
        

Citation for published version:
Richens, P 1997, 'Image processing for urban scale environmental modelling' Paper presented at Proc 5th
Intemational IBPSA Conference: Building Simulation 97, Prague, 1/01/97, pp. 163-171.

Publication date:
1997

Link to publication

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161910556?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.bath.ac.uk/en/publications/image-processing-for-urban-scale-environmental-modelling(7982661f-ca83-4f50-8fae-80d96643502a).html


IMAGE PROCESSING FOR URBAN SCALE
ENVIRONMENTAL MODELLING

Paul Richens
The Martin Centre for Architectural and Urban Studies

University of Cambridge
6 Chaucer Road, Cambridge, CB2 2EB, UK

ABSTRACT
If a map of a city is encoded as a Digital Elevation
Model, it becomes amenable to image-processing
software, such as the public-domain NIH Image
application. Standard techniques can be used to
measure plan areas and volumes and simple macros
can be devised to measure perimeter length and wall
areas. A macro for calculating shadow volumes is
elaborated for the simulation of solar gains and
daylight, including indirect lighting, leading to the
possibility of an image-based urban-scale
environmental model.

INTRODUCTION
Two years ago, in 1995, a group of colleagues at The
Martin Centre for Architectural and Urban Studies at
the University of Cambridge started an investigation
of Zero Emission Urban Development, known as
Project ZED. Fundamental to this project was the
investigation of urban texture, and its relationship to
micro-climate, environmental performance and
energy use. The energy investigation was informed
by earlier work by Baker and Steemers[1985] which
had led to the "LT Method" for estimating the energy
needs of commercial buildings. LT is a simple
manual or spreadsheet method which requires the
user to split a building into active (deep plan,
artificially lit and ventilated) and passive (naturally
lit and ventilated) zones, and further to categorise the
passive zones by orientation. Once these zones are
identified and measured, LT provides a series of
graphs and procedures to arrive at the annual
estimated primary energy consumption, taking into
account solar gain and  artificial lighting, as well as
the usual fabric, ventilation and casual gains and
losses. The procedure is simple to use, but requires
manual measurement of the building, so is hardly
applicable to the urban scale. One of the long-term
aims of the present work is to find a corresponding
methodology that can be applied to substantial areas
of cities, without demanding detailed measurement of
individual buildings. Ideally it will be more sensitive
than the original LT Method to the surrounding
context; the over-shadowing, shelter, noise and
pollution that characterise a city micro climate.

The issue of texture, and how to characterise it in a
way that would correlate with micro climate, is
relatively unexplored. Webster[1995] derived some
textural signatures from satellite images, which he
found to correlate with residential density.  Project
ZED was to focus on three study areas, each of 400
metres square, in three different European cities;
London, Toulouse and Berlin. Early on, the team
prepared black-and white "figure-ground" maps of
their study areas, and later, when height information
became available, made foam block models, for use
in the wind-tunnel and artificial sky. Could image
processing provide a third line of attack?

The primary tool for texture analysis is the two-
dimensional Fast Fourier Transform (FFT); it seemed
interesting to scan the figure-ground maps, and
perhaps to add the height information to them,
forming what the geographers call a Digital Elevation
Model (DEM). But first we needed some software. A
search of the world-wide web using the keywords
"Mac", "image" and "FFT" produced three pieces of
download-able Macintosh software with the
capability of performing a 2D FFT. One was a
tutorial on the use of the FFT for filtering, and
another was aimed at applications in astronomy. The
most promising was a public-domain application
from the US National Institute of Health, called NIH
Image, designed for the analysis and measurement of
medical images, chiefly microscope slides, but also
used for X-rays, CT and MRI scans. In the end, the
FFT was of little importance, but the other
capabilities of NIH Image turned out to be
extraordinarily adaptable to our purpose.

NIH IMAGE
This section will introduce the basic concepts and
terminology of image processing, by reference to
NIH Image. A complete description can be found in
the download-able manuals, (see bibliography). For a
full treatment of image processing, see Jain[1989].
Many of the ideas in NIH Image will be familiar
from popular programs such as Adobe Photoshop;
the difference is one of emphasis. Photoshop is
concerned mainly with visual appearance, whereas
NIH Image concentrates on measurement and
analysis.



