49–51, 2011.

[97] Peng Li, Limin Liu, Debin Gao, and Michael K Reiter. On challenges in evaluating

140

malware clustering. In Recent Advances in Intrusion Detection, pages 238–255.

Springer, 2010.

[98] LibVMI. Virtual machine introspection. http://libvmi.com, 2015.

[99] Wei-Jiun Lin and James J Chen. Class-imbalanced classifiers for high-dimensional

data. Briefings in bioinformatics, page bbs006, 2012.

[100] Wei-Yin Loh. Classification and regression trees. Wiley Interdisciplinary Reviews:

Data Mining and Knowledge Discovery, 1(1):14–23, 2011.

[101] Yi-Bin Lu, Shu-Chang Din, Chao-Fu Zheng, and Bai-Jian Gao. Using multi-feature

and classifier ensembles to improve malware detection. Journal of CCIT, 39(2):

57–72, 2010.

[102] Andreu Mas-Colell, Michael Dennis Whinston, Jerry R Green, et al. Microeconomic

theory, volume 1. Oxford university press New York, 1995.

[103] Kyle Maxwell. Mwcrawler. https://github.com/0day1day/mwcrawler, 2012.

[104] Kyle Maxwell. Maltrieve. https://github.com/technoskald/maltrieve, 2015.

[105] Vivienne Mee, Theodore Tryfonas, and Iain Sutherland. The windows registry

as a forensic artefact: Illustrating evidence collection for internet usage. Digital

Investigation, 3(3):166–173, 2006.

[106] Peter Mell and Tim Grance. The nist definition of cloud computing. National

Institute of Standards and Technology, 53(6):50, 2009.

[107] Qiguang Miao, Jiachen Liu, Ying Cao, and Jianfeng Song. Malware detection us-

ing bilayer behavior abstraction and improved one-class support vector machines.

International Journal of Information Security, pages 1–19, 2015.

141

http://libvmi.com
https://github.com/0day1day/mwcrawler
https://github.com/technoskald/maltrieve

[108] Microsoft. Trojandownloader:win32/moure.e, detected as: Trojan.fakeav

(symantec). https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-

description?Name=TrojanDownloader%3aWin32%2fMoure.E, June 17 2013.

[109] Microsoft. Malware encyclopedia. http://www.microsoft.com/security/portal/

threat/Threats.aspx, 2015.

[110] Microsoft. Microsoft security intelligence report (sir). http://www.microsoft.com/

security/sir/default.aspx, 2015.

[111] Microsoft Azure. Vm agent and extensions. https://azure.microsoft.com/en-us/

blog/vm-agent-and-extensions-part-2/t, April 2014.

[112] Pascal Millaire. Symantec: Wannacry ransomware: 6 implications for the insur-

ance industry. https://www.symantec.com/connect/blogs/wannacry-ransomware,

May 15 2017.

[113] T.M. Mitchell. Machine Learning. McGraw-Hill International Editions. McGraw-

Hill, 1997. ISBN 9780071154673. URL https://books.google.co.uk/books?id=

EoYBngEACAAJ.

[114] Andreas Moser, Christopher Kruegel, and Engin Kirda. Exploring multiple exe-

cution paths for malware analysis. In Security and Privacy, 2007. SP’07. IEEE

Symposium on, pages 231–245. IEEE, 2007.

[115] Andreas Moser, Christopher Kruegel, and Engin Kirda. Limits of static analysis

for malware detection. In Computer security applications conference, 2007. ACSAC

2007. Twenty-third annual, pages 421–430. IEEE, 2007.

[116] Robert Moskovitch, Clint Feher, and Yuval Elovici. Unknown malcode detectiona

chronological evaluation. In Intelligence and Security Informatics, 2008. ISI 2008.

IEEE International Conference on, pages 267–268. IEEE, 2008.

