
        

University of Bath

PHD

Active Network Management and Uncertainty Analysis in Distribution Networks

Zhou, Lin

Award date:
2015

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 22. May. 2019



 

 
 

Active Network Management and 

Uncertainty Analysis in Distribution 

Networks 
 

By  

Lin Zhou 
BEng, SMIEEE 

 
The thesis submitted for the degree of  

 

Doctor of Philosophy 
 

in  

The Department of 
Electronic and Electrical Engineering 

University of Bath 
 

June 2015 
 

-COPYRIGHT- 
 

Attention is drawn to the fact that copyright of this thesis rests with its author. A copy of 
this thesis has been supplied on condition that anyone who consults it is understood to 
recognise that its copyright rests with the author and they must not copy it or use material 
from it except as permitted by law or with the consent of the author. 

 
This thesis may be made available for consultation within the University Library and may 
be photocopied or lent to other libraries for the purposes of consultation. 
 
Signature:………………………     Date:…………………………



Page I 
 

ABSTRACT 
 

In distribution networks, the traditional way to eliminate network stresses caused by 

increasing generation and demand is to reinforce the primary network assets. A cheaper 

alternative is active network management (ANM) which refers to real-time network 

control to resolve power flow, voltage, fault current and security issues.  

 

However, there are two limitations in ANM. First, previous ANM strategies 

investigated generation side and demand side management separately. The generation 

side management evaluates the value from ANM in terms of economic generation 

curtailment. It does not consider the potential benefits from integrating demand side 

response such as economically shifting flexible load over time. Second, enhancing 

generation side management with load shifting requires the prediction of network stress 

whose accuracy will decrease as the lead time increases. The uncertain prediction 

implies the potential failure of reaching expected operational benefits. However, there 

is very limited investigation into the trade-offs between operational benefit and its 

potential risk.  

 

In order to tackle the challenges, there are two aspects of research work in this thesis.  

1) Enhanced ANM. It proposes the use of electric vehicles (EVs) as responsive demand 

to complement generation curtailment strategies in relieving network stress. This is 

achieved by shifting flexible EV charging demand over time to absorb excessive wind 

generation when they cannot be exported to the supply network. 

2) Uncertainty management. It adopts Sharpe Ratio and Risk Adjust Return On Capital 

concepts from financial risk management to help the enhanced ANM make operational 

decisions when both operational benefit and its associated risk are considered. Copula 

theory is applied to further integrate correlations of forecasting errors between nodal 

power injections (caused by wind and load forecasting) into uncertainty management.   
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The enhanced ANM can further improve network efficiency of the existing distribution 

networks to accommodate increasing renewable generation. The cost-benefit 

assessment informs distribution network operators of the trade-off between investment 

in ANM strategy and in the primary network assets, thus helping them to make cost-

effective investment decisions. The uncertainty management allows the impact of risks 

that arise from network stress prediction on the expected operational benefits to be 

properly assessed, thus extending the traditional deterministic cost-benefit assessment 

to cost-benefit-risk assessment. Moreover, it is scalable to other systems in any size 

with low computational burden, which is the major contribution of this thesis. 
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This chapter briefly introduces the background, motivation, 

challenges, objectives, and contributions of this thesis. It also 

provides an outline of the thesis. 
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1.1. New Environment for Power System 

Countries over world are promoting increasing proportion of energy sourcing from 

renewable sources. The main drivers are global awareness of environmental pollution 

caused by Carbon Dioxide (CO2) emissions, depletion of domestic fossil fuels reserves 

and significant global energy demand growth. The United Kingdom (UK) has set up a 

target of 15% of energy from renewables by 2020 [1]. The binding target is expressed 

as a percentage of total energy use, including electricity, heat and transport. Fig. 1-1 

displays the renewable generation from 2008 to 2012 in the UK, and makes estimations 

of renewable generation required to meet the 2020 target.  

 

 
Figure 1-1 Progress in Renewable Electricity, Heat and Transport [1] 

 

Driven by the 2020 renewable target, a massive increase in renewable distributed 

generation is required in the existing UK distribution network. The UK currently has 

4GW of operational onshore wind capacity to generate around 7TWh of electricity 

annually, contributing to 1.95% of the total electricity generation. The government 

document indicates that onshore wind could contribute up to around 13GW by 2020 

[2] .  

 

Beyond the renewable distributed generation, electrification of vehicles and heating is 

also expected to grow substantially in the future, particularly from 2030 onwards, to 
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help meet the 15% target. By the year 2030, the number of Electric Vehicles (EVs) 

would reach 2.142 million in the UK [3]. It is predicted that electrification of vehicles 

and heating could add an additional ~5-15% to electricity demand in 2030. The 

government has set up a transport sub-target of 10% of its energy usage for all forms of 

transport be sourced from renewable sources by 2020.  

 

The distribution networks are traditionally designed to deliver energy from grid supply 

points to end customers. They have limited capacity to accommodate significantly 

increasing renewable generation and load demand. This can lead to severe network 

pressure and significant energy losses during peak times in the current passive 

distribution network, particularly for areas dominated by renewable generation. For 

example, excessive generation will lead to reverse power flow, and cause the power 

flow to exceed the existing line capacity at times. 

 

The traditional approach to increase network capacity for accommodating generation 

and demand growth is to reinforce the present network or build new lines, which is 

costly, time-consuming and environmentally unfriendly. In addition, very limited 

control is applied in the existing network. For instance, currently in the UK, constraint 

management for power flow management generally follows the Last-In-First-Off 

(LIFO) rule [4]. It means the last-in distributed generator (DG) will be the first to be 

tripped off or curtailed once an overloading is detected, regardless of its ability to 

alleviate network pressure. This results in unnecessary waste of renewable generation 

[5]. Thus, Smart Grid concept is becoming a hot issue, being promoted by many 

governments around the world. Being equipped with interactive communication 

systems, smart sensing and metering, remote measurement infrastructure, a smart grid 

will transform the current system to deliver energy more efficiently, securely and 

reliably [6].  

 

In the UK, Distribution Network Operators (DNOs), which are licensed companies for 

electrical energy distribution authorized by the Office of Gas and Electricity Markets, 

play an important role in actively looking for alternative Active Network Management 

(ANM) to accommodate the increasing DGs with lower network investment. By 

enhancing system operational control and better utilising of the existing network 

capacity, ANM can improve the efficiency of existing network, maintain the security of 
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supply and defer new assets investment when accommodating increasing DGs [7].  

 

1.2. Research Motivation 

1.2.1. Motivation 1  

ANMs are promoted to undertake active control of the network, acting upon real-time 

information, to resolve voltage, power flow, fault current and network security issues 

caused by increasing DGs. From a technical perspective, ANM strategies can be 

classified into four categories [8-13]:  

1) Demand side management; 

2) Voltage and power flow management; 

3) Fault current management; 

4) Advanced distribution protection. 

 

This thesis focuses on power flow management to relive network congestion, i.e. 

congestion management. ‘Congestion management’ means to manage the outputs of 

DGs so that the line ratings will not be exceeded due to the connection of DGs. The 

goal of congestion management is to minimise system operation costs or maximise the 

connected DG capacity, subject to system operating constraints such as power balance, 

generation loading limits and network capacity constraints [4, 14-22].  

 

However, previous congestion management strategies are only implemented on the 

generation side. The operational benefits are determined by transferring the reduction 

amount of annual generation curtailment into economic perspective. Previous strategies 

did not consider the potential benefit from demand side responses, particularly from 

flexible demand such as EVs.  

 

Some demand side management (DSM) strategies have taken advantage of the 

flexibility of EVs’ charging/discharging mode to optimise network operation since EVs 

can be regarded as energy storages that can smooth intermittency of renewable energy. 

If EVs’ charging demand can be coordinately shifted to absorb excess renewable 

generation before generation constraint management, the load curve could be optimised 
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to align with both intermittent wind generation curve and power flow condition in the 

network, resulting in more local renewable energy being used to support local 

customers.  

 

1.2.2. Motivation 2 

Previous congestion management strategies use real-time network data to control the 

generation devices determinately in time sequence. When it is enhanced through 

integrating DSM, i.e. economically shifting flexible load demand over time, it requires 

the prediction of network stress. 

 

In practice, due to the intermittency of wind, inaccuracy of wind forecasting cannot be 

neglected even for one-hour ahead forecasting. Average reported error for the wind 

forecasting is in the order of 10%~20% of the installed power for a 24-hour ahead 

forecasting [23]. Although load forecasting error is much smaller than wind [23], the 

network condition will still be dramatically influenced since load is an important 

network parameter.  

 

Therefore, there are significant uncertainties in predicting network stress due to the 

uncertain wind and load. Traditional deterministic network operation approaches are 

not sufficient to capture the impact of network uncertainties on system operation. An 

appropriate uncertainty management should be established to understand and quantify 

the impacts of wind and load forecasting errors on the enhanced congestion 

management.  

 

1.3. Research Challenges 

1.3.1. Enhancing Congestion Management by Integrating Intelligent 

EV Charging 

The DSM strategies of EVs can be classified into three categories according to their 

different objectives: technical, economic and combined techno-economic objectives 
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[24]. In this thesis, in order to alleviate network stresses, the optimal EV charging will 

be determined to minimise network generation curtailment, which belongs to technical 

objective. The most efficient busbar to relieve network stress should be determined for 

EV load shifting. The constraints concerning EV battery characteristics and customer 

driving behaviours should also be considered in the optimal EV load shifting.  

 

1.3.2. Cost-Benefit Assessment of the Enhanced Congestion 

Management 

An appropriate way to assess the cost-benefit of combining previous congestion 

management with intelligent EV charging should be established. The impacts of the 

enhanced congestion management on the long-term network planning should also be 

evaluated, providing evidence for DNOs to make economic investment decisions. In 

long-term network planning, the operational benefits in different years should be 

converted into an equivalent present value to help DNOs make final network investment 

decisions. 

 

1.3.3. Uncertainty Management in the Enhanced Congestion 

Management 

Since intelligent EV charging refers to economically shifting EV demand over time, 

when congestion management is enhanced by intelligent EV charging, it requires the 

prediction of network stress. The prediction of network stress will be highly uncertain 

due to wind and load forecasting errors. The characteristics of wind and load forecasting 

errors are not the same. In general, the error scale of wind forecasting is higher than 

load [23]. In addition, wind forecasting error increases as forecasting time horizon 

increases, while load forecasting error does not always increase with the lead time.  

 

Thus, it is challenging to appropriately define the characteristics of wind and load 

forecasting errors and convert them into the errors in network stress prediction. 

Moreover, since network stresses predicted under differing lead time have varying 

uncertainty levels, it becomes difficult to optimally shift EV load demand over time 
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when both operational benefit and its associated risk should be considered.   

 

1.3.4. Integrating Correlations between Nodal Power Injections into 

Uncertainty Management 

Since wind forecasting is strongly dependent on weather condition in an area, the wind 

forecasting errors on different busbars in the area have strong correlations. The load 

forecasting errors on different busbars somehow also have correlations since weather 

do influence the electricity consumption pattern. Thus, forecasting errors of the nodal 

power injections between busbars are correlated.  

 

However, in the calculation of deterministic power flow, the nodal power injections are 

assumed to be independent. Therefore, the correlations introduced from wind and load 

forecasting should be properly defined, expressed in a mathematical way and integrated 

into the uncertainty management strategy to increase the accuracy of network stress 

forecasting.  

 

1.4. Research Objectives 

This thesis attempts to achieve the following targets: 

 

1) To enhance the previous congestion management by integrating demand side 

responses, i.e. by incorporating intelligent EV charging into generation curtailment 

strategy, so that the generation curtailment could be further minimised, and the 

security of supply can be maintained at a lower cost; 

 

2) To assess the cost-benefit of the enhanced congestion management, so that evidence 

for cost-effective long-term network planning that strike the right balance between 

operational benefits and investment cost could be provided to DNOs;  

 

3) To establish a proper uncertainty management strategy to extend the traditional 

deterministic cost-benefit assessment to cost-benefit-risk assessment, so that the 
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errors from wind and load forecasting could be properly incorporated into the 

enhanced congestion management; 

 

4) To improve the uncertainty management by integrating the correlations between 

nodal power injections (caused by wind and load forecasting), so that the prediction 

of network stress could be more accurate. 

 

1.5. Main Contributions 

The main contributions of this thesis are listed as follows: 

 

1) Applying DSM realized by intelligently shifting flexible EV load demand over time 

to the previous congestion management, where cost-benefit assessment is 

implemented to evaluate its performance and alternative network planning 

suggestions are given; 

 

2) Enhancing intelligent EV charging with bi-directional charging optimisation 

strategy and more comprehensive charging constraints; 

 

3) Proposing an uncertainty management strategy based on Sharpe Ratio (SR) method 

to allow the impact of risks that arise from network stress prediction on the expected 

operational benefits to be properly assessed, thus extending the traditional 

deterministic cost-benefit assessment to cost-benefit-risk assessment. The proposed 

strategy is scalable to any systems with low computational burden, which is the 

major contribution of this thesis. 

 

4) Proposing enhanced uncertainty management method called Risk Adjusted Return 

On Capital (RAROC) to evaluate the effects of both wind and load forecasting 

errors on the enhanced congestion management, where the forecasting errors are 

allowed to be in any distribution;  

 

5) Applying Copula theory to integrate the effects of correlations between nodal power 

injections into RAROC method, giving more accurate network stress prediction and 

a more convincing stochastic congestion management strategy. 
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1.6. Thesis Outline 

The rest of the thesis is organised as follows. 

 

Chapter two gives an overview of low carbon distribution network in the near future, 

where the development of renewable distributed generation and EVs are estimated. The 

chapter also introduces the development of ANM strategies in the UK distribution 

networks, followed by detailed explanation of the previous congestion management.  

 

Chapter Three describes how the previous congestion management could be 

improved by adding intelligent EV charging. The charging strategy is operated by 

optimally shifting flexible EV charging demand over time to maximally reduce network 

stress as well as generation curtailment to the maximum possible extent. A case study 

is presented to model the future of the 33kV Aberystwyth network. The simulation 

results are analysed to assess the cost-benefit of the enhanced congestion management 

in the distribution network and its influence on network planning. 

 

Chapter Four improves the intelligent EV charging model by optimising EV 

charging to be bi-directional and enhancing the EV flexibility with network power flow 

constraint. The simulation results prove that with the two improvements, EV charging 

model can reduce network pressure and generation curtailment further to a larger extent. 

 

Chapter Five proposes an uncertainty management strategy for the enhanced 

congestion management by adopting SR concept from financial sector. The uncertainty 

in this chapter only refers to wind forecasting error, which is also assumed to follow 

normal distribution. Monte Carlo Simulation is utilised to justify the normal distribution 

assumption. The results indicate that SR method is straight forward and scalable. It can 

properly extend the traditional deterministic cost-benefit assessment to cost-benefit-risk 

assessment, so that the errors from wind forecasting could be incorporated into the 

enhanced congestion management.   

 

Chapter Six adopts an enhanced financial concept RAROC based on SR to address 

the limitation in SR method, i.e. the distribution of variables must be normal distribution. 
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Independent sequence operation theory is applied to derive the uncertain power flow 

when both wind and load forecasting errors are considered. RAROC method extends 

the feasibility of uncertainty management by allowing the forecasting errors to be in 

any distribution. 

 

Chapter Seven utilises Copula theory to define and visualise the impacts of 

correlations between nodal power injections (caused by the correlations in wind and 

load forecasting) on the enhanced congestion management. Dependent operation theory 

is used to integrate the correlations in the calculation of uncertain power flow. A case 

study is well-analysed to prove that integrating correlations can give more accurate 

network stress prediction and a more convincing stochastic congestion management 

strategy. 

 

Chapter Eight summarises the key findings and the major contributions of this 

thesis. Some potential research topics are presented as future work.
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This chapter gives an overview of the development and new 

challenges in future low carbon distribution networks. The 

state-of-art of the existing ANM strategies are reviewed and the 

key limitations are identified.   
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2.1. Introduction  

Nowadays, the global climate change raises concerns of environmental pollution caused 

by greenhouse gas emissions from fossil fuel. Hence, the world now encourages the 

utilisation of renewable energy in society to reduce CO2 emission. A majority of 

renewable generators are expected to be connected to the existing distribution networks 

which are traditionally designed to deliver energy from grid supply points to end 

customers. They have limited capacity to accommodate significant renewables. This 

can lead to severe network pressure and significant energy losses during generation 

peak times, particularly for areas dominated by renewable generation. The traditional 

way to provide the extra network capacity is to reinforce the capacity of existing circuits 

or to construct new circuits, which is expensive, time-consuming, and environmentally 

unfriendly.  

 

ANM has emerged as a cheaper alternative to accommodate growing generation and 

demand. ANM refers to coordinated control of multiple network components in real-

time to resolve power flow, voltage, fault current and security issues caused by 

increasing embedded generation in distribution networks. Through better utilisation of 

existing network capacity, ANM can strike the right trade-offs between building new 

network assets and enhancing system operational performance. 

 

This chapter reviews the development of low carbon distribution networks in the near 

future and a range of existing ANM strategies. This thesis focuses on active congestion 

management. Previous congestion management evaluates the value of ANM only in 

terms of economic generation curtailment. If the congestion management could be 

further improved by using flexible load demand as responsive demand to complement 

network stress relief, both the network stresses and waste of green energy can be 

significantly reduced, providing smarter distribution networks. 

 

2.2. Renewable Energy Generation    

The UK has signed the European Union Renewable Energy Directive, which includes 

a UK target of 15% of energy from renewables by 2020. This target is equivalent to a 
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seven-fold increase in UK renewable energy consumption from 2008 levels [25]. To 

meet the targets for that proportion of renewable energy in the UK energy mix, 

government needs to maximise the utilisation of renewable energy generation. Several 

kinds of renewable energy, such as wind, solar, biomass, incremental hydro and close–

loop thermal energy, are under development with governments’ support. In capacity 

term, wind power dominates the renewable energy market most at present. As shown 

in [26], the total operating wind power capacity in the world has grown from 2GW in 

1990 to over 74GW by the end of year 2006. The operating wind power capacity is 

predicted to be 260GW by the end of year 2020. Paper [27] gives the international 

rankings of wind power capacity as shown in Table 2-1. Now, the United State and 

China rank at the first two positions in terms of both installed wind power capacity and 

cumulative wind power capacity.  

 

Table 2-1 International Rankings of Wind Power Capacity 

Annual Capacity 
(2009, MW) 

Cumulative Capacity 
(end of 2009, MW) 

China 13,750 the United State 35,155 

the United State 9,994 China 25,853 

Spain 2,331 Germany 25,813 

Germany 1,917 Spain 18,784 

India 1,172 India 10,827 

Italy 1,114 Italy 4,845 

France 1,104 France 4,775 

U.K. 1,077 U.K. 4,340 

Canada 950 Portugal 3,474 

Portugal 645 Denmark 3,408 

Rest of World 4,121 Rest of World 22,806 

Total 38,175 Total 160,080 

 

According to the government document [2], the UK now has more than 4GW of 

installed onshore wind capacity in operation which generate approximately 7TWh of 

electricity every year. Most wind farms are established in Scotland (~2.5GW) because 

of its abundant wind resource, followed by England (~0.9GW), Wales (~0.4GW) and 

Northern Ireland (~0.3GW). Onshore wind is predicted to contribute up to around 

13GW by 2020 as shown in Fig. 2-1, which requires an annual growth rate of 13%.   
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Figure 2-1 Deployment Potential to 2020 for Onshore Wind [2] 

 

Document [2] also gives some data about UK’s offshore wind generation. Now the UK 

is global leader for offshore wind energy. It has 1.3GW of operational capacity across 

15 wind farms, which generated over 3TWh of electricity during 2010. The UK will 

keep this lead role till 2020 and beyond. Fig. 2-2 from [2] indicates that up to 18GW of 

capacity could be deployed by 2020. Beyond 2020, the country has a very high 

probability to generate over 40TWh of electricity from offshore wind by 2030. 

 

 

Figure 2-2 Deployment Potential to 2020 for Offshore Wind [2] 
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2.3. Active Network Management 

With the increasing renewable generation connected to the distribution networks, 

although the CO2 emission can be reduced to a large extent, the generation will burden 

the existing distribution systems. 

 

Distribution networks are traditionally designed to be unidirectional for only 

connecting and supplying demand. They supply a large amount of customers with 

electricity from a few central power generators. So the network operation is passive. 

The existing networks follow the so called “fit and forget” policy to connect DGs, which 

means that control problems should be solved at the planning stage by providing 

adequate network capacity [28]. Once the circuit is constructed, and energised, it is left 

to operate in isolation. Although voltages and currents may be monitored, there will be 

minimal follow up action in the control timeframe to alter the network based on these 

measurements [12]. Thus, increasing renewable DGs introduce new challenges to 

distribution system operators in operating and planning their networks, particularly how 

can they maintain security of supply at a value to their customers.  

 

There are four main interconnected technical issues [8-12]: 

1) Power flow management. With the increasing DGs, the total installed generation 

could surpass the local load demand and start exporting power back to the main 

grid. The power flow changes from unidirectional to bidirectional, resulting in 

network congestion and a failure risk in equipment’s thermal ratings; 

2) Voltage control. The reversed power flow caused by the connection of DGs will 

lead to voltage rise effect, particularly in rural networks; 

3) Fault level. The connection of DG may lead to breach of circuit breaker ratings 

when network is operating close to its fault level ; 

4) Network security. The power quality of intermittent generation sources poses a big 

challenge to maintain the high level of power quality customers demanded.  

 

The traditional way to address network stresses is to construct new circuits or reinforce 

the capacity of existing circuits. However, building primary network assets is expensive, 

time-consuming, and has a negative effect in environment, such as dust emissions and 

noise during construction and upgrading activities. In addition to the cost, seeing any 
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network reinforcement through the appropriate planning processes can also be a 

discouragement. 

 

Therefore, the necessity for distribution network evolving from the usual passive 

unidirectional flow network to active distribution networks is being proposed [7, 10, 29, 

30]. Active distribution network has been defined as ‘a network where real-time 

management of voltage, power flows and even fault levels is achieved through a control 

system either on site or through a communication system between the network operator 

and the control devices’ [31]. In one word, active distribution networks have systems 

in place to control a combination of distributed energy resources (generators, loads and 

storage) [10].  

 

Report [32] gives a long definition for ANM: ‘ANM is understood to mean systems 

that operate to take action automatically to maintain networks within their normal 

operating parameters. For example, this may be controlling generator output, reactive 

power flow, use of dynamic ratings, island operation and automatic synchronisation. 

