

Citation for published version:
Shi, H, Xu, M & Li, R 2018, 'Deep Learning for Household Load Forecasting – A Novel Pooling Deep RNN',
IEEE Transactions on Smart Grids, vol. 9, no. 5, pp. 5271-5280. https://doi.org/10.1109/TSG.2017.2686012

DOI:
10.1109/TSG.2017.2686012

Publication date:
2018

Document Version
Peer reviewed version

Link to publication

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
users, including reprinting/ republishing this material for advertising or promotional purposes, creating new
collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this
work in other works.

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161917598?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/TSG.2017.2686012
https://researchportal.bath.ac.uk/en/publications/deep-learning-for-household-load-forecasting--a-novel-pooling-deep-rnn(3f7339a9-9ec5-41f8-8ced-d359f16d420e).html

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—The key challenge for household load forecasting lies

in the high volatility and uncertainty of load profiles. Traditional

methods tend to avoid such uncertainty by load aggregation (to

offset uncertainties), customer classification (to cluster

uncertainties) and spectral analysis (to filter out uncertainties).

This paper, for the first time, aims to directly learn the uncertainty

by applying a new breed of machine learning algorithms – deep

learning.

However simply adding layers in neural networks will cap the

forecasting performance due to the occurrence of overfitting. A

novel pooling-based deep recurrent neural network (PDRNN) is

proposed in this paper which batches a group of customers’ load

profiles into a pool of inputs. Essentially the model could address

the over-fitting issue by increasing data diversity and volume.

This work reports the first attempts to develop a bespoke deep

learning application for household load forecasting and achieved

preliminary success. The developed method is implemented on

Tensorflow deep learning platform and tested on 920 smart

metered customers from Ireland. Compared with the state-of-art

techniques in household load forecasting, the proposed method

outperforms ARIMA by 19.5%, SVR by 13.1% and classical deep

RNN by 6.5% in terms of RMSE.

Index Terms—big data, deep learning, load forecasting, long

short-term memory, machine learning, neural network, smart

meter

I. INTRODUCTION

EMAND side response (DSR) plays a key component in

achieving the political goals set in the UK and EU energy

sector [1, 2]. The popularisation of smart meters will make the

DSR easier than ever for domestic customers [1]. Various direct

and indirect control methods have been proposed to realise DSR

[3-5] given that household load can be accurately forecasted.

Extensive and comprehensive review papers on point load

forecasting at aggregated level already exist [14-26, 40-42].

However, the literature on individual household load

forecasting is actually limited [5-14] as it is widely

acknowledged that short-term load forecasting (STLF) at such

granular level is extremely challenging due to significant

uncertainty and volatility [6-8] underlying the smart metering

data. Experiments have been carried out by [6, 7, 9-13] to

benchmark state-of-art methods for STLF at individual

household level. Testing methods include time-series analysis

Heng Shi, Minghao Xu, and Ran Li are with the Department of Electronic

and Electrical Engineering, University of Bath, BA2 7AY, UK, e-

mail:(h.shi@bath.ac.uk, m.xu2@bath.ac.uk, r.li2@bath.ac.uk).

(e.g. ARIMA and exponential smoothing) and machine learning

approaches (e.g. neural networks and support vector machine).

Similar findings are reported in both papers [9, 10] as none of

the classical methods could beat linear regression or even

simple persistence forecasting (i.e. tomorrow equals today) at

individual household level.

A. Uncertainty

The complexity of household load forecasting lies in the

significant volatility and uncertainty. In the context of STLF,

load could be decomposed into three components. As shown in

Fig. 1, the original household load profile i) is decomposed into:

ii) regular pattern, which reflects the periodical load inherited

from historical data; iii) uncertainty, which is the aperiodic part

influenced by external factors such as weather, events and

customer behaviour and iv) noise, the residue load which

cannot be physically explained [14, 15].

Fig. 1. Sketch of load composition: i) original load, ii) regular pattern, iii)

uncertainty and iii) noise

Most forecasting models focus on the regular pattern as it is

more predictable and makes up a dominating proportion at the

aggregated level. However, household demand is composed of

a substantially larger share of uncertainty. At this level,

uncertainty is more influenced by customer behaviour, which is

too stochastic to predict. Therefore, the nature of the challenge

is to forecast load with significant uncertainty.

To tackle this problem, three categories of methods have

been reported:

Deep Learning for Household Load Forecasting

– A Novel Pooling Deep RNN

Heng Shi, Minghao Xu, Ran Li, Member, IEEE

D

i) ii)

iii) iv)

0

2

4

6

D
e
m

a
n
d
 (

k
W

h
)

Time

Load Profile

0

1

2

3

4

5

6

D
e
m

a
n
d
 (

k
W

h
)

Time

Regular Pattern

-1

-0.5

0

0.5

1

1.5

D
em

an
d

 (
k

W
h

)

Time

Uncertainty

-1.5

-1

-0.5

0

0.5

1

1.5

D
em

an
d
 (

k
W

h
)

Time

Noise

mailto:h.shi@bath.ac.uk
mailto:m.xu2@bath.ac.uk

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

1) Using clustering/classification techniques to group similar

customers, days or weather [6, 16-19] in the hope of

reducing the variance of uncertainty within each cluster.

However, the performance is heavily dependent on the

data.

2) Using aggregated smart metering data to cancel out the

uncertainties [20-23] so that the aggregated load exhibits

mostly regular patterns and easier to predict, yet the

prediction is obviously only at aggregated level.

3) Using pre-processing techniques, mostly spectral analysis

such as wavelet analysis [24], Fourier transforms [25] and

empirical mode decomposition (EMD) [26] aiming to

separate the regular patterns from the other two

components. This method can be ruled out in household

load forecasting due to its significantly lower proportion

of regular patterns.

To the best of our knowledge, the existing methods towards

the problem are indirect, which aim to avoid uncertainty by

reducing (clustering) or canceling out (aggregation) or

separating (spectral analysis) the uncertainty. This paper aims

to explore the possibility of deploying the state-of-art deep

learning algorithm to directly learn uncertainties in their raw

forms. Deep learning is a branch of machine learning methods

relying on ‘deep’ architectures, which are compositions of

multiple processing layers in the neural network, enabling the

learning of highly non-linear, complicated relationships and

correlations that are beyond the reach of traditional shallow

architectures. Deep learning has achieved many breakthroughs

in tackling sophisticated problems and becomes the most

promising technique in data science community, for example,

Google Goggles, Alpha Go [27] and new drugs design [28].

