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Elastic properties of porous silicon studied by acoustic transmission
spectroscopy

G. N. Aliev,a) B. Goller, and P. A. Snow
University of Bath, Claverton Down, BA2 7AY, United Kingdom

(Received 4 April 2011; accepted 18 July 2011; published online 31 August 2011)

The porosity dependence of the elastic properties of porous silicon in different crystallographic
directions is studied. The velocity of longitudinal acoustic waves in porous silicon layers
electrochemically etched in (100), (110), and (111) oriented wafers has been measured by acoustic
spectroscopy in the gigahertz frequency range. This non-destructive method was used for porous
silicon layers with porosity of 25!85% obtaining velocities in the range of about 1 to 7 km s!1.
The implication of constant Poisson’s ratio of porous silicon is examined. The effect of velocity
dispersion due to multiple scattering is considered. The c11 stiffness constant can be obtained from
the velocity measurement in the [100] direction of a cubic crystal. We show that, using the results
for velocity in [110] or [111] directions and Keating’s relation, the stiffness constants c12 and c44

can be obtained. The velocity dependence on porosity was fitted as v ¼ v0ð1! /Þj, where v0 is the
velocity in bulk silicon, / is porosity, and j is a fitting parameter. It is shown that with other
conditions being equal: (i) the porosity dependence of the acoustic velocity is related to the doping
level of the wafer from which the porous silicon was etched (j depends on wafer resistivity); (ii)
acoustic velocities in different crystallographic directions have the same dependence on porosity (j
is independent of wafer orientation). This requires that all three stiffness constants c11, c12 and c44

have the same dependence on porosity: cij ¼ c0
ijð1! /Þm; and (iii) the morphology of porous layers

depends on the HF concentration in the etchant (j is used as an indicator for the disorder of the
porous structure). VC 2011 American Institute of Physics. [doi:10.1063/1.3626790]

I. INTRODUCTION

In recent years there has been much interest in porous
materials. These materials range from naturally occurring
solids such as rock, wood, and bone to artificial materials
such as concrete, sintered ceramics, aerogels, and metal
foams that require optimization of their properties to help in
their technical applications. Many examples are available
over only a limited range of porosity (the volume fraction of
voids) and a percolation threshold may exist, indicating a
critical porosity, after which the material mechanically fails.
A sub-class of porous materials are cellular solids for which
the properties of the whole material is understood in terms of
the properties of the material of the walls or struts of the cells
modified by the topology of the cells. The key parameter is
the relative density of the cellular solid compared to the wall
material; i.e., the porosity of the solid. This class of materials
is reviewed in the classic work by Gibson and Ashby1 exam-
ining their mechanical, electrical and thermal properties.

Porous silicon (PSi) is a material whose morphology can
be controlled during the process of manufacture. It can be
prepared by electrochemical etching of high-quality crystal-
line Si wafers. The current-driven etching breaks Si-Si bonds
as pores penetrate into the volume of the wafer. Thus, open
pores are produced surrounded by a relatively unperturbed Si
structure. The properties of the walls are those of anisotropic
bulk Si. The pores are tunable from micropores (<2 nm) and

mesopores (2!50 nm) to macropores (>50 nm). The poros-
ity can be varied from 4% for macroporous to 95% for meso-
porous Si. This range of porosities available for study is an
unusual feature for a porous material.

The wafer doping, wafer orientation, HF concentration
in etchant, and etching current density all control the mor-
phology of PSi (the structural regularity on macroscopic
scale) and the pore size. The doping level, giving a wafer
resistivity R, of p-type wafers is usually represented as p!

(R > 1 X cm) for lightly doped, as pþ (R & 0:02!1 X cm)
for moderately doped, and as pþþ (R < 0:02 X cm) for heav-
ily doped samples. PSi can be produced from wafers oriented
in any crystallographic direction, but typically commercial
wafers are available in the principal cubic orientations of
(100), (110), and (111).