The lines between automation, protection and ANM are blurred. However, at a 

simplistic level, the protection is to manage fault situations safely and automation is to 

return the network to normal operation once the fault is cleared. ANM operates pre-

emptive action to maintain networks within their normal operating parameters. ANM 

is of greater use as the level of distributed generation increases and the number of 

possible variables increases. ANM may also involve variables that up to now have not 

been controlled such as managing demand. Existing network protection is not 

considered part of ANM however ANM could have an impact on the operation of 

protection and therefore this work further seeks to ascertain what protection schemes 

are available’. 

 

In short, ANM can be defined as coordinated control of multiple network components 

in real-time to resolve power flow, voltage, fault current and security issues caused by 

the increasing embedded generation to ensure the regulatory status of distribution 

networks.  

 

Previous work in [9, 33] introduced associated research challenges, potential solutions 

and the corresponding impact of ANM on distribution networks. ANM plays a 
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significant role in maximizing the utilisation of existing network capacity to meet 

demand growth and national targets for renewable energy. Its benefits are being 

recognised by governments and the electricity supply sectors. Paper [33] claimed that 

ANM can potentially accommodate up to three time as much generation. 

 

Paper [13] classifies completed and ongoing active management projects into 11 key 

technical areas: Active Management Planning, Communications and Control, Demand 

Side Management, Fault Level Management, Future Technologies, Modelling and 

Analysis, Power Flow Management, Power Quality, Protection Systems, Storage and 

Voltage Control. These areas can be further sorted out in four categories:  

1) Voltage and power flow management; 

2) Demand side management; 

3) Fault current management; 

4) Advanced distribution protection. 

 

2.3.1. Voltage Control and Power Flow Management 

2.3.1.1. Voltage Control 

Traditionally, voltage problems are avoided by selecting line reactance and resistance 

carefully in the planning stages [9]. Currently, coordinated management of the voltage 

level at the substation, voltage profile on the network (e.g. voltage drop) and generation 

curtailment appears to be the most efficient solution to support both generation and 

demand in the distribution networks without significant capital expenditure [34-37].  

 

Report [33] deals with voltage rise effects caused by the connection of DGs through: 1) 

active power generation curtailment; 2) reactive power management; 3) area based 

coordinated voltage control of On Load Tap Changing Transformers; and 4) application 

of voltage regulators. Through the active voltage control, the most distant customer can 

be kept above the lower voltage limit under the maximum load condition and all 

customers can be kept below the upper voltage limit under the minimum load condition. 

The load conditions are neglected.  
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2.3.1.2. Power Flow Management 

Power flow management, i.e. congestion management, means to manage the ouputs of 

DGs so that the line ratings will not be exceeded due to the connection of DGs. The 

strategies for power flow management can come under one of three categories: pre-

fault constraints, post-fault constraints and real-time control of generation [38]. The 

current advanced management requires generator control to be dependent on reliable 

real-time measurements and robust Supervisory Control And Data Acquisition [9]. 

Paper [14] has demonstrated that power flow management such as generator output 

curtailment under certain network conditions can accommodate the needs of more DG 

connections within the conventional power system planning strategies, and more 

economic than paying for network reinforcement.  

 

An approach is introduced to define the operating margins required to trigger generator 

output regulation (trimming) and tripping for the provision of network security [14, 22]. 

Coordinated voltage control, adaptive power factor control and energy curtailment are 

integrated in basic optimal power flow management to maximise the wind power 

capacity in [21]. Power flow sensitivity factors (the mathematical relationship between 

changes in network power flows because of changes in DG power outputs) are used to 

coordinate the power outputs of DGs in order to ensure there is no thermal overloading 

occurs in [4, 15, 16].  

 

Paper [17] presents two techniques, i.e. current-tracing technique and constraint 

satisfaction problem (CSP) technique, for the management of power flows within static 

thermal constraints. It is shown that the current-tracing technique can marginally 

achieve the least DG real power curtailment but the CSP technique is more 

computationally efficient and allows contractual constraints to be considered [17]. 

Modelling power flow management problem as a CSP involves the determination of 

the controllable network devices (denoted as variables), the parameters of the variable’s 

control (denoted as domains) and the constraints of the problem. The variables refer to 

the controllable DG units, with the respective domains being the bands that restrict their 

outputs. The constraints includes power flow constraints, contractual constraints 

between the host DNO and the generator, and preference constraints from the objective 

function [18-20, 39].  
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2.3.2. Demand Side Management 

2.3.2.1. Overview of DSM 

The objective of DSM is to dynamically balance the load demand between peak time 

and off-peak time of network congestion, reducing the operational and planning cost of 

the whole system [40-43]. In the distribution networks, DSM could bring a spectrum of 

potential benefits [42]: 

1) Reducing the generation margin. Through identifying households that would be 

willing (for a fee) to give up consumption relatively infrequently, DSM can provide 

an alternative cheaper form of reserve to traditional generation reserve.  

2) Improving transmission grid investment and operation efficiency. Through 

curtailing some loads at appropriate locations, DSM could reduce the system 

operating costs and the capacity of network and generation in order to make sure 

the transmission network security. 

3) Improving distribution network investment efficiency. DSM could also be used to 

manage network constraints at the distribution level through unlocking unused 

network capacity and the provision of system support services, bring in benefits 

such as deferring new network investment, increasing the connection of distributed 

generation, relieving voltage-constrained power transfer problems, relieving 

congestion in distribution substations, and enhancing the quality and security of 

supply to critical load customers;  

4) Managing demand supply balance in systems with intermittent renewables. The 

application of DSM, as a form of standing reserve could reduce the energy gap when 

high wind conditions coincide with low demand.   

 

Paper [42] also gives a brief introduction of DSM techniques: night-time heating with 

load switching, direct-load control, load limiters, commercial/industrial programmes 

(supporting the system following outages of generation or network facilities), frequency 

regulation, time-of-use pricing, demand bidding, and smart metering and appliances. 

 

As explained in [40], six main DSM categories as shown in Fig. 2-3. Peak clipping and 

valley filling are methods to reduce the difference between the peak load level and the 

valley load level so that the distribution network is more stable and safe. Load shifting 

is used to shift load from peak time to off-peak time to smooth the demand curve. 
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Conservation is an approach to cut off the load demand by reducing the energy sales. 

So the DNOs have to think about the incentives to encourage the customers to reduce 

the electricity consumption at the peak time. Load building is a reverse way of 

conservation. It is based on increasing the market share of loads supported by energy 

conversion and storage systems or decentralized energy resources. Flexible load shape 

requires DNOs to identify customers with the flexible loads who are willing to be 

controlled in critical periods in exchange for various incentives.  

 

 

Figure 2-3 DSM Load Shape Categories [40] 

 

This thesis focuses on load shifting category, where demands that can be shifted 

typically belong to one of the following categories [44]. 

1) Inert thermal processes (heating, cooling). 

2) Inert diffusion processes (ventilation, irrigation, etc.). 

3) Mass transport (pumps with tanks, conveyor belts, etc.). 

4) Logistics (schedules, dependencies, lunch-breaks, etc.). 

 

2.3.2.2. Development of EVs 

To help meet the ambitions for renewables and carbon reduction, electrification of 

vehicles and heating is expected to grow substantially in the future, particularly from 

2030 onwards. Report [3] indicates that in the year 2030, the UK will have 11.9 million 

of vehicle sales and 18% of them are EVs. The total electricity consumption will reach 

411TWh, where the EV electricity consumption will take up 5%.  
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However, as said in [45], without any coordinating control, uncontrolled charging of 

EVs can have the following detrimental effects: 

1) Increases the loss in distribution transformers;  

2) Reduces life span of the transformers by thermal loading on them;  

3) Increases voltage deviations;  

4) Increases harmonic distortions;  

5) Increases necessitating additional investments on distribution side reinforcements 

due to peak demand.  

 

However, since charging and discharging mode of EVs is flexible, they can also be 

regarded as energy storage devices that can smooth the intermittency of renewable 

energy sources like wind. If EVs’ charging can be controlled to accompany with the 

valley portion in demand curve, they can not only help the demand avoid peak periods 

but also accommodate excessive wind power, reducing wind curtailment. The potential 

benefits existing in “wind-EV” complementation are shown in [46, 47]. 

1) Wind energy is a clean resource for EV’s charging. 

2) Coordinated EV recharging reduces the abandoned wind energy. 

3) The benefits will increase with increasing EV battery capacity, increasing EV 

ownership, larger capacity of transmission lines, and bidirectional charging modes. 

 

Paper [24] gives a literature overview of coordinated EV charging. Different objectives 

define different EV charging strategies. They can be classified into technical, economic 

and combined techno-economic objectives.  

 

Technical objectives focus on physical grid infrastructures which include minimising 

energy losses, minimising voltage deviations, reducing peak power demand, balancing 

power supply and demand, supporting higher penetration of renewable energy, and 

increasing robustness [48, 49]. A DSM strategy that considers customers’ preference, 

comfort level, and load priority is proposed in [48] to accommodate EV charging while 

keeping the peak demand unchanged. Paper [49] establishes a single EV charging 

demand model and then employs queuing theory to describe the behaviour of multiple 

EVs.  
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Economic objectives are related with the energy market-related stakeholders 

(consumers, producers, and retailers), e.g. dual-tariff schemes, real-time pricing [50, 

51]. Price mechanisms in the form of time-of-use electricity tariffs are employed in [50] 

to encourage commuters to recharge EVs during off-peak hours. For two different 

charging rates (120 VAC and 240 VAC) and charging times (day and night charging), 

paper [51] evaluates the economic EV charging under different electricity pricing 

options considering the influence on demand factor, load factor and utilisation factor. 

 

Coupled techno-economic objectives combine both technical constraints and economic 

objectives. The commercial part is implemented by balancing demand and supply of 

electricity on electricity trading markets. The technical part concentrates on the primary 

system assets and the location. Paper [52] shows a novel method to plan EV charging, 

achieved by minimising bid volumes first, and then constraining with electricity grid 

constraints, namely both voltage and power.  

 

2.4. Autonomous Regional Active Network Management 

System  

One of ANM projects called Autonomous Regional Active Network Management 

System (AuRA-NMS) is introduced in [39] to address new industrial challenges created 

by new DGs in distribution networks. It involves seven universities in UK, two DNOs 

and a major manufacturer [53]. Although AuRA-NMS is heuristic and non-optimal, the 

utilisation of sensitivity analysis makes its results similar with other optimisation 

algorithms.  

 

‘Autonomous and regional’ in AuRA-NMS reflects that the algorithm is decentralized 

and devolved from a network control centre, and operation crosses a region not just a 

feeder. The word ‘active’ means that it aims to enhance the utilisation of primary 

infrastructure and integration of distributed generation, to incorporate new control 

opportunities such as energy storage, and to create flexibility for different future use. 

[54]. In AuRA-NMS, a number of network controls, either autonomous or cooperative, 

are carried out to deal with a set of network operational problems such as a fault, an 
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out-of-tolerance voltage or a generator whose output is being limited by certain network 

constraints. In order to provide a hardware platform for these controls, various regional 

controllers across the distribution networks need to be combined with reliable and 

flexible communication channels. 

 

AuRA-NMS is a part of the drive to develop ‘intelligent’ or ‘smart’ networks. As [55] 

explained, AuRA-NMS is also designed to be both flexible and extensible. Flexibility 

denotes the ability to easily rebuild the control system in the event of: 

1) Changes to network topology and plant ratings; 

2) Connection of new generation or energy storage; 

3) Removal of generation or energy storage; 

4) Changes to protection and control equipment; 

5) Installation of new measurement and monitoring equipment;  

6) Removal of measurement and monitoring equipment. 

7) Changes to the regulatory framework in which the DNOs operate, and the markets 

in which generators connected to the network participate. 

Extensibility, on the other hand, indicates the ability to easily: 

1) Add additional network control and management functionality in the future;  

2) Replace existing functionality when improved network control and management    

techniques or algorithms are developed. 

In the long run, flexibility and extensibility are essential in future active network 

management systems.  

 

From a technical perspective, AuRA-NMS has following four main controls: power 

flow management, steady state voltage control, automatic restoration and 

implementation of network performance optimization strategies [53]. This thesis 

focuses on the power flow management aspect to eliminate the network congestions, 

i.e. congestion management.  

 

In the UK, currently, the congestion management follows the LIFO rule. The rule 

implies that the last-in DG will be the first to be tripped off or curtailed once 

overloading occurs in a network [4]. The drawback of this rule is that the last-in DG 

may not have significant effects in mitigating the overloading. In the worst scenario, it 

may not have any effect at all, which results in unnecessary energy waste. 
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Unlike the LIFO rule that often results in excessive curtailment of wind generation, the 

congestion management in AuRA-NMS allows real-time states to be obtained and used 

to select the most sensitive busbar to alleviate network congestion [4, 15, 16]. The 

congestions can be eliminated with the least amount of generation curtailment or load 

shedding. The concept of congestion management is illustrated in Fig. 2-4.  

 

 

Figure 2-4 Schematic Illustration of AuRA-NMS Congestion Management [15]  
 

Once an overloading state is detected, AuRA-NMS will receive the information through 

remote measurements. Then, with the help of real-time data, the system will find the 

most sensitive generator to reduce its output to remove the stress. After the optimal 

congestion management is found, the system will give the control instruction back to 

the network. It is assumed that it is equipped with state estimation software.  

 

As ANM strategies normally consider the generation side and demand side 

management in isolation, the main drawback in AuRA-NMS congestion management 

is that it investigated system optimisation only in generation side. More generation 

curtailment could be reduced if congestion management can be enhanced with DSM, 

particularly by taking advantage of flexible demand such as EVs.   
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2.5. Chapter Summary 

This chapter gives an overview of new challenges in future low carbon distribution 

networks. The challenges are introduced from increasing renewable distributed 

generation and new demand from electrification. ANM is being developed as a cheaper 

alternative to traditional ways to address these challenges. ANM strategies can mitigate 

the network pressure in distribution networks as well as help to meet the CO2 mitigation 

target.  

 

This thesis focuses on congestion management aspect of ANM. Previous research 

evaluated the value of congestion management in terms of economic generation 

curtailment, which did not include the potential operational benefits from demand side 

response, particularly from flexible load demand. If previous congestion management 

could be improved by adding DSM, network congestion could be alleviated to a large 

extent before curtailing DGs, resulting in more network stresses being relieved and 

more renewable generation being utilised.
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This chapter improves the previous congestion management by 

integrating intelligent EV charging. Cost-benefit assessment is 

implemented to evaluate the performance of the enhanced 

congestion management. Alternative network planning 

suggestions are also given. 

 

 

  



Chapter 3.         Enhancing Congestion Management with Intelligent EV Charging 
 

Page 27 
 

3.1. Introduction 

As mentioned in last chapter, ANM is an efficient way to accommodate increasing 

renewable generation and load demand in distribution networks with minimal needs in 

reinforcing network or building new lines. This chapter proposes an enhanced ANM 

strategy by integrating intelligent EV charging into the previous congestion 

management. In this thesis, Intelligent EV charging refers to shifting flexible EV load 

demand from congestion peak time to congestion off-peak time to relieve network 

pressure.   

 

A concept called Time-Window Scale is used to restrain time horizon in EV load 

shifting. When, where and how much should the EV charging demand be shifted is 

determined by network power flow. The shifting level will be limited by the flexibility 

of EV charging demand which is constrained by number of EVs, battery characteristics 

and road travel behaviour.  

 

The chapter is organized as follows: Section 3.2 introduces the enhanced congestion 

management strategy, where intelligent EV charging is added; Section 3.3 discusses a 

case study of 33kV Aberystwyth network; Section 3.4 assesses the cost-benefit of the 

enhanced congestion management strategy in distribution network planning; Section 

3.5 analyses the effects of electricity prices on network planning; some comparisons 

between the enhanced congestion management and other existing ANM are discussed 

in Section 3.6; finally, the conclusion is drawn in Section 3.7.  

 

3.2. The Enhanced Congestion Management  

3.2.1. Previous Congestion Management 

The optimal decision in previous congestion management is formulated as the 

following linear programming problem [15]. 
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Objective: 

                              min ∑ ΔPgi

i∈NG

                                                (3-1) 

Subject to: 

                                   |∑PTDF(l,i)
 
× ( Pgi - ΔPgi - Pdi )

NB

i=1

| ≤ Pl
max, l∈ L                       (3-2) 

                                     Pgi
min ≤ ΔPgi ≤ Pgi

max, i∈ NG                                       (3-3)                                                                                                 

Where, Pgi and Pdi are the power generation and load demand at busbar i, respectively. 

ΔPgi stands for the generation curtailment at busbar i. Pgi
min and Pgi

max are the lower and 

upper limits of the generation output at busbar i. PTDF(l,i) is an element of sensitivity 

matrix called Power Transfer Distribution Factor (PTDF), which is a matrix of line flow 

l to power injection on busbar i. Pl
max  is the line rating of line l. L ,NG and NB 

represent the set of lines, generation and all busbars in the network, respectively. 

 

When an overloading state is detected, the system will first pick out the most overloaded 

line l. PTDF matrix is the reference to select the most efficient busbar to line l. It is a 

sensitivity matrix of line active power flow with respect to nodal injections based on 

direct current (DC) power flow equations. Appendix B gives the detailed derivation of 

the PTDF matrix. The matrix indicates that the relationship between power injection on 

busbar and power flow on network branch is linear. 

 

The quantity of wind generation that needs to be curtailed can be determined by the 

following equation where is is the slack bus and Pl is the power flow on line l. Dividing 

the overloading amount of line l by the nodal sensitivity achieves the required quantity 

of generation curtailment to completely mitigate line overloading. However, ΔPgi is 

limited by the generation availability on busbar i at specific timeslot, i.e. it cannot 

exceed the amount of nodal produced generation Pgi. Thus, a minimisation equation is 

used to get the final ΔPgi . 

ΔPgi = min { 
|Pl-Pl

max|

PTDF(l, i)-PTDF(l, is )
, Pgi } , i∈ NG                       (3-4) 
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3.2.2. Proposed Intelligent EV Charging Model 

3.2.2.1. Constraints for Intelligent EV Charging 

In order to calculate the load shifting capability, two conditions are assumed in the 

proposed algorithm:  

1) Total energy consumption before and after load shifting on each busbar should   

be the same. 

2) Load shifting capability is predefined, but limited by the EV flexibility on busbars 

which is related to number of EVs, battery characteristics, and road travel 

behaviour. 

 

As noted, total energy consumption before and after DSM on each busbar should be the 

same and this is mathematically represented in (3-5).  

                  ∑Pdi =∑Pndi ,  i∈ND                                              (3-5) 

where, Pndi is the new load demand at busbar i. ND stands for the set of busbars that 

have load demand. 

 

The load shifting capability is described in (3-6). 

                      ∆Pdi,t= min {
|Pl-Pl

max|

LTDF(l, i)-LTDF(l, is)
 , EVi,t } , i∈ ND                   (3-6) 

where, ∆Pdi,t and EVi,t are the load shifting capability and the flexibility of EVs at 

busbar i at timeslot t, respectively. The matrix called Load Transfer Distribution Factor 

(LTDF) is a sensitivity matrix of nodal load perturbation to line flows based on DC 

power flow equations. It is derived from PTDF since load could be regarded as negative 

generation. It is formed as reference to select the most efficient busbar to line l. Dividing 

the overloading amount of line l by the nodal sensitivity achieves the required quantity 

of load shedding to completely mitigate line congestion. However, ∆Pdi,t  will be 

further limited by the EV flexibility on the busbar at specific timeslot, i.e. it cannot 

exceed EV flexibility EVi,t. Thus, a minimisation equation is used to get the final ∆Pdi,t. 

 

The flexibility of EV load demand on a busbar is related to number of EVs, battery 

characteristics and road trip conditions in that area [52, 56-58]. The charging boundary 
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is considered over a 24-hour period. It is calculated by the following three steps: 

A. Determination of number of EVs;  

B. EV battery characteristics; 

C. Road trip limitations. 

 

A. Determination of number of EVs  

The number of EVs on a specific busbar is calculated according to EV penetration rate 

and the corresponding customer number. EV penetration rate is assumed to be 0.675 

per customer from year 2030 to 2050 [59]. Customer number on the busbar i (CNi) is 

expressed in (3-7).  

                                                    CNi = 
Di ∙ ηi

ADDi

, i∈ ND                                            (3-7) 

where, Di is the annual total load demand on specific busbar i. η
i
 is its corresponding 

percentage of domestic consumption. And ADDi is the average domestic electricity 

consumption per customer.  

                                                     

B. EV battery characteristics 

Typical EV battery capacity Bc  in the UK is Nissan Leaf characterized by 24kWh. To 

avoid damage and premature aging, there are limitations on the battery state-of-energy 

Sv,t [52] as shown below. 

                                                     δminBc ≤ Sv,t≤ δmaxBc                                              (3-8) 

where, Sv, t 
is the state-of-energy of vehicle v at timeslot t, and the minimum δmin and 

maximum δmax  coefficients of the battery capacity are set to be 0.2 and 0.9, 

respectively. 

 

C. Road trip limitations 

To obtain the aggregated flexibility of a large number of EVs, the trip behaviour of an 

EV at each timeslot within 24 hours can be obtained from [57] as shown in Fig. 3-1. 

The average electricity consumption of an EV in use is 2.1 kW [56]. When an EV is 

parked at a charge station, the vehicle is assumed to be charged immediately at the 

maximum charging rate 4KW. Since the operation of ANM is executed on each busbar 

rather than each customer, this chapter considers total EVs on each busbar instead of 

individual EV separately. The wishes of individual EV owners are beyond the scope of 

this thesis. They are assumed to be responded as average. 
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Figure 3-1 Percentage of Trips by Vehicle at Each Hour [57] 

 

One hour prior to departure, the state-of-energy of a vehicle’s battery must ensure that 

sufficient energy is stored to cover energy consumption over the next hour. Therefore, 

for a large number of EVs on a busbar, the total state-of-energy of batteries varies in 

the range of [St,min, St,max]. The upper Ct,max and lower Ct,min limits of EV charging at 

timeslot t can be expressed as:  

             Ct,min= max{Pdr,t+1+ NEV×δmin×Bc − St-1,max  , 0}, 1<t≤24                   (3-9) 

     Ct,max= min{NEV×δmax × Bc − St-1,min  ,  Pch×Nundrv,t}, 1<t≤24              (3-10) 

where, NEV is the total number of EVs on one busbar.  Ct,min  and  Ct,max are the 

minimum and maximum charging levels at timeslot t, respectively. St-1,max and St-1,min  

are the maximum and minimum state-of-energy at timeslot t-1. Pdr,t+1 is the total 

electricity consumption of all EVs on the busbar over the next timeslot t+1 due to 

driving, and Pch is the maximum charging rate per vehicle once it is stopped. Nundrv,t 

is the number of EVs that are stopped at timeslot t. 

 

Both energy-of-state St and charging amount Ct for a large fleet of EVs are unknown. 