142

https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader%3aWin32%2fMoure.E
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader%3aWin32%2fMoure.E
http://www.microsoft.com/security/portal/threat/Threats.aspx
http://www.microsoft.com/security/portal/threat/Threats.aspx
http://www.microsoft.com/security/sir/default.aspx
http://www.microsoft.com/security/sir/default.aspx
https://azure.microsoft.com/en-us/blog/vm-agent-and-extensions-part-2/t
https://azure.microsoft.com/en-us/blog/vm-agent-and-extensions-part-2/t
https://books.google.co.uk/books?id=EoYBngEACAAJ
https://books.google.co.uk/books?id=EoYBngEACAAJ

[117] Ashwini Mujumdar, Gayatri Masiwal, and Dr BB Meshram. Analysis of signature-

based and behavior-based anti-malware approaches. signature, 2(6), 2013.

[118] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[119] Vivek Nallur. A decentralized self-adaptation mechanism for service-based applica-

tions in the cloud. PhD thesis, University of Birmingham, 2012.

[120] Kara Nance, Matt Bishop, and Brian Hay. Virtual machine introspection: Obser-

vation or interference? IEEE Security & Privacy, 6(5), 2008.

[121] Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, and Yang Liu.

Context-aware, adaptive and scalable android malware detection through online

learning (extended version). arXiv preprint arXiv:1706.00947, 2017.

[122] Julia Narvaez, Barbara Endicott-Popovsky, Christian Seifert, Chiraag Aval, and

Deborah A Frincke. Drive-by-downloads. In System Sciences (HICSS), 2010 43rd

Hawaii International Conference on, pages 1–10. IEEE, 2010.

[123] Pratiksha Natani and Deepti Vidyarthi. Malware detection using api function fre-

quency with ensemble based classifier. In International Symposium on Security in

Computing and Communication, pages 378–388. Springer, 2013.

[124] Norman Sandbox. Norman safeground antivirus software. http://www.norman.

com/index/.

[125] Jon Oberheide, Evan Cooke, and Farnam Jahanian. Rethinking antivirus: Exe-

cutable analysis in the network cloud. In HotSec, 2007.

[126] Jon Oberheide, Evan Cooke, and Farnam Jahanian. Cloudav: N-version antivirus

in the network cloud. In USENIX Security Symposium, pages 91–106, 2008.

[127] Offensivecomputing. Open malware. http://www.offensivecomputing.net, 2015.

143

http://www.norman.com/index/
http://www.norman.com/index/
http://www.offensivecomputing.net

[128] Anthony O’Hagan and Jonathan J Forster. Kendall’s advanced theory of statistics,

volume 2B: Bayesian inference, volume 2. Arnold, 2004.

[129] OpenCV. Introduction to support vector machines. http://docs.opencv.org/2.4/

doc/tutorials/ml/introduction to svm/introduction to svm.html.

[130] Martin J Osborne and Ariel Rubinstein. Bargaining and markets. Academic press,

1990.

[131] Panda Labs. Panda labs q1 report: Trojans account for 80% of malware infec-

tions, set new record. https://www.pandasecurity.com/mediacenter/press-releases/

pandalabs-q1-report-trojans-account-for-80-of-malware-infections-set-new-record/,

May 2013.

[132] Panda Labs. 20% of all malware ever created appeared in 2013.

https://www.pandasecurity.com/mediacenter/press-releases/20-of-all-malware-

ever-created-appeared-in-2013/, March 2014.

[133] Bryan D Payne, Martim Carbone, Monirul Sharif, and Wenke Lee. Lares: An archi-

tecture for secure active monitoring using virtualization. In Security and Privacy,

2008. SP 2008. IEEE Symposium on, pages 233–247. IEEE, 2008.

[134] Naser Peiravian and Xingquan Zhu. Machine learning for android malware detection

using permission and api calls. In 2013 IEEE 25th International Conference on Tools

with Artificial Intelligence, pages 300–305. IEEE, 2013.

