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 Abstract  

In different engineering fields, there is a strong demand for diagnostic methods able to 

provide detailed information on material defects. Low velocity impact damage can 

considerably degrade the integrity of structural components and, if not detected, can 

result in catastrophic failures. This paper presents a nonlinear structural health 

monitoring imaging method, based on elastic wave spectroscopy, for the detection and 

localisation of nonlinear signatures on a damaged composite structure. The proposed 

technique relies on the bispectral analysis of ultrasonic waveforms originated by a 

harmonic excitation and it allows for the evaluation of second order material 

nonlinearities due to the presence of cracks and delaminations. This nonlinear technique 

was combined with a radial basis function approach in order to achieve an effective 

visualisation of the damage over the panel using only a limited number of acquisition 

points. The robustness of bispectral analysis was experimentally demonstrated on a 

damaged carbon fibre reinforced plastic (CFRP) composite panel, and the nonlinear 

                                                 
* Corresponding author: m.meo@bath.ac.uk 



source’s location was obtained with a high level of accuracy. Unlike other ultrasonic 

imaging methods for damage detection, this methodology does not require any baseline 

with the undamaged structure for the evaluation of the defect, nor a priori knowledge of 

the mechanical properties of the specimen.  

 

Keywords: Nonlinear Acoustics, Imaging Methods, Bicoherence Analysis, Radial Basis 

Functions, Delaminations. 

 

1 Introduction  

In the aerospace field and in many other engineering applications, structural health 

monitoring (SHM) imaging techniques based on ultrasonic wave propagation have 

attracted the interest of scientists and engineers as they can provide key information 

regarding the structural characteristics and the residual life of a component [1], [2], [3] 

and [4]. Indeed, SHM methods are becoming more and more reliable, so that damage 

tolerance criteria play a challenging role in mitigating structural failures due to fatigue 

in aircraft structural design. Literature provides a quantitative number of diagnostic 

imaging methods that can continuously provide a detailed image of the structural 

damage. Most of them are based on the linear elastodynamic theory and measure the 

reflection and scattering of primary waves at the material heterogeneities and 

discontinuities. One type of imaging technique is the elliptical or sum-and-delay method 

[5], wherein differenced waveforms (i.e. residual signals from the difference between 

damaged and undamaged states) acquired by all transducer pairs are summed for each 

spatial point (i.e. time delay) of the image. For a single sensor pair, this imaging process 

maps a single echo to an ellipsis with its foci being the transmitter/receiver locations. As 



additional pairs are added, the ellipses intersect at the defect location thus reinforcing 

the signal. A second algorithm, known as the energy arrival technique [6], is an 

adaptively windowed version of the elliptical method. This has the effect of reducing 

the amplitude of the edge reflections, improving the quality of the image. However, all 

these algorithms rely on the availability of a baseline (undamaged structure) and the 

time origin of the excitation, as well as a known group velocity for the elastic waves. 

Over the past 30 years, the migration technique was applied to SHM systems in order to 

recover the location and shape of reflecting, refracting and diffracting defects. This 

method, derived from geophysics, is based on the idea that reconstruction of the image 

can be made via numerical finite difference calculations. The signals recovered by the 

receivers (positioned along a line including the emitter sensor) are time-reversed and 

back-propagated to create image snapshots of the displacement field, in particular at the 

moment at which all back-propagated waves precisely converge on the defect [7]. 

Initially this technique was limited only to isotropic materials, however this 

methodology has been extended to anisotropic composite laminates in which the group 

velocity was taken as a function of the propagation direction [8]. In the last few years, 

ultrasonic nonlinear methods have stimulated interest in the SHM community due to 

their high sensitivity to detect damage in structures where the crack size is comparable 

with the ultrasonic wavelength (e.g. micro-cracks, contact-type defects, delamination, 

inclusions, etc…) [9], [10] and [11]. In particular, nonlinear elastic wave spectroscopy 