But they can be derived from each other according to the recursive relationship in (3-

11). In order to derive charging boundaries Ct, some initial assumption should be made 

for St as in (3-12) and (3-13). 

                                     St=St-1+Ct-Pdr,t,1<t≤24                                              (3-11)            

                                                   S1,min=NEV×δmin×Bc+Pdr,2                                            (3-12)                                                                                                 
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                                            S1,max=NEV×δmax×Bc                                               (3-13) 

where,  S1,min and  S1,max are the minimum and maximum energy-of-states at the end 

of 1st hour. Pdr,2 is the driving energy consumption in 2nd hour.    

 

3.2.2.2. Operation of Intelligent EV Charging 

A. Concept of Time-Window Scale  

In the proposed control algorithm, load demand and generation profiles are updated 

every hour. Time-Window Scale concept is used to constrain the time horizon for 

intelligent EV charging. M-Time-Window means that to relieve network stress at 

timeslot i, load shifting can be made in the following M-1 hours, i.e. from i+1 to i+M-

1. If there is no line overloading in timeslot i, the check system will move on to the next 

timeslot i+1 and the dispatch of EV load demand at timeslot i stays the same with the 

original dispatch. Otherwise, intelligent EV charging is undertaken before system 

moves on to next timeslot.  

 

For in-depth explanation, if the time-window scale is assumed to be 6 hours, then the 

most suitable timeslot for swapping load can only be selected in the following 5 hours 

as shown in shadow grids in Fig. 3-2. Constrained by the EV flexibility, if load shifting 

between timeslot i and timeslot i+3 can maximally reduce the line overloading in 

timeslot i, then the exchange will be executed between timeslots i and i+3. The EV 

charging at other hours in the time-window will not change.   

 

 

Figure 3-2 6-hour Time-window Example 
 

 

B. Operation of Intelligent EV Charging  

Essentially, the proposed intelligent EV charging strategy will firstly identify when and 
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where pressure points might arise, and their strength, secondly identify the most suitable 

timeslot to shift the excessive load demand and the level of shifts. 

 

When there is line overloading occurs, the most overloaded line l is found in the same 

way as in previous congestion management. Then according to LTDF, the most 

sensitive busbar with maximum absolute LTDF value is picked out. The factor could 

be either negative or positive for increasing or reducing load demand, respectively. The 

predefined load shifting capability ∆Pdi,t to eliminate congestion is identified as in (3-

6). The next step is to find proper timeslot in the time-window scale to exchange ∆Pdi,t. 

As the example in Fig. 3-2, the timeslot i+3 is chosen as the most suitable timeslot 

because it has maximum EV flexibility. Hence, the exchange of ∆Pdi,t is implemented 

between timeslot i and i+3.  

 

If the line overloading cannot be totally eliminated, the program will look into the 

second sensitive node to make load shifting further. The loop will carry on until there 

is no available flexible EV load demand left for load shifting. After that, the network 

power flow is recalculated and generation curtailment is executed to eliminate the 

remaining overloading. The flowchart to clearly explain the intelligent EV charging is 

shown in Fig. 3-3. 
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Figure 3-3 Flowchart of the Intelligent EV Charging Strategy 

 

3.3. Test System and Case Study 

3.3.1. Test System and Data Forecast 

3.3.1.1. Test System 

In order to analyse the benefits of the proposed algorithm, a 47-busbar network is 
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Find the most effective busbar based on LTDF and 

determine how much its demand (      ) need to 

change to relief overloading

Check the EV flexibility of the most efficient busbar in 
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timeslot to deal with       
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DG curtailing
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ad Load shifting
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Input generation and load profile by 
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adopted for case study. The test system, Aberystwyth 33kV network, is a practical 

132/33kV distribution network in the UK which consists of approximately 200km of 

overhead line and 20km of underground cable [39]. The entire network structure is 

shown in Appendix A. This thesis focuses on the south part of the network whose single 

line topology is shown in Fig. 3-4.  

 

 

Figure 3-4 Single Diagram of the South Part of 132/33kV Network 

 

For the south part of the network, the hourly load demand and DG outputs in year 2006 

are available already. The load profile in 2006 mainly contains classical load. In year 

2006, the maximum total load demand is 51.4MW and the maximum total DG output 

is 71.3 MW. Thus, in year 2006, the network is already suffering network congestion 

caused by the excessive DGs.  

  

3.3.1.2. Data Forecasting 

Considering life expectancy of existing wind farms, the year they were commissioned, 

the potential for increasing land use, and the potential for increasing turbine size, report 
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[5] gives the expansion size and time of repowering wind farms in the existing 

Aberystwyth 33KV network. At least 44MW of new wind capacity is planned to be 

added on the network by 2020 based on the current sizeable wind capacity.  

 

Report [5] identified two streams of additional wind generation, one is repowering the 

existing wind farms, and the other is from new potential sites. Only the repowering 

stream is considered in this thesis as they are the most likely additional wind capacity 

to the area. Table 3-1 lists the timing and sizes of repowering in the existing wind farms 

[5]. And hourly DG outputs profiles in year 2013 and 2018 are available. Since the 

network has already experienced congestions under contingencies from renewable 

generation, the increasing DG output will worsen the congestion situation.   

 

Table 3-1 Expansion Size and Time of Existing Wind Farms 

Wind Farm 
Replacement 

Year 

New Capacity 

(MW) 

Existing Capacity 

(MW) 

Mynydd Gorddu WF 2013 30 9.4 

Rheidol WF 2012 6.4 2.4 

Llangwyryfon WF 2018 30 9.35 

Cemmaes WF 2017 17.5 15.3 

 

As indicated in [5], the repowering in 2018 has already reached the maximum wind 

blade size level, the wind turbines cannot be expanded any more. Therefore, the wind 

generation profile in the network after year 2018 will stay the same with that in 2018. 

 

Load demand in Aberystwyth area is not expected to increase too much in the short and 

medium term. Thus, all future classic loads are kept same as in 2006 until 2030. When 

more and more EVs and heat pumps come forth, a large amount of flexible load demand 

will be added on the classical load. In order to use the data to do the simulation, this 

chapter makes EV load forecasting first for years 2030-2050.  

 

To forecast the EV load demand on individual busbar, the number of EVs is necessary 

to know. For practical applications, the number of EVs in an area can be estimated 

analytically based on the number of electricity clients (customers) in that area. It can be 

calculated as shown in (3-9). The annual total load demand Di can be obtained from 

company data. The percentage of domestic proportion η
i
 and the average domestic 
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demand ADDi can be found in report [60]. The results of EV number estimation on 

12 busbars which have load demand are listed in Table 3-2. 

 

Table 3-2 Nodal EV Number Estimation 

Bus Bar 

Yearly 

Load 

Demand 

(MWh) 

Domestic 

percentage 

Average 

Domestic 

consumption 

(KWh) 

Customer 

Num. 

EV 

Num. 

Bow street 26010.6 46.61% 5652 2145 1448 

Machynlleth1 17109.1 43.39% 4946 1501 1013 

University 

College Wales 
29496.2 46.61% 5652 2432 1642 

Aberdovey 15774.9 46.92% 5134 1442 973 

Tywyn 23929.2 46.92% 5134 2187 1476 

Fairbourne 14816.4 46.92% 5134 1354 914 

North Road 30644.2 32.60% 3952 2528 1706 

Aberystwyth 29926.0 46.61% 5652 2468 1666 

Parc Y Llyn 35784.9 48.95% 4361 4017 2711 

Llanilar 12792.07 46.61% 5652 1055 712 

Rhydlydan 5621.5 48.95% 4361 631 426 

Rhydlydan 

ST1 
3385.1 48.95% 4361 380 257 

 

Database in Department of Energy & Climate Change (DECC) summary of demand 

profiles for the UK shows that total EV electricity consumption for whole UK is 

predicted to be 32.2TWh and 38.4TWh for year 2030 and 2050, respectively. Linear 

distribution method can be used to get the annual EV electricity consumption of the 

whole UK from year 2030 to year 2050.  

 

For busbar i, the prediction of annual EV electricity consumption can be estimated 

analytically through calculating the customer number ratio of that area, which is the 

ratio of the customer number CNi in Table 3-2 to the total population occupancy in the 

UK [60]. With the regional customer ratio and the total EV electricity consumption of 

the UK, the annual EV electricity consumption on busbar i can be easily derived. 
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Database from DECC also gives Monte Carlo scenario of predicted EV load demand 

profile for the national grid in 2030 and 2050. The profile is hourly recorded. According 

to the general hourly EV consumption allocation in Monte Carlo scenario and the total 

annual EV consumption on busbar i, the hourly EV electricity consumption on busbar 

i from year 2030 to 2050 can be forecasted.  

 

3.3.2. Time-series Simulation and Results 

Time-series simulation is carried out by calculating network power flow. Power flow 

calculations are carried out for the whole year, i.e. 8760 operating states in sequence. 

After simulations, the curtailment results are counted and compared. It is assumed that 

the duration of each curtailment is one hour. The total curtailments are identified in the 

whole year. Overloading mainly occurs on line 5015-5017, 5010-5012, and 5018-5017 

because of new DG integrations.  

 

Before the application of intelligent EV charging, for year 2030, constraint management 

needs to curtail 1790.74MWh of DG when line overloading occurs in some operating 

states. The DG connected to 5019 is responsible for the curtailment. However, when 

load shifting is taken first, the curtailment amount reduces significantly.  

 

Table 3-3 lists the details of generation curtailment reduction in different time-window 

scales. The annual generation curtailment amount decreases from 1672.9MWh in 2-

hour time-window scale down to 1649.2MWh in 24-hour time-window scale. The 

reduction reaches up to 7.9%, with an average of around 7.6%. It is obvious that 24-

hour time-window is the best choice which saves the maximum amount of renewable 

energy by 141.6MWh.  
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Table 3-3 Total DG Output Curtailments in Different Time-Window Scale 

Time-Window  Scale 

(Hours) 

Generation Curtailment 

(MWh) 

Curtailment Reduction 

(MWh) 

2 1672.9 117.9 

3 1667.2 123.6 

4 1665.3 125.4 

5 1662.0 128.7 

6 1660.4 130.3 

7 1657.4 133.4 

8 1655.1 135.6 

9 1654.1 136.6 

10 1653.7 137.0 

11 1654.2 136.5 

12 1653.6 137.1 

13 1653.7 137.0 

14 1653.3 137.4 

15 1653.1 137.6 

16 1652.7 138.1 

17 1652.2 138.6 

18 1652.1 138.6 

19 1651.3 139.4 

20 1650.9 139.8 

21 1650.9 139.9 

22 1650.4 140.3 

23 1650.3 140.4 

24 1649.2 141.6 

 

Fig. 3-5 shows the changing curve of curtailment quantity when time-window scale 

increases. The curve in Fig. 3-5 decreases significantly in the first 10 scales and 

becomes flatter in the remaining scales, which means most of the load shifting is done 

in the first 10 hours.  
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Figure 3-5 Generation Curtailment of ANM with Intelligent EV Charging under 

Different Time-Window Scales 

 

Two phenomena are worth noting in Fig. 3-5. First, in most situations, the generation 

curtailment decreases when time-window scale increases. Thus, we argue that larger 

time-window scale can give better perspective of the network condition to help make a 

smarter load shifting decision.  

 

Second, small fluctuations appear in the curve. Congestion management with intelligent 

EV charging is operated in sequence to minimise the generation curtailment in one 

particular hour. The operation in earlier hours may increase the power flow in later 

hours and make network congestion in later hours more severe. Therefore, the increased 

generation curtailment in later hours may be bigger than the saved generation 

curtailment in earlier hours, which makes the total annual generation curtailment more 

in the end and leads to the curve fluctuation.  

 

Before intelligent EV charging is applied, the most serious congestion happens at 10:00 

a.m. on the 340th day of the year. Hence, data on this day is chosen to analyse the change 

in load curve due to intelligent EV charging. The system will go through all busbars to 

do load shifting according to their LTDF ranking before generation curtailment. Since 

load shifting on one busbar is always limited and not enough to eliminate line 

overloading, this report analyses the total load demand of the whole network instead of 

just the most sensitive busbar.  
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Fig. 3-6 shows the change of network load curve when intelligent EV charging is added 

on congestion management. The difference between the blue solid curve and red curve 

stands for the original EV demand dispatch. The green dot line indicates the load 

demand distribution after intelligent EV charging. The difference between red line and 

dot line is EV re-dispatch in the 24 hours.  

 

 

Figure 3-6 EV Re-dispatch on Peak Curtailment Day 
 

 

The generation curtailments with and without intelligent EV charging are displayed in 

Table 3-4. Without intelligent EV charging, the total generation curtailment of the 340th 

day is 28.7MWh. The value could be reduced by 12% (namely 3.5MWh) when 

intelligent EV charging is implemented. As shown in Fig. 3-6, in the first 5 hours (from 

0:00 to 5:00), the EV demand is increased to reduce the generation curtailment. The 

increasing EV demand mainly comes from excessive load accumulated in the previous 

day.  

 

In the following 10 hours (from 5:00 to 15:00), the load curve after intelligent EV 

charging nearly matches the original load curve as shown in Fig. 3-6. However, one 

should note that this does not mean there is no load shifting on individual nodes because 

the curtailment values still have changes in these hours in Table 3-4. From the 16th hour 

on (from 15:00 to 24:00), compared with the original load curve, the load curve after 

DSM decreases dramatically, which is due to the slight line congestion detected in these 
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hours. The shaved EV demand is moved to the timeslots that need larger load demand 

to alleviate network pressure. Although the generation curtailment has a small increase 

at 22:00 in Table 3-4, the total curtailment of the whole 340th day is reduced. 

 

Table 3-4 Generation Curtailment Comparison with and without DSM 

Time Without DSM (MWh) After DSM (WMh) 

1:00 1.35 0.64 

2:00 0.38 0.00 

3:00 0.30 0.00 

4:00 0.00 0.00 

5:00 2.57 1.98 

6:00 0.75 0.75 

7:00 0.98 0.98 

8:00 2.47 1.98 

9:00 4.31 3.86 

10:00 4.46 4.07 

11:00 2.27 1.90 

12:00 4.31 3.98 

13:00 1.97 1.67 

14:00 1.69 1.73 

15:00 0.88 1.18 

16:00 0.00 0.00 

17:00 0.00 0.00 

18:00 0.00 0.00 

19:00 0.00 0.00 

20:00 0.00 0.00 

21:00 0.00 0.00 

22:00 0.01 0.44 

23:00 0.00 0.00 

24:00 0.00 0.00 

Total 28.69 25.16 

 

3.4. Cost-benefit Assessment 

3.4.1. Investment Options 

Last section has indicated the performance improvement by applying intelligent EV 

charging on existing congestion management and determined the best time-window 

scale for system operation which is 24-hour. This section will determine how the 

optimal trade-off between operational benefit and network investment cost might be 

impacted by intelligent EV charging. The alternative planning strategies for smart 
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distribution system are also recommended.  

 

Investment options could be classified into three main potential planning strategies that 

DNOs might undertake in the light of increasing renewable penetration and EV demand:  

1) Invest only in network primary assets, 

2) Invest only in the ANM,  

3) Invest both in network assets and ANM.  

 

Table 3-5 lists the exhaustive investment options. Wind farm repowering in 2013 and 

2018 require the new lines added in 2013 and 2018, respectively. The driver for new 

line in 2030 is the added load demand from EVs. 

 

Table 3-5 Exhaustive Investment Options 

Plan 

No. 
Investment detail 

Plan 

No. 
Investment detail 

1 2 lines in 2013 13 
ANM in 2030+2 lines in 2013+2 

lines in 2018 

2 2 lines in 2018 14 
ANM in 2030+2 lines in 2013+1 

line in 2030 

3 1 line in 2030 15 
ANM in 2030+2 lines in 2018+1 

line in 2030 

4 
2 lines in 2013+2 lines in 

2018 
16 

ANM in 2030+2 lines in 2013+2 

lines in 2018+1 line in 2030 

5 
2 lines in 2013+1 line in 

2030 
17 

ANM in 2011& 2031+2 lines in 

2013 

6 
2 lines in 2018+1 line in 

2030 
18 

ANM in 2011& 2031+2 lines in 

2018 

7 
2 lines in 2013+2 lines in 

2018+1 line in 2030 
19 ANM in 2011& 2031+1 line in 2030 

8 ANM in 2030 20 
ANM in 2011& 2031+2 lines in 

2013+2 lines in 2018 

9 ANM in 2011&2031 21 
ANM in 2011& 2031+2 lines in 

2013+1 line in 2030 

10 
ANM in 2030+2 lines in 

2013 
22 

ANM in 2011& 2031+2 lines in 

2018+1 line in 2030 

11 
ANM in 2030+2 lines in 

2018 
23 

ANM in 2011& 2031+2 lines in 

2013+2 lines in 2018+1 line in 2030 

12 
ANM in 2030+1 line in 

2030 
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3.4.2. Cost-benefit Category 

For each investment option, the operational benefits mainly come from the annually 

saved renewable energy, which is affected by the electricity price as shown in (3-14).  

                                                            By =EPy∙GCy                                                       (3-14) 

where, for the year y, By is the operational benefit, EPy is the electricity price, and 

GCy is the annual generation curtailment reduction. 

 

The network investment cost considered in network planning mainly includes primary 

asset investment, ANM, and DSM as shown: 

                                                    Cy = ACy+ANMy+DSMy                                          (3-15) 

where, for the year y, Cy is the network investment cost, ACy is the cost of asset 

investment, ANMy is cost of investing ANM, and DSMy is the cost from intelligent 

EV charging. 

 

For the primary asset investment, the time to invest new lines in network is determined 

by the year the wind farm is upgraded and the EV demand connected. The detailed 

information about primary assets investment is listed in Table 3-6.  

 

Table 3-6 Time and Cost of Primary Asset Investment [5] 

Number Right of Way Year 
Cost 

(£m) 

Present Value 

(£m) 

Lifetime 

(years) 

Asset 1 
5015-5017 

5017-5018 
2013 1.33 1.14 40 

Asset 2 
5010-5012 

5012-5013 
2018 3.13 1.94 40 

Asset 3 5017-5018 2030 1.25 0.33 40 

 

The cost of existing AuRA-NMS without intelligent EV charging is £700k and its 

lifetime is 20 years [39]. The cost estimation for the development of DSM varies 

considerably from country to country, and even between networks on those countries. 

Therefore, it is difficult to evaluate particular cost for the operation of DSM for the 

purposes of generation curtailment reduction whilst ignoring other costs and benefits 

of DSM.  
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There are a number of projects currently on-going trying to ascertain the cost-benefits 

of the Smart Grid (including DSM). One such project is run by Scottish Power in 

Liverpool. In this large scale trial of Smart Grid Technology, a few thousand houses in 

the Liverpool area are being used as a trial for a range of technologies including energy 

storage, smart metering, and DSM. The cost of the trial is given in the document [61]. 

However, in order to test the feasibility of constraint programming approach to power 

flow management, a software prototype is developed to run on commercially available 

substation computing equipment [18]. Hence, the cost of ANM consists of hardware 

and software. Since existing ANM already has the ability of remote measurement and 

monitoring, it can remote monitor the EV consumption as well. And DSM is included 

in software. Therefore, in our proposed enhanced ANM, the cost of integrating DSM is 

minimised. 

 

The long-term network planning in this chapter ranges from 2011 to 2050, so it is 

necessary to convert the profits in different years to an equivalent present year such as 

2011. Therefore, the profits of different investment options can be comparable. With 

the assumption in [62], the present value of future reinforcement is given below. 

                                                               PV=
Asset

(1+d)
n                                                      (3-16) 

where, PV is present value of future investment, d is discount rate. Asset stands for 

modern equivalent assets cost, and n is time to reinforce a network asset. 

 

There are two ways for assessing the performance of an investment option. One 

measurement is Net Present Value (NPV) [63], which can be used to compare the profits 

of planning options. The higher an option's NPV, the more desirable it is to be 

undertaken. It is calculated as shown in (3-17). However, the discount rate d should be 

known in advance. 

                                               NPV = ∑
(By-Cy)

(1+d)
(y-y0)

                                      (3-17)

2050

y=2011

 

where, y0 is the year 2011. 

 

Another measurement is Internal Rate of Return (IRR). The higher an option's IRR, the 

more desirable it is to be undertaken. It is derived by setting the option’s NPV to be 

zero as:  

http://en.wikipedia.org/wiki/Profit_%28economics%29
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                                                     NPV = ∑
(By-Cy)

(1+IRR)
(y-y0)

 =0                                  (3-19)

2050

y=2011

 

3.5. Network Planning Considering Electricity Prices 

3.5.1. Network Planning under Constant Electricity Prices 

In this section, to simplify the calculation, constant electricity prices and NPVs are 

adopted to evaluate the performance of different investment options. The discount rate 

d is assumed to be 6.9% [36]. Applying electricity prices of £40, £60, £80 and £100 per 

MWh to the total MWh savings, the results can be easily obtained and are shown in Fig. 

3-7 and Fig. 3-8 considering depreciation.  

 

From Fig. 3-7, one can see under previous congestion management, option 19 gives the 

highest profit when electricity price is set to £40/MWh. However, option 21 is the best 

choice when wholesale electricity price climbs to £60/MWh, £80/MWh, and 

£100/MWh, and the largest benefit is £31.77m. The situation is same when applying 

intelligent EV charging on ANM. However, its largest benefit can reach £31.83m when 

electricity price is £100/MWh. Furthermore, the savings of options 9, 20, and 22 are 

comparable to the most efficient choice. 

 

Figure 3-7 Options’ NPVs in Existing ANM without DSM under Constant Electricity 

Price 
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Figure 3-8 Options’ NPVs in Proposed ANM with DSM under Constant Electricity 

Prices 

 

The MWh saved benefits solely due to the use of intelligent EV charging are shown in 

Fig. 3-9. In the first 7 options, there is no difference because they are lines investment 

only. The other options show the benefits from intelligent EV charging clearly. The 

curtailment savings are same in options 8 (invest AuRA in 2030) and option 9 (invest 

AuRA in 2011&2031). This is because before year 2030, the load profile is assumed to 

stay the same and there is no EV connected into the network. The function of intelligent 

EV charging cannot be executed since no flexible EV is available. 

 

 

Figure 3-9 Increased NPVs by DSM under Constant Electricity Prices 



Chapter 3.         Enhancing Congestion Management with Intelligent EV Charging 
 

Page 48 
 

3.5.2. Electricity Price Uncertainty 

Cost-benefit assessment in last section is based on fixed electricity price over 40 year 

period. However, actual energy price will fluctuate as well as the electricity price over 

a longer period of time. This part takes reference from Ofgem’s Project Discovery – 

Energy Market Scenarios to analyse the planning fluctuation caused by electricity price 

uncertainty.  