Attempts have been reported in [29, 30] to adopt deep learning

for time series forecasting.

B. Overfitting

 However, direct implementation of deep learning in

household load forecasting will not necessarily provide

significant improvement. A preliminary test has been carried

out by the authors to benchmark the performance of household

load forecasting by a neural network with a different number of

layers.

Fig. 2. Household load forecasting performance by neural networks from

shallow to deep

The indicative result shown in Fig. 2 demonstrates the

occurrence of overfitting when the number of layers reaches 3.

As the number of layers increases, the forecasting error

decreases before 3 layers. However, further increase of the

network depth will see a rebound of error. As acknowledged in

most literature [31], the primary drivers are model capacity and

training epochs (training iterations). To prevent excessive

training iterations, we implemented early stopping technique to

find optimal number of training iterations. In detail, dataset is

split into training, validation and test sets. In each of the training

iteration, the process will stop if the RMSE on validation set no

longer decreases for a certain number of epochs.

Model capacity refers to the ability to fit a wide variety of

functions. Model with large capacity tends to suffer from

overfitting. To avoid excessive model capacity, one way is to

increase the data diversity so that sufficient model capacity is

becoming an advantage rather than a burden. Particularly for

Deep Learning techniques, whose model capacity is much

larger than the rest of models. When increasing the deep neural

network layer number, the inherent parameters with the

network will grow exponentially and eventually become

excessive for the available training data. As a result, the model

will begin to capture the noise and fit the training data too well,

hence impact the predictive performance in a negative way.

In order to enable the power of deep learning algorithm in

our problem, a novel pooling-based deep recurrent neural

network (PDRNN) is proposed. The pooling technique will

batch customers and input into the deep recurrent network as a

whole.

The key contributions of this paper are as follows:

1) New technique: this paper for the first time explores the

feasibility of a cutting edge algorithm, deep learning, in

the application of load forecasting at individual household

level.

2) New problem: although deep learning has received high

expectation in forecasting community, our experiment

indicates that deep learning is more prone to over-fitting

compared with its 1980s’ cousin, neural networks. This is

possibly due to more parameters and relatively fewer data.

3) New method: we propose a novel pooling method to

address the over-fitting issue by introducing a new data

dimension: historical load data of neighbours. The idea is

to use the interconnected spatial information to

compensate insufficient temporal information. The

proposed load profile pool allows for the correlations and

interactions between neighbouring households. New

features can be automatically generated through deep

layers hierarchically and thus increases the inputs volume

and diversity.

The rest of the paper is organised as follows: Section II

briefly introduces the rationale for applying Deep Learning in

household STLF tasks and the specific LSTM technique

applied in the paper. Section III proposes pooling strategy and

pooling-based DRNN method. Section IV explains the

implementation process on GPU-based high-performance

computing platform, as well as the details of experiment setup.

In Section V, results are demonstrated through comparison with

previous state-of-the-art methods (ARIMA, SVR), shallow

learning (normal RNN), classical deep learning (DRNN) and

proposed deep learning (PDRNN). Conclusions are drawn in

part VI.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

II. DEEP LEARNING

Deep learning is a branch of machine learning methods lying

on ‘deep’ network architectures. The concept of ‘deep learning’

has been proposed for decades with the name ‘cybernetics’ in

1943, by McClulloch and Pitts [32]. However, it has been

regarded as being more of a fancy concept than an applicable

technology, due to three major technical constraints. The three

technical constraints are: 1) lack of sufficient data, 2) lack of

computing resources for large network size, and 3) lack of

efficient training algorithm.

Recently, the constraints are tackled by the digitalization of

modern society and the development of high-performance

computing. Furthermore, Geoffrey Hinton [33] made a

breakthrough in efficient deep neural network training via a

strategy called greedy layer-wise pre-training, which enables

practical implementations of deep learning.

Deep learning has recently seen phenomenal success in

various areas including: 1) Computer Vision (CV) such as

Google Goggles, which uses deep learning for object

recognition; 2) expert systems such as Alpha Go designed by

DeepMind [27] and 3) medical sciences, which employs deep

learning to assist pharmaceutical companies in new drugs

design [28].

A. Rationale of using deep learning

Deep learning is regarded as one the most promising

techniques to this study due to two superior attributes compared

with "shallow" architecture:

1) To learn highly non-linear relationships

In the problem of STLF at the household level, the inherent

uncertainties are caused by differing known or unknown

external factors simultaneously. These factors, ranging from

weather conditions, temperatures to property size, photovoltaic

generations are correlated to each other, which leave a highly

non-linear impact to the household load. For example,

temperature and sunshine duration are two of the external

factors which are highly correlated to each other, i.e., the

increase in sunshine duration can result in higher temperature

in the region.

 The essence of neural networks and other load forecasting

methods is to learn the non-linear relationships between feed-in

inputs and outputs by constructing linear or non-linear

functions that approximate the real relationships between inputs

and outputs. The universe approximation theorem [34]

indicates the neural networks can make accurate

approximations towards any non-linear functions with

sufficient network size. The approximation capability of a

shallow network is much lower than that of a deep network even

with extra neurons at each layer. The reason is that, in ‘shallow’

neural networks, hidden neurons are learning the non-linear

combinations of inputs as the features. However, ‘deep’ neural

network can learn the non-linear combinations of features in

deeper layers of the network, hence naturally learns the highly

non-linear correlations.

2) To learn shared uncertainties

The uncertainties are normally coming from external sources

which make consistent impacts on differing households.

Therefore, these uncertainties can be commonly shared within

a group of customers at similar locations and time. However,

these uncertainties are not always evenly shared among

households. For example, the temperature increase can impact

most of the households within a region, while the increase in

sunshine duration mainly affects households with PV installed.

In ‘deep’ architecture, one of the most exciting properties is

that it can learn load features hierarchically. Features with

different sharing levels will be learned at different layers. Load

features learned in higher layers are normally the combination

of lower layer features. With respect to former example, the

temperature rise features are normally learned at a lower level,

since it can be concluded directly from inputs. However, the

impact from sunshine hour is influenced by features like

temperature, PV installation, and household direction, and

hence should be learned at higher network layers. With this

property, deep learning is exceptional for learning multiple

uncertainties with differing sharing levels in household load.