[135] Abdurrahman Pektaş, Tankut Acarman, Yliès Falcone, and Jean-Claude Fernandez.

Runtime-behavior based malware classification using online machine learning. In

2015 World Congress on Internet Security (WorldCIS), pages 166–171. IEEE, 2015.

[136] Radu S Pirscoveanu, Steven S Hansen, Thor MT Larsen, Matija Stevanovic,

Jens Myrup Pedersen, and Alexandre Czech. Analysis of malware behavior: Type

144

http://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html
http://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html
https://www.pandasecurity.com/mediacenter/press-releases/pandalabs-q1-report-trojans-account-for-80-of-malware-infections-set-new-record/
https://www.pandasecurity.com/mediacenter/press-releases/pandalabs-q1-report-trojans-account-for-80-of-malware-infections-set-new-record/
https://www.pandasecurity.com/mediacenter/press-releases/20-of-all-malware-ever-created-appeared-in-2013/
https://www.pandasecurity.com/mediacenter/press-releases/20-of-all-malware-ever-created-appeared-in-2013/

classification using machine learning. In Cyber Situational Awareness, Data An-

alytics and Assessment (CyberSA), 2015 International Conference on, pages 1–7.

IEEE, 2015.

[137] Yong Qiao, Jie He, Yuexiang Yang, and Lin Ji. Analyzing malware by abstracting

the frequent itemsets in api call sequences. In Trust, Security and Privacy in Com-

puting and Communications (TrustCom), 2013 12th IEEE International Conference

on, pages 265–270. IEEE, 2013.

[138] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[139] Marco Tulio Ribeiro. Lime. https://github.com/marcotcr/lime, 2016.

[140] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should i trust

you?: Explaining the predictions of any classifier. In Proceedings of the 22nd

ACM SIGKDD International Conference on Knowledge Discovery and Data Min-

ing, pages 1135–1144. ACM, 2016.

[141] Konrad Rieck, Thorsten Holz, Carsten Willems, Patrick Düssel, and Pavel Laskov.

Learning and classification of malware behavior. In Detection of Intrusions and

Malware, and Vulnerability Assessment, pages 108–125. Springer, 2008.

[142] Konrad Rieck, Philipp Trinius, Carsten Willems, and Thorsten Holz. Automatic

analysis of malware behavior using machine learning. Journal of Computer Security,

19(4):639–668, 2011.

[143] Zahra Salehi, Ashkan Sami, and Mahboobe Ghiasi. Using feature generation from

api calls for malware detection. Computer Fraud & Security, 2014(9):9–18, 2014.

[144] Ashkan Sami, Babak Yadegari, Hossein Rahimi, Naser Peiravian, Sattar Hashemi,

and Ali Hamze. Malware detection based on mining api calls. In Proceedings of the

2010 ACM symposium on applied computing, pages 1020–1025. ACM, 2010.

145

https://github.com/marcotcr/lime

[145] Saudi Aramco. Saudi arabian oil co. http://www.saudiaramco.com/en/home.html,

December 2016.

[146] Robert E Schapire. The strength of weak learnability. Machine learning, 5(2):

197–227, 1990.

[147] Shane Schick. Security intelligence: Tinba malware watches mouse movements,

screen activity to avoid sandbox detection. https://securityintelligence.com/

news/tinba-malware-watches-mouse-movements-screen-activity-to-avoid-sandbox-

detection/, 2016.

[148] Matthew G Schultz, Eleazar Eskin, F Zadok, and Salvatore J Stolfo. Data mining

methods for detection of new malicious executables. In Security and Privacy, 2001.

S&P 2001. Proceedings. 2001 IEEE Symposium on, pages 38–49. IEEE, 2001.

[149] Scikit-learn. Scikit-learn: machine learning in python. http://scikit-learn.org/

stable/, June 17 2013.