(NEWS) methods have shown to be sensitive in discovering structural defects even at 

an early stage of development [12], [13]. In [14] a NEWS method was used to evaluate 

the degradation of material properties of a steel structure that had undergone fatigue 

loading. The generation mechanism of the second order harmonic frequency 



components during the propagation of ultrasonic waves through the degraded material 

was explained by means of classical nonlinear elasticity (CNL) theory [15]. In 

particular, the classical second order nonlinear parameter β was found to be proportional 

to the magnitude of the load and the number of fatigue cycles. In [16] a damage 

detection investigation was carried out based on the observation of the presence of 

harmonics and sidebands on the spectrum of the recorded signals excited by a bi-tonal 

harmonic input. In the absence of damage, the signal spectrum did not contain any 

harmonics or sidebands that, on the contrary, were recorded in the damaged signal 

spectrum. The proposed approach allowed the presence of damage in a sandwich 

composite structure to be detected, even when this damage was localised in a small area 

and it was barely visible from the top surface. Other authors have used the NEWS 

methods with the aim of developing robust techniques of detection and localization of 

damage in a variety of samples [17], [18]. In [19], the nonlinear structural response 

acquired in different locations of the sample in both the time and frequency domain was 

analysed to evaluate statistical indicators produced by nonlinearities. Solodov et al. [20] 

developed a fully non-contact nonlinear local defect resonance (LDR) imaging method 

to detect near-surface and in-depth delamination using laser vibrometry. Finally, 

Ciampa and Meo [21], [22] developed an imaging method for the visualisation of 

structural damage in composite structures based on a combination of nonlinear inverse 

filtering process and phase symmetry analysis.  

This paper presents a nonlinear imaging method based on higher order statistic such as 

bispectral and bicoherence analysis in order to detect and localise the presence of a 

crack or delamination in a composite laminate. Unlike the standard second order 

nonlinear parameter β, the bicoherence coefficient was used to study the nonlinear 



response of the sample undergoing harmonic excitation, as it exhibited high sensitivity 

to second order material nonlinearities. Bicoherence provides additional information on 

the estimation of the damage location through the quadratic phase coupling between the 

fundamental and second harmonic amplitudes contained in the measured signals [23]. 

Radial basis function (RBF) interpolation was then used to image the damage location 

by reducing the number of receiver points, thus simulating a sparse array of receiver 

sensors [24]. RBF is usually used to reconstruct smooth, manifold surfaces from point-

cloud data for computer visualisations [25]. They can also be employed to repair 

incomplete meshes in large data sets (e.g. in finite element problems) [26], as a mesh 

simplification tool and remeshing application or to interpolate displacements of 

boundary nodes with respect to a whole mesh [27]. The experimental results carried out 

on a carbon fibre reinforced plastic (CFRP) composite laminate showed a strong 

correlation of the bicoherence with the internal defect location and encouraged the use 

of higher order statistic and RBF as a nonlinear ultrasonic imaging technique for 

damage detection using a limited number of receiver sensors. The layout of this paper is 

as follows: in Section 2, bispectral and bicoherence analysis are theoretically presented. 

Section 3 illustrates the nonlinear imaging method with the RBF approach. Section 4 

reports the experimental set-up, whilst Section 5 shows the results of the nonlinear 

imaging process. Finally, the conclusions are drawn and summarised. 

 

2 Theoretical Development 

In the following Section, the concepts of bispectrum, classical second order nonlinear 

parameter β and bicoherence will be briefly presented and discussed since they 



represent the theoretical basis of the approach followed in this work for the image of the 

damage location on the composite structure. 

 

2.1 Bispectral Analysis 

The most traditionally employed signal processing techniques used to measure the 

acousto/ultrasonic elastic features of a medium are the first and second-order statistics, 

such as the mean, variance and power spectrum. The last method in particular, which is 

the decomposition over frequency of the signal power, is related to the auto-correlation 

function and is mostly used to describe linear and Gaussian processes [28]. However, 

power spectral analysis has the drawback of discarding all phase information. Higher 

order statistics (HOS) such as bispectral analysis, can be seen as a decomposition of the 

third moment of a signal over frequency, and can be used to measure the magnitude of 

the even (second) order harmonic frequency components in the propagated ultrasonic 

waves [29]. Bispectrum is in fact the two-dimensional Fourier Transform of the third 

order correlation function and is generally complex valued. For a real, zero-mean 

stationary random process x(t), the power spectral density  mP   and bispectrum 

 nm ,B   are given by [28]: 

     








  
deRP mj

xxm  (1) 

     









 2121

21  
dde,R,B

)(j
xxxnm

nm  (2) 

where  xxR  and Rxxx(τ1,τ2) are the auto-correlation function and third order auto-

correlation function of x(t), respectively. By using the statistical expectation operator 