B. Deep RNN with Long Short-Term Memory unit

Typical architecture designs of deep learning including,

Convolutional Deep Neural Networks (CNN), Deep Sparse

Autoencoder (DSA), Deep Recurrent Neural Networks

(DRNN), Multi-Layer Perceptions (MLP), Deep Restricted

Boltzmann Machines (DRBM), etc. [31]. As a state-of-the-art

deep learning architecture specifically designed for time-series

forecasting, DRNN is employed to perform STLF for

households in this paper.

The architecture of deep-RNN is stacking multiple RNN

layers together into a ‘deep’ architecture. Most successful

implementation of Deep-RNN is in the area of Speech

Recognition [35], which is also one-dimensional time-series

data with high uncertainty. In terms of the specific

implementation of RNN layers, a state-of-the-art RNN, named

Long Short-Term Memory (LSTM) has been employed to

approach the best performance of RNN.

In this section, the deep-RNN architecture is introduced

firstly, and then the implementation of LSTM units are

followed.

1) Deep recurrent neural network (Deep-RNNs)

In deep-RNNs, the sharing states are decomposed into

multiple layers in order to gain nice properties from ‘deep’

architectures. Experimental evidence has been given by [35, 36]

to suggest the significant benefit of building RNNs with ‘deep’

architectures.

The computational graph and its unfolding topological graph

is presented in Fig. 3 to demonstrate the working process of a

deep-RNN with 𝑁 layers.

Fig. 3. The computational graph and unfolded topological graph of an 𝑁 layer

deep-RNN

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

In the computational graph, the RNN aims to map the input

sequence of 𝑥 values into corresponding sequential outputs: 𝑦.

As presented in computational graph, the learning process

conducted every single time step from 𝑡 = 1 to 𝑡 = 𝜏. For time

step 𝑡 , the network neuron parameters at 𝑙𝑡ℎ layer update its

sharing states with following equations [31]:

 𝑎1
(𝑡) = 𝑏1 + 𝑊1 ∙ ℎ1

(𝑡−1) + 𝑈1 ∙ 𝑥(𝑡) (1)

ℎ𝑙

(𝑡) = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑎𝑙
(𝑡))

 𝑓𝑜𝑟 𝑙 = 1,2, . . , 𝑁
(2)

𝑎𝑙

(𝑡) = 𝑏𝑙 + 𝑊𝑙 ∙ ℎ𝑙
(𝑡−1)

+ 𝑈𝑙 ∙ ℎ𝑙−1
(𝑡)

 𝑓𝑜𝑟 𝑙 = 2,3,… , 𝑁
(3)

 𝑦(𝑡) = 𝑏𝑁 + 𝑊𝑁 ∙ ℎ𝑁
(𝑡−1) + 𝑈𝑁 ∙ ℎ𝑁

(𝑡)
 (4)

 𝐿 = 𝑙𝑜𝑠𝑠_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑦(𝑡), 𝑦𝑡𝑎𝑟𝑔𝑒𝑡
(𝑡)) (5)

Where 𝑥(𝑡) is the data input at 𝑡𝑡ℎ time step, 𝑦(𝑡) is the

corresponding prediction, and 𝑦𝑡𝑎𝑟𝑔𝑒𝑡
(𝑡) is the true values of

output targets. ℎ𝑙
(𝑡)

 is the sharing states of 𝑙𝑡ℎ network layer at

time step t. 𝑎𝑙
(𝑡) represents the input value of 𝑙𝑡ℎ layer at time

step 𝑡 , which consists of three components: 1) 𝑡𝑡ℎ time step

input 𝑥(𝑡) or sharing state ℎ𝑙−1
(𝑡)

 at time 𝑡 from 𝑙 − 1𝑡ℎ layer,

2) bias 𝑏, and 3) sharing states ℎ𝑙
(𝑡−1)

 at current network layer

𝑙 from last time step 𝑡 − 1. Due to the sharing properties of

RNNs, the algorithm is thus capable to learn uncertainties

repeated in previous time steps.

2) Boosting with Long short-term memory (LSTM) unit

Long short-term memory unit refers to a specific architecture

of RNNs, which aims to tackle long-term dependencies

challenge unsolved in earlier RNN architectures. When

learning time-series data, RNNs aim to learn representations of

patterns repeatedly occurred in the past, by sharing parameters

across all time steps. However, the memory of past learned

patterns can fade as time goes on. In the figure, the

dependencies of earliest two inputs 𝑥(0) and 𝑥(1) becomes

weak in output 𝑦(𝑡) when it is reasonably large.

LSTM is hence designed to tackle this challenge by creating

paths where the gradient can flow for long durations. In order

to demonstrate how LSTM can memorize long-term patterns,

the computational graph of LSTM is illustrated in following Fig.

4:

Fig. 4. The computational graph and unfolded topological graph

Fig. 4 presents a typical LSTM cell. Apart from traditional

RNN units, LSTM cells have a special sharing parameter vector

called memory parameter vector 𝑠(𝑡) and are deployed to keep

the memorized information. In each of the time steps, the

memory parameter has three operations: 1) discard useless

information from memory vector 𝑠(𝑡); 2) add new information

𝑖(𝑡) selected from input the 𝑥(𝑡) and previous sharing parameter

vector ℎ(𝑡−1) into memory vector 𝑠(𝑡) ; 3) decide new sharing

parameter vector ℎ(𝑡) from memory vector 𝑠(𝑡).

As shown in the LSTM cell, the sharing memory parameters

ℎ(𝑡) are passing through differing time steps only with two

operations to memorize new information and forget out-of-time

memories. Therefore, the sharing memory can keep useful

information for a fairly long time and result in RNN

performance enhancement.

III. PROPOSED METHODOLOGY

In this section, the proposed PDRNN is presented for STLF

at the household level. Details of this methodology are

illustrated in Fig. 5:

In general, the proposed method consists of two stages: 1)

load profiles pooling, and 2) household STLF with deep-RNN.

The detailed rationale and design of each stage are further

discussed in the following sub-sections:

A. Stage 1: load profiles pooling

In the 1𝑠𝑡 stage, households’ load profiles are batched into a

load profile pool. The pool is fed into the 2𝑛𝑑 stage as input so

that forecasting is not only based on targeted household's own

data, but also load profiles of his neighbours in the pool.