The basic data structure is the image, a 2D array of
pixels, each storing a single byte (8 bits), typically
understood as an integer in the range 0..255. Closely
associated with the image, is its LUT (Look up
table), which translates each of these integers into a
colour that is displayed on the screen. The LUT can
be freely changed, changing the appearance of the
image, without damaging the underlying data stored
in each pixel. Image and LUT can be written to disk
as a unit, typically as a TIFF file. Images usually
originate with a scanner;  video frames can be
captured directly if the computer has an AV board.
Images can be originated or edited on-screen using
the usual paint-box tools for line-drawing, selection,
fill, brushing and erasing.

An extra piece of information stored with each image
is its scale and calibration. Scale defines the width of
the pixel, while calibration allows the 0..255 value of
each pixel to be mapped onto some physical variable
of interest, such as optical density. This mapping
need not be linear. With this information Image can
display cross-sections along any line you draw on the
screen, or produce an axonometric rendering of the
whole image. It is also possible to display thick
sections, by drawing a thick line. The value displayed
is the average, taken through the thickness of the
section.

A large part of the functionality is aimed at image
enhancement, using two major techniques. The first
is LUT modification, which can alter the brightness
and contrast, or even apply false colour to the pixel
values. Thresholding turns the grey-scale  image into
a black and white one, with interactive control of the
threshold value. Density slicing turns a narrow range
of pixel values bright red; again with interactive
control. Dragging the slice through the range gives a
precise way of exploring the values in the image.
Both thresholding and density slicing are performed
by LUT modification, but it is possible to force the
changes into the image itself, which then becomes a
binary image with values of 0 (false, white) and 255
(true, black) only.

The second method of image enhancement is by
applying filters. The fundamental idea behind image
filters is the kernel, a small window or region of
pixels (say 3 by 3 or 5 by 5). The filter operates by
centring the kernel on each pixel in the image in turn,
and performing some computation on the values seen
under the kernel. The central pixel is replaced by the
result of the computation. So for example the Max
filter replaces each pixel by the maximum value in its
3 by 3 neighbourhood, and the Median filter replaces
each pixel by the median (central) value of its
neighbourhood (which is a popular way of removing
noise from an image).

Convolution filters work by forming a weighted
average of the pixels under the kernel;  the kernel
cells specify the weights. If the weights are all
positive, the result is some sort of smoothing or
blurring. More sophisticated kernels (with some
negative weights) can sharpen an image, differentiate
it, or detect edges.

NIH Image provides some all-important features for
doing arithmetic on complete images,  for example
by adding or multiplying corresponding pixels, or
taking the maximum or minimum values. The result
is a complete new image. In general these operations
are computed at higher precision, scaled and offset
by a stated amount, and then clipped to the 0..255
range allowed in each pixel.

NIH Image will measure any selected region of an
image, reporting how many pixels it contains, their
mean value, and standard deviation. It will also draw
a histogram.

In addition to these widely useful features, NIH
Image provides a number of more specialised
algorithms, such as background removal (to
compensate for the uneven illumination of a
microscope slide), erosion and dilation, edge
detection, and the FFT itself. But the most important
is the macro capability, which allows users to code
their own commands, using a simplified form of
Pascal. The interpreted macro language has full
access to all the menu commands, and to a number of
lower-level functions. It is possible, but slow, to
operate at the level of individual pixels, but
preferable to use commands, such as image
arithmetic, which are hundreds of times faster.

Digital elevation model



DIGITAL ELEVATION MODELS OF
CITIES
The DEMs of the three cities studied in Project ZED
started as hand-drawn figure-ground maps
prepared from published maps. These were scanned
into TIFF files and loaded into NIH Image. A
suitable scale for height information was chosen
(such as 10 units per metre, maximum height 25.5m).
Height information (from a field survey) was added
using painting tools, chiefly area-select and flood-fill.
Each image was  calibrated to fix the dimension of a
pixel as measured on the ground, and the size in
metres of one unit of elevation data. Typically a
study area of 400m square would be prepared as a
512 by 512 pixel image (the FFT algorithm requires
images to be square, and a power of two in side), but
for many experimental purposes a downsized image
256 pixels square proved to be adequate in
resolution, and around four times faster to process.