[150] Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan Glezer, and Yael Weiss. andro-

maly: a behavioral malware detection framework for android devices. Journal of

Intelligent Information Systems, 38(1):161–190, 2012.

[151] Asaf Shabtai, Robert Moskovitch, Clint Feher, Shlomi Dolev, and Yuval Elovici.

Detecting unknown malicious code by applying classification techniques on opcode

patterns. Security Informatics, 1(1):1–22, 2012.

[152] Claude E Shannon and Warren Weaver. The mathematical theory of information.

1949.

[153] Monirul I Sharif, Wenke Lee, Weidong Cui, and Andrea Lanzi. Secure in-vm mon-

itoring using hardware virtualization. In Proceedings of the 16th ACM conference

on Computer and communications security, pages 477–487. ACM, 2009.

146

http://www.saudiaramco.com/en/home.html
https://securityintelligence.com/news/tinba-malware-watches-mouse-movements-screen-activity-to-avoid-sandbox-detection/
https://securityintelligence.com/news/tinba-malware-watches-mouse-movements-screen-activity-to-avoid-sandbox-detection/
https://securityintelligence.com/news/tinba-malware-watches-mouse-movements-screen-activity-to-avoid-sandbox-detection/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/

[154] Adrian L Shaw, Behzad Bordbar, John Saxon, Keith Harrison, and Chris I Dalton.

Forensic virtual machines: dynamic defence in the cloud via introspection. In Cloud

Engineering (IC2E), 2014 IEEE International Conference on, pages 303–310. IEEE,

2014.

[155] Adrian L Shaw, Behzad Bordbar, John Saxon, Keith Harrison, and Chris I Dalton.

Forensic virtual machines: dynamic defence in the cloud via introspection. In Cloud

Engineering (IC2E), 2014 IEEE International Conference on, pages 303–310. IEEE,

2014.

[156] Anshuman Singh, Andrew Walenstein, and Arun Lakhotia. Tracking concept drift

in malware families. In Proceedings of the 5th ACM workshop on Security and

artificial intelligence, pages 81–92. ACM, 2012.

[157] Kuyoro So. Cloud computing security issues and challenges. International Journal

of Computer Networks, 3(5):247–55, 2011.

[158] Sahil Suneja, Canturk Isci, Eyal de Lara, and Vasanth Bala. Exploring vm intro-

spection: Techniques and trade-offs. In ACM SIGPLAN Notices, volume 50, pages

133–146. ACM, 2015.

[159] Symantec. Understanding heuristics - symantecs bloodhound technology. https:

//www.virusbulletin.com/uploads/pdf/magazine/1996/199611.pdf, November 1996.

[160] Symantec. Infostealer. https://www.symantec.com/security response/writeup.jsp?

docid=2000-122016-0558-99&tabid=2, February 15 2013.

[161] Symantec. W32.xpiro.i. https://www.symantec.com/security response/writeup.jsp?

docid=2015-102911-0452-99, June 17 2013.

[162] Symantec. Symantec security response - virus naming conventions. https://www.

symantec.com/security response/virusnaming.jsp, June 17 2013.

147

https://www.virusbulletin.com/uploads/pdf/magazine/1996/199611.pdf
https://www.virusbulletin.com/uploads/pdf/magazine/1996/199611.pdf
https://www.symantec.com/security_response/writeup.jsp?docid=2000-122016-0558-99&tabid=2
https://www.symantec.com/security_response/writeup.jsp?docid=2000-122016-0558-99&tabid=2
https://www.symantec.com/security_response/writeup.jsp?docid=2015-102911-0452-99
https://www.symantec.com/security_response/writeup.jsp?docid=2015-102911-0452-99
https://www.symantec.com/security_response/virusnaming.jsp
https://www.symantec.com/security_response/virusnaming.jsp

[163] Symantec. Adware.popuppers. https://www.symantec.com/security response/

writeup.jsp?docid=2005-022816-5036-99&tabid=2, June 17 2013.