1) Rationale of pooling strategy

The pooling strategy is designed to tackle the two major

challenges of STLF at the household level, i.e., the overfitting

issue and the inherent high uncertainties in household load

profiles:

The overfitting issue is one of the technical constraints when

applying deep learning in load forecasting. Because of the

inherent large amount of neural layers in deep learning

networks, the available historical load profile data in

households are normally insufficient, which even can cause

grave overfitting with a fairly small amount of network layers.

The pooling stage can increase the data volume for load

forecasting, which hence delays the presence of overfitting.

Because of the contingency of the load data, the inherent load

uncertainties are extremely hard to be learned or modeled.

However, some of the uncertainties are caused by common

external factors, such as weather conditions, the day of the

week, etc. Their effects are normally sharing across many

customers. According to the information theory, the data

diversity represents the amount of information contained.

Therefore, sufficient diversity in customer load is the

prerequisite for learning these common sharing uncertainties.

In this stage, pooling customers’ load profiles together is

basically to increase the diversity in load dataset, hence

increases the information related to common sharing

uncertainties. Consequently, it enables the deep recurrent

network to perform more accurate load forecasting by

understanding these common sharing uncertainties.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

Fig. 5. Flowchart of proposed two-stage STLF methodology

2) Design of pooling strategy

In this paper, the household load profiles are captured from

smart meters half-hourly. Therefore, the daily load profiles are

of the form of 48-data-point values. Due to time connectivity of

household load between continuous dates, the load samplings

on 𝑑𝑡ℎ date are continuous with (𝑑 − 1)𝑡ℎ and (𝑑 + 1)𝑡ℎ dates.

In order to keep this property in data, the load profile pool uses

a long vector sequence, consisting of concatenated load profiles

of multiple continuous dates starting from the first date of

historical data. The denotation is:

 𝑋(𝑐)⃗⃗ ⃗⃗ ⃗⃗ ⃗ = (𝑋(𝑐)
1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝑋(𝑐,2)
2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , … , 𝑋(𝑐,𝐿)
𝐿

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗) (6)

where 𝐿 represents the total length of the demand sequence data

for 𝑐𝑡ℎ 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠. The load profile pool is then generated

through 3 steps: 1) add customer id label in the form of dummy

variables, 2) split data into training and test sets, 3) merge all

training data to construct training pool, then construct test pool

with the same process. In order to clarify the process of pool

construction, a simplified illustration of 2 customers pool is

presented in Fig. 6:

Fig. 6. Example of load pool construction with 2 customers group

As illustrated above, 1𝑠𝑡 and 2𝑛𝑑 customers’ demand are noted

as two data sequences with size 𝐿 × 1 and 𝐿 × 1. In the first

step, the demand data will be labelled with dummy variables to

identify its customer id. In the example, the demand data are

expanded with size 𝐿 × 3 and𝐿 × 3. The number of expanded

columns is equivalent to customer group size. In the second

step, demand data of each customer will be split into training

sets and test sets. The training sets of each customer are finally

batched together as the training pool. Same procedure is taken

to form the test pool.

B. Stage 2: pooling-based load forecasting using deep

recurrent neural network

This stage of the proposed method consists of training and

testing of pooling-based load forecasting: 1) In the training part,

the deep recurrent neural network is trained by load profile

batches randomly fetched from the load profile pool, so that

deep-RNN are not only learning individual load patterns but

also common sharing load features and uncertainties. 2) In the

testing part, test load profiles are fed forward into the well-

trained deep-RNN network.

Assuming the cleaned load profile database is Ψ1, and the

𝑁 testing households are listed in set 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑁}. The

deep RNN configuration parameters are specified with 𝐿 and 𝐻,

which represent the network depth (number of layers) and

amount of hidden units. With these parameters, the training and

testing process can be conducted in following steps:

1) Initiation of deep recurrent neural network

At the beginning, the deep recurrent neural network is built

with network configuration parameters, i.e., the network

depth 𝐿, amount of hidden units 𝐻, batch size 𝐵, input sequence

size 𝐼, and output sequence size 𝑂.

2) Network training iterations

After network initiation, the program is then running training

iteration epochs until the network is well-trained with

converged network prediction loss in the form of reduced mean

squared error (RMSE).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

𝐿𝑜𝑠𝑠(𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡 , 𝑦𝑡𝑎𝑟𝑔𝑒𝑡)

= √
1

𝐵
∙
1

𝑂
∙ ∑∑(𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡 − 𝑦𝑡𝑎𝑟𝑔𝑒𝑡)

2
𝑂

𝑗=1

𝐵

𝑖=1

2

(7)

In each of its training epochs, the training batch is firstly

fetched from the load profile pool, then fed into the deep

recurrent neural network. Each training batch is two matrices

with fixed size, i.e., input matrix with size 𝐵 × 𝐼 and output

matrix with size 𝐵 × 𝑂

The time-cost and iteration epochs of training process highly

depend on feed-in data sequence size 𝐼, the choice of optimizer,

network size (𝐿, 𝐻) and training batch size 𝐵. In order to strike

a well balance between training efficiency and efficacy, the

training batch size 𝐵 is variant during training: 1) at early

epochs, 𝐵 is set as a small number in order to approach the

optimum point rapidly. 2) Then 𝐵 is gradually increasing

towards better training performance but sacrifices time cost.

3) Testing iteration and performance benchmarking

The well-trained deep recurrent neural network is then tested

on individual households by performing as a feed-forward

prediction neural network. In the testing process, load

forecasting is conducted on testing households one by one, to

identify whether the proposed methods can achieve a

performance improvement of load forecasting individually. In

each of the iterations, a performance comparison is made with

other load forecasting methods, including ARIMA, SVR, RNN

and deep-RNN, which only trained with load profile data from

the testing household.

IV. IMPLEMENTATION

This section introduces the implementation of the proposed

methodology, including hardware, software platforms, and the

program design.

A. Data Description

The data used in this paper are from the Smart Metering

Electricity Customer Behaviour Trials (CBTs) initiated by

Commission for Energy Regulation (CER) in Ireland. The trials

took place during 1st July 2009 and 31st December 2010 with

over 5000 Irish residential consumers and small and medium

enterprises (SMEs) participating. The full anonymized data sets

are publicly available online and comprise three parts: 1) half-

hourly sampled electricity consumption (kWh) from each

participant; 2) questionnaires and corresponding answers from

surveys; 3) customer type, tariff and stimulus description,

which specifies customer types, allocation of tariff scheme and

Demand Side Management (DSM) stimuli [37].