E[·], Eqs. (1) and (2) can be rewritten as: 
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where  mX   is the Fourier Transform of the measured signal x(t) and the asterisk sign 

“*” corresponds to a complex conjugate operation. Therefore, as the power spectrum 

decomposes the power of a signal, the bispectrum decomposes the third order cumulant 

by analysing the frequency interaction between the frequency components at m , n  

and nm   . However, due to several symmetries in the  nm ,  plane, it is not 

necessary to compute  nm ,B   for all m  and n  pairs. Indeed, there exists a non-

redundant region called the Principal Domain that is defined as [30]: 
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where fs is the sampling frequency. In addition, the three frequency components m , n  

and nm    have a special phase relation defined as follows: 

 nmk    (6) 

where m  and n  are the phases of the signal at frequencies m  and n , respectively, 

and k  is the phase of the signal at frequency nm   . This last condition, known as 

quadratic phase coupling (QPC) [31], results from the second order nonlinearity due to 

structural damage, and it can be considered as the bispectrum’s ability to detect 

nonlinear elastic features within the medium. In other words, if conditions (5) and (6) 

are satisfied, QPC allows discriminating between the structural nonlinearity that would 

be quadratic phase coupled and other experimental spurious sources such as ambient 

and equipment noise that, instead, might not be. Indeed, let us assume that the spectrum 

of the measured signal  X  is expressed as a superposition of the nonlinear structural 



response  U  and random contributions due to the effects of the experimental noise, 

 a
, and the electronic noise,  e

, [32]: 
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where  qqan  ,  and  ppen  ,  are random variables of constant amplitude ak  and ek . 

Since generally the subscripts nmpq ,,  , both environmental and experimental noise 

do not allow for QPC. Hence, bispectral analysis can be significantly useful in sensing 

small high order nonlinear harmonic components induced by the interaction of elastic 

waves and the material defects. To this purpose, by setting 1  nm  and calculating 

the magnitude of Eqs. (3) and (4), yields: 
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with 12 2  . 

 

2.2 Estimation of Nonlinear Parameters 

According to Landau’s nonlinear classical theory [15] and Eq. (8), the standard second 

order nonlinear parameter  can be obtained as a solution of the nonlinear 

elastodynamic wave equation via a first order perturbation theory as follows [32]: 
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where  2P  is the magnitude of the power spectral density associated with the second 

harmonic frequency component and jyix mmm
ˆˆ r  is the position vector of the m 

 Mm 1  receivers located on top surface of the composite panel. The parameter 



)( mr  is herein introduced to quantify the second nonlinear elastic response of a 

structure subjected to harmonic excitation. An analogous nonlinear parameter can be 

obtained from the bispectral analysis in order to measure the amount of coupling 

between the angular frequencies 1  and 12 . In particular, the bicoherence )(2

mb r  is a 

useful normalized form of bispectrum that measures QPC on an absolute scale between 

zero and one and can be defined as: 
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A value of one in the above equation indicates perfect quadratic phase coupling, whilst 

a value of zero indicates the absence of phase coupling. Since the bispectrum has a 

variance proportional to the triple product of the power spectra, it can result in the 

second order properties of the acquired signal dominating the estimation. The advantage 

of normalisation within the bicoherence process in Eq. (11) is to make the variance 

approximately flat across all frequencies [34]. Hence, both the parameter )( mr  and the 

bicoherence )(2

mb r  will be used to characterise the nonlinearity of the structural 

response of the composite laminate subjected to a harmonic excitation. 

 

3 Nonlinear Imaging Method 

In this study, a diagnostic nonlinear imaging method was developed to detect the second 

order nonlinear response of a damaged composite laminate using two sensors in pitch-

catch mode. Both the second order nonlinear parameter )( mr  and the bicoherence 

coefficient )(2

mb r  were used to measure the second order nonlinear elastic effects due 

the interaction of the elastic waves with the crack interfaces (i.e. due to “clapping and 



rubbing motion”) [35]. In particular, the damaged zone (i.e. the area on the top surface 

examined by the receiver sensor, with dimensions 210 mm x 150 mm) surrounding the 

defect was divided into M = 5 x 7 cells distributed along a grid at intervals of 30 mm 

(Fig. 1). The structural response was then acquired using a receiver piezoelectric 

transducer placed in each of the m  Mm 1  cells of the damaged zone. 