With this simply constructed DEM, NIH Image was
able to measure most of the usual built form
statistics. Histograms of building height, arbitrary
cross-sections, and axonometric representations came
directly. A very simple macro to measure the whole
image, and multiply the number of pixels by the
mean value (with suitable calibration corrections)
gives the built volume. By thresholding the image at
value 1, and re-measuring, we obtain the built area.
This works because the ground profile in the study
areas is essentially flat, and the ground is at level
zero throughout. If this were not the case we could
use the background removal feature to find ground
level, which could be subtracted from the image
before measuring areas and volumes. By using
thresholding to extract an image at any particular
level, we can repeat area measurements at any
horizontal cross-section.

Measuring external wall area (or the thresholded
equivalent, perimeter length), proved more
challenging.  There is a command to extract edge
pixels from the image, which seems a good start.
However, summing them and multiplying by the
scale does not necessarily give the right answer.
Walls aligned to the axes measure correctly, but
walls at 45 degrees measure short, by a factor of √2.

A more accurate answer can be obtained by using a
standard image-processing technique, the Sobel edge-
detector. The image is convolved separately with two
kernels:

1 2 1 -1 0 1
0 0 0 -2 0 2
-1 -2 -1 -1 0 1

The first constructs the derivative in the y direction
fy, the second fx. These derivatives are equal to eight
times the projected area of the wall in each direction.
The total area is therefore obtained by forming the
square-root of the sum of the squares of the two
derivatives. NIH provides a command "Find Edges"
which does the whole operation, though care is
needed (in pre-scaling the images) to make sure that
overflow in the limited precision arithmetic it uses
does not cause clipping in the result.  If the resulting
edge image is examined carefully it will be seen that
the edges are 2 pixels wide. Whereas the original
edge between a high and a low elevation value
apparently occurred in the crack between two pixels,
it is now smeared out, occupying  all the pixels
adjacent to the boundary. This smearing of edges, so
that they now occupy some actual pixels (rather than
the cracks between them), turned out to be useful in
other contexts, as it gives us some location at which
to store other information relating to edges, such as
solar irradiation.

If the convolutions are carried out separately, then it
is possible to use the results to classify edges by their
orientation computed as atan(fy/fx).

Wall area and plan depth displays

Deep-plan areas (at a certain distance from the
perimeter) can be displayed using density-slicing to
extract the level at which to work, and then eroding
the image to leave the deep-plan area. The most
recent version of NIH Image has a more sophisticated
command, which will code pixels by their depth from
the edge; this allows us to build a histogram of areas
sorted by depth from the facade.

TEXTURE ANALYSIS
One aspect of texture that interested the Project ZED
team was its directionality. The study areas are not
isotropic; some wall alignments and street
orientations are preferred over others, with likely
consequences for noise, wind and pollution
movement. We were interested in finding some
measure of this directionality that could be correlated
with the results of wind-tunnel experiments on the
rate of clearance of smoke from models of the study



area, under different flow orientations (NIH Image,
incidentally, proved very effective in analysing the
video-tapes of these experiments).

The prime tool for studying periodicity and
orientation in images is the two-dimensional FFT.
The results of applying it to our three study areas are
shown below. Although the primary orientations are
distinguished in these plots, they are, in general, hard
to interpret.

An alternative, more physical, measurement, was
proposed by my colleague Dr Baker. Called
Directional Porosity, he proposed drawing thick
cross-sections of varying orientations, averaging the
height across the section, and then measuring the
variance along it. A section perpendicular to the
street pattern would show a strong pattern of troughs
where the streets occur and have a high variance,
whereas a section oblique to the streets would have a
much lower variance.

The basic operation required for this analysis,
averaging values over a deep cross-section of
arbitrary orientation, is a standard command in NIH
Image. So it was quite simple to construct a macro
which iterated over 16 or so orientations, and for
each defined a thick cross-section, measured its
profile, and computed its variance. Finally, the results
were plotted as a polar diagram (Bakergram)
showing how Porosity varies with orientation.

Three cities, with Fourier transforms and
Bakergrams

SIMULATIONS
The results obtained so far would provide some of
the basic inputs to an urban version of the LT
Method, such as volume, wall and floor areas;

location of shallow and deep plan zones; and the
orientation of walls. The next issues to tackle are
daylight and sunlight; and as the urban geometry is
available, it should be possible to deal with
overshadowing and obstruction in a very precise way.