 

The price curve of electricity from 2010 to 2025 is shown in Fig. 3-10. The four 

projected scenarios, Green Transition, Slow Growth, Green Stimulus and Dash for 

Energy are based on two key global drivers that will most likely shape different 

outcomes for the Great Britain energy markets over the next decade or so: the speed of 

global economic recovery and the extent of globally coordinated environmental action 

[64]. To investigate the impact of electricity price uncertainty, we adopt the wholesale 

electricity price from year 2010 to 2025 in [64] and assume the wholesale electricity 

price from year 2026 to 2050 will be the same with year 2025.  

 

 

Figure 3-10 Wholesale Electricity Prices [64] 

 

The exhaustive investment options are reduced to 15 options as listed in Table 3-7. It is 

because in the network planning, if ANM is invested, it is more reasonable to invest it 

from year 2011. Thus, option 8 (ANM in 2030) in Table 3-5 is deleted. 
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Table 3-7 Investment Options 

Plan 

No. 
Investment detail 

Plan 

No. 
Investment detail 

1 2 lines in 2013 9 
ANM in 2011& 2031+2 lines in 

2013 

2 2 lines in 2018 10 
ANM in 2011& 2031+2 lines in 

2018 

3 1 line in 2030 11 ANM in 2011& 2031+1 line in 2030 

4 
2 lines in 2013+2 lines in 

2018 
12 

ANM in 2011& 2031+2 lines in 

2013+2 lines in 2018 

5 
2 lines in 2013+1 line in 

2030 
13 

ANM in 2011& 2031+2 lines in 

2013+1 line in 2030 

6 
2 lines in 2018+1 line in 

2030 
14 

ANM in 2011& 2031+2 lines in 

2018+1 line in 2030 

7 
2 lines in 2013+2 lines in 

2018+1 line in 2030 
15 

ANM in 2011& 2031+2 lines in 

2013+2 lines in 2018+1 line in 2030 

8  ANM in 2011& 2031   

  

Since the actual discount rate is unknown in practice, IRRs is adopted in this section to 

do the assessment. By applying electricity prices in (3-16) and (3-17), the corresponding 

IRR of each investment option is calculated. Fig. 3-11 shows the IRRs under congestion 

management without intelligent EV charging, where the IRRs of the 15 investment 

options vary greatly.  

 

 

Figure 3-11 Options’ IRRs in ANM without DSM 

 

Taking GREEN STIMULUS scenario as an example, the IRRs of options range from 

1% (option 3) to 24.56% (option 8). Compared with options 1 and 2 which invest two 

1 3 5 7 9 11 13 15
0

5

10

15

20

25

30

Plan No.

IR
R

 (
%

)

 

 

SLOW GROWTH

GREEN TRANSITION

DASH FOR ENERGY

GREEN STIMULUS



Chapter 3.         Enhancing Congestion Management with Intelligent EV Charging 
 

Page 50 
 

lines, option 3 only invests one line in 2030. Options 1 and 2 build two lines earlier than 

option 3 according to the year of wind farm repowering, which can greatly reduce 

generation curtailment before 2030. After 2030, one line in option 3 is not enough to 

accommodate the excessive generation and demand, resulting large amount of 

generation curtailment. Although option 3 produces both lower cost Cy and lower 

operational benefit By, the reduction in By is bigger than that of Cy, leading to very 

small IRR value according to (3-20).  

 

Furthermore, compared with options 8-15, only line investment is triggered in option 3. 

Though the cost Cy is small, network pressure will result in large quantity of generation 

curtailment, which reduces the benefit By. It is caused by that the network has to bear 

severe network pressure from 2013 to 2030 due to the wind farm repowering in 2013 

and 2018, and form 2030 to 2050 due to both excessive generation and load growth.  

 

The 4 scenarios produce quite similar tendency of IRRs for the 15 options but not 

exactly the same. It is because for each option, the electricity price only influences By 

in (3-20) while Cy is fixed for all 4 scenarios. If the electricity uncertainty is bigger 

than that projected in Ofgem’s report, the four curves may cross with each other. In Fig. 

3-11, the highest IRRs are obtained in option 8 for all scenarios (26.34% in SLOW 

GROWTH, 26.18% in GREEN TRANSITION, 29.77% in DASH FOR ENERGY, and 

24.56% in GREEN STIMULUS). Option 11 is comparable to the most profitable option 

8.  

 

Fig. 3-12 shows the IRRs in enhanced congestion management with intelligent EV 

charging. The curve tendency in Fig. 3-12 is similar to that in Fig. 3-11. The reason is 

that when intelligent EV charging is applied, only GCy in (3-16) is changed, which 

only causes By to vary in (3-20) with other elements unchanged. Therefore, the shapes 

of the curves do not change obviously. Option 8 still gets the highest profit in four 

scenarios. However, its largest IRRs reach 26.36%, 26.19%, 29.79% and 24.58% in 

scenario SLOW GROWTH, GREEN TRANSITION, DASH FOR ENERGY and 

GREEN STIMULUS, respectively. Fig. 3-11 and Fig. 3-12 give the recommendations 

in distribution network planning. However, in these two figures, it is difficult to see the 

increased benefit from applying intelligent EV charging. 
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Figure 3-12 Options’ IRRs in Proposed ANM with DSM 

 

Fig. 3-13 shows the increased operational benefit from adding intelligent EV charging 

on congestion management. For each investment option, the increased benefit is 

calculated by comparing NPVs with and without intelligent EV charging. In order to 

obtain NPVs, the IRR in (3-20) is set to be 6.9% for all investment options. 

 

In Fig. 3-13, options 8 to 15 show increased benefits brought from DSM, whereas 

options 1 to 7 show no increased benefit since they are only line investment. Option 11 

(AuRA in 2011& 2031+1 line in 2030) gets the largest increased benefit from DSM 

(£530k in SLOW GROWTH，£478k in GREEN TRANSITION, £566k in DASH FOR 

ENERGY, and £463k in GREEN STIMULUS). Fig. 3-13 indicates that the operational 

benefits from intelligent EV charging vary with the investment options, which means 

integrating intelligent EV charging in congestion management will influence network 

planning.  
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Figure 3-13 Increased Benefit from DSM 

 

3.6. Discussions 

This chapter proposes an enhanced congestion management strategy, which is achieved 

by augmenting existing congestion management to include intelligent EV charging. As 

demonstrated in the practical distribution system, combined management of generation 

and demand can achieve 7.9% improvement in utilising renewable energy, and 

subsequently increase network operational benefit by £566k.  

 

There are many papers investigating the role of ANM on distribution network operation 

as discussed in Chapter 2, but from different aspects and use different methodologies. 

For example, paper [21] indicates that a multi-period AC optimal power flow technique 

is able to increase wind power penetration volume by 30% if 5% energy curtailment is 

allowed. Paper [22] uses active power flow management for trimming and tripping of 

regulated non-firm generation. It approves that the method has the potential to increase 

the capacity of both firm and non-firm generation by 3 times. Paper [15] compares the 

generation curtailment reductions by using AuRA-NMS under different additional DG 

capacity levels. It concludes that by using the method, 79.6% generation curtailment 

reduction can be realised when additional 40 MW DG is connected.  
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These papers did not consider the role that DSM can play in reducing generation 

curtailment. Further, the methods devised in them compared with that in this paper are 

for different objectives with various constraints. The models and methodologies are 

demonstrated on different systems to test effectiveness and quantify benefits. Therefore, 

it is impossible to set a benchmark value to measure the benefits they can produce. The 

work in this chapter is an improvement over the previous congestion management to 

encourage DSM by considering the role of intelligent EV charging. Although there are 

no benchmark benefits, the results in this chapter show that the proposed strategy can 

achieve additional benefits over the techniques in [15]. 

 

3.7. Chapter Summary 

This chapter integrates intelligent EV charging into the previous congestion 

management and assesses its additional cost-benefit. An important consideration in this 

optimisation analysis is the Time-Window Scale concept, which will be used to limit 

time domain for load shifting. Another important element is the alignment of demand 

shift with optimal generation curtailment, which requires reasonable selection rules to 

guide load shifting to minimise the annual generation curtailment. 

 

A practical 33kV network is used as a test system. The simulation results indicate that 

intelligent EV charging can help previous congestion management reduce generation 

curtailment further by 7.9%, which means more renewable energy could be utilised in 

the network. Besides, larger time-window scale always results in larger operational 

benefits. Intelligent EV charging can save wind generation up to 141.6MWh in 24-hour 

time-window scale.  

 

By analysing four different electricity price strategies, the best investment choice and 

the increased benefit from intelligent EV charging is found to be strongly dependent on 

the electricity price and its uncertainty, which is thus worth noting in the optimal 

network asset investment. Our results provide a viable and promising enhanced 

congestion management for distribution network operators, particularly for networks 

with high penetrations of renewable generation.
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This chapter improves the intelligent EV charging by applying 

bi-directional charging optimisation strategy and enhancing 

shifting principle with power flow constraint. 
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4.1. Introduction 

Chapter 3 proposes the use of EVs as responsive demand to complement the previous 

congestion management that was purely based on generation curtailment to relieve 

network stresses. It is achieved by allowing EVs to absorb excessive renewable 

generation when they cause network pressure. The enhanced congestion management 

is proved to be capable of reducing the network stresses further without network 

reinforcement, resulting in more renewable generation being saved.  

 

However, the charging model in Chapter 3 has two drawbacks. First, the excessive load 

/load shortage can only be shifted to/from latter hours. The strategy will be more 

beneficial if load shifting could be bi-directional. Second, the selection of timeslot for 

shifting only depends on EV flexibility. If the timeslot already suffers network 

congestion, it should not be chosen for load shifting even though it has large EV 

flexibility. 

 

This chapter addresses these two drawbacks by proposing an enhanced charging 

strategy with two improvements: 

1) Load shifting will be optimised to be bi-directional through ‘trail and comparison’ 

among several potential charging solutions. The operation objective is to minimise 

the total generation curtailment in individual time-window. 

2) The selection of timeslot for load shifting depends on both EV flexibility and 

network power flow condition.  

 

The rest of this chapter is organised as follows: Section 4.2 introduces the bi-directional 

intelligent EV charging algorithm; Section 4.3 enhances the load shifting principle by 

adding network power flow constraint; Section 4.4 provides a case study of a 33kV 

network; and the conclusions are drawn in Section 4.5. 

 

4.2. Bi-directional Intelligent EV Charging 

Like EV charging model in Chapter 3 (model 1), the proposed EV charging model 

(model 2) also detects network stress based on time-series power flow simulation. The 



Chapter 4.                         Improving the Intelligent EV Charging Model 
 

Page 56 
 

concept of time-window scale is still utilised to constrain the time horizon for EV load 

shifting. The differences between these two models are explained below. 

 

In model 1, M-Time-Window means that when the congestion checking moves to the 

time-window which starts with timeslot t, if there exists network congestion at t, load 

shifting will be undertaken in the following hours from t+1 to t+M-1. Otherwise, the 

checking system will move on to the next time-window which starts with timeslot t+1 

and the dispatch of EV load demand at timeslot t stays the same with the original 

dispatch.  

 

In model 2, bi-directional operation means that in M-Time-Window Scale, when 

congestion checking moves to the time-window which starts with timeslot t, it will 

check the network condition of all timeslots in the time-window. As long as there exist 

line overloading, no matter which timeslot, the load shifting will be implemented within 

time period from t to t+M-1. Only if no network congestion is detected in any timeslots 

in the time-window, the checking system will move on to the next time-window which 

starts with timeslot t+1 and the dispatch of EV load demand at timeslot t stays the same 

with the original dispatch.  

 

Model 2 allows load shifting to be more flexible. However, there may be several 

timeslots with network stresses in the time-window, and the potential of load shifting is 

limited. In that case, the most efficient timeslot will be selected for load shifting in prior. 

The procedure of selection will be explained in the next paragraph. Fig. 4-1 gives a 6-

hour time-window example of model 2. The grids in grey stand for an individual 6-hour 

time-window, where both timeslot t+1 and t+4 (in bold) have the network congestion. 

Thus, there are two shifting solutions: shifting overloading on timeslot t+1 or shifting 

overloading on timeslot t+4. By comparing the performance of these two solutions, t+4 

is selected as the more efficient timeslot. Then t+4 can shift its excessive EV load to 

either earlier hours or latter hours.  
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Figure 4-1 6-hour Time-window Example 

 

The optimisation of EV charging is processed by “trial and comparison” from several 

charging solutions. The number of trials is determined by the number of timeslots that 

have network congestion. The original state of the network without load shifting is set 

as reference, in which each timeslot k in the time-window has original generation 

curtailment GC0,t. Trial T means that the target for load shifting is to alleviate the 

overloading at timeslot T, i.e. EV charging demand at timeslot T should be swapped 

with other timeslots to relieve the congestion.  

 

In trial T, after load shifting, the network generation curtailment at each timeslot t 

GCT,t  in the time-window will be recalculated. The difference between GCT,t  and 

GC0,t is the individual benefit at timeslot t due to load shifting in trial T. By summing 

all individual benefit in the time-window, the benefits of trial T can be obtained, shown 

in (4-1). By comparing GCRT, the trial execution timeslot with largest GCRT will be 

selected as the real execution timeslot for load shifting. 

                                                    GCRT= ∑ (GC0,t − GCT,t)

TWS

t=1

                                       (4-1) 

where ,TWS indicates the Time-Window Scale. 

 

4.3. Enhancing Load Shifting with Power Flow Constraint 

The second improvement is in the process of shifting the excessive load from one 

timeslot to another. In the model in Chapter 3 (model 1), choosing proper timeslot to 

swap load only depends on EV flexibility. If the timeslot is already suffering network 

congestion, increasing or reducing its load demand may aggravate network congestion, 

resulting in more generation curtailment. The proposed model in this chapter (model 2) 

addresses this problem by considering both EV flexibility and network power flow 
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condition at each timeslot.  

 

There are three main steps in detailed operation of load shifting: 

1) In trial T, the most overloaded line l is first found. Then LTDF is introduced as 

reference matrix to select the most sensitive busbar to eliminate network stress, 

which is same with Chapter 3.  

 

2) Find the most proper timeslot to swap EV load with timeslot T. The best timeslot 

is chosen by considering its EV flexibility and power flow condition. The timeslot 

with the maximum EV flexibility and the lowest power flow is chosen to conduct 

load shifting. Method of weighting is used to incorporate the two objectives as 

shown in (4-2). 

            Priority
t
= wEV∙ EVi, t - wOL∙ OLl, t                                       (4-2)      

where, Priority
t
 is the shifting priority of timeslot t, OLl, t is the line overloading 

of line l at timeslot t,  wEV and wOL are the weights of EV flexibility and line 

overloading, respectively.  

 

3) For trial T, after load shifting, GCRT is then calculated.  

The detailed flowchart of enhanced intelligent EV charging is shown in Fig. 4-2. 
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Figure 4-2 Flowchart of Enhanced Intelligent EV Charging 
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4.4. Case Study 

4.4.1. General Case Study Results 

In order to compare the operation of the model in Chapter 3 (model 1) and the enhanced 

model in this chapter (model 2), the Aberystwyth network described in Chapter 3 is 

used again for case study. Time-Window Scale is set to be 12-hour. The load and 

generation profiles of one day (24 hours) are chosen as the input data to do the 

simulation.  

 

Simulation results of the 24 hours indicate that only line 5010-5012 has line overloading. 

Fig. 4-3 shows the power flow of line 5010-5012 in the 24 hours. The red line stands 

for the power flow at each timeslot, and the green dotted line is the line rating of line 

5010-5012. According to Fig. 4-3, only timeslot 4 and 14 suffer the line overloading. 

Both these two timeslots require additional load demand to absorb excessive wind 

generation.  

 

 

Figure 4-3 Power Flow on Line 5010-5012 in 24 Hours 

 

4.4.1.1. Benefit from Improvement 1 

Table 4-1 gives the particular load demand information after applying bi-directional 

operation in intelligent EV charging. The second column is the original load profile of 
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the day. The third and fourth columns are the hourly load profiles after EV recharging 

under model 1 and model 2, respectively. The numbers in bold indicate that there exist 

load demand change at those timeslots. It is obvious that the bi-direction optimisation 

in model 2 gives more times of load shifting.  

 

Table 4-1 Comparison of the Change in Load Demand under Model 1 and Model 2 

Time 
Original Load 

Demand (MWh) 

Load Demand in 

Model 1 (MWh) 

Load Demand in 

Model 2 (MWh) 

0:00 29.557 29.557  29.557  

1:00 41.843 41.843  41.843  

2:00 40.943 40.943  40.943  

3:00 43.326 43.408  43.503  

4:00 43.801 43.801  43.801  

5:00 37.478 37.478  37.478  

6:00 33.242 33.242  33.242  

7:00 28.759 28.759  28.759  

8:00 23.177 23.177  23.177  

9:00 24.628 24.628  24.628  

10:00 27.291 27.291  27.291  

11:00 29.743 29.743  29.703  

12:00 34.680 34.680  34.592  

13:00 37.957 37.957  39.133  

14:00 46.029 45.947  45.947  

15:00 42.015 42.015  41.920  

16:00 37.228 37.228  37.119  

17:00 35.615 35.615  35.475  

18:00 37.488 37.488  37.304  

19:00 38.660 38.660  38.475  

20:00 33.982 33.982  33.827  

21:00 34.396 34.396  34.281  

22:00 33.980 33.980  33.890  

23:00 29.014 29.014  28.944  

 

Fig. 4-4 shows the change of load demand after implementing intelligent EV charging 

in model 1. 0.082MWh load demand is shifted from timeslot 15 to timeslot 4. However, 

for timeslot 14, there is no load demand difference, which means there is no load 

shifting implemented. This is because in model 1, whether load shifting will be operated 

or not is determined by the power flow at the first timeslot in the time-window. If the 

first hour has no network congestion, no load shifting will be done and system will 

move to the next time-window directly.  
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In this case study, the Time-Window Scale is set as 12 hour, which means the last load 

shifting in the 24 hours is implemented within time period from timeslot 13 to 24. As 

there is no load overloading occurred at timeslot 13, no load shifting is done and the 

intelligent EV charging for this case study is finished. Thus, timeslot 14 has no 

opportunity to do load shifting to relieve its line overloading.  

 

 
Figure 4-4 Change of Load Demand under Model 1 

 

Fig. 4-5 shows the change of load demand after implementing intelligent EV charging 

in model 2. Like the situation in model 1, only line 5010-5012 has overloading at 

timeslot 4 and 14. However, since model 2 has optimised the shifting operation process. 

The load is allowed to be shifted to either earlier hours or latter hours. The timeslots 

with line overloading get more opportunities to be relieved through load shifting as 

there always exist timeslot overlapping between the adjacent time-windows. 

Furthermore, the network congestion happened in the latter hours is possible to be 

relieved in the earlier time-windows. In one word, the intelligent EV charging becomes 

more beneficial.  
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Figure 4-5 Change of Load Demand under Model 2 

 

As shown in Fig. 4-5, the load demand at both timeslot 4 and 14 are increased. The 

increasing at timeslot 4 is 0.177MWh, which is nearly doubled, as against the increment 

in Fig. 4-4. Timeslot 14 also gets the opportunity to relive its line overloading in the 

earlier Time-Window. The load demand increment at timeslot 14 is 1.176MWh. The 

increment of load demand at these two timeslots comes from other hours that have no 

network congestion.  

 

Table 4-2 gives generation curtailment comparison between these two models. 

According to the network condition, only timeslot 4 and 14 have the line overloading. 

The intelligent EV charging can partially release the overloading, thus it still requires 

generation curtailment to completely relieve the remaining line overloading. The total 

generation curtailment of the 24 hours in model 2 is about 45% less than that in model 

1. Due to the multiple load-shifting in model 2, the generation curtailment in individual 

timeslots also reduced significantly. These results prove the efficiency of the 

improvement 1. 

Table 4-2 Generation Curtailment of Model 1 and Model 2 

 Model 1 (MWh) Model 2 (MWh) 

Timeslot 4 1.131 1.019 

Timeslot 14 1.694 0.539 

Total 2.825 1.558       
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4.4.1.2. Benefit from Improvement 2 

Last section analyses the benefits coming from bi-directional optimisation. This section 

enhances model 2 further by adding improvement 2, i.e. power flow constraint, and 

analyses the benefits coming from improvement 2. As mentioned in (4-2),  wEV and 

wOL are the weights of EV flexibility and power flow condition, respectively. The sum 

of the two weights should be one. However, since the values of line overloading are 

normally 100 times larger than the values of EV flexibility. Thus, wOL  should be 

divided by 100 to ensure the two factors comparable. The relationship of  wEV and 

wOL is described below. 

                                                              wOL  =
1 −  wEV
100

                                                     (4-3) 

 

Table 4-3 shows the model performance with and without improvement 2 (power flow 

constraint). Scenario 1 is the case without improvement 2. Scenario 2 involves 

improvement 2, where two factors are considered equally important. In 24-hour case, 

the values of generation curtailment in two scenarios are same, which indicate that the 

effect of improvement 2 is not as significant as that of improvement 1. In small rang of 

time horizon, like 24-hour, it does not show any benefits. However, if we extend the 

time horizon to the whole calendar year, improvement 2 exhibits its benefits. In 

Scenario 1, the annual generation curtailment amount is 1998.97MWh. When model 2 

is enhanced with improvement 2, the annual generation curtailment can be reduced by 

0.05%.  

 

Table 4-3 Comparison of Model with and without Improvement 2 

Time Horizon 
Scenario 1  

( wEV=0.1,  wOL=0) 

Scenario 2  

( wEV=0.5,  wOL=0.005) 

24-hour case 1.5585 MWh 1.5585 MWh 

Whole-year case 1998.97 MWh 1998.06 MWh 

 

4.4.2. Sensitivity Analysis of Time-Window Scale 

The benefits of the two improvements in model 2 have been proved in 4.4.1. This 

section analyses the annual generation curtailment under different time-window scales. 
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For each time-window scale, power flow calculations are carried out for 8760 operating 

states in sequence. The duration of each curtailment is one hour. The total curtailments 

are identified in the whole year. Overloading mainly occurs on line 5015-5017, 5010-

5012, and 5018-5017, which is same with that in Chapter 3.  

 

Fig. 4-6 shows the annual generation curtailment of the enhanced intelligent EV 

charging model when time-window scale increases. It indicates that, the annual 

generation curtailment decreases as the time-window scale increases, which is 

consistent with model 1. In model 2, 3-hour Time-Window requires the largest 

generation curtailment (2115.26MWh), while 24-hour Time-Window only curtails 

1998.06MWh generation.  