[164] Symantec. W32.sality.ae. https://www.virustotal.com/en/file/

bbc345fb099248fad14e8d012c3bc11e16ea27a5f291f13bc79c181913e395d9/analysis/,

June 17 2013.

[165] Symantec. W32.sality!dam. https://www.symantec.com/security response/writeup.

jsp?docid=2013-043010-4816-99, June 17 2013.

[166] Symantec. Internet security threat report. http://www.symantec.com/security

response/publications/threatreport.jsp, 2015.

[167] Symantec. Trojan.gen. https://www.symantec.com/security response/writeup.jsp?

docid=2010-022501-5526-99, 2016.

[168] Symantec. Internet security threat report. https://www.symantec.com/content/

dam/symantec/docs/reports/istr-21-2016-en.pdf, April 2016.

[169] Symantec. A-z listing of threats & risks. https://www.symantec.com/security

response/landing/azlisting.jsp, 2016.

[170] Symantec Security Response. The shamoon attacks. https://www.symantec.com/

connect/blogs/shamoon-attacks, August 16 2012.

[171] Symantec Security Response. Shamoon: Back from the dead and destruc-

tive as ever. https://www.symantec.com/connect/blogs/shamoon-back-dead-and-

destructive-ever, November 30 2016.

[172] Symantec Security Response. Latest intelligence. https://www.symantec.com/

security response/publications/monthlythreatreport.jsp, July 05 2017.

[173] Peter Szor. The art of computer virus research and defense. Pearson Education,

2005.

148

https://www.symantec.com/security_response/writeup.jsp?docid=2005-022816-5036-99&tabid=2
https://www.symantec.com/security_response/writeup.jsp?docid=2005-022816-5036-99&tabid=2
https://www.virustotal.com/en/file/bbc345fb099248fad14e8d012c3bc11e16ea27a5f291f13bc79c181913e395d9/analysis/
https://www.virustotal.com/en/file/bbc345fb099248fad14e8d012c3bc11e16ea27a5f291f13bc79c181913e395d9/analysis/
https://www.symantec.com/security_response/writeup.jsp?docid=2013-043010-4816-99
https://www.symantec.com/security_response/writeup.jsp?docid=2013-043010-4816-99
http://www.symantec.com/security_response/publications/threatreport.jsp
http://www.symantec.com/security_response/publications/threatreport.jsp
https://www.symantec.com/security_response/writeup.jsp?docid=2010-022501-5526-99
https://www.symantec.com/security_response/writeup.jsp?docid=2010-022501-5526-99
https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf
https://www.symantec.com/security_response/landing/azlisting.jsp
https://www.symantec.com/security_response/landing/azlisting.jsp
https://www.symantec.com/connect/blogs/shamoon-attacks
https://www.symantec.com/connect/blogs/shamoon-attacks
https://www.symantec.com/connect/blogs/shamoon-back-dead-and-destructive-ever
https://www.symantec.com/connect/blogs/shamoon-back-dead-and-destructive-ever
https://www.symantec.com/security_response/publications/monthlythreatreport.jsp
https://www.symantec.com/security_response/publications/monthlythreatreport.jsp

[174] Hongwei Tang, Shengzhong Feng, Xiaofang Zhao, and Yan Jin. Virtav: An agentless

antivirus system based on in-memory signature scanning for virtual machine. In Ad-

vanced Communication Technology (ICACT), 2016 18th International Conference

on, pages 124–133. IEEE, 2016.

[175] Threat Expert. Automated threat analysis. http://www.threatexpert.com/.

[176] Ronghua Tian, Rafiqul Islam, Lynn Batten, and Steve Versteeg. Differentiating

malware from cleanware using behavioural analysis. In Malicious and Unwanted

Software (MALWARE), 2010 5th International Conference on, pages 23–30. IEEE,

2010.

[177] Fotis Tsifountidis. Virtualization security: Virtual machine monitoring and intro-

spection. Signature, 2010.