The central algorithm is one to compute shadows for
an arbitrary angle of lighting. The approach taken is
to compute shadow volumes as a DEM, that is the
upper surface of the volume of air that is in shadow.
We start by defining the three components of the
vector pointing towards the light. Then we compute
the components of an opposite vector, scaled so that
the larger of the x and y components is just 1 pixel,
and the z  component is adjusted to the image
calibration. If we translate the DEM by the x and y
components, and simultaneously reduce its height by
subtracting the z  component, we get part of the
shadow volume. If we continue translating and
lowering by multiples of this vector, and take the
union of this volume with that previously calculated,
we build up the whole shadow volume. The process
can be stopped when all levels are zero, or the
translation has shifted the volume right off the image.

This is easily encoded as an NIH Image macro. The
translation is done by cutting and pasting into a
shifted selection area, and the union operation is done
by computing the maximum of two images. The
results are shown below, and the actual code in the
Appendix.

Shadow volumes

To reduce the shadow volume to an actual map of
shadows on the roofs and ground of the city, the
original DEM is subtracted from the shadow volume.
Pixels with zero value are in light (negative values
are clipped to zero), positive values are in shade.



This calculation computes shadows for an arbitrary
lighting angle; it is straightforward to add a
procedure to calculate shadows from the sun for any
given latitude, time of year, and time of day, using
the usual astronomical formulae. The next stage is to
calculate solar irradiation, the actual amount of
energy received at each pixel, from the sun, taking
into account the solar altitude, angles of incidence,
and shadowing.

Computing the clear-beam normal surface irradiation
can follow a standard method – we used that in
Page[1986]. Shadowing uses the previous algorithm.
It remains to find a way of computing the effects of
the angle of incidence.

Horizontal ground and roof surfaces do not present
much of a problem; each pixel has a known area, and
the angle correction depends simply on the sine of
the solar altitude. But wall surfaces receive a good
deal of energy, and they are not even represented in
the DEM. The answer is to use the same filters as in
the Sobel edge-finding algorithm. The f x  and fy
derivatives can be interpreted as the projected area of
the pixel in each direction. The projected area in the
vertical direction is simply the area of the pixel, and
so constant for the whole image. At each pixel we
have a vector (-fx,  -fy, 1)  which is parallel to the
surface normal at that pixel, and whose magnitude is
equal to the area of surface, which can be quite
substantial at edges. The irradiation is found by
taking the dot product with the vector to the sun,
which amounts to scaling two images by two
constants, adding them together, and adding a third
constant. Negative values are removed, as they
correspond to surfaces facing away from the sun, and
all those in shadow. The remaining values, which
give for each pixel its area multiplied by the cosine of
the angle of incidence, are multiplied by the direct-
beam normal irradiation, and that is the answer.

A defect of this calculation is that the edge pixels
have levels associated with either the adjacent
ground, or the adjacent roof. If a wall is partly in
shadow, exactly half of the pixels will receive
energy, regardless of whether the shadow covers 10%
or 90% of the height. A better result can be obtained
by using a pair of levels for comparison with the
shadow volume. One level is derived from a 3 by 3
max filtering of the DEM, the other from a min filter.
These two levels will differ from each other in all the
edge pixels. By determining the height of the shadow
as a proportion of the interval between these two
levels, a correct allocation of irradiation can be made.

Having computed the irradiation for a given moment,
it is simple to integrate over a day or longer, to
compute the solar energy available. This could be

used for a thermal model, to assess sunshine
availability for planting, or for planning solar cell
installations.

Solar irradiation over one day at equinox

The basic shadow algorithm can also be used as the
basis for an evaluation of direct daylight. A
particularly simple case is the calculation of the sky-
component of daylight factor on all the exposed
horizontal ground and roof surfaces of the city. We
simply compute the shadows for a large number of
light sources, distributed over the sky, and for each
pixel, count the number of times they are in light. So
if we use 255 samples, any pixel whose count is 255
can see all the sky and has 100% sky component,
while a count of 0 means that it cannot see the sky at
all.