 

 

Figure 4-6 Annual Generation Curtailment of Enhanced Intelligent EV Charging 

Model under Different Time-Window Scales 

 

As mentioned in 3.3.2, there is small fluctuations appearing in model 1 (Fig.3-5), which 

is due to the operation drawbacks of model 1. In model 1, load shifting depends on the 

line overloading of the first timeslot and the EV flexibility of the other timeslots. The 

operation in earlier hours may increase the power flow in later hours. Sometimes, the 

increased generation curtailment in later hours may be bigger than the saved generation 

curtailment in earlier hours, which makes the total annual generation curtailment more 

in the end and leads to the curve fluctuation. Model 2 sets the minimisation of total 

generation curtailment in time-window as the objective, and shifting process considers 
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both the EV flexibility and the power flow. Thus, there is no fluctuation in Fig. 4-6. The 

curve of model 2 is monotonically decreasing. 

 

Table 4-4 lists the generation curtailment reduced by model 2 in different time-window 

scales. Model 2 can save more renewable generation by 3.93% in average, based on the 

curtailment level in model 1. The best condition reaches up to 5.67%, which is in 24-

hour time-window scale. Table 4-4 clearly indicates that, compared with model 1, the 

operational benefit of model 2 also increases as time-window scale increases. 

 

Table 4-4 Generation Curtailment Reduction in Different Time-Window Scales 

Time-Window 

Scale (h) 
Model 1 (MWh) Model 2 (MWh) 

Generation 

Curtailment 

Reduction 

3 2152.45 2115.26 1.73% 
4 2148.80 2104.03 2.08% 
5 2144.99 2094.19 2.37% 
6 2141.19 2085.92 2.58% 
7 2137.01 2079.04 2.71% 
8 2134.48 2072.76 2.89% 
9 2132.03 2067.72 3.02% 
10 2131.06 2062.26 3.23% 
11 2130.27 2055.34 3.52% 
12 2128.77 2047.49 3.82% 
13 2128.52 2039.64 4.18% 
14 2127.02 2035.03 4.33% 
15 2126.07 2031.44 4.45% 
16 2124.87 2028.53 4.53% 
17 2124.36 2025.88 4.64% 
18 2123.66 2022.56 4.76% 
19 2121.67 2018.66 4.86% 
20 2120.68 2015.57 4.96% 
21 2120.63 2010.64 5.19% 
22 2119.66 2006.64 5.33% 
23 2119.87 2002.75 5.53% 
24 2118.19 1998.06 5.67% 

 

4.5. Chapter Summary 

This chapter proposes an enhanced intelligent EV charging model to complement 

congestion management, where two significant improvements are proposed. Firstly, the 
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load shifting is optimised to be bi-directional, i.e. the excessive EV load demand can 

be shifted to either earlier hours or latter hours. Secondly, in the enhanced model, the 

selection of timeslot for shifting is improved with network power flow constraint.  

 

Simulation results in the case study prove that the proposed enhance EV charging model 

can increase the utilisation level of renewable generation further based on the 

performance of intelligent EV charging model in Chapter 3. In a small range of time 

horizon (24 hours), bi-directional optimisation operation can further reduce the 

generation curtailment by 45%. The benefit from adding power flow constraint in load 

shifting is not as significant as the first improvement, but it still can reduce the annual 

generation curtailment by 0.05%. In terms of annual benefits, the enhanced intelligent 

EV charging can averagely save renewable energy by 3.93%. 
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This chapter proposes an uncertainty management strategy 

called SR method to allow the impact of risks that arise from 

network stress prediction on the expected operational benefits 

to be properly assessed, thus extending the traditional 

deterministic cost-benefit assessment to cost-benefit-risk 

assessment. 
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5.1. Introduction 

Chapter 4 has proposed an enhanced congestion management with intelligent EV 

charging which refers to shifting flexible EV load over time to absorb excessive local 

wind generation. It acts as an efficient alternative to releasing network stresses and 

reducing wind generation curtailment. The charging optimisation is selected from 

several charging solutions which are determined by the overloaded timeslots and their 

corresponding network stresses. Due to the lack of real-time data, the model in Chapter 

4 regards forecasted network data as real-time deterministic data for the simulation and 

analyses.  

 

However, in practice, there are significant uncertainties in predicting network stresses 

introduced from wind forecasting error. Further, wind forecasting error increases as the 

lead time rises. Due to these two factors, the prediction of network stresses under 

different lead time are under different uncertainty levels. The operational benefits of 

EV charging solutions determined by network stresses will be under different 

uncertainty levels as well. It becomes difficult to compare the benefit of one EV 

charging solution to another when their benefits are under different uncertainty levels. 

EV charging optimisation should be improved from the traditional deterministic 

approach to a stochastic one by integrating uncertainty management.  

 

This chapter addresses this critical challenge by applying SR concept, which is widely 

used by the financial sector for risk management. SR can help convert network 

operational benefits under different uncertainty levels into an equivalent benefit value 

under per unit uncertainty level, i.e. ‘mitigate’ the effects of uncertainty in the 

performance assessment.  

 

The rest of this chapter is organized as follows: Section 5.2 gives an overview of 

uncertainty management; Section 5.3 introduces the basic SR theory in financial risk 

management and wind forecast error; Section 5.4 proposes the application of SR 

method to the enhanced congestion management; Section 5.5 provides a case study of 

a 33kV network; and the conclusions are drawn in Section 5.6. 
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5.2. Literature Review about Uncertainty Management 

5.2.1. Concept of Uncertainty 

Uncertainty means that it is impossible to exactly describe the existing state or a future 

outcome because of the limited knowledge about the state. In power system, uncertainty 

sources include generation availability, load requirements, unplanned outages, market 

rules, fuel price, energy price, market forces, weather and other interruptions, etc. [65]. 

They will affect power systems planning and operation in the following aspects:  

1) Entry of new energy producing/trading participants,  

2) Increases in regional and intraregional power transactions,  

3) Increases in sensitive loads,  

4) New types and numbers of generation resources.  

 

Uncertainty analysis is a part of risk assessment that focuses on the uncertainties in the 

assessment. Important components of analysis include qualitative analysis that 

identifies the uncertainties, quantitative analysis of the effects of the uncertainties on 

the decision process, and communication of the uncertainty. 

 

In power system, generation and load demand are important inputs for power flow 

analysis. In some operation situations, we have to forecast generation and load based 

on historical data to arrange the network operation in advance. However, it is impossible 

to accurately forecast load and generation even one hour ahead. Therefore, some degree 

of forecasting errors always exists. The uncertainties analysed in this thesis only refer 

to forecasting errors.  

 

Many researches have been done to investigate the effect of forecasting errors in power 

system [66-76]. Most of the work is related with network reliability evaluation. Papers 

[66-68] use analytical methods on reliability evaluation of power system including wind 

generation. Paper [69] introduces a Monte Carlo based production cost simulation 

model to valuate reliability of a power system integrated with wind generation, where 

reliability indices Loss of Load Expectation and Expect Energy Not Served are analysed. 

The effects of load forecast uncertainty in bulk system reliability assessment are 

examined in paper [70-72], incorporating changes in system composition, topology, 
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load curtailment policies and bus load correlation levels. Papers [75] and [76] analyse 

System Average Interruption Duration Index and System Average Interruption 

Frequency Index to indicate the effects of load uncertainty in network reliability. Paper 

[73] and [74] show the calculation of optimal amount of spinning reserve to respond 

not only to generation outages but also to errors in the forecast for load and wind power 

output.  

 

By now, however, little work has been done to investigate how forecasting errors would 

affect network operation, especially in ANM. In the enhanced congestion management 

proposed in this thesis, the wind and load forecasting errors will cause errors in the 

perdition of network stress, which will further introduce errors in the expected 

generation curtailment. Thus, this thesis will analyse the impacts of forecasting errors 

on the enhanced congestion management through evaluating the uncertain power flows.  

 

5.2.2. Methods for Uncertain Power Flow Calculation 

Some methods that incorporate uncertainty in system variables have been proposed to 

deal with the uncertain power flow analysis problem. According to applied 

mathematical techniques, these works can be classified into three categories: Monte 

Carlo Simulation, probability power flow method and fuzzy power flow method.  

 

5.2.2.1. Monte Carlo Simulation Method 

Monte Carlo Simulation [77] is the most straightforward method to solve uncertainty 

problem, which involves repeated simulation with values obtained from probability 

density function of the input variables. Firstly, each input variable with probabilistic 

distribution produces thousands of input scenarios. Secondly, the corresponding 

thousands of output scenarios are calculated with the deterministic load flow. Finally, 

the probabilistic distributions of output variables are obtained through evaluating the 

output scenarios. Due to the use of DC flow, the accuracy of solution is sensitive to a 

prior knowledge of input variables. If appropriate input information is available, the 

obtained results become more accurate.  
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Monte Carlo Simulation with simple random sampling is direct and, theoretically, it has 

no utilization limitation. For example, it can use accurate non-linear function of inputs 

to calculate the uncertain outputs. But it needs large quantity of computational efforts 

and memory to obtain significant results, which makes it normally be used to validate 

the accuracy of other methods.  

 

5.2.2.2. Probabilistic Power Flow Method 

Analytical probabilistic power flow method is one of suitable tools to analyse the 

uncertain impact of load/wind forecasting errors on the grid. By evaluating the 

uncertainties of output variables, the potential risky and weak points of the network can 

be found. Analytical method of probabilistic power flow was first proposed in 1974 by 

Borkowska. A simplified model with two assumptions was proposed: 1) The electric 

power system is introduced with a DC power network，therefore, reactive power is not 

considered and 2) the nodal active power demands are treated as random independent 

variables [78].  

 

Later, Allan extended the method to AC power flow and widely applied it to network 

management, short-term and long-term electrical network planning etc.[79-85]. The 

original probabilistic power flow method utilized convolution method to calculate the 

probability distributions of power flows. Although it reduces the computational burden, 

it is still costly to obtain the probability density function of a single line when the 

network model is extended. Moreover, the convolution method requires that the input 

variables are independent or linearly related.  

 

Fast Fourier transform techniques were proposed to reduce the computational burden 

[81], but this method is linked to the convolution technique, and does not solve the 

problem efficiently. Paper [86] proposed a method using cumulants of the probability 

density function and the Gram Charlier expansion. It requires low computational 

burden. However, for non-Gaussian probability density function, Gram Charlier 

expansion has serious convergence problems. Paper [87] proposed a method based on 

cumulants of the probability density function and the Cornish-Fisher expansion. The 

author demonstrated that Cornish Fisher expansion performed better than Gram 

Charlier expansion for non-Gaussian distribution. A recent proposal is the point 
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estimate method [88, 89]. It approximates the moments of the system variables of 

interest to calculate the moments of the output variables. Then the probability 

distribution of the output variables can be derived from their moments.  

 

The core of probabilistic power flow method is to obtain network power flows in terms 

of probability distributions or cumulative distributions through the probability 

distribution functions or cumulative distribution functions of nodal inputs. Thus, the 

uncertainties in nodal inputs can be reflected in the probability distributions. In paper 

[79], the expected values and standard deviation of each power flow are calculated and 

overall balance of power in the system is determined in terms of a density function. 

This allows quantitative assessment of network reliability and security. Papers [90, 91] 

use probabilistic power flow method to investigate distribution network’s voltage 

security caused by wind power integration.  

 

 

5.2.2.3. Fuzzy Power Flow 

Another family of algorithms for load flow calculation under uncertainty is based on 

the fuzzy set theory [92-94]. The concept of fuzzy set theory was introduced by Zadeh 

in 1965 and it was first introduced in 1979 for solving power system problems [93]. 

Unlike the probabilistic power flow models highly related to the statistical behaviour 

of a phenomenon, the uncertainty from system variables in fuzzy models is usually 

given in fuzzy numbers with known possibility distributions which is a vague or 

inaccurate concept. The corresponding power flow results are therefore in fuzzy 

numbers with possibility distribution [92]. Although the computation burden of fuzzy 

power flow is smaller than probabilistic power flow, there is high imprecision involved 

in fuzzy method. Furthermore, fuzzy method requires to build up membership functions 

for input variables, which will heavily rely on historical data. 

 

Basically a fuzzy logic system consists of the following 5 steps [95]:  

1) Fuzzification: Converting the crisp inputs to membership functions which comply 

with intuitive perception of system status.  

2) Rules Processing: Calculating the response from system status inputs according to 

the pre-defined rules matrix (control algorithm implementation).  
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3) Inference: Evaluating each case for all fuzzy rules  

4) Composition: Combining information from rules  

5) Defuzzification: Converting the result to crisp values. 

 

5.3. SR Theory and Wind Forecast Error 

5.3.1. SR Theory in Financial Risk Management 

Financial risk management is the process to identify, assess, measure, and manage 

financial risk in order to create economic value [96]. For a general portfolio, its return 

and initial investment value has a relationship as in (5-1): 

                                                                   R =
ΔR

IC
                                                         (5-1) 

where, ΔR is the profit/loss of a portfolio over a fixed horizon, IC is the initial 

investment, and R is the future rate of return.  

 

When we confront with several portfolios to invest, a risk-adjusted performance 

measurement is needed to help make the decision. The simplest method is Sharpe Ratio 

[97], which is the ratio of the average rate of return μ
R

 in excess of the risk-free rate 

RF divided by the volatility σR: 

                                                                 SR=
μ

R
-RF

σR

                                                     (5-2) 

where, the mean rate of return is defined as μ
R

. The standard deviation is often called 

volatility, defined as σR.  

 

In order to assist understanding, a simple example is provided here. Suppose we have 

certain amount of money to invest, for example, two options: stocks and bonds. They 

have different average rate of return and volatility. Stocks has higher average rate of 

return but also higher volatility. Therefore, SR is used to determine their value to invest. 

Keeping the cash in pocket is set as the reference investment case because it is risk-

free. The reference case has a return of 3%. The slope of the line from cash to each 

investment option as shown in Fig. 5-1 is the SR value of corresponding options. SR 

transfers the rate of return under different risk levels to equivalent rate of return under 
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unity risk, making the profits of different investment options comparable. In this case, 

stocks have a higher SR than bonds, indicating that under the same volatility bonds 

have higher rate of returns than bonds. Thus, stocks will be chosen to invest the money.  

 

 
Figure 5-1 Illustration of SR Operation in Financial Sector 

 

5.3.2. Wind Forecasting Error 

In order to simplify the analyses of applying SR method to intelligent EV charging, the 

uncertainties in this chapter only refer to wind forecasting errors. Wind power is clean 

but also contains high intermittency. Exponential smoothing method is applied to 

forecast wind generation.  

 

The concept exponential smoothing was first suggested by Robert Goodell Brown in 

1956 [98]. The simplest form of exponential smoothing is given by the formula (5-3) 

[99].  

                                                            st  =α∙xt-1+(1-α)∙st-1                                                    (5-3)  

where, {xt} is the raw data sequence of observations, the smoothed statistics {st} is the 

output, α is the smoothing factor, and 0 < α < 1. In other words, the smoothed statistic 

{s
t
} is a simple weighted average of the previous observation {xt-1} and the previous 

smoothed statistic {st-1}. 
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The drawback of simple exponential smoothing is that it does not consider the trend in 

the data [100]. The basic idea to improve the exponential smoothing is to introduce a 

term to stand for the possible trend. This slope component is itself updated via 

exponential smoothing. Paper [101] shows a model to explain the double exponential 

smoothing method. The in-depth equations are listed in (5-4)-(5-8).  

                                                          st
(1)

=α∙xt-1+(1-α)st-1

(1)
                                                    (5-4)  

                                                          st
(2)

=α∙st

(1)
+(1-α)st-1

(2)
                                                     (5-5)      

                                                                 at  =2st
(1)

-  st

(2)                                                         (5-6)  

                                                             bt = 
α

1-α
(st

(1)
-st

(2))                                                     (5-7) 

                                                        Xt+m=at+m∙bt                                                   (5-8)     

where, the output of the algorithm is now written as {Xt+m}. m is the lead time of 

forecasting. at is the estimated level at timeslot t, and bt  is the estimated trend at 

timeslot t.  

 

The double exponential smoothing is suitable for time-series forecasting with linear 

trend. Due to the intermittency of wind, the trend of its forecasting is non-linear. Thus, 

triple exponential smoothing method is adopted in this chapter to forecast wind 

generation. Paper [102] has explained the operation of triple exponential smoothing as 

shown in (5-9)-(5-15).  

                                                          st
(1)

=α∙xw,t-1+  (1-α)st-1

(1)                                                (5-9) 

                                                          st
(2)

=α∙st

(1)
+(1-α)st-1

(2)                                                 (5-10) 

                                                          st
(3)

=α∙st

(2)
+(1-α)st-1

(3)                                                 (5-11) 

                                                          at=3st
(1)

-3st

(2)
+st

(3)                                                    (5-12) 

                             bt=
α

2(1-α)
2
((6-5α)st

(1)
-(10-8α)st

(2)
+(4-3α)st

(3))                     (5-13) 

                                                      ct =
α2

2(1-α)2
(st

(1)
-2st

(2)
+st

(3))                                        (5-14) 

                                                          XW,t+m=at+m∙bt+m2∙ct                                             (5-15) 

where, {xw,t } represents the sequential actual real-time data of wind generation, 

{XW, t+m} is the forecasted sequential wind data in m-hour ahead, and α is normally set 

as 0.4. 

 

http://en.wikipedia.org/wiki/Trend_estimation
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Fig. 5-2 shows the statistical distributions of wind forecasting errors on busbar 5019 at 

the 1st, 12th and 24th hour. No matter which type it is fit, the accuracy of wind forecasting 

is decreasing as the time horizon increases. Shorter time horizon probably has more 

concentrated error distribution around zero, indicating that the forecasting results are 

more accurate and reliable. Larger time horizon has more flat distribution, implying 

that the prediction results are more scattered and less accurate.  

 

 

Figure 5-2 Distribution of Wind Forecast Error on Busbar 5019 
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Fig. 5-3 gives the in-depth information about the wind forecasting errors on busbar 

5019. Both the mean value and standard deviation of forecasting error increase as the 

forecasting time horizon increases, which is consistent with Fig. 5-2. The increasing 

speed of standard deviation is much higher than the mean values. 

 

 

Figure 5-3 Mean Value and Standard Deviation of Wind Forecasting Error on Busbar 

5019 

 

5.4. Uncertainty Management with SR Method 

The proposed uncertainty management in intelligent EV charging has two steps. Firstly, 

the uncertain network power flows with wind forecasting errors involved are calculated. 

Since the statistical distribution of wind forecasting error has already been obtained and 

the analytical probabilistic power flow method is easily understood, this chapter adopts 

the convolution method to calculate the uncertain power flow. Secondly, SR method is 

adopted to ‘mitigate’ the effects of uncertainties in decision-making stage of congestion 

management.  

 

5.4.1. Basic Analytical Probabilistic Power Flow  

The basic analytical probabilistic power flow method is convolution method which is 

applied with two assumptions:  
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1) The distribution of wind forecasting errors are in normal distribution, which will be 

validated by Monte Carlo Simulation in the case study; 

2) The power injections on busbars are regarded as independent variables.  

 

As explained in Appendix B, in DC power flow, the relationship between nodal injected 

power and branch power flow is linear. Element PTDF(l, i) in the matrix indicates the 

change of active power flow on line l when one unit of power injection is added on 

busbar i. According to PTDF matrix and the convolution techniques, the probability 

density function of power flow on line l at timeslot t (f(PFT,t,l)) can be derived below 

in (5-16). 

                  f(PFT,t,l)=(PTDF(l,1)×f(PT,t,1))⨂…⨂(PTDF(l,NB)×f(PT,t,NB))         (5-16)  

where, f(PT,t,1) is the probability density function of nodal injected power on busbar 1 

at timeslot t. And  is the convolution symbol.  

 

According to the probability theory and mathematical statistics, if we have two 

independent random variables x1 and x2 which follow normal distribution: 

x1 ~ N(μ1, σ1
2), x2 ~ N(μ2, σ2

2)                   (5-17) 

and y= x1+ x2, through the convolution calculation, the probability density function of 

y is also in normal distribution:  

y ~ N(μ1 + μ2, σ1
2 + σ2

2)                     (5-18) 

 

This rule works even there are several independent variables. Therefore, if the 

probability density functions of forecasted wind generation are normal distributions and 

the busbars are assumed to be independent to each other, the useful conclusions can be 

used directly: 

1) The mean value of the power flow on line l μPFT,t,l
 can be directly calculated based 

on (5-19). 

                                              μ
PFT,t,l

=∑ PTDF(l,i)×μ
PT,t,i 

                                        (5-19)

NB

i=1

 

2) The standard deviation of power flow on line l σPFT,t,l can be directly calculated 

based on (5-20). 
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                                           σPFT,t,l
2=∑ (PTDF(l,i)×σPT,t,i

)
2

NB

i=1

                                    (5-20) 

 

5.4.2. SR Method in Intelligent EV Charging 

When wind forecasting error is considered, original deterministic GC0,t will be replaced 

by the mean value μGC0,t, with standard deviation σGC0,t. The original deterministic 

GCT,t at each timeslot t in trial T will be replaced by the mean value μGCT,t , with 

standard deviation σGCT,t. The detailed deviation is listed below. 

 

Probabilistic power flow has given the mean values μPFT,t,l  and standard deviation 

 σPFT,t,l of branch power flow according to mean value and standard deviation of nodal 

power injections. The mean value μOLT,t,l  and standard deviation σOLT,t,l  of line 

overloading is derived in (5-21) and (5-22).  

                                                       μ
OLT,t,l

=μ
PFT,t,l

-Pl
max                                                (5-21) 

                                                           σOLT,t,l
=  σPFT,t,l

                                                     (5-22) 

 

The mean value μGCT,t,l,i and standard deviation  σGCT,t,l,i  of generation curtailment 

caused by a specific line l is determined in (5-23) and (5-24), respectively. 

                                                    μ
GCT,t,l,i

 =
μ

OLT,t,l

PTDF(l,i)
                                               (5-23) 

                                                    σGCT,t,l,i
 =

σOLT,t,l

PTDF(l,i)
                                               (5-24) 

 

However, one overloaded line may require one or more nodes to curtail their wind 

generation to completely release congestion. Assume the generation curtailments on 

these nodes are uncorrelated with each other. Thus, the expected value and standard 

deviation of total generation curtailment amount caused by overloaded line l at timeslot 

t are defined in (5-25) and (5-26): 

                             μ
GCT,t,l

=∑ μ
GCT,t,l,i 

                                              (5-25)

CN
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                                                  σGCT,t,l
=√∑ σGCT,t,l,i

2

CN

                                          (5-26) 

Where, CN stands for nodes need to curtail wind generation curtailed in order to relieve 

the overloading on line l. 

 

At a specific timeslot t, there may be several overloaded lines, which are assumed to be 

uncorrelated with each other. Thus, the mean value μGCT,tand standard deviation σGCT,t 

of total generation curtailment in the network at timeslot t in trial T is shown in (5-27) 

and (5-28): 

                                                             μ
GCT,t

=∑ μ
GCT,t,l

M

                                                   (5-27) 

                                                          σGCT,t
=√∑ σGCT,t,l

2

M

                                                (5-28) 

where, M stands for all the lines with congestion at timeslot t.  