 

 

Figure 1 Representation of the damaged zone on the composite panel. The black square corresponds to 

the damage location. The circles represent the transmitter positions 
 

An excitation a signal consisting of a 5-cycle Hanning-windowed tone burst at 223.5 

kHz was generated, amplified and used to drive a transmitter piezoelectric sensor 

surface bonded to the sample under investigation. Such a fundamental frequency was 

tuned to find local maxima in the sample response using a swept signal from 150 to 300 

kHz, thus fulfilling the QPC condition [Eq. (6)]. Fig. 2 reports the values of bicoherence 

at the damage location calculated from Eq. (11) for different excitation frequencies.  

 



 

Figure 2 Bicoherence contour plot at the damage location. The maximum value of bicoherence was 

experimentally obtained at f1 = 223.5 kHz. 

 

From the above figure, it can be clearly seen that the maximum value of bicoherence 

was achieved at the input frequency of 223. 5 kHz. According to Eqs. (10) and (11) both 

values of )( mr  and )(2

mb r  were calculated for each cell of the grid and plotted on a 

2D map. As the transmitter transducer was moved in N = 4 different positions of the 

composite plate, two different 2D maps were obtained for  mtot r  and  mtotb r
2  to 

retrieve the values of the nonlinear coefficients at the damage location according to: 
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where N is the number of transmitter positions. Similarly to [36], the number N = 4 was 

arbitrarily chosen to provide satisfactory results for the damage localisation. 

 



3.1 Nonlinear Imaging with Radial Basis Functions 

In the previous Section a multiple sensing element arrangement composed of M cells 

(i.e. the receiver positions) was used to calculate the 2D maps of the nonlinear 

coefficients. Hence, in order to reduce the number of cells needed to create an image of 

the nonlinear second order structural defect, radial basis functions (RBF) interpolation 

was used. In other words, RBF was employed to highlight the damage location by 

reducing the number of receiving points, thus simulating a sparse array of receiver 

sensors. RBF is commonly exploited for scattered data interpolations problems, since it 

is able to interpolate arbitrary sets of point clouds in a smooth manner [37]. The most 

popular choices of radial basis functions  are reported in [38]. In this work, the thin-

plate spline basis function was used, which can be defined as: 

   rrr log2  (13) 

where jyix ˆˆ r  is the position vector of each point on the damaged zone (including 

the points mr ). The thin-plate spline is known a “smoothest” interpolator in the sense 

that it not only provides C1 continuity† and satisfies the interpolation condition [Eq. 

(A6)], but also it minimises the energy functional over all the interpolant points for 

which the energy functional is well defined [Eq. (A7)]. Hence, according to theoretical 

aspects on RBF reported in the Appendix, the nonlinear values  mtots rr,  in all the 

points of the damaged zone with coordinate r can be obtained from Eq. (A16) as 

follows: 
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† The notation Ci is used to denote a function which is continuous in its first i derivatives  



Eq. (14) defines a new 2D map in which the location of the damage within the 

composite structure can be retrieved even reducing the number of receiver points on the 

damaged zone. 

 

4 Experimental set-up 

The experiments were carried out on a composite carbon fibre reinforced plastic (CFRP) 

plate with dimensions 292 x 292 x 3 mm and a stacking sequence of [0,90/+-45/0,90/+-

45/0,90/+-45]s (Fig. 3).  

 

Figure 3 Composite test sample and piezoelectric transducers used in the experiments 

To simulate delamination damage, the specimen was fabricated with a 10-mm squared 

Teflon patch inserted between the plies. The location of the damage was at coordinate x 

= 135 mm and y = 105 mm within the damaged zone with the origin at the bottom left 

corner of the grid (Fig. 1). To transmit the waveforms, a 50-mm-diameter Olympus – 

Panametrics NDT X1020 piezoelectric sensor with a central frequency of 100 kHz was 

surface bonded on the composite structure using a coupling gel. The transducer was 

linked to a preamplifier and connected to a National Instrument (NI) data acquisition 

system consisting of the NI PXI 5421 16-bit arbitrary waveform generator card to send 

the tone burst at 223.5 kHz. The excited voltage applied was around 250 V in order to 



maximize the efficiency of the available transducers. In order to measure the material 

nonlinear response, a 3-cm-diameter Olympus – Panametrics NDT V101 piezoelectric 

sensor with a central frequency of 500 kHz was connected to the NI PXI-5105 8-

channel digitizer/oscilloscope card (Fig. 4). 