To get meaningful results, it is necessary to distribute
the sample points over the sky in the correct manner.
If a uniform distribution is used, then what is
measured is the solid-angle of sky visible from each
point. While this may be useful, it is not the usual
measurement used in daylight analysis. However, if
we distribute our points evenly over a unit circle in
the horizontal plane, and then project up to a unit
hemisphere, we obtain a cosine-weighted distribution
which is correct for computing sky-component for a
horizontal plane, assuming a uniform sky luminance.



Sky component on horizontal plane, exterior.

The prediction of daylight in the open air is nothing
like so important as the same calculation carried out
for interior space. Again, the computation of direct
sky component for interior space at a given working
plane level is surprisingly easy. We assume a 100%
transparent facade, and need to know the level of the
ceiling, or whatever defines the upper cut-off angle,
in addition to that of the working plane.

The algorithm proceeds as before, by casting
shadows from random points appropriately
distributed  across the sky, but with a slight
modification. Each shadow volume is sliced at the
level of the ceiling, and the resulting shadows
translated backwards along the light vector until they
reach the working plane level. Then the pixels in
light are counted as before.

It is possible to elaborate this to compute daylight at
many levels simultaneously, with little increase in
time, by slicing each shadow volume at a number of
different levels. In this way we can build up a picture
of daylight availability at many different levels,
rather like a medical tomograph, for the cost of 255
applications of the shadow-casting algorithm.

These daylight and sunlight algorithms have
simulated only the direct light from the sun or sky,
and have done nothing about reflected light. This is
certainly inadequate for architectural interiors, and
arguably so for exteriors as well. In southern
European cities, streets are often deep, and see little
sky. Indirect light can be very important, but it is
hard to calculate[Sillion 1994]. Existing radiosity or
stochastic ray-tracing software struggles to deal with
a single room, let alone several hectares of city.

However, it does seem possible to modify some of
the ideas developed earlier to calculate indirect light,
using image processing effectively to cast rays from
thousands of pixels simultaneously. If we repeat this
a few hundred times, using random angles for the
rays, this time distributed over the whole sphere, we
begin to get  a useful answer.

As a preliminary, we need to know the unit surface
normal at each pixel. In principle this is easy; we use
the Sobel filters to calculate the fx and fy derivatives,
which can be used to construct two tangent vectors
(1, 0,  fx )  and (0, 1, fy). The normal is their cross-
product (-fx, -fy, 1) , which has then to be normalised

by dividing by √(fx2 + fy2 + 1) . This last is rather
beyond the capability of image arithmetic commands,
so a macro was prepared which computes the
derivative images, assembles them side by side into a
single image, which is then read row by row,
normalised, and replaced. Finally the result is broken
up into three separate images.

Three components of the normal vector

The three images which provide the components of
the normal are used, once a ray orientation has been
chosen, to compute the cosine of the angle between
the ray and the normal, by means of a dot product.
The cosines form yet another image, with positive
values looking along the ray, and negative ones
looking back.

The Sobel filters broaden edges into a width of two
pixels.  To reflect this in the DEM we apply a 3 x 3
box filter (one with all the weights equal to 1/9). This
has no effect in areas of constant level, but at edges
performs a linear interpolation. Walls become two
pixels wide, with values of 1/3 and 2/3 of the height.

To start the process, we create another image to hold
initial radiance values. This can be initialised by
selecting a sun position, casting shadows, and for
every lit pixel setting a radiance value proportional to
its cosine, provided it is positive (actually the check
is redundant, as negative cosines belong to back-
facing pixels, which must be in shadow).

The process of distributing light from these
illuminated pixels will be repeated many times, at
random orientations. For each orientation, we
compute the cosine array. Negative values are



potential transmitters of light. Positive cosines
correspond to pixels that are facing the right way to
receive light.

The process of tracing the rays from receiver to
transmitter is similar to, but more elaborate than, the
algorithm for shadow volumes. Imagine the
transmitting DEM being shifted back along the ray,
changing in level as it goes. At each step, we check
to see which pixels are now below the level of the
unshifted receiver DEM. A pixel that goes below
represents a ray that has been intersected, so we find
the corresponding  shifted radiance value, multiply
by the receiver's cosine and accumulate as part of the
incoming irradiance.