 

When uncertainty is considered, the selection principle of execution timeslots changes 

from “largest generation curtailment reduction” to “larger generation curtailment 

reduction - less uncertainty”. The mean values μ
GCT,t

 from probabilistic power flow 

are not sufficient for choosing the “largest generation curtailment reduction - least 

uncertainty” trial. For example, it is possible that two trials have exactly same mean 

values. However, one has very flat distribution, i.e. large error, whereas the other one 

is more sharply distributed, i.e. less error. The latter timeslot could be easily selected as 

the execution timeslot. Thus, the selection guide is redefined in (5-29).  

                                              GCRT
'
= ∑

μ
GC0,t

− μ
GCT,t

σGCT,t

TWS

t=1

                                           (5-29) 

 

The generation curtailment reduction at each timeslot k is a sub-benefit of trial T. The 

sub-benefits are under different uncertainty levels since the network stress prediction at 

each timeslot are under different lead time forecasting. As in (5-29), the sub-benefits 

are converted into equivalent sub-benefit value under unity uncertainty level first. Then, 

summing up all equivalent sub-benefits in the time-window can get the performance 

assessment GCRT
'

 of trial T. There is no unit for GCRT
'

 because the units of 
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numerator and denominator in (5-29) are all MWh. By comparing  GCRT
'

, the trial 

execution timeslot with the largest GCRT
'  is selected as the real execution timeslot to 

conduct load shifting. The detailed flowchart is shown in Fig. 5-4. 

 

Figure 5-4 Flowchart of Intelligent EV Charging with SR Method 
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5.5. Case Study 

Aberystwyth 33kV network is still the test system to analyse the effects of wind 

forecasting error on the enhanced congestion management. The load and generation 

profiles of one day (24h) are used to do the simulations and the time-window scale is 

set to be 24 hours. The analyses consist of two parts: 1) validate the assumptions made 

in the SR method; 2) evaluate the effects brought by wind forecasting error on system 

operation.  

 

Chapter 3 and Chapter 4 regard forecasted data of load and wind generation in year 

2030 as real-time data to do the simulation, i.e. the short-term forecasting errors (within 

24 hours) were assumed as zero. In this chapter, however, the forecasted hourly 

generation data in year 2030 are regarded as the base value for short-term forecasting. 

The mean value and standard deviation of wind forecasting error have been obtained in 

Section 5.3.2. The hourly load data are still utilised as deterministic data. 

 

5.5.1. Validation of Assumption 

Monte Carlo Simulation is utilised in this section to validate the assumption that the 

wind forecasting errors follow normal distribution. The number of Monte Carlo 

Simulation sampling is 50000. In each sampling, the procedure is as follows: 

1) According to the real distributions of wind forecasting errors as shown in Section 

5.3.2, Matlab is used to generate a random value of power output for each wind 

farm. 

2) Input the wind generation samples and other network variables to calculate the DC 

network power flow. 

3) Record the power flows and go back to step 1). 

 

Fig. 5-5 shows the distribution of power flow on line 5010-5012 at 24th hour calculated 

by Monte Carlo Simulation.  
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Figure 5-5 Distribution of Power Flow on Line 5010-5012 at 24th Hour under Monte 

Carlo Simulation 

 

Fig. 5-6 gives the entire 24-hour uncertain power flow on line 5010-5012 under Monte 

Carlo Simulation. The blue curve is the mean value of power flow. The red dotted line 

is the line rating of line 5010-5012. The filling areas with orange colour show the 

distribution of uncertain power flow. The darkness of the colour indicates the 

probability of power flow in this area. Darker area indicates higher probability of power 

flow value locating in this area. The 24-hour data is forecasted at 0:00 a.m. of the chosen 

day. Fig. 5-6 shows that the distribution of power flow in latter hours is much scatter 

than those in early hours, which is consistent with the characteristics of wind forecast 

error.  
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Figure 5-6 Uncertain Power Flow on Line 5010-5012 in 24 Hours Based on Monte 

Carlo Simulation 

 

Fig. 5-7 shows the uncertain power flow on line 5010-5012 derived by the simplified 

convolution method with assumptions. The uncertain levels of power flow in Fig. 5-6 

and Fig. 5-7 are very similar, which indicates that the assumptions made about wind 

forecasting error will not influence the system operation too much. The in-depth 

differences in probabilistic power flow results between Monte Carlo Simulation and 

simplified convolution method are listed in Table 5-1.  

 

 

Figure 5-7 Uncertain Power Flow on Line 5010-5012 Based on Simplified 

Convolution Method 
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Table 5-1 compares the mean value and standard deviation of power flow on line 5010-

5012 in 24 hours. The results from Monte Carlo Simulation are the reference data. The 

maximum difference brought by the assumptions in expected value and standard 

deviation are 0.31% and 6.64%, respectively. The difference level in standard deviation 

is higher than that in mean value, which however still can be tolerated.  

 

Table 5-1 Comparison of Monte Carlo Simulation and Simplified Convolution 

Method 

Time 

(h) 

Mean Value of Power Flow Standard Deviation of Power Flow 
Monte 

Carlo 

Simulation 

Simplified 

Convolution 

Method 

Difference 

Monte 

Carlo 

Simulation 

Simplified 

Convolution 

Method 

Difference 

1 17.301 17.300 -0.01% 0.043 0.044 1.43% 

2 14.292 14.286 -0.04% 0.076 0.073 -4.38% 

3 15.015 15.014 -0.01% 0.104 0.102 -1.58% 

4 12.347 12.347 0.00% 0.129 0.135 5.06% 

5 11.993 11.998 0.04% 0.170 0.172 0.94% 

6 12.900 12.898 -0.02% 0.214 0.214 0.24% 

7 19.567 19.570 0.01% 0.251 0.253 0.66% 

8 20.107 20.116 0.05% 0.300 0.302 0.68% 

9 22.731 22.719 -0.05% 0.350 0.351 0.45% 

10 31.499 31.520 0.07% 0.408 0.410 0.50% 

11 32.814 32.824 0.03% 0.451 0.464 3.01% 

12 34.418 34.388 -0.09% 0.515 0.523 1.43% 

13 29.540 29.530 -0.03% 0.552 0.585 6.01% 

14 24.244 24.275 0.13% 0.676 0.645 -4.59% 

15 24.111 24.104 -0.03% 0.778 0.728 -6.52% 

16 25.365 25.340 -0.10% 0.788 0.800 1.56% 

17 25.320 25.302 -0.07% 0.831 0.814 -1.99% 

18 37.277 37.313 0.10% 0.950 0.959 0.91% 

19 37.748 37.762 0.04% 1.069 1.046 -2.12% 

20 31.683 31.592 -0.29% 1.119 1.133 1.21% 

21 26.018 25.994 -0.09% 1.239 1.220 -1.54% 

22 25.537 25.504 -0.13% 1.234 1.316 6.64% 

23 25.303 25.283 -0.08% 1.450 1.413 -2.56% 

24 26.179 26.261 0.31% 1.586 1.517 -4.31% 

 

5.5.2. Results of SR method 

This section analyses the necessity of considering both mean value and standard 

deviation in uncertainty management, which in turn proves the rationality of SR 

method. If the uncertainty management only be represented by mean values, the 

selection rule will be same with that in Chapter 4, i.e. the timeslot with largest 
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generation curtailment reduction will be selected as real execution timeslot. The only 

difference is that the deterministic power flow in Chapter 4 is replaced by the mean 

value of power flow in this section. We call this case “EX case” for convenience. The 

case with selection rule based on SR method is called “SR case”.  

 

Fig. 5-8 shows the performance assessment of every trial execution timeslot in both EX 

case and SR case. Red line stands for the performance assessment in EX case 

(quantified by GCR) and blue line represents the SR case (quantified by GCR’). In the 

first 7 trials, both the GCR and GCR’ values are zero since there is no network 

congestion from 1:00 a.m. to 7:00 a.m. According to charging rule, no intelligent EV 

charging will be done. Therefore, there is no generation curtailment reduction.  

 

For SR case, trial 10 gives the largest GCR’ (0.351), making it as the real execution 

timeslot. In EX case, trial 10 also gives the largest GCR (0.580), which guides the same 

selection result as in SR case. In this 24-hour case, the final decision does not reflect 

the importance of standard deviation. However, the in-depth performance information 

of trials as listed in Table 5-2 indicates the necessity of considering both mean value 

and standard deviation in uncertainty analysis.  

 

 

Figure 5-8 Selection of Execution Timeslot in EX Case and SR Case 

 

Table 5-2 gives the performance ranking of the trial execution timeslots in both EX case 

and SR case. Except the top three timeslots, the ranking order of the remaining timeslots 
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changes dramatically, which indicates the decision-making will be affected by standard 

deviation.  

 

Table 5-2 Performance Ranking of Trial Execution Timeslot 

Trial Execution 

Timeslot 

EX Case SR Case 

GCR Ranking GCR’ Ranking 

1 0 18 0 18 

2 0 18 0 18 

3 0 18 0 18 

4 0 18 0 18 

5 0 18 0 18 

6 0 18 0 18 

7 0 18 0 18 

8 0.141 17 0.141 13 

9 0.217 14 0.148 12 

10 0.580 1 0.351 1 

11 0.572 2 0.328 2 

12 0.565 3 0.308 3 

13 0.321 13 0.180 8 

14 0.353 11 0.190 7 

15 0.380 10 0.193 6 

16 0.408 8 0.198 5 

17 0.441 5 0.212 4 

18 0.150 16 0.049 17 

19 0.167 15 0.063 16 

20 0.432 6 0.173 9 

21 0.424 7 0.162 11 

22 0.452 4 0.165 10 

23 0.397 9 0.138 14 

24 0.353 11 0.089 15 

 

According to EX case, trail 22 has larger GCR than trail 17. However, trail 22 also 

contains larger standard deviation. This is because intelligent EV charging in trail 22 is 

done based on values 22-hour ahead forecasted, while the operation in trial 17 depends 

on data from 17-hour ahead forecasting. Thus, trial 17 has higher priority than trial 22 

in SR case, which proves that mean value of power flow is not sufficient to completely 

reflect the characteristics of forecasting errors in wind power. SR method introduces a 

new way to evaluate the effect of uncertainty involving both mean value and standard 

deviation. The generation curtailment of SR method should be not smaller than that in 

PPF case. It is because that EX case chooses the largest generation curtailment 

reduction trial, while SR case chooses the trial considering both benefit and volatility, 

which may be the one with less generation curtailment reduction.  
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5.6.  Chapter Summary 

This chapter proposes an uncertainty management for the enhanced congestion 

management. Uncertainty management is a complicated task associated with many 

factors. To get started in analysing uncertainties, this chapter makes several 

assumptions to simplify the problem. Only wind forecasting error is considered in this 

chapter and the distribution of wind forecasting error is assumed to be normal 

distribution. The validation of the assumption is proved by Monte Carlo Simulation. 

The uncertain power flow are generated by simplified convolution method. The most 

valuable innovation of this chapter is to borrow SR concept which is widely used in 

financial risk management to help make a trade-off between operational benefits and 

its associated risks.  

 

SR method normalizes the benefits of EV charging solutions under different uncertainty 

levels to an equivalent benefit value under per unit uncertainty level to help make 

system operation decision. In order to simplify the strategy, only wind forecasting error 

is considered in SR model. Although many research have investigated the effects of 

uncertainties, most of the work focuses on reliability analysis and uncertain power flow 

calculation. Little work has been done in ANM. This thesis states a specific problem in 

active network operation which has never been investigated, and provides a completely 

new way to treat uncertainty. Therefore, it is difficult to validate SR method with other 

methods. The only way to verify SR method is to prove the rationality of its definition, 

which is detailedly demonstrated in case study.  

 

Applying the financial concept to power system gives a new perspective to analyse the 

uncertainty in ANM. SR method allows the impact of risks that arise from network 

stress prediction on the expected operational benefits to be properly assessed, thus 

extending the traditional deterministic cost-benefit assessment to cost-benefit-risk 

assessment. The principle of SR method is very straight forward and can easily 

accommodate uncertainty without any big change in the operation structure of ANM. 

It has low calculation burden, which implies that it can be easily applied to other power 

system areas with uncertainty problems. This is the major contribution of this thesis. 
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This chapter proposes an enhanced uncertainty management 

method called RAROC method to address the limitations in SR 

method. Both wind and load forecasting errors are considered 

and they are allowed to be in any distribution. 
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6.1. Introduction 

Chapter 5 proposes a SR method to integrate wind forecasting error into the enhanced 

congestion management. However, SR method utilises the standard deviation to 

describe the risk level of benefit. It can only be implemented with the condition that the 

probability distribution of variables follows normal distributions. If the probability 

distributions of variables are not symmetrical with the mean value points, i.e. they are 

non-normal distributed, the standard deviation is no long the proper parameter to 

describe the risk level of benefit.  

 

This chapter extends the uncertainty analysis by considering both wind and load 

forecasting errors. In practice, the distribution type of load and wind forecasting errors 

are actually unknown. Although many researches have been done to mimic their 

distribution types, there always exists inaccuracy. Thus, the probability distribution type 

of nodal power injection is difficult to derive. So do the network power flows.  

 

This chapter introduces an enhanced risk measurement method called Risk Adjusted 

Return on Capital (RAROC) to address the distribution type limitation. Based on the 

error data of both wind and load forecasting, sequence operation theory is adopted to 

derive uncertain network power flow. It is a mathematical approach specially designed 

to handle the difficulty and complexity of the operations of random variables. 

 

The rest of the chapter is organized as follows: Section 6.2 explains the load demand 

forecasting models and the corresponding results; Section 6.3 explains the application 

of sequence operation theory in probabilistic power flow; Section 6.4 introduces the 

basic RAROC theory in financial risk management; Section 6.5 proposes the 

application of RAROC method in intelligent EV charging; Section 6.6 provides a case 

study of a 33kV network; and the conclusions are drawn in Section 6.7. 
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6.2. Data Forecasting 

6.2.1. Load Demand Forecasting 

The wind forecasting has been investigated in Chapter 5. In this section, the method for 

load forecasting is briefly introduced and some results about forecasting error are given. 

The key point of node load forecasting is appropriate identification of load patterns. 

The load forecasting method in this chapter is based on pattern recognition.  

 

The detailed procedure of this forecasting algorithm can be described as follows: 

1) Using hierarchy clustering method to cluster the historical daily load patterns, and 

generate the typical load pattern set LP={1,2,…,i,…,N} where 1~N represent 

different patterns.  

2) According to load pattern set LP and the pattern recognitions of historical days, 

transfer matrix Mij which records the transfer probability from load pattern i in the 

reference day to load pattern j (j=1~N) in the forecasted day is established by using 

Markov chain method.  

3) Based on the transfer matrix, the load pattern with highest probability 

Mik (Mik=max(Mi1,Mi2,…, MiN) ) is selected as the load pattern of the forecasted 

day. 

4) Record the historical days that are in load pattern k, using exponential smoothing 

method to forecast the load profile of the forecasted day. 

 

Fig. 6-1 shows the statistical distributions of load forecasting errors on busbar 5021 at 

1st, 12th and 24th hour. Unlike the wind forecasting, the accuracy of load forecasting 

does not always decrease as the lead time increases. Because the short-term load 

forecasting is always implemented as one day ahead forecasting. 
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Figure 6-1 Distribution of Load Forecast Error on Busbar 5021 

 

Fig. 6-2 gives the in-depth information about the load forecasting errors on busbar 5021. 

Both the mean value and standard deviation of forecasting errors just fluctuate slightly 

around a certain level. The characteristics of errors in wind and load forecasting are 

significantly different. Thus, it becomes difficult to analytically describe the probability 

distribution of injected power on network busbars.  
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Figure 6-2 Expected Value and Standard Deviation of Load Forecasting Error in 24 

hour on Busbar 5021 

 

6.2.2. Forecasting Errors for Nodal Power Injections  

After the forecasting data of load demand {XL,t+m} and wind generation {XW,t+m} have 

been obtained, the sequential forecasting errors of nodal power injections {EP,t+m} can 

be generated as in (6-1). The lengths of {XL,t+m} and  {XW,t+m} should be the same and 

their time sequences should be in alignment. 

                                  {EP,t+m}=({XW,t+m}-{XL,t+m})-({xW,t+m}-{xL,t+m})                         (6-1)  

6.3. Sequence Operation Theory 

When both load and wind forecasting errors are considered, it is difficult to analytically 

derive probability distributions of nodal power injections. Moreover, the probability 

distribution of nodal power injections will be non-normal in practice. Sequence 

operation theory, which was proposed by Prof. Kang, can address these challenges 

through discretising the probability distribution of each variable and generating 

probabilistic sequences in order [103]. It has been successfully applied in reliability 

evaluation [103] and clustered wind power output analysis [104].  
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The theory is mainly composed of two parts, which are independent sequence operation 

theory and dependent sequence operation theory. The only difference is whether 

correlation between input variables is considered or not. This chapter only addresses 

the problem that input variables are non-normal distributed. So independent sequence 

operation theory is applied in this chapter. The effects of correlation will be further 

analysed in Chapter 7 with dependent sequence operation theory. 

 

For sequence operation theory [105], random variables are modelled as probabilistic 

sequences (PS) in their arithmetic operation process, hence it is named sequence 

operation theory. Here are some basic concepts of PS. 

 

Definition 1 (Length of PS). Assume the probability density function of variable a is 

fa(a)  and the discretisation interval is Δd. The corresponding discrete probability 

sequences A(i) is derived as in (6-2): 

                               A(i)=  ∫ fa(a)da

i∆d+
∆d
2

i∆d - 
∆d
2

,   a∈[0, amax],  i=1,2,…,Na                      (6-2) 

where, Na is the maximum integer less than amax/∆d. A(i) is called a PS if following 

conditions are met: 

                                                         A(i)≥0, i=0,1,2,…,Na                                                   (6-3) 

                                                             ∑A(i)

Na

i=0

=1                                                             (6-4) 

 

Definition 2 (Equality of two PSs). Given two PSs A(i) and B(i), with length Na and 

Nb, respectively. It is said that sequence A(i) is equal to B(i) if and only if: 

                                                              Na=Nb                                                             (6-5) 

                                                    A(i)=B(i), i=0,1,2,…,Na                                      (6-6) 

 

There are four types of discrete sequence operations called addition-type-convolution, 

subtraction-type-convolution, AND-type-product and OR-type-product. Four derived 

sequences x(i), y(i), u(i) and v(i) with length Nx , Ny , Nu  and Nv  are named 

addition-type-convolution, subtraction-type-convolution, AND-type-product and OR-

type-product sequence, respectively. They are called generated sequences. If two 

independent variables a and b have two PSs A(i) and B(i) with length Na and Nb, 
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respectively, four operation types between A(i) and B(i) are defined as follows: 

                                x(i)= ∑ A(ia)∙B(ib),   i=0,1,2,…, Nx                               (6-7)

ia+ib=i

 

                                            y(i)=

{
 
 

 
 ∑ A(ia)∙B(ib), i=1,2,…, Ny  

ia-ib=i

∑A(ia)∙B(ib), 

ia≤ib

 i=0
                                (6-8) 

                                          u(i)= ∑ A(ia)∙B(ib), i=0,1,2,…, Nu                            (6-9)

min(ia,ib)=i

 

                                          v(i)= ∑ A(ia)∙B(ib), i=0,1,2,…, Nv                        (6-10)

max(ia,ib)=i

 

where, 

                                                                     Nx=Na+Nb                                                        (6-11) 

                                                                         Ny=Na                                                            (6-12) 

                                                         Nu=min(Na,Nb)                                             (6-13) 

                                                        Nv=max(Na,Nb)                                             (6-14) 

 

It should be noted that (6-7)-(6-10) are in simplified form. For example, full expression 

of ‘∑’ in (6-7) for addition-type-convolution should be{0≤ia≤Na; 0≤ib≤Nb;ia+ib=i}. 

The equations 0≤ia≤Na  and 0≤ib≤Nb  are the constraint condition upon their 

definition domain. Assume any two subscripts ia  and ib  for sequence A(ia) 

and B(ib), their contribution to sequence x(i) should be only at subscript ix=ia+ib. In 

other words, there are totally (Na+1)(Nb+1) composite states (ia,ib). Each product 

A(ia)∙B(ib) makes contribution to only one of {x(0),x(1),…,x(Nx)}. So do equations 

(6-8)-(6-10). 

 

In power system, the busbars can be regarded as several independent variables. Since 

the probability distributions of power injection on each busbar have been obtained, 

sequence operation theory can be easily applied to calculate the discrete distribution of 

uncertain power flows. The accuracy of calculation is determined by the size of 

discretization interval Δd. 
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6.4. Basic RAROC Concept  

The concept Risk Adjusted Return On Capital was developed by Bankers Trust and 

principal designer Dan Borge in the late 1970s [106]. It is a risk-based profitability 

measurement framework for analysing risk-adjusted financial performance and 

providing a consistent view of profitability across businesses [107]. RAROC is defined 

as in (6-15).  

                                                           RAROC=
μ

R
-RF

VAR
                                               (6-15) 

where, the numerator is the average rate of return μ(R) in excess of the risk-free rate 

RF, which is the same as that in SR definition (5-2). The denominator is the Value-At-

Risk (VAR) of investment.  

 

In economics and finance, VAR is a widely used risk measure of the risk of loss on a 

specific portfolio of financial assets [108-110]. It has four main uses in finance: risk 

management, financial control, financial reporting and computing regulatory capital 

[109]. The concept is defined as the maximum loss not exceeded with a given 

probability defined as the confidence level, over a given period of time.  

 

Fig. 6-3 shows a simple example of VAR [110]. It is a frequency distribution of a 

company’s daily returns. The red bars compose the "left tail" of the distribution, which 

are the worst profit cases. They take up 5% of the distribution, running from daily loss 

of 4% to 8%. Thus, we can say with 95% confidence that the worst daily loss will not 

exceed 4%. If the investment amount is £100, we are 95% confident that our worst daily 

loss will not exceed £4. VAR does not express absolute certainty but instead makes a 

probabilistic estimate. If the confidence level is increased to 99%, the VAR will move 

to the left further to the point where the "left tail" only takes up 1%.  