 

Figure 4 Experimental Set-up 

The waveforms acquired in each cell of the damaged zone were Fourier transformed 

and then averaged across 20 acquisitions in order to reduce the effects of noise 

contained in the measured signals. Each nonlinear response was sampled at 20 MHz 

with a total acquisition time of 2 ms. Fig. 5 reports the time history and the associated 

spectrum of two measured signals, i.e. at the damage location (5a-b) and in a point far 

from it (5c-d). Whilst the presence of the second harmonic is clearly visible in both 

signals, its magnitude at the damage location is higher (nearly 25 dB of difference). 

 (a) 



(b) 

(c) 

(d) 

Figure 5 Time histories and associated Fourier transforms measured at the damage location (a-b) and far 

from it (c-d). 

 

5 Nonlinear Imaging Results 

As explained in Section 3, the acquired second order nonlinear responses were used to 

obtain an image representative of the damage using the two different nonlinear 



parameters, i.e. the second order nonlinear parameter  mr  and the bicoherence 

)(2

mb r .The envelope of the structural response was first computed using the Hilbert 

transformation and then, according to Eqs. (12a) and (12b), the damage location was 

retrieved from a 2D map of each cell of the damaged zone. Fig. 6 represents the 

resulting image of the damage location created by summing the contributions of all four 

nonlinear coefficients at each transmitter position.  

(a) (b) 

Figure 6 Image of the structural damage using the second order nonlinear coefficient  mtot r  (a) and 

the bicoherence  mtotb r
2

 (b). 

 

As it can be seen from Fig. 6, the bicoherence coefficient appeared to be very sensitive 

to the presence of the second order nonlinearities and, compared to  mr , it allowed a 

better estimation of the damage location. This might be due to the lack of information 

provided by the second order nonlinear coefficient on the quadratic phase coupling 

between the fundamental and the second harmonic. Indeed, by definition [Eq. (10)], the 

parameter does not provide any information of the phase of the measured signals, 

which may lead to ambiguities in the image of the nonlinear source. According to Eq. 

(7), such ambiguities could be produced by spurious experimental sources of 

nonlinearity such as the environmental noise (e.g. the coupling between the receiver and 



the composite structure) and the equipment noise. Hence, the bicoherence was able to 

reveal the presence of damage within the composite laminate only due to second order 

nonlinearity. The second imaging technique based on RBF was then used to simulate a 

sparse array of receivers. The following four plots in Fig. 7 were produced by reducing 

the number of the M receiver points on the damaged zone by means of a combination of 

RBF and )(2

mb r .  

(a) (b) 

(c) (d) 

Figure 7. Images of the structural damage using the bicoherence coefficient )(2

mb r  post-processed 

through RBF using (a) 35 points; (b) 20 points; (c) 10 points; (d) 6 points. 

 

Once more, according to Eq. (14), the 2D maps were generated as a sum of the RBF 

contribution of four different transmitter positions. For the RBF implementation, the 

number of points was decreased from the total 35 points to either 20, 10 or 6 points. In 

all cases, damage could still be located accurately. It should be noted that only the 

bispectral analysis results was used in the implementation of the RBF algorithm, as 

these results did not show any ambiguities due to spurious experimental sources of 



nonlinearity. The main conclusion that can be drawn from the Fig. 7 is that RBF 

effectively allows the localisation of structural damage even using a limited sparse set 

of acquisition points. These points were randomly chosen over the surface of the panel, 

ensuring that the point associated with the damage was not included in the RBF 

evaluation. As expected, by limiting the number of points the predicted extent of the 

damage increases resulting in a more extended area on the sample in which the damage 

might be located. Nevertheless, the imaging technique provided useful and accurate 

results since the actual damage was always included in the predicted area (see values of 

the 2D maps close to one in Fig. 7). Finally, compared to other ultrasonic imaging 

techniques, such a nonlinear imaging process requires only simple signal processing to 

locate the nonlinear source as well as not requiring a priori knowledge of the sample’s 

mechanical properties, dispersion behaviour or a baseline of the undamaged structure. 