On each pass, a pixel may receive irradiance from
only one other, which must be the first one
encountered in traversing the ray. This is handled by
setting up a binary mask image, initially true for
every potential receiver. The mask is turned to false
as soon as any light has been received, and is used to
inhibit  light being delivered from any further
intersections that may occur. The final state of the
mask shows which pixels see light from the sky.

After many rays have been cast, the accumulated
irradiance is multiplied by r/πn, where r is the
reflectance, and n the number of rays, to yield the
extra radiance at that pixel due to the first-order
reflected light. The whole process should then be
repeated (using the extra radiance at the transmitters)
until the amount of light shifted becomes
insignificant.

Direct sunlight, and first order reflected light

DISCUSSION
To one accustomed to traditional computer models of
buildings, based on points, lines and surfaces, these
algorithms are strikingly simple and efficient. The
central shadow volume algorithm (see Appendix) is
less than a page of code, and took only a few hours to
develop. To do the same sort of thing in a traditional
modelling environment is likely to take weeks. Yet
the image processing algorithm can cast shadows for
a 512x512 pixel image of 16 hectares of London  in
under 10 seconds (or around 2 at 256 pixel
resolution), running on a laptop Macintosh. Unlike
traditional methods, the speed does not depend on the
complexity of the scene, only on the size of the
image. This performance is simply astonishing to
anyone familiar with ordinary rendering software.

The image-processing commands effectively give the
macro programmer a parallel computer for doing
simple operations to thousands of pixels at the same
time. So the algorithms presented here are essentially
parallel, and quite different in structure to
conventional ray-casting algorithms, where most of
the effort is detecting cases where processing can be
avoided. In image-processing, it is simpler and faster
just to do the operation.

Of course, the speed is obtained at the cost of
precision. Our images are at a resolution of around 1
metre to the pixel. But it can be argued that this is a
highly appropriate resolution for urban-scale
investigations, and it is a strength of this approach
that it can capitalise on this simplification of the
problem.

There are several areas where accuracy might be
problematical. For example the edge-finding
technique uses 3x3 kernels, so it cannot respond to
very fine distinctions in orientation. A larger kernel
would be more discriminating, but would smear
edges into broader bands. This would have some
advantages, but only if the images were at finer
resolutions. The performance of the algorithms is
likely to be O(n3) with the linear size of the image in
pixels. The basic operations are O(n2) ie proportional
to the number of pixels, but shadow casting will
require more steps for finer resolutions.

The weakness of DEMs is that they do not represent
vertical surfaces, except by implication. So, although
they are much used for landscape modelling and
hydrological studies, they are not of much use for
civil engineering structures, where vertical or
overhung surfaces are likely. The smearing of edges,
which effectively knocks them a little bit out of true
vertical is a partial solution, and allows some low
level of detail to be stored, such as the difference in



lighting on the upper and lower parts of a wall. But
this is crude, and must put some limits on what can
be done with the light inter-reflection algorithm.

NIH Image itself has many limitations and problems.
The 8 bit precision, though perhaps appropriate to the
approximations in our models, causes all kinds of
difficulties. Representing signed quantities (like
cosines) is awkward; we use an excess-128 coding,
but then the arithmetic operations do not work
properly, and the work-arounds are elaborate to
program. There is some capability to store real
numbers (it is needed by the FFT command), but it is
not fully supported. Convolutions using kernels
which sum to zero, and can hence yield negative
results, do not operate properly, and we have had to
use shifts and add/subtract to implement the Sobel
filter. The macro language, though reliable, has no
debugging support, and omits some important
features of Pascal, such as user-defined arrays, and
structured data-types.

There are alternative image-processing packages,
such as MATLAB, which overcome these problems,
and may ultimately be more attractive, certainly for
the more complex algorithms. MATLAB uses double
precision, so need at least eight times the memory,
and is correspondingly slow. However its matrix-
manipulation language effectively gives you an
algebra of images, and a very direct way of encoding
the sort of algorithms we have been describing. NIH
Image, because of its 8-bit limitation, is very fast, and
very economical of memory. It is also very
interactive – every command  and most macro
statements produce visible results on the screen,
while in MATLAB you have to program explicitly
any display that is needed. However, one sometimes
wishes that some of the NIH Image display routines
could be disabled while a macro is running.