 

http://en.wikipedia.org/wiki/Bankers_Trust
http://en.wikipedia.org/wiki/Risk
http://en.wikipedia.org/wiki/Profit_%28accounting%29
http://en.wikipedia.org/wiki/Risk_measure
http://en.wikipedia.org/wiki/Market_risk
http://en.wikipedia.org/wiki/Portfolio_%28finance%29
http://en.wikipedia.org/wiki/Finance
http://en.wikipedia.org/wiki/Risk_management
http://en.wikipedia.org/wiki/Risk_management
http://en.wikipedia.org/wiki/Comptroller
http://en.wikipedia.org/wiki/Financial_statements
http://en.wikipedia.org/wiki/Capital_requirement
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Figure 6-3 Distribution of a Companies’ Daily Returns [110] 

 

6.5. RAROC Method in Intelligent EV Charging 

RAROC method utilizes the VAR to represent the risk levels. The confidence level c 

(c ∈ (0,1)) should be set first. The charging optimization in RAROC model also follows 

‘trial and comparison’ rule. The number of trials is determined by the number of 

timeslots that have network congestion. Trial T means that according to the mean value 

of power flow, there exists line overloading at timeslot T. The EV charging demand at 

timeslot T should be swapped with other timeslots to relieve the congestion. The 

location and level of EV load shifting are determined in the same way as in SR method. 

RAROC method has main three steps as follows. 

 

6.5.1.  Determine the Reference Situation 

The original state of the network without load shifting is set as reference, in which each 

timeslot t in the time-window has original generation curtailment. Since the reference 

should reflect risk-free situation, VARGC0,t
 is determined by the VAR of network 

power flows with preset confidence level. In RAROC model, before load shifting, the 

mean value and in-depth probability distribution of original power flow f(PF0,t,l) on 

line l is calculated through the probabilistic power flow with sequential operation theory.  
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According to f(PF0,t,l) and the confidence level c, VAR of power flow VARPF0,t,l
 can 

be calculated from in (6-16). In financial sector, the worst case happens in the “left tail”. 

However, in power system, the worst situation happens in the “right tail”. Because when 

the value of power flow is increasing, it may exceed the line rating, resulting in network 

congestion.   

                     Prob(PF0,t,l>VARPF0,t,l
)=∫ f(PF0,t,l)∙dPF0,t,l

+∞

VARPF0,t,l

=1-c                 (6-16) 

 

Based on VARPF0,t,l
, the VAR of generation curtailment VARGC0,t,l

 caused by a 

specific line l is determined in (6-17). 

VARGC0,t,l
=

VARPF0,t,l
-Pl
max

PTDF(l,i)
                                          (6-17) 

where, VARGC0,t,l
 means within the confidence level, the generation curtailment that 

needs to be curtailed to ensure the safety on line l will not exceed VARGC0,t,l
.  

 

The VAR of total generation curtailment of the network VARGC0,t
 is determined by 

summing individual VARGC0,t,l
 up as in (6-18). 

                                  VARGC0,t
 =∑VARGC0,t,l

M

l=1

                                                (6-18) 

 

6.5.2.  Trial Charging Solutions 

In trial T, after load shifting, the mean value μ
PFT,t,l

 and in-depth distribution f(PFT,t,l) 

of network power flows at timeslot t will be recalculated. The average generation 

curtailment μ
GCT,t

 is determined by μ
PFT,t,l

, and the VAR of generation curtailment at 

each timeslot VARGCT,t
 is recalculated according to f(PFT,t,l). The RAROC method 

to measure the performance of trial T is shown in (6-19).  

                                            RAROCT= ∑
VARGC0,t

-μ
GCT,t

VARGCT,t

TWS

t=1

                                      (6-19) 
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The difference between VARGC0,t
 and μ

GCT,t
 is the benefit at timeslot t due to load 

shifting in trial T. The denominator VARGCT,t
 indicates the maximum generation 

curtailment may occur to ensure the confidence level, which reflects the risk level of 

trial T.  

 

6.5.3. Decision Making 

As shown in (6-19), after trial T, the benefit (generation curtailment reduction) and the 

risk (VAR) at each timeslot t are converted to equivalent benefit under unity risk. 

RAROCT is the sum of generation curtailment reduction of trial T under unity risk. 

There is no unit for RAROCT because the units of numerator and denominator in (6-

19) are all MWh. By comparing RAROCT, the trial execution timeslot with the largest 

RAROCT is selected as the real execution timeslot to conduct load shifting. The detailed 

flowchart is shown in Fig. 6-4. 
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Figure 6-4 Flowchart of Intelligent EV Charging with RAROC Method 
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6.6. Case Study 

6.6.1. Case Study with 90% Confidence Level 

The 33kV Aberystwyth network is utilised as case study. One day (24 hours) are chosen 

to do the simulation. Time-Window Scale is set to be 24 hours. Fig. 6-5 shows the power 

flow conditions of line 5010-5012. The red line is the line rating. The green line is the 

deterministic power flow, which is consistent with Fig. 5-5. The blue line is the mean 

values of uncertain power flow calculated through sequence operation theory, which is 

significantly different with the green line. Fig. 6-5 also shows the VAR of power flow, 

which is indicated in yellow dotted line.   

 

 
Figure 6-5 Power Flow on Line 5010-5012 

 

Fig. 6-6, 6-7 and 6-8 show the process of determining the VARs of power flow. The 

blue lines in these figures are the cumulative distribution function (CDF) of the power 

flow on line 5010-5012 at 1st, 12th and 24th hour. The red lines are the preset confidence 

level, which is 90%. The crossing points in these figures are the VARs, which are 

17.36MWh in Fig. 6-6, 25.24MWh in Fig. 6-7 and 34.23MWh in Fig. 6-8.  

 

Among the three figures, the cumulative probability in Fig. 6-6 increases fastest. 80% 

(from 10% to 90%) of forecasting samples are within the power flow interval [17.29, 

17.36], while those in Fig. 6-7 and Fig. 6-8 are [24.74, 25.24] and [32.85, 34.23], 
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respectively. Under same confidence level, smaller interval stands for higher accuracy. 

This phenomenon indicates that, although the accuracy of load demand forecasting is 

not decreasing as time horizon increases, the accuracy of power flow still decreases as 

time horizon increases, which is consistent with the characteristics of wind forecasting 

error.  

 

 
Figure 6-6 CDF of Line 5010-5012 at 1st Hour 

 

 
Figure 6-7 CDF of Line 5010-5012 at 12th Hour 
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Figure 6-8 CDF of Line 5010-5012 at 24th Hour 

 

Since the VARs of power flow are always larger than mean values of power flow, they 

should require larger generation curtailment. Fig. 6-9 shows the original generation 

curtailment before load shifting according to Fig. 6-5. The blue line is the mean value 

of generation curtailment (GC0_EX) which is calculated by mean values of power flow. 

The yellow line indicates the VAR of generation curtailment (GC0_VAR) which is 

calculated by VARs of power flow. Table 6-1 lists the detail information. In all timeslots, 

GC0_VAR is larger than GC0_EX. The total GC0_VAR is 21.448MWh larger than the 

total GC0_EX.  

 

 

Figure 6-9 Mean Value and VAR of Generation Curtailment before Load Shifting  
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Table 6-1 Generation Curtailment of 24 Hours before Load Shifting 

Time (h) GC0_EX (MWh) GC0_VAR (MWh) 

1 0.000 0.000 
2 0.000 0.000 
3 0.000 0.000 
4 0.000 0.000 
5 0.000 0.000 
6 0.000 0.000 
7 1.253 1.501 
8 2.703 3.011 
9 2.154 2.517 
10 1.833 2.106 
11 4.038 4.389 
12 6.598 6.966 
13 8.416 8.853 
14 9.672 10.109 
15 10.429 10.960 
16 12.415 12.958 
17 12.826 13.446 
18 24.223 24.874 
19 15.689 25.109 
20 15.114 17.084 
21 16.570 18.679 
22 25.636 26.526 
23 26.061 26.996 
24 27.905 28.899 

Total 223.535 244.983 

 

Fig.6-10 shows the RAROCs of the 24 trials. The RAROCs of trial 1-6 are zero. It is 

because both the mean values and VARs of power flows in these timeslots are not 

overloaded, resulting no execution of intelligent EV charging. According to Fig. 6-10, 

trial 18 has largest RAROC value which is 1.987. Therefore, it is chosen as the real 

execution timeslot.  
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Figure 6-10 Selection of Execution Timeslot in RAROC method 
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Table 6-2 Benefit Comparison of 24 Trials 

Trial GC_EX (MWh) ΔGC_EX(MWh) GC_VAR (MWh) RAROC 

1 - - - - 

2 - - - - 

3 - - - - 

4 - - - - 

5 - - - - 

6 - - - - 

7 223.386 0.147 244.837 1.762 

8 223.390 0.144 244.840 1.691 

9 223.374 0.159 244.825 1.713 

10 223.348 0.185 244.799 1.745 

11 223.324 0.209 244.775 1.690 

12 223.304 0.229 244.755 1.671 

13 223.271 0.262 244.722 1.668 

14 223.238 0.295 244.689 1.667 

15 223.212 0.321 244.663 1.667 

16 223.184 0.350 244.634 1.664 

17 223.151 0.383 244.601 1.666 

18 214.281  9.252 245.139 1.987 

19 222.536 0.997 244.552 1.673 

20 223.194 0.339 244.645 1.658 

21 223.194 0.339 244.645 1.656 

22 215.038 8.495 244.590 1.951 

23 216.065 7.469 246.028 1.875 

24 216.422 7.112 245.791 1.849 

 

6.6.2. Case Study with 80% and 99% Confidence Levels 

Last section has analysed the performance of RAROC method under 90% confidence 

level. This section analyses the performance of RAROC method under varying 

confidence levels, i.e. 99% and 80% levels. The same 24 hours’ data as in 6.6.1 are used 

to do the simulation and the Time-Window Scale is still 24 hours.  

 

Fig. 6-11 shows the power flow conditions of line 5010-5012 under 99% confidence 

level. Differing confidence levels only changes the VARs of power flow. The blue line 

and red line are the VARs of power flow under 90% and 99% confidence levels, 

respectively, which conform to the rule: higher confidence level requests larger VAR to 

ensure the security. Fig. 6-12 shows the corresponding VARs of generation curtailment 
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under 90% and 99% confidence levels. 

  

 
Figure 6-11 Power Flow on Line 5010-5012 under 99% and 90% Confidence Levels 

 

 
Figure 6-12 VAR of Generation Curtailment under 99% and 90% Confidence Levels 
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real execution timeslot will always be the same.  

 

 
Figure 6-13 Selection of Execution Timeslot under 99% and 90% Confidence Levels 

 

Fig. 6-14 shows the power flow conditions of line 5010-5012 under 80% confidence 

level. The blue line and red line are the VARs of power flow under 90% and 80% 

confidence levels, respectively, which meet the rule: lower confidence level requests 

smaller VAR to ensure the security. Fig. 6-15 shows the corresponding VARs of 

generation curtailment under 90% and 80% confidence levels. 

 

 
Figure 6-14 Power Flow on Line 5010-5012 under 80% and 90% Confidence Levels 
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Figure 6-15 VAR of Generation Curtailment under 80% and 90% Confidence Levels 
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Figure 6-16 Selection of Execution Timeslot under 80% and 90% Confidence Levels 
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of forecasting errors between nodal power injections into 

uncertainty management, giving more accurate network stress 

prediction and a more convincing stochastic congestion 

management strategy.  
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7.1. Introduction 

Chapter 6 introduced an uncertainty management with RAROC method, considering 

both load and wind forecasting errors. However, it does not consider the influence from 

correlations of forecasting errors between nodal power injections. Since wind 

forecasting is strongly dependent on weather condition in an area, the wind forecasting 

errors on different busbars in the area have strong correlations. Besides, the load 

forecasting errors on different busbars somehow also have correlations since weather 

influences the electricity consumption pattern. Thus, forecasting error of power 

injection on one busbar is correlated with other busbars.  

 

This chapter applies Copula theory to integrate the correlations of forecasting errors 

between nodal power injections into uncertainty management, so that the network stress 

prediction will be more accurate and the congestion management will be more 

convincing.  

 

The rest of the chapter is organized as follows: Section 7.2 explains the basic Copula 

theory and its application in dependence sequence operation theory; Section 7.3 

provides a case study of the proposed model; and the conclusions are drawn in Section 

7.4. 

 

7.2. Dependent Sequence Operation Theory with Copula  

7.2.1. Literature about Correlation Analysis 

Some methods have been presented to consider the correlation of forecasting errors 

between input variables in power system [84, 85, 111, 112]. Paper [84] introduces the 

correlations in probabilistic power flow problem. However, it did not evaluate the 

correlation of input variables, just assume the right probability density function for the 

correlated input variables and use convolution method to analyse the branch flow, 

where the input variables are assumed to be normal distributed.  
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Later, paper [85] utilised linear relation to model the statistical dependence between 

load uncertainties in the probabilistic power flow solution. Due to the use of linearized 

power flow equations about an expected operating point, the method would be less 

accurate when there is high level of uncertainty. Because the input data in tail region is 

much inaccurate as they are furthest from the point of linearization. To increase the 

accuracy of calculation, paper [111] added the multi-linearization based on the previous 

method. Although the enhanced method reduced the inaccuracy, it increased the 

complexity and computation burden.  

 

Paper [113] introduces a new method based on Monte Carlo Simulation to reflect the 

non-Gaussianity and the nonlinear correlations of probability density functions of input 

variables in AC probabilistic power flow calculation. The main contribution of the work 

is to improve the sampling method. Markov Chain Monte Carlo is used to generate the 

samples from arbitrary distribution.  

 

7.2.2. Stochastic Dependence and Copulas Theory 

Stochastic dependence refers to the behaviour of a random variable that is affected by 

others. If one random variable has no impact on the probability distribution of the other, 

these two variables are regarded as independent variables. Otherwise, they are regarded 

stochastically dependent. 

 

As stated in [104]: “Some mathematical tools, like covariance and joint probability 

distribution, have been widely used in probabilistic relationship studies. However, 

covariance can only provide a way of measuring the stochastic dependence level 

between two or more variables. It cannot reflect the in-depth dependence between them. 

Joint probability distribution can perfectly reflect the dependence among variables. But 

it is difficult to find a multivariate analytical formula for variables with complex 

marginal distributions.” For instance, if one variable has a Weibull distribution and the 

other has a Gaussian distribution, their stochastic dependence can hardly be modelled 

by an analytical bivariate function. Thus, the application of joint probability distribution 

in practice is very complex.  
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7.2.2.1. Basic Concepts for Copula Theory 

Copula theory inspires a new way to model stochastic dependence. It was first 

mentioned by Abe Sklar in 1959. As defined in [114], copulas are functions that join or 

“couple” multivariate distribution functions to their one-dimensional marginal 

distribution functions.  

 

A two-dimensional example is used here to further explain Copula theory. Suppose a 

and b are two random variables with probability density functions fa(a) and fb(b), 

respectively. Their invertible CDFs are Fa(a) and   Fb(b) . Their joint probability 

density function is  fab(a,b) and joint probability function is Fab(a,b). If Fa(a) and 

Fb(b) are regarded as random variables, both of them will follow the uniform 

distributions as below: 

                                                  Fa(a)~u(0,1),    Fb(b)~u(0,1)                                          (7-1) 

In other words, Fa(a)  and   Fb(b)  transform a and b into uniform distributions, 

respectively.  

 

In copula theory, there only exists one Copula function C to derive Fab(a,b) as in (7-

2). Another way to say is that if the individual probability functions of variables (a and 

b) and the copula function between them are obtained, their joint probability function 

can be easily derived.  

                                                      Fab(a,b)=C(Fa(a),Fb(b))                                               (7-2) 

 

Copula theory transforms the modelling of Fab(a,b)  into the modelling of   Fa(a) , 

Fb(b) and C(·) separately. It takes the advantage of the fact that stochastic dependence 

is more easily recognized for uniform variables (Fa(a)  and Fb(b)) than for other 

arbitrarily distributed variables (a and b). 

  

Copula function C(·) is a special kind of multivariate CDF that has uniform margins. If 

we set u=Fa(a) and v=Fb(b), C(·) can be expressed as: 

                                                     C(u,v)= Fab(Fa
-1(u),Fb

-1(v))                                             (7-3) 

 

According to copula theory, the joint probabilistic density function  fab(a,b) can be 

derived as: 
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fab(a,b)=
∂

2
 Fab(a,b)

∂a∂b
=

∂
2
C(Fa(a),Fb(b))

∂a∂b
 

                                                       =
∂

2
C(Fa(a),Fb(b))

∂Fa(a)∂Fb(b)
∙
∂Fa(a)

∂a
∙
∂Fb(b)

∂b
                         (7-4) 

      = c(Fa(a),Fb(b))∙ fa(a)∙fb(b) 

= c(u,v)∙fa(a)∙fb(b)            

where, c(u,v) is the probabilistic density function of  C(u,v) and it can be constructed 

according to copula theory for dependent variables. 

 

7.2.2.2. Addition-type-convolution with Copula 

As explained in [104], if a and b are independent, the addition-type-convolution PS x(i) 

of fa(a) and fb(b) can be written as: 

                                            x(i)= ∑ A(ia)∙B(ib),   i=0,1,2,…, Nx                             (7-5)

ia+ib=i

 

 

If a and b are dependent, the addition-type-convolution PS x(i) of fa(a) and fb(b) 

cannot be written as the product of A(ia) and B(ib). x(i) should be calculated from 

the joint probability function fab(a,b) as in (7-6). 

x(i)= ∑ ∫ ∫ fab(a,b)

ib∆d+∆d/2

ib∆d-∆d/2

ia∆d+∆d/2

ia∆d-∆d/2

dadb 

ia+ib=i

                              

                                = ∑ ∫ ∫ c(u,v)∙fa(a)∙fb(b)

ib∆d+∆d/2

ib∆d-∆d/2

ia∆d+∆d/2

ia∆d-∆d/2

dadb,  i=0,1,2,…,Nx (7-6) 

ia+ib=i

 

 

In (7-6), the integral is constrained in the region [ ia∆d-∆d/2,ia∆d+∆d/2 ] ×

[ib∆d-∆d/2,ib∆d+∆d/2]. If the discretization interval ∆d is very small, c(u,v) can be 

regarded as a constant. Thus, (7-6) can be simplified as in (7-7). 

x(i)≈ ∑ c(u,v)∙ ∫ ∫ fa(a)∙fb(b)

ib∆d+∆d/2

ib∆d-∆d/2

ia∆d+∆d/2

ia∆d-∆d/2

dadb 

ia+ib=i

 

     = ∑ c(u,v) ∫ fa(a)da ∫ fb(b)

ib∆d+∆d/2

ib∆d-∆d/2

ia∆d+∆d/2

ia∆d-∆d/2

db 

ia+ib=i
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                                     = ∑ c(u,v)∙A(

ia+ib=i

ia)∙B(ib)                                                                 (7-7) 

The further expression of c(u,v) can be obtained in (7-8). 

                                  c(u,v)= c(Fa(a),Fb(b))=c(∑A(m),∑B(n)

ib

n=0

ia

m=0

)                      (7-8) 

 

Hence the Copula sequence for A(i) and B(i) can be expressed in (7-9). 

                       cs(ia, ib)=c(∑A(m),∑B(n)

ib

n=0

ia

m=0

) , ia=0,1,…,Na, ib=0,1,…,Nb          (7-9) 

 

x(i) thus can be further expressed with  cs(ia, ib) in (7-10). 

                                      x(i)= ∑   cs(ia, ib)∙A(

ia+ib=i

ia)∙B(ib), i=0,1,2,…, Nx                    (7-10) 

 

7.2.2.3. Typical Copula Functions 

There are four typical Copula functions mainly include Gaussian copula, t copula, 

Clayton copula, Gumbel copula and Frank copula [104, 115, 116]. Fig. 7-1 shows 

density functions of four typical functions (Gaussian copula, t copula, Clayton copula 

and Gumbel copula). Their linear correlation factors are all set as 0.7 [104]. 
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Figure 7-1 Four typical distribution of copula function [104] 
 

As stated in [104]: “Different kinds of copula show different dependence structures. 

Gaussian copula and t copula focus on the correlation on both maximum and minimum 

values. Clayton copula focuses on the correlation on minimum value, while Gumbel 

copula pays more attention on the maximum point.” Thesis [104] proves that the 

correlation between wind farms follows Gaussian copula properly. 

 

More descriptions of copula theory can be found in [117]. Copula theory has been 

applied to power system analysis, especially wind power [118-121]. Papers [118] and 

[119] use it in modelling the special dependence of wind power output from multiple 

wind farms. Papers [120] and [121] use it to model the relationship between wind speed 

and wind farm output in a probabilistic forecasting model.  

 

7.2.3. Dependent Sequence Operation Theory with Copula 

Since Chapter 6 utilises sequence operation theory to calculate uncertain power flow, 

for comparison convenience, this chapter adopts dependent sequence operation theory 

with Copula, which was proposed by Dr. Ning Zhang in [104], to analyse the effects of 

correlations. The basic sequence theory is same in independent and dependent sequence 
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operation theories. The only difference is to integrate Copula in dependent sequence 

operation theory.  

 

The flowchart of dependent sequence operation theory is shown in Fig. 7-2 [104]. Nodal 

injected power on each busbar is regarded as one variable. There are two main steps in 

the process: 1) build the PS of each variable, 2) build the Copula sequence of all 

variables. The PS of each variable in dependent sequence operation theory is same with 

that in independent case as in (6-2).  

 

 
Figure 7-2 Model of Dependent Operation Theory 

 

(7-11) gives the density function of two-dimensional Gaussian copula: 

                  c(u,v)=

exp{-
1

2(1-ρ)2 [ρ2∅-1(u)2-2ρ
2∅-1(u)∅-1(v)+ρ2∅-1(v)2]}

√1-ρ2
            (7-11) 

where, ∅-1(·) is the inverse function of standard normal distribution and   ρ is the 

correlation parameter which is estimated through Kendall rank correlation coefficient 

τ. 

 

According to [122] and [123], the definition of Kendall rank correlation coefficient τ is 

as follows. Let (x1, y1), (x2, y2),…, (xn, yn) be a set of observations of the joint random 

variables X and Y. Randomly select two observations (xi, yi) and (xj, yj) to make a pair. 

If both xi > xj and yi > yj or if both xi < xj and yi < yj, the pair is said to be concordant. 

If xi > xj and yi < yj or if xi < xj and yi > yj, the pair is said to be discordant. If xi = xj or 

yi = yj, the pair is neither concordant nor discordant. The Kendall τ coefficient is defined 
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as in (7-12). The denominator is the total number pair combinations, so the coefficient 

must be in the range −1 ≤ τ ≤ 1. 

                   τ=
number of concordant pairs-number of discordant pairs 

n(n-1)/2
                  (7-12) 

 

If the rankings in X and Y are the same, the coefficient has value 1. If one ranking is 

the reverse of the other, the coefficient has value −1. If X and Y are independent, then 

we would expect the coefficient to be approximately zero. 

 

There exists direct relationship between Kendall τ coefficient and the parameter ρ in 

copula function which is defined in (7-13). 