In this trial, there were 929 1-E-E type consumers, meaning

that they are all residential (1) customers with the controlled

stimulus (E) and controlled tariff (E). To put it into perspective,

these consumers were billed on existing flat rate without any

DSM stimuli, which are most representative since the majorities

of consumers outside the trial are of the type. In this paper, 920

1-E-E consumers were randomly selected as the testing

customers. With group size 10, 920 consumers were split into

92 groups randomly.

Data with missing intervals are encountered and hence are

not continuous. Different households may have different

missing intervals and need to be pre-processed individually.

Hardware and Software platforms.

B. Hardware and Software platforms

C. The program is implemented on a high-performance

Dell workstation equipped with Ubuntu 14.04

operating system and a computable GPU unit. The

deep learning code is programmed based on an open-

sourced deep learning framework named as Tensorflow

[38], which is developed by one of the leading industry

in the deep learning community, Google. Superior

features of it include: 1) it is designed for the most

popular programming language in data science, i.e.,

Python; 2) it supports GPU-based high-performance

parallel computing towards big data tasks; 3) it

employs symbolic programming mechanism and

enables computing graph optimization feature, which is

the most cutting-edge technique in deep learning

community. Program Implementation

The deep learning program is designed with multiple stages:

1) data pre-processing and cleaning; 2) data pooling; 3) data

sampling and 4) network training and 5) benchmark evaluation.

The program design is demonstrated with pseudo code in

Program 1:

Program 1: Deep learning program for STLF

1: Load dataset Ψ0 of household demand from smart meters.

2: Clean and pre-process demand data in dataset Ψ1.

3: Generate tuple set < 𝐿,𝐻, 𝐶 > of testing parameters: deep-RNN layer
number 𝑙 ⊆ 𝐿 , deep-RNN hidden unit number ℎ ⊆ 𝐻 , and testing
households set 𝐶.

4: For parameters < 𝑙, ℎ, 𝑐 > in tuple set < 𝐿,𝐻, 𝐶 >:

5: According to household set 𝐶, get generate load profile pool Ψ ⊆
Ψ1.

6: Divide Ψ into training set Ψ𝑡𝑟 and test set Ψ𝑡𝑠.

7: Build deep-RNN ℵ with network size (𝑙, ℎ) on Tensorflow.

8: Repeat

9: At 𝑘𝑡ℎ epochs Do:

10: Train deep-RNN ℵ with randomly fetched data batch Φ ⊆ Ψ𝑡𝑟

11: Evaluate performance by mean squared error Λ𝑘 on cross-
validation samples.

12: Update a performance queue:

Ω = [Λ𝑘−𝜈 , Λ𝑘−𝜈+1, … , Λ𝑘−1]

 By pop out Λ𝑘−𝜈 from Ω, then push in Λ𝑘

13: End

14: Until𝑣𝑎𝑟(Ω) ≤ 𝜀, where 𝜀 is a convergence threshold.

15: End

16: For household 𝑐 in set 𝐶:

17: Fetch test samples 𝜑𝑐 of household 𝑐 from dataset Ψ𝑡𝑠

18: Evaluate performance of ℵ on test samples 𝜑𝑐 , with multiple
performance benchmarks Θ

19: Compare load forecasting performance with other methods on
household 𝑐.

Deleted: ¶

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

20: End

21: Terminate

D. Experiment Setup

This part presents the details for setting up the experiments,

including data pre-process, algorithm configuration.

Regarding the data pre-process, raw data from Irish dataset

is manipulated into input data sets through three steps: 1) split

all customers into sub-groups; 2) construct load profile pool for

each customer group; 3) split each pool into training, validation

and test sets. The test set consist of data points during the last

30 days of available dataset (720 hours, 1440 data points),

validation set is randomly selected from the rest of the data.

In order to reach optimal performance of each algorithm

(SVR, ARIMA, RNN, DRNN, Pooling-based DRNN), we

prepared multiple algorithm settings for each algorithm.

However, not all results are reported in the result section, the

comparison is made with the optimal settings of each algorithm.

In summary, all the experiment settings and parameters are

presented as follows:

𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑔𝑟𝑜𝑢𝑝 𝑠𝑖𝑧𝑒 ∈ {10}

𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑔𝑟𝑜𝑢𝑝 𝑎𝑚𝑜𝑢𝑛𝑡 ∈ {92}

𝑡𝑒𝑠𝑡 𝑠𝑒𝑡 𝑠𝑖𝑧𝑒 ∈ {1440} 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑓 𝑑𝑎𝑡𝑎

𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑡 𝑠𝑖𝑧𝑒 ∈ {2880} 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑓 𝑑𝑎𝑡𝑎

𝑅𝑁𝑁 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑙𝑎𝑦𝑒𝑟 𝑛𝑢𝑚𝑏𝑒𝑟 ∈ {1}

𝐷𝑅𝑁𝑁 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑙𝑎𝑦𝑒𝑟 𝑛𝑢𝑚𝑏𝑒𝑟 ∈ {2,3,4,5}

𝑃𝐷𝑅𝑁𝑁 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑙𝑎𝑦𝑒𝑟 𝑛𝑢𝑚𝑏𝑒𝑟 ∈ {2,3,4,5}

𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 ∈ {96, 240, 480 } 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑓 𝑑𝑎𝑡𝑎

𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 ∈ {240, 480, 960} 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑓 𝑑𝑎𝑡𝑎

ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑒𝑢𝑟𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 ∈ {5,10,20,30,50,100}

𝑖𝑛𝑝𝑢𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡ℎ ∈ {48, 96,336}

𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑚𝑒𝑡ℎ𝑜𝑑 ∈ {𝐴𝑑𝑎𝑚𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟}

𝑛𝑒𝑢𝑟𝑜𝑛 𝑐𝑒𝑙𝑙 𝑢𝑛𝑖𝑡 ∈ {𝐿𝑆𝑇𝑀}

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 ∈ {0.001, 0.002, 0.005, 0.01}

𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑡𝑜𝑝 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 ∈ {𝑒𝑎𝑟𝑙𝑦 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔}

𝑙𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ∈ {𝑅𝑀𝑆𝐸}

V. RESULT AND DISCUSSION

In this section, the proposed method is validated on realistic

smart metering load data from Irish load profile database [37].