[178] Alexey Tsymbal. The problem of concept drift: definitions and related work. Com-

puter Science Department, Trinity College Dublin, 106(2), 2004.

[179] Paul Tucker. Market mechanisms in a programmed system. Department of Com-

puter Science and Engineering, University of California, 130, 1998.

[180] Xabier Ugarte-Pedrero, Igor Santos, Carlos Laorden, Borja Sanz, and Pablo G

Bringas. Collective classification for packed executable identification. International

Journal of Computer Systems Science & Engineering, 28(1):25–36, 2013.

[181] R Veeramani and Nitin Rai. Windows api based malware detection and framework

analysis. In International conference on networks and cyber security, volume 25,

2012.

[182] Virus Bulletin. The international publication on computer virus prevention, recog-

nition and removal. https://www.virusbulletin.com/uploads/pdf/magazine/1996/

199611.pdf, November 1996.

[183] Virusshare. Virusshare.com. http://vxheaven.org, 2016.

149

http://www.threatexpert.com/
https://www.virusbulletin.com/uploads/pdf/magazine/1996/199611.pdf
https://www.virusbulletin.com/uploads/pdf/magazine/1996/199611.pdf
http://vxheaven.org

[184] VirusTotal. Free online virus, malware and url scanner. https://www.virustotal.

com/, 2015.

[185] VMware. Enabling vmware vshield endpoint in a vmware horizon view environ-

ment. https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/

techpaper/vmware-horizon-view-vshield-endpoint-antivirus-white-paper.pdf, Octo-

ber 2015.

[186] VX Heaven. Vxheaven.org. http://vxheaven.org, 2016.

[187] Andrew Walenstein and Arun Lakhotia. The software similarity problem in malware

analysis. In Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für

Informatik, 2007.

[188] Cheng Wang, Jianmin Pang, Rongcai Zhao, and Xiaoxian Liu. Using api sequence

and bayes algorithm to detect suspicious behavior. In Communication Software and

Networks, 2009. ICCSN’09. International Conference on, pages 544–548. IEEE,

2009.

[189] Cheng Wang, Zheng Qin, Jixin Zhang, and Hui Yin. A malware variants detection

methodology with an opcode based feature method and a fast density based clus-

tering algorithm. In Natural Computation, Fuzzy Systems and Knowledge Discovery

(ICNC-FSKD), 2016 12th International Conference on, pages 481–487. IEEE, 2016.

[190] Gang Wang, Jinxing Hao, Jian Ma, and Hongbing Jiang. A comparative assessment

of ensemble learning for credit scoring. Expert systems with applications, 38(1):223–

230, 2011.

[191] Xiaodong Wang and José F Mart́ınez. Xchange: A market-based approach to scal-

able dynamic multi-resource allocation in multicore architectures. In High Perfor-

mance Computer Architecture (HPCA), 2015 IEEE 21st International Symposium

on, pages 113–125. IEEE, 2015.

150

https://www.virustotal.com/
https://www.virustotal.com/
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/vmware-horizon-view-vshield-endpoint-antivirus-white-paper.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/vmware-horizon-view-vshield-endpoint-antivirus-white-paper.pdf
http://vxheaven.org

[192] Florian Westphal, Stefan Axelsson, Christian Neuhaus, and Andreas Polze. Vmi-pl:

A monitoring language for virtual platforms using virtual machine introspection.

Digital Investigation, 11:S85–S94, 2014.

[193] Gerhard Widmer and Miroslav Kubat. Learning in the presence of concept drift

and hidden contexts. Machine learning, 23(1):69–101, 1996.

[194] Carsten Willems, Thorsten Holz, and Felix Freiling. Toward automated dynamic

malware analysis using cwsandbox. Security & Privacy, IEEE, 5(2):32–39, 2007.