 

Conclusions 

The paper presents a nonlinear imaging process for the detection and localization of 

damage in composite structures. The basic principle is that the level of nonlinearity in 

the elastic response of materials containing structural damage is far greater than in 

materials with no structural damage. Indeed, nonlinear wave diagnostics of damage are 

remarkably sensitive to the detection and progression of damage in materials. The 

sample used for the experimental tests was a square composite panel typical of 

aerospace applications, inside which a Teflon patch was inserted to simulate 

delamination damage. By exciting this sample with a harmonic excitation, the resultant 

spectrum showed a strong nonlinearity represented by the occurrence of the second 

harmonic nonlinear response caused by delamination. Time domain signals were 



processed to obtain the bicoherence values at different locations in the acquisition grid. 

The experimental results show that compared with the standard classical nonlinear 

coefficient, the bicoherence produced the most reliable signature for identifying the 

nonlinear source. Finally, the radial basis function approach was used for imaging the 

damage on the plate-like sample with a sparse array of acquisition points. Since this 

nonlinear imaging method does not require any information of the mechanical 

properties nor the stacking sequence of the composite laminate, future work is ongoing 

to further optimise the number of transmitter and receiver transducers and demonstrate 

the capabilities of this nonlinear imaging method on damaged components of larger 

dimensions and complex geometries. 

 

Appendix 

Let us consider a set of points   nM

mm 
1

r , with   the influence domain (i.e. the 

damaged zone) and let  be a fixed, real-valued, radially symmetric function on n . 

RBF interpolation method employs a “radial” function n:  to construct the 

interpolant scalar function s(r), i.e. the RBF of the form [38]: 
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where pj(r) is a basis for polynomials of degree at most k (typically linear or quadratic), 

     2122

mmm yyxx  rr  is the Euclidean norm so that mrr   is the basis 

function centred at rm (i.e. receiving point in which the nonlinear values are known), and 

m and bj are the weights or the expansion coefficients of the basis functions and the 

polynomial, respectively. Also, M and Npoly denote the number of control points rm and 



the number of polynomial terms, with polyNM  . The RBF [Eq. (A1)] consists of a 

weighted sum of a radially symmetric basis function  located at the centres rm and a 

low degree polynomial pj(r). Given a set on M control points rm and values 

  


M

mmf 1
, the process of finding an interpolating RBF s(r) for any internal point 

M of the mesh is called fitting and in matrix form is given by:  
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or 
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where: 
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Assuming  yx1P , the vectors H and X in Eq. (A3) become: 
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The coefficients m and bj in Eq. (A1) are determined by enforcing the interpolation 

pass through all M scattered nodal points within the influence domain    

   Mms mm ,,1 fr  (A6) 

with mf  the values of the nonlinear parameters at each receiver’s position M on the 

damaged zone. Although the addition of polynomial terms does not improve greatly the 

accuracy for non-polynomial functions, theoretically studies revealed that there was not 

guarantee that the interpolating condition could be satisfied without the use of 



polynomial terms. Particularly, given a set of nodes rm and a set of functions fm, the thin-

plate spline is the function  r
s  that satisfies the interpolator condition   mm fs 

r  and 

minimises the integral of the second order derivative squared defined by [39]:  
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where  
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and   2
rs  is a measure of the energy in the second order derivative of  rs . Moreover, 

in order to ensure a unique solution of the resulting system of linear equations, the 

following orthogonality or side condition must be satisfied: 
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More generally, if the polynomial in Eq. (A1) is of degree k, then the side conditions 

imposed on the coefficients of the basis functions are 
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for all polynomials q of degree at most k. Eqs. (A6) and (A9) lead to a linear system to 

solve for the coefficients that specify the RBF: 
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and the vector of function values at each node is: 
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Eq. (A10) can also be rewritten as 
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with: 
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RBF are very effective for interpolating scattered data as the associated system of linear 

equations is guaranteed to be invertible under very simple conditions on the locations of 

the data points. Unique solution of Eq. (A13) yields: 

 QGX
1 . (A15) 

Hence, the values fm in all the points within the influence domain   with coordinates r 

that were obtained through an interpolation with RBF, can be derived by substituting 

Eq. (A15) in Eq. (A2) as follows: 

   QGHrr
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ms . (A16) 
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