The data selection and pre-processing are exploited in the data

description section. To assess the performance of proposed

method in conducting STLF for residential households, three

widely used metrics are employed, including root mean squared

error (RMSE), normalised root mean squared error, and mean

absolute error [8].

𝑅𝑀𝑆𝐸 = √
∑ (𝑦�̂�−𝑦𝑡)

𝑁
𝑡=1

2

𝑁
 (8)

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛
 (9)

𝑀𝐴𝐸 =
∑ |𝑦�̂�−𝑦𝑡|

𝑁
𝑡=1

𝑁
 (10)

Where 𝑦�̂� is the forecasted value, 𝑦𝑡 is the actual value, 𝑦𝑚𝑎𝑥

and 𝑦𝑚𝑖𝑛 is the maximum and minimum value among the test

set. N refers to the test set size.

This assessment consists of three parts: 1) the performance

of proposed method are compared to 3 methods and typical

deep-RNN method to validate the efficacy; 2) the effect of

network depth increase are illustrated to reveal the performance

impact from ‘shallow’ to ‘deep’ architectures, to indicate the

potential of deep learning for load forecasting and reveal the

challenge of overfitting; and 3) the effect of pooling strategy are

revealed by comparing proposed PDRNN typical with deep-

RNN algorithm without pooling strategy, specifically to

indicate the effect of pooling strategy to defer the overfitting

issue.

A. Benchmarking of STLF methods in households

To validate the efficiency of the proposed PDRNN, three

load forecasting methods, including autoregressive integrated

moving average (ARIMA), support vector machine (SVR), and

a 3-layer deep-RNN method are taken as a comparison and

assessed under preceding mentioned benchmarks (RMSE,

NRMSE, and MAE). The performance comparison across all

testing residential households (920 households) is presented in

Fig. 7 to Fig. 9 in form of heat map.

It is notable that the other 4 methods (RNN, SVR, DRNN,

PDRNN) receive better average performance compared to

ARIMA in the experiments. Therefore, we presents the

performance improvement of 4 methods with respect to

ARIMA method in the heat map. In the heat map, 𝑦 axis refers

to 4 methods (method 1: RNN, method 2: SVR, method 3:

DRNN, method 4: PDRNN). 𝑥 axis refers to 920 testing

households. Lighter colour in the figure refers to better

performance.

The results in Fig. 7 to Fig. 9 indicate that:

i) In terms of Average performance of three benchmarks,

RNN and SVR achieve even performance, however, SVR

performs slightly better than RNN in terms of RMSE and

NRMSE. DRNN can receive a considerable improvement from

RNN and SVR in all three benchmarks. The proposed PDRNN

outperforms the other three methods, and can observe a clear

reduction on all benchmarks.

ii) Regarding the results of different customers, the

improvements of three benchmarks are not with same pattern.

The improvements of RMSE among differing customer are

largely diverse. While some customers receive 0.2 RMSE

reductions, the other customers may receive only half of it.

Unlike result of RMSE, the reduction of NRMSE and MAE are

more consistent.

Fig. 7. RMSE reduction of 4 methods compared to ARIMA: 1) RNN, 2) SVR,
3) DRNN, 4) PDRNN

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

Fig. 8. MAE reduction of 4 methods compared to ARIMA: 1) RNN, 2) SVR,
3) DRNN, 4) PDRNN

Fig. 9. NRMSE reduction of 4 methods compared to ARIMA: 1) RNN, 2)

SVR, 3) DRNN, 4) PDRNN

Fig. 10. The computational graph and unfolded topological graph

Furthermore, Fig. 10 demonstrates the real load and

forecasted load by different methods on a random day 20 Jan.

2010, household 1059. The proposed method can deliver

substantially improved performance at spikes and troughs. As

shown in the figure, the morning peak during 8:00 a.m. and

10:00 a.m. is accurately captured by the proposed method. In

addition, ARIMA, SVR, and 3-layer deep-RNN followed the

inertia and predict a peak between 10:00 a.m. and noon while

the proposed method successfully avoids overestimating.

B. Effect from ‘shallow’ to ‘deep’

A sensitivity analysis is conducted to investigate the effect

of network depth on load forecasting performance, in terms of

neural network based load forecasting methods. To make a fair

assessment, recurrent neural networks with differing depth are

all: 1) enhanced with LSTM units, 2) subjected to same input

size, output size, network configuration parameters, and 3)

implemented on Tensorflow with Python. The results are

presented in Fig. 11.

In Fig. 11, deep RNN witnesses the best performance with

2 to 3 layers, with around 0.485 in 𝑅𝑀𝑆𝐸, 0.27 in 𝑅, and 0.1 in

𝑁𝑅𝑀𝑆𝐸. Further increase in network depth will lead to severe

overfitting issue. With 5 layers, deep-RNN gives even worse

result than 1-layer RNN.

In general, the sensitivity analysis on network depth

indicates that increasing network depth into ‘deep’ can only

enhance the accuracy up to a limit number of layers, which

reflects the occurrence of overfitting, due to the lack of data

diversity and network parameter redundancy [39].

C. Effect of proposed pooling strategy

The proposed pooling strategy attempts to tackle the

occurrence of overfitting. The performance is investigated by

comparing the load forecasting performance between deep-

RNN methods with and without pooling at different depths. The

corresponding results are demonstrated in Fig. 11:

i) ii)

 iii)

Fig. 11. Household load forecasting benchmarks from shallow to deep: i) root

mean squared error (RMSE), ii) mean absolute error (MAE), iii) normalised root

mean squared error (NRMSE).