[195] David E Williams. Virtualization with Xen (tm): Including XenEnterprise,

XenServer, and XenExpress: Including XenEnterprise, XenServer, and XenEx-

press. Syngress, 2007.

[196] Ian H Witten and Eibe Frank. Data Mining: Practical machine learning tools and

techniques. Morgan Kaufmann, 2005.

[197] David H Wolpert. Stacked generalization. Neural networks, 5(2):241–259, 1992.

[198] Christian Wressnegger, Kevin Freeman, Fabian Yamaguchi, and Konrad Rieck.

From malware signatures to anti-virus assisted attacks. arXiv preprint

arXiv:1610.06022, 2016.

[199] Ming-Wei Wu and Sy-Yen Kuo. Examining web-based spyware invasion with stateful

behavior monitoring. In Dependable Computing, 2007. PRDC 2007. 13th Pacific

Rim International Symposium on, pages 275–281. IEEE, 2007.

[200] J-Y Xu, Andrew H Sung, Patrick Chavez, and Srinivas Mukkamala. Polymor-

phic malicious executable scanner by api sequence analysis. In Hybrid Intelligent

Systems, 2004. HIS’04. Fourth International Conference on, pages 378–383. IEEE,

2004.

[201] Wei Yan, Zheng Zhang, and Nirwan Ansari. Revealing packed malware. ieee seCu-

rity & PrivaCy, 6(5), 2008.

151

[202] Bee Wah Yap, Khatijahhusna Abd Rani, Hezlin Aryani Abd Rahman, Simon Fong,

Zuraida Khairudin, and Nik Nik Abdullah. An application of oversampling, under-

sampling, bagging and boosting in handling imbalanced datasets. In Proceedings of

the First International Conference on Advanced Data and Information Engineering

(DaEng-2013), pages 13–22. Springer, 2014.

[203] Yanfang Ye, Dingding Wang, Tao Li, Dongyi Ye, and Qingshan Jiang. An intelligent

pe-malware detection system based on association mining. Journal in computer

virology, 4(4):323–334, 2008.

[204] Yanfang Ye, Lifei Chen, Dingding Wang, Tao Li, Qingshan Jiang, and Min Zhao.

Sbmds: an interpretable string based malware detection system using svm ensemble

with bagging. Journal in computer virology, 5(4):283–293, 2009.

[205] Yanfang Ye, Tao Li, Kai Huang, Qingshan Jiang, and Yong Chen. Hierarchical

associative classifier (hac) for malware detection from the large and imbalanced

gray list. Journal of Intelligent Information Systems, 35(1):1–20, 2010.

[206] Bo-yun Zhang, Jian-ping Yin, Jin-bo Hao, Ding-xing Zhang, and Shu-lin Wang.

Using support vector machine to detect unknown computer viruses. International

Journal of Computational Intelligence Research, 2(1):100–104, 2006.

[207] Boyun Zhang, Jianping Yin, Wensheng Tang, Jinbo Hao, and Dingxing Zhang.

Unknown malicious codes detection based on rough set theory and support vector

machine. In The 2006 IEEE International Joint Conference on Neural Network

Proceedings, pages 2583–2587. IEEE, 2006.

[208] Yi Zhang and Xiaoming Jin. An automatic construction and organization strategy

for ensemble learning on data streams. ACM SIGMOD Record, 35(3):28–33, 2006.

[209] Hengli Zhao, Ming Xu, Ning Zheng, Jingjing Yao, and Qiang Ho. Malicious executa-

bles classification based on behavioral factor analysis. In e-Education, e-Business,

152

e-Management, and e-Learning, 2010. IC4E’10. International Conference on, pages

502–506. IEEE, 2010.

[210] Mikhail Zolotukhin and Timo Hamalainen. Detection of zero-day malware based on

the analysis of opcode sequences. In Consumer Communications and Networking

Conference (CCNC), 2014 IEEE 11th, pages 386–391. IEEE, 2014.

153