CONCLUSIONS AND FUTURE WORK
The use of image processing for simulating
environmental performance on the urban scale has
proved to be unexpectedly effective. Though we have
not completed an urban equivalent to the LT Method
for analysing building energy consumption, it seems
that most of the important problems have solutions.

A great deal more could be done to extend the
modelling capability, using multiple images, rather
than simply a DEM. If the ground surface is
complicated, separate ground and building DEMs
would be necessary. Additional channels could be
used to classify surface types (vegetation, water,
roads, buildings), and to  provide more information
about buildings, of which the number of stories
would be most valuable, followed by information

about glazing, albedo, and materials generally. In the
end, this would amount to a raster-based Urban
Information System, highly adapted for examining
the relationship between urban texture and
environmental performance, but suitable also for
other tasks where built form is important, such as
radio propagation analysis.

The study of urban texture is only just beginning, and
it is natural to expect image-processing to be of
importance in characterising texture. The unexpected
result of this investigation is that it may also be a
fruitful way in which to examine the environmental
correlates of texture.

ACKNOWLEGEMENTS
To the Project ZED team, for case-study material, to
Nick Baker for his concept of Porosity and especially
to Carlo  Ratti for many discussions, and the coding
of some of the algorithms.

BIBLIOGRAPHY
Baker N V and K Steemers, “The LT Method 2.0, An
Energy Design Tool for Non-Domestic Buildings”,
RIBA 1995.

Jain A K, “Fundamentals of Digital Image
Processing”, Prentice-Hall 1989.

Martin Centre for Architectural and Urban Studies
(Coordinators), “Project ZED: Towards Zero
Emission Urban Development - The Interralationship
between Energy, Buildings, People and
Microclimate”, Final Report to the European
Commision, DG XII, Contract RENA-CT94-0016:
Cambridge, The Martin Centre 1997.

National Institute of Health “NIH Image (Version
1.61)”  Software and Manuals down-loadable from
http://rsb.info.nih.gov/download.html.

Page J K (ed) “Prediction of Solar Radiation on
Inclined Surfaces” Dordrecht, Reidel Publishing
Company, 1986.

Sillion F X and C Puech, “Radiosity and Global
Illumination”, Morgan Kaufmann 1994.

Webster C J, “Urban morphological fingerprints” in
Environment and Planning B: Planning and Design
(22) 1995.



APPENDIX
The following is an example NIH Image macro, to
compute the shadow volume for a complete image.

Function ShadowVol
(inpu:integer;sx,sy,sz:real):integer;
{compute shadow volume }
{inpu - pid of input DEM}
{sx,sy,sz -  vector pointing at sun}
{expects title, scale, unitz, w, h }
{method:  offset built volume along the}
{azimuth vector, reduce height according to
alt angle, max with volume so far}
var
dmax,i,imax:integer;
 shad,offs:integer;
dx,dy,dz,step:real;

begin
{window to accumulate shadow vol}
MakeNewWindow(concat(title,'.shadvol'));
shad:=PidNumber;

{window for offsetting}
MakeNewWindow(concat(title, '.ofs'));
offs:=PidNumber;

{increments for each step}
{larger of x and y must be 1 pixel}
dx:=abs(sx);
dy:=abs(sy);
if dx>dy then step:=1/dx else if dy>0 then
step:=1/dy else step=1;
if dx>dy then dmax:=w else dmax:=h;
dx:= -step*sx;
dy:= -step*sy;
dz:= -step*sz*scale/unitz;

{number of iterations}
imax:= trunc(-255.0/dz);
if imax>dmax then imax:=dmax;
if imax<1 then imax:=1;

{main loop}
for i:=1 to imax do
begin

ChoosePic(inpu);
SelectAll;
Copy;
{input image to clipboard}
ChoosePic(offs);
MakeRoi(i*dx,i*dy,w,h);
{makes an offset selection region}
Paste;
{and paste image into it}
KillRoi;
AddConstant(round(i*dz)); {reduces

levels in offset copy}
ImageMath('max',shad,offs,1,0,shad);

{take max and store in shad}
end;
ShadowVol:=shad;
ChoosePic(offs);
Dispose;
end;