In Fig 11, the proposed PDRNN (red line marked with

cross) are compared with classical deep RNN method (blue line

marked with triangle). In terms of RMSE, MAE, NRMSE

classical deep RNN’s performance stops improve after 3 layers

due to overfitting while the proposed method keeps improving

as the number of layers increases till as deep as we tested.
TABLE I

PERFORMANCE COMPARISON

Network Architecture RMSE (kWh) NRMSE (kWh) MAE (kWh)

ARIMA 0.5593 0.1132 0.2998

RNN 0.5280 0.1076 0.2913

SVR 0.5180 0.1048 0.2855

DRNN 0.4815 0.0974 0.2698

PDRNN 0.4505 0.0912 0.2510

Improvement from DRNN to

PDRNN
6.96%

Improvement from ARIMA to

PDRNN
16.28%19.46%

6.45%

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

Table I compares the performance of the proposed PDRNN

in terms of RMSE, NRMSE, and MAE with four other

techniques, i.e., classical DRNN, SVR, shallow RNN and

ARIMA. All the presented metrics in the table take the averaged

values across all the tested households. As illustrated, DRNN

outperforms SVR, shallow RNN and ARIMA in all metrics

used. With the introduction of the proposed pooling strategy,

the new PDRNN with the same network settings (5 layers, with

30 hidden units in each layer), could further improve the

performance. Specifically, compared with classical DRNN, the

proposed PDRNN brings 6.45 % reduction in RMSE and

NRMSE, 6.96 % reduction of MAE. Compared with ARIMA,

the reduction in RMSE and MAE brought by PDRNN is even

more significant, reaching 19.46% and 16.28% respectively.

VI. CONCLUSION

This paper for the first time explores the potential of

employing the state-of-art deep learning technique for

household STLF under high uncertainty and volatility. A novel

PDRNN is proposed to successfully address the overfitting

challenges brought by the naive deep network. This paper

proposes method enables learning of spatial information shared

between interconnected customers and hence allowing more

learning layers before the occurrence of overfitting.

The result indicates the proposed method can deliver

significant improvement for household load forecasting.

Compared with state-of-the-art, the proposed method

outperforms ARIMA by 19.5%, SVR by 13.1% and classical

deep RNN by 6.5% in terms of RMSE and similar performance

under other metrics.

Although quantitative comparison has been conducted, we

would like to emphasize that we do not draw an arbitrary

conclusion of the superiority of deep learning model. The key

findings are the overfitting problem identified in direct applying

deep learning models and the novel pooling methodology

developed to overcome the limitation. The paper aims to report

the preliminary attempt and provide learnings for wider

researchers who aim to tap into this state-of-the-art technique.

Future work includes:

i) To exploit the overfitting point by further extending the

network size.

ii) To exploit optimal pooling strategy by pooling customers

with differing features, such as similar geographic locations,

similar social status.

iii) To further exploit the potential of proposed method by

considering more external factors, for instance, weather

information.

References

[1] "Creating the right environment for demandside response," Ofgem,
London30 April 2013 2013.

[2] "Demand Side Response Policy Paper," European network of

Transmission System Operators for Electricity, Belgium, 15

September 20142014.

[3] A. Garulli, S. Paoletti, and A. Vicino, "Models and Techniques for

Electric Load Forecasting in the Presence of Demand Response,"

IEEE Transactions on Control Systems Technology, vol. 23, pp.

1087-1097, 2015.

[4] P. Du and N. Lu, "Appliance Commitment for Household Load
Scheduling," IEEE Transactions on Smart Grid, vol. 2, pp. 411-419,

2011.

[5] X. Liu, L. Ivanescu, R. Kang, and M. Maier, "Real-time household
load priority scheduling algorithm based on prediction of renewable

source availability," IEEE Transactions on Consumer Electronics,

vol. 58, pp. 318-326, 2012.

[6] B. Stephen, X. Tang, P. R. Harvey, S. Galloway, and K. I. Jennett,

"Incorporating Practice Theory in Sub-Profile Models for Short

Term Aggregated Residential Load Forecasting."
[7] M. Chaouch, "Clustering-Based Improvement of Nonparametric

Functional Time Series Forecasting: Application to Intra-Day

Household-Level Load Curves," IEEE Transactions on Smart Grid,
vol. 5, pp. 411-419, 2014.

[8] C. J. Willmott, S. G. Ackleson, R. E. Davis, J. J. Feddema, K. M.

Klink, D. R. Legates, et al., "Statistics for the evaluation and
comparison of models," 1985.

[9] A. Marinescu, C. Harris, I. Dusparic, S. Clarke, and V. Cahill,

"Residential electrical demand forecasting in very small scale: An

evaluation of forecasting methods," in Software Engineering

Challenges for the Smart Grid (SE4SG), 2013 2nd International

Workshop on, 2013, pp. 25-32.
[10] S. Humeau, T. K. Wijaya, M. Vasirani, and K. Aberer, "Electricity

load forecasting for residential customers: Exploiting aggregation

and correlation between households," in Sustainable Internet and
ICT for Sustainability (SustainIT), 2013, 2013, pp. 1-6.

[11] A. Veit, C. Goebel, R. Tidke, C. Doblander, and H.-A. Jacobsen,

"Household electricity demand forecasting: benchmarking state-of-
the-art methods," in Proceedings of the 5th international conference

on Future energy systems, 2014, pp. 233-234.

[12] S. Haben, J. Ward, D. V. Greetham, C. Singleton, and P. Grindrod,

"A new error measure for forecasts of household-level, high

resolution electrical energy consumption," International Journal of
Forecasting, vol. 30, pp. 246-256, 2014.

[13] Y.-H. Hsiao, "Household electricity demand forecast based on

context information and user daily schedule analysis from meter
data," IEEE Transactions on Industrial Informatics, vol. 11, pp. 33-

43, 2015.

[14] Y. Wang, Q. Xia, and C. Kang, "Secondary Forecasting Based on
Deviation Analysis for Short-Term Load Forecasting," IEEE

Transactions on Power Systems, vol. 26, pp. 500-507, 2011.

[15] Tao Hong and D. A. Dickey. (2013, 01 August 2016). Electric load
forecasting: fundamentals and best practices. Available:

https://www.otexts.org/elf

[16] F. L. Quilumba, W. J. Lee, H. Huang, D. Y. Wang, and R. L.
Szabados, "Using Smart Meter Data to Improve the Accuracy of

Intraday Load Forecasting Considering Customer Behavior

Similarities," IEEE Transactions on Smart Grid, vol. 6, pp. 911-918,

2015.

[17] H. Tao, W. Pu, A. Pahwa, G. Min, and S. M. Hsiang, "Cost of

temperature history data uncertainties in short term electric load
forecasting," in Probabilistic Methods Applied to Power Systems

(PMAPS), 2010 IEEE 11th International Conference on, 2010, pp.