                                                                     ρ= sin (
πτ

2
)                                                        (7-13)   

                        

7.3. Case Study 

Again, the Aberystwyth 33 KV network is used for case study. After we get the 

forecasting error sequence of power injection on each node {EP,t+m} based on the 

methods introduced in 6.2.2, the correlation τ between busbars can be calculated 

according to (7-13).  

 

Table 7-1 shows the Kendall τ coefficients between 16 nodes that have wind generation/ 

load demand in 20-hour ahead forecasting. The correlation matrix will change as lead 

time changes. That is because the error sequence of power injection forecasting on each 

busbar changes dramatically when the lead time changes. 

 

http://en.wikipedia.org/wiki/Denominator
http://en.wikipedia.org/wiki/Independence_%28probability_theory%29#Independent_random_variables
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Table 7-1 Kendall τ Coefficients between 16 Nodes in 20-hour Ahead Forecasting 

 5023 5022 5021 5020 5019 5018 5017 5016 5014 5013 5012 5010 5008 5005 2005 2004 

5023 1.000 0.229 0.338 0.157 0.031 0.031 0.348 0.153 0.149 0.089 0.102 0.006 0.122 0.017 0.006 0.034 
5022 - 1.000 0.284 0.225 -0.023 -0.023 0.244 0.312 0.282 0.261 0.158 0.029 0.092 0.020 0.030 0.008 
5021 - - 1.000 0.137 0.059 0.059 0.295 0.035 0.116 0.046 0.044 0.043 0.041 -0.003 0.043 0.055 
5020 - - - 1.000 -0.027 -0.027 0.196 0.319 0.302 0.330 0.166 0.015 0.049 -0.032 0.016 -0.028 
5019 - - - - 1.000 1.000 0.042 0.016 0.012 -0.010 0.064 0.311 0.051 0.039 0.310 0.398 
5018 - - - - - 1.000 0.042 0.016 0.012 -0.010 0.064 0.311 0.051 0.039 0.310 0.398 
5017 - - - - - - 1.000 0.178 0.191 0.136 0.089 0.003 0.150 0.004 0.004 0.062 
5016 - - - - - - - 1.000 0.458 0.525 0.181 0.048 0.051 -0.066 0.049 0.019 
5014 - - - - - - - - 1.000 0.403 0.260 0.022 0.068 0.031 0.024 -0.027 
5013 - - - - - - - - - 1.000 0.177 0.019 0.053 -0.061 0.020 -0.018 
5012 - - - - - - - - - - 1.000 0.044 0.055 0.210 0.044 0.038 
5010 - - - - - - - - - - - 1.000 0.035 0.036 0.998 0.334 
5008 - - - - - - - - - - - - 1.000 0.039 0.035 0.085 
5005 - - - - - - - - - - - - - 1.000 0.036 -0.022 
2005 - - - - - - - - - - - - - - 1.000 0.334 
2004 - - - - - - - - - - - - - - - 1.000 
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Fig. 7-3 compares the mean values and VARs of power flows on line 5010-5012 with 

and without considering correlations. Confidence level is set as 90%. The red lines are 

the power flow condition without correlations. The blue lines stand for the power flow 

condition with correlations. It is clearly shown that both the mean values and VARs of 

power flow on line 5010-5012 change significantly when correlation is considered. For 

line 5010-5012, under same confidence level, the difference between mean value and 

VAR becomes much larger when the correlation is considered.  

 

 

Figure 7-3 Comparison of Power Flow on Line 5010-5012 
 

 

For line 5010-5012, the mean values of power flow are generally decreased. The 

number of timeslots with line overloading reduces from 18 (from 7:00 to 24:00) to 3 

(20:00, 21:00 and 23:00). However, it does not mean the power flows on all lines are 

reduced when correlation is integrated. Table 7-2 gives the changes of power flows in 

several lines. The power flows on some lines are reduced while those on the others are 

increased. 

 

Table 7-2 lists the effects of correlations on network power flows. The first and second 

columns list the lines connected between node A and node B. The third and fourth 

columns are the mean values of power flows without and with correlation, respectively. 

Since the node directly connected to the line has the largest influence on the line. Table 

7-2 lists the correlations between node A and node B, which are in the fifth column. 
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Table 7-2 Change in Power Flows due to Correlation 

Node A Node B 
PPF without 

correlation 

PPF with 

correlation 
Correlation 

5023 5022 -2.088 -39.400 0.229 

5013 5017 -27.051 -34.732 0.136 

5013 5021 -9.710 9.493 0.046 

5021 5022 5.497 17.799 0.284 

5013 5016 4.396 -115.410 0.525 

5008 5010 -4.094 -9.325 0.035 

5018 5020 20.172 21.088 -0.027 

5018 5017 29.978 20.169 0.042 

5020 5021 17.135 18.715 0.137 

5013 5014 4.773 -94.383 0.403 

5013 5012 -27.901 -78.747 0.177 

5010 5012 31.197 21.336 0.044 

5008 5013 11.987 5.976 0.053 

5008 5005 0.001 0.0005 0.039 

5017 5008 -0.578 -6.866 0.15 

5023 5022 -2.088 -39.400 0.229 

 

Fig. 7-4 indicates the impact of correlations on the calculation of uncertain power flow 

more clearly. Red line is the difference in power flow for the lines listed in Table 7-2, 

and blue line is correlation values for these lines. Generally speaking, the trends of these 

two curves are concordant. It is reasonable since the system without considering 

correlation is a special case of the system with correlation, where the coefficient of 

correlation is zero. 

 

Larger correlation always results in larger difference in power flow. There are some 

fluctuations in the consistency between correlation and difference in power flow. It is 

because Fig. 7-4 only lists the correlation which has largest impact on the line, while 

the power flow on the line is determined by all the busbars in the network. 
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Figure 7-4 Comparison of Power Flows and Correlations 

  

Fig. 7-5 gives the result of EV charging optimisation with RAROC method when the 

correlations are considered, which is represented by the blue line. The red line is the 

RAROC results when the busbars are assumed to be independent, which is consistent 

with Fig.6-9. The effect of correlation on RAROC value is significant. The average 

value scale of RAROC increases from 2 to 14 when correlation is considered. Trial 5 

gets the largest RAROC (14.853) when correlation is involved, while trial 18 has largest 

RAROC (1.995) if the busbars are independent. The reason that causes the significant 

increases in the value scale of RAROC is explained later in Table 7-4. 

 

Figure 7-5 Selection of Execution Timeslot in RAROC method 
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For timeslot 5, when no correlation is considered, the mean value of power flow on line 

5020-5021 is 9.608 MWh. This value climbs to 17.916MWh when correlation is 

considered. The line rating of 5020-5021 is 17.06MWh. Thus, there is overloading 

occurs in timeslot 5 when correlation is involved. The busbars that have high PTDF to 

line 5020-5021are listed in Table 7-3. According to Table 7-1, most of the sensitive 

busbars have correlations with each other, and the values of many correlation 

coefficients are quite high. Thus, the power flow on 5020-5021 is changed a lot when 

correlation is involved. 

 

Table 7-3 PTDFs for Line 5020-5021 

Busbar PTDF (5020-5021) 

5023 -0.197 

5022 -0.197 

5021 -0.197 

5020 0.550 

5019 0.340 

5018 0.340 

5017 0.061 

5012 0.001 

5010 0.008 

5009 0.025 

5008 0.025 

2005 0.008 

2004 0.025 

 

Table 7-4 uses the performance of trial 18 in the system with and without correlation as 

an example to further explain the effects of correlation on generation curtailment and 

RAROC. According to the data in Table 7-4, when correlation is considered, the 

difference between mean values and VARs of generation curtailment is increased by a 

large quantity, which is consistent with the situation of power flow in Fig. 7-3. Quote 

the definition of RAROC in Chapter 6 to (7-15). The increasing difference between 

mean value and VAR of generation curtailment will increase the operational benefit, 

which is the numerator in (7-15). The increasing range in numerator is much higher 

than that in denominator, resulting in significant increase in the value of RAROC. 

                                            RAROCT= ∑
VARGC0,k

-μ
GCT,k

VARGCT,k

k=TWS

k=1

                                     (7-15) 
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Table 7-4 Performance for Trial 18 with and without Correlation 

Time 

(h) 

With correlation Without correlation 

GC_EX 

(MWh) 

GC_VA

R 

(MWh) 

RAROC 

of each 

timeslot 

GC_EX 

(MWh) 

GC_VA

R 

(MWh) 

RAROC 

of each 

timeslot 

1 0.000 0.000 - 0.000 0.000 - 

2 0.000 0.000 - 0.000 0.000 - 

3 0.000 0.000 - 0.000 0.000 - 

4 0.000 0.000 - 0.000 0.000 - 

5 1.947 5.131 0.731 0.000 0.000 - 

6 0.000 0.699 1.000 0.000 0.000 - 

7 0.000 0.000 - 1.253 1.501 0.165 

8 0.000 1.228 1.000 2.703 3.011 0.102 

9 0.000 0.000 - 2.154 2.517 0.144 

10 0.000 0.000 - 1.833 2.106 0.130 

11 0.000 0.000 - 4.102 4.453 0.064 

12 0.000 1.245 1.000 6.663 7.032 0.043 

13 0.000 5.648 1.000 8.416 8.853 0.049 

14 0.000 16.768 1.000 9.672 10.109 0.043 

15 1.680 21.766 0.923 10.429 10.960 0.049 

16 8.632 30.984 0.721 12.415 12.958 0.042 

17 0.940 24.143 0.965 12.826 13.446 0.046 

18 1.829 27.612 0.813 14.841 24.900 0.403 

19 2.837 23.956 0.882 15.689 25.109 0.375 

20 6.270 39.958 0.843 15.114 17.084 0.115 

21 8.688 45.032 0.807 16.570 18.679 0.113 

22 8.106 42.532 0.809 25.636 26.526 0.034 

23 13.047 53.729 0.757 26.061 26.996 0.035 

24 8.810 52.086 0.831 27.905 28.899 0.034 

Total 62.785 392.515 14.083 214.281 245.139 1.987 

 

7.4. Chapter Summary 

This chapter analyses the effects of correlation of forecasting errors between nodal 

power injections on the enhanced congestion management. Firstly, Copula theory is 

applied to integrate the correlations in the calculation of uncertain power flow. Then, 

according to the distribution of uncertain power flow, RAROC method is used to guide 

the congestion management.  
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Simulation results in the case study show that the network power flows are dramatically 

changed when correlations are considered, which will significantly influence the 

corresponding generation curtailment and the decision-making in congestion 

management. Copula theory helps to visualise the correlations in the calculation of 

uncertain power flow, which provides the DNOs with a more accurate network stress 

prediction and a more convincing congestion management strategy.  
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This chapter draws the conclusion to the thesis by outlining the 

key findings. Future work that can improve the investigations 

of ANM and uncertainty analysis are also presented. 
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8.1. Thesis Summary 

Two contributions are made in this thesis to the area of ANM. First, it enhances the 

previous congestion management by integrating intelligent EV charging. The intelligent 

EV charging strategy refers to economically shifting flexible EV load demand over time 

to absorb excessive wind generation when they cannot be exported to the supply 

network. The enhanced congestion management can further improve network 

efficiency of the existing distribution networks to accommodate increasing DGs. The 

cost-benefit assessment informs DNOs of the trade-off between investment in ANM 

strategy and in the primary network assets, thus helping them to make cost-effective 

investment decisions. 

 

Second, it enhances the congestion management further by integrating uncertainty 

management. The uncertainty management strategies refer to SR and RAROC methods 

which can help the enhanced congestion management make operational decisions when 

both operational benefit and its associated risk are considered. Through converting the 

operational benefits under different uncertainty levels to an equivalent benefit value 

under per unit uncertainty level, the impacts of uncertainty on the performance 

assessment can be ‘mitigated’. Thus the traditional deterministic cost-benefit 

assessment can be extended to cost-benefit-risk assessment. Besides, the proposed 

uncertainty management strategy requires low calculation burden and is scalable to any 

systems, which is the major contribution of this thesis. 

 

The design of the strategy focuses on the following five steps. 

 

8.1.1. Designing an Intelligent EV Charging Model 

An intelligent EV charging model is designed and integrated into the previous 

congestion management to help release the network stresses and reduce generation 

curtailment. A concept called Time-Window Scale is used to set up a time horizon to 

restrain coordinated EV charging. When and how much the charging demand should be 

shifted is determined by network power flows. Where to shift the demand is optimised 

to align with the wind generation, thus minimise the year round generation curtailment. 
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Furthermore, the intelligent EV charging is constrained by the number of EVs, battery 

characteristics and road travel behaviour in an area. 

A practical 33kV network is exemplified as a test system for enhanced congestion 

management with intelligent EV charging. Based on the historical load profile in year 

2006, the load demand of the network from 2030 to 2050 is forecasted, including the 

EV electricity consumption. Through the cost-benefit assessment, it is found that with 

intelligent EV charging, congestion management can further reduce generation 

curtailment up to 7.9%, i.e. 7.9% more renewable energy could be absorbed in the 

network. It is also found that larger time-window scale always produces better 

performance, resulting in more generation curtailment reduction. The annual generation 

curtailment amount decreases from 1672.9 MWh in 2-hour time-window scale to 

1649.2 MWh in 24-hour time-window scale.  

 

The increased benefits from integrating intelligent EV charging are also found to be 

highly dependent on electricity price and its uncertainty, which is thus worth noting in 

optimal network asset investment. The highest net investment profit is increased by 

£566k. In general, intelligent EV charging provides a viable and promising 

enhancement to previous congestion management, particularly for networks with high 

penetrations of renewable generation. 

 

8.1.2. Enhancing Intelligent EV Charging Model 

An enhanced intelligent EV charging model is established with two improvements. First, 

the shifting of EV charging demand is optimised to be bi-directional, i.e. the excessive 

load could be shifted to either earlier hours or later hours. Second, the shifting principle 

is enhanced with power flow constraint.  

 

Aberystwyth 33kV network is used to test the enhanced charging model. Simulation 

results in the case study prove that the proposed enhance EV charging model can 

increase the utilisation level of renewable generation further compared with initial EV 

charging model. In a small range of time horizon (24 hours), the first improvement can 

reduce the generation curtailment further by 45%. The magnitude of the second 

improvement is not as significant as the first one, but it still can reduce the annual 
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generation curtailment by 0.05%. In terms of annual operational benefits, the enhanced 

intelligent EV charging can save renewable energy further by 3.93% in average. 

  

8.1.3. Uncertainty Management with SR Method 

Based on the enhanced intelligent EV charging, an uncertainty management model is 

designed to deal with the uncertainties introduced from wind forecasting error in the 

congestion management. Firstly, uncertain network power flow is calculated based on 

traditional convolution method. Then, SR concept from financial risk management is 

applied to assess the benefits of EV charging solutions when they are under differing 

risk levels. SR method compares the performance of the charging solutions by 

converting their operational benefits under different uncertainty levels into an 

equivalent benefit value under per unit uncertainty level, i.e. ‘mitigating’ the effect of 

uncertainties in the decision-making stage of EV charging optimization. 

 

In order to simplify the strategy, the busbars are assumed to be independent. And the 

distribution of wind forecasting error is assumed to be normal distribution, which is 

validated by Monte Carlo Simulation. Although many research have investigated the 

effects of uncertainties, most of the work focuses on reliability analysis and uncertain 

power flow calculation. Little work has been done in ANM. This thesis states a specific 

problem in active network operation which has never been investigated, and provides a 

completely new way to treat uncertainty. Therefore, it is difficult to validate SR method 

with other methods. The only way to verify SR method is to prove the rationality of its 

definition, which is detailedly demonstrated in case study.  

 

The principle of SR method is very straight forward and has low calculation burden, 

which implies that it can be easily applied to other power system areas with uncertainty 

problems. In general, SR method allows the impact of risks that arise from network 

stress prediction on the expected operational benefits to be properly assessed, thus 

extending the traditional deterministic cost-benefit assessment to cost-benefit-risk 

assessment.  
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8.1.4. Enhancing Uncertainty Management with RAROC method 

SR method utilises standard deviation to describe the risk level of benefit. However, it 

is only suitable in the model where the variables follow normal distribution. If the 

probability density functions of variables are non-normal, the standard deviation is no 

longer the proper parameter to describe risk level of benefit. Thus, the enhanced 

uncertainty management model (RAROC method) is established based on SR method, 

but with higher applicability.  

 

RAROC method utilises VAR to represent the risk level rather than standard deviation. 

Sequence operation theory is applied to calculate uncertain network power flow 

considering both wind and load forecasting errors. 

 

The simulation results indicate that with RAROC method, more network uncertainties 

can be integrated in uncertainty management, even when they are in different 

distribution patterns. The VARs of power flows can be easily determined based on the 

statistics of uncertain power flow and can represent the risk levels appropriately. The 

results also indicate that the decision-making will change when the confidence level 

changes. In one word, the proposed RAROC method addresses the type limitation on 

the distribution of forecasting error in SR method, providing an enhanced uncertainty 

management in congestion management. 

 

8.1.5. Enhancing Uncertainty Management with Correlations  

The uncertainty management is further developed to integrate the correlations of 

forecasting errors between nodal power injections. Since wind forecasting is strongly 

dependent on weather condition in an area, the wind forecasting errors on different 

busbars in the area have strong correlations with each other. Besides, the load 

forecasting errors on different busbars somehow also have correlations since weather 

influences the electricity consumption pattern. Thus, forecasting error of power 

injections on one busbar is correlated with other busbars. The real-time deterministic 

control is not able to integrate the correlations. 
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Copula theory is applied to integrate the correlations into the calculation of uncertain 

power flows. Then, according to the distribution of uncertain power flow, RAROC 

method is used to guide the congestion management. Simulation results in the case 

study show that the power flows are dramatically changed when correlations of 

forecasting errors between nodal power injections are considered, which will 

significantly influence the corresponding generation curtailment and the decision-

making in congestion management. Copula theory helps to visualise the correlations in 

the calculation of uncertain power flow, which provides the DNOs with a more accurate 

network stress prediction and a more convincing congestion management strategy. 

 

8.2. Research Limitations and Future Work 

8.2.1. Improve Intelligent EV Charging with EV Customer Types  

The performance of the intelligent EV charging method is tested and proved to be 

profitable already. However, the customer type of EVs in this thesis is assumed to be 

domestic only. The behaviour of different customer types (domestic, commercial and 

industrial) will be significantly different. To generalise the application of intelligent EV 

charging, a study can be carried out in the future to study and compare the 

characteristics of different customer types. Therefore, the intelligent EV charging 

model should be modified accordingly to differentiate and identify common points 

between customer types.   

 

8.2.2. Improve Intelligent EV Charging with Market Pricing 

The objective of the intelligent EV charging model proposed in this thesis is to minimise 

generation curtailment. However, the market price is not considered in the model.  In 

practice, the three constraints mentioned in the thesis: number of EVs, EV battery 

characteristics and road trip limitations are not sufficient to restrain the intelligent 

charging since the customers are normally who decide the charging time for their EVs 

according to the electricity price.  

 



Chapter 8.   Thesis Summary and Future Work 
 

Page 134 
 

Accordingly, there may be a mismatch between the customer’s will and the network’s 

will in deciding the most appropriate shifting levels of the flexible EV charging demand. 

There should be incentives to guide customers to align the timeslots of their EV 

charging with the available renewable generation. The incentives will be reflected in 

the electricity price, which will be the cost of intelligent EV charging. Therefore, there 

will be two targets in intelligent EV charging: minimisation of both generation 

curtailment and incentive costs.  

 

8.2.3. Intelligent EV Charging between Busbars 

The intelligent EV charging in this thesis focuses on shifting load over time on the same 

busbar. If the flexible EV charging demand can be shifted between different busbars 

first when there is congestion, followed by load shifting over time, the network 

congestion and generation curtailment will be further reduced. In that case, the customer 

diversity in the network should be considered and analysed. The determination of EV 

flexibility on different busbars will be more complicated due to the uncertainties 

introduced form customers’ trip routes and their willingness to charge their EVs in other 

area.  

 

8.2.4. Extend Intelligent EV Charging by Considering Several 

Intermittent Renewable Energy Resources 

This thesis has analysed the “EV-wind complementarity”. In the near future, the UK 

government also emphasises the development of solar photovoltaic (PV) in distribution 

networks because of its versatility and scalability. The integration of PV will increase 

the network uncertainty. Although wind and PV are all intermittent resources, their 

power output characteristics are significantly different. The power output from PVs is 

focused on daytime while the output from wind farms will not be time-restrained. 

Generally speaking, the wind in the night is much stronger than that over the day. Thus, 

if PV generation is to be applied in intelligent EV charging, the relationship between 

wind and PV generation should be properly analysed under uncertainty management.
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APPENDIX A 

 

Figure A-1 Diagram of the 132/33kV Aberystwyth Network 
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APPENDIX B 
 

Three assumptions are made in DC power flow: 

1) Branches can be considered lossless, i.e. branch resistor Rm and charging 

capacitances Bm are negligible. The simplified expression of admittance Ym on 

branches is shown in (B-1):  

                                                       Ym=
1

Rm+jXm
≈

1

jXm
                                                  (B-1) 

where, Xm is the reactance. 

2) The voltage magnitude of all busbars is close to 1 p.u. as shown below. 

                                                        |Vi| ≈ 1.0 p.u.                                                      (B-2) 

3) Voltage angle θ differences across branches are very small so that 

                                                      sin(θa-θb) ≈ θa-θb                                                    (B-3) 

 

Based on the intelligent EV charging model proposed in Chapter 4, in each trail T, the 

calculation of DC power flow at each timeslot k consists of following three steps:  

1) Determine the active power injection PT,k,i at node i:  

        PT,k,i =GT,k,i-LT,k,i                                                  (B-4)                              

where, PT,k,i is the active power injection, GT,k,i is the forecasted generation, and 

LT,k,i is the deterministic load. 

2) Calculate the voltage angle matrix θ of the network: 

θ=Y-1∙P                                                              (B-5)                 

where, Y is the admittance matrix of the network, and P is the matrix of active 

power injection on all busbars in the network. 

3) Calculate the active power flows in branches: 

 PFT,k,m=
θa-θb

Xm

                                                    (B-6) 

where, PFT,k,m  is the power flow on line m between node a and b, Xm is the 

reactance of the line connecting node a and b. 

 

According to (B-4)-(B-6), the relationship between injected power on each node and 

the power flow on each branch can be derived as below: 
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dPFT,k,m

dPT,k,i

=
Yam

-1 -Ybm
-1

Xm

                                             (B-7) 

where, Yam
−1 and Ybm

−1  are elements in admittance matrix Y−1. 

 

Equation (B-7) indicates that the relationship between nodal injected power and branch 

power flow is linear. The linear relationship can be reflected in a sensitivity matrix 

called Power Transfer Distribution Factor (PTDF). Element PTDF(m,i) indicates the 

change of active power flow on line m when one unit of injected power is added on 

busbar 
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