212-217.

[18] T. Hong, P. Wang, and L. White, "Weather station selection for

electric load forecasting," International Journal of Forecasting, vol.

31, pp. 286-295, 4// 2015.
[19] P. Wang, B. Liu, and T. Hong, "Electric load forecasting with

recency effect: A big data approach," International Journal of

Forecasting, vol. 32, pp. 585-597, 7// 2016.

[20] X. Sun, P. B. Luh, K. W. Cheung, W. Guan, L. D. Michel, S. S.

Venkata, et al., "An Efficient Approach to Short-Term Load

Forecasting at the Distribution Level," IEEE Transactions on Power
Systems, vol. 31, pp. 2526-2537, 2016.

[21] R. Li, C. Gu, F. Li, G. Shaddick, and M. Dale, "Development of low

voltage network templates—Part II: Peak load estimation by
clusterwise regression," IEEE Transactions on Power Systems, vol.

30, pp. 3045-3052, 2015.

[22] A. Espasa and I. Mayo-Burgos, "Forecasting aggregates and
disaggregates with common features," International Journal of

Forecasting, vol. 29, pp. 718-732, 10// 2013.

[23] J. Nowotarski, B. Liu, R. Weron, and T. Hong, "Improving short

term load forecast accuracy via combining sister forecasts," Energy,

vol. 98, pp. 40-49, 2016.

[24] Y. Chen, P. B. Luh, C. Guan, Y. Zhao, L. D. Michel, M. A.

Coolbeth, et al., "Short-Term Load Forecasting: Similar Day-Based

Wavelet Neural Networks," IEEE Transactions on Power Systems,

vol. 25, pp. 322-330, 2010.

http://www.otexts.org/elf

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

[25] R. Al-Otaibi, N. Jin, T. Wilcox, and P. Flach, "Feature Construction
and Calibration for Clustering Daily Load Curves from Smart-Meter

Data," IEEE Transactions on Industrial Informatics, vol. 12, pp.

645-654, 2016.

[26] D. Shi, R. Li, R. Shi, and F. Li, "Analysis of the relationship between

load profile and weather condition," in 2014 IEEE PES General

Meeting | Conference & Exposition, 2014, pp. 1-5.
[27] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den

Driessche, et al., "Mastering the game of Go with deep neural

networks and tree search," Nature, vol. 529, pp. 484-489,

01/28/print 2016.

[28] A. Lusci, G. Pollastri, and P. Baldi, "Deep architectures and deep

learning in chemoinformatics: the prediction of aqueous solubility
for drug-like molecules," Journal of chemical information and

modeling, vol. 53, pp. 1563-1575, 2013.

[29] C. Y. Zhang, C. L. P. Chen, M. Gan, and L. Chen, "Predictive Deep

Boltzmann Machine for Multiperiod Wind Speed Forecasting,"

IEEE Transactions on Sustainable Energy, vol. 6, pp. 1416-1425,

2015.
[30] E. Busseti, I. Osband, and S. Wong, "Deep learning for time series

modeling," Technical report, Stanford University2012.

[31] Y. Bengio, I. J. Goodfellow, and A. Courville, "Deep learning," An
MIT Press book in preparation. Draft chapters available at

http://www. iro. umontreal. ca/∼ bengioy/dlbook, 2015.

[32] W. S. McCulloch and W. Pitts, "A logical calculus of the ideas

immanent in nervous activity," The bulletin of mathematical
biophysics, vol. 5, pp. 115-133, 1943.

[33] G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning

algorithm for deep belief nets," Neural Comput., vol. 18, pp. 1527-
1554, 2006.

[34] K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward

networks are universal approximators," Neural networks, vol. 2, pp.
359-366, 1989.

[35] A. Graves, A.-r. Mohamed, and G. Hinton, "Speech recognition

with deep recurrent neural networks," in 2013 IEEE international
conference on acoustics, speech and signal processing, 2013, pp.

6645-6649.

[36] R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio, "How to construct

deep recurrent neural networks," arXiv preprint arXiv:1312.6026,

2013.

[37] "Electricity Smart Metering Customer Behaviour Trials (CBT)
Findings Report," The Commission for Energy Regulation, Dublin,

Information Paper2011.

[38] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro , et
al., "Tensorflow: Large-scale machine learning on heterogeneous

distributed systems," arXiv preprint arXiv:1603.04467, 2016.

[39] D. M. Hawkins, "The problem of overfitting," Journal of chemical
information and computer sciences, vol. 44, pp. 1-12, 2004.

[40] Tao Hong, Pierre Pinson, Shu Fan, Global Energy Forecasting

Competition 2012, International Journal of Forecasting, Volume 30,

Issue 2, April–June 2014, Pages 357-363, ISSN 0169-2070,.

[41] Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto
Troccoli, Rob J. Hyndman, Probabilistic energy forecasting: Global

Energy Forecasting Competition 2014 and beyond, International

Journal of Forecasting, Volume 32, Issue 3, July–September 2016,

Pages 896-913, ISSN 0169-2070,

[42] Tao Hong, Shu Fan, Probabilistic electric load forecasting: A tutorial

review, International Journal of Forecasting, Volume 32, Issue 3,
July–September 2016, Pages 914-938, ISSN 0169-2070,

http://dx.doi.org/10.1016/j.ijforecast.2015.11.011.

Heng Shi was born in Hunan province,

China. He received the B.Eng. degree in

computer science and technology from

Tsinghua University, Beijing, China, in

2013. He is currently working as Ph.D.

candidates at the University of Bath. His

major research interest is the big data

analysis and deep learning applications in

power system, especially in the LV distribution networks under

high uncertainties.

Minghao Xu received his B.Eng. degree in

electrical and electronic engineering from

the University of Bath, U.K, and electrical

power engineering from North China

Electric Power University, Baoding,

China, in 2014. Currently, he is pursuing

the Ph.D. degree at the University of Bath.

His research interests include big data,

machine learning and deep learning applications in power

systems.

Ran Li is a lecturer/assistant professor

with University of Bath. He received his

B.Eng. degree in electrical power

engineering from University of Bath, U.K,

and North China Electric Power

University, Beijing, China, in 2011. He

received the Ph.D. degree from University

of Bath in 2014. His major interest is in the

area of big data in power system, load profling and forecasting,

power market and economics.

http://www/