It has been proposed that mesoporous (100) PSi has a
structure close to that of an open-cell foam2 with major trunk
pore connected by smaller side branches rather than being a
honeycomb structure, which is often assumed given the
directionality of the (100) pores. For (110) and (111) etched
samples, the major trunk pores etch away from the wafer sur-
face in the 100½ ( directions. This gives a different morphol-
ogy for samples etched on different orientations but one
which reflects the symmetry of Si and is equivalently cellu-
lar. The observed length of pores compared to the cross-
branching ratio suggests formation of elongated pores in the
Si foam.

It has been found that the crystal symmetry of PSi is the
same as that of Si: cubic, diamond-like, and hence aniso-
tropic. Cullis and Canham3 measured transmission electron
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diffraction patterns from four (001) oriented highly porous
(&80%) samples. They note that the sample etched from a
pþþ wafer (0.005 X cm) shows a diffraction pattern very
similar to that of perfect bulk Si. For the sample etched from
a p! wafer (40 X cm) the diffuse diffraction spots showed
strong arcing and streaking. This was interpreted as a compo-
nent of disoriented material in the sample, possibly due to
static distortions of Si wires, with some broadening due to
small crystallite sizes in the PSi. In a detailed investigation
of samples with porosity 34%–78% Metzger et al.4 used
small angle X-ray scattering and, on lower porosity samples,
grazing incidence diffraction of synchrotron radiation. They
found PSi layers etched from a pþþ wafer (0.010 X cm) to
be predominantly large cylindrical particles forming a per-
fect lattice around the pores, while a PSi layer etched from a
p! wafer (10 X cm) was interpreted as a network of coher-
ently connected particles that form a pseudomorphically
strained Si lattice around the pores.

The tunability of porosity means that physical properties
of the porous layers are also tunable. The control of refrac-
tive index with porosity has been exploited for many years in
various classes of optical devices.5 However, after two deca-
des of intensive study of PSi, the porosity dependence of its
elastic and acoustic properties are still not well understood.

The elastic and acoustic properties of PSi, namely the
stiffness constants, Young’s modulus and acoustic velocity
(shear and longitudinal) have been examined as a function of
porosity in several earlier works by different methods:
acoustic microscopy,6,7 microechography,8,9 Brillouin scat-
tering,10–14 X-ray diffraction,15 nanoindentation,2 and laser
ultrasonic interferometry.16 Conflicting results for sound
velocities in PSi can be found in this literature.

It has been suggested that the sound velocity in PSi
layers, electrochemically etched on wafers of different resis-
tivity, varies due to differences in the morphology of the
layers.2,9,13 However, no conclusive research has been per-
formed on this proposal.

A thorough understanding of the mechanical properties of
PSi is needed for new applications. Work has started on using
PSi for MEMS applications, for example, a pressure and tem-
perature sensor based on the deformation of a PSi diaphragm.17

Recent work has demonstrated acoustic Bragg mirrors and
rugate filters that indicate that PSi layers could be employed in
bulk acoustic wave devices, such as the solidly mounted reso-
nators used in wireless communications systems.18,19

In this work, the elastic properties of mesoporous PSi
have been studied by measurement of the porosity depend-
ence of the longitudinal acoustic (LA) velocity for several
sets of PSi samples electrochemically etched on boron-doped
Si wafers of different doping level and crystallographic ori-
entations. We also present an example for the dependence of
elastic properties of PSi on the HF concentration in the etch-
ant, which gives an additional degree of freedom to tailor the
properties of PSi.

II. THEORY

To understand the porosity dependence of the elastic
properties of PSi, we will first discuss general features

observed in theories for the elasticity of cellular materials.
These theories are typically semiempirical. For PSi, which
retains its Si lattice structure in the solid skeleton around the
pores, we show how the porosity dependence of the elasticity
can be incorporated into the representation of an anisotropic
cubic material. We then propose some features of the elastic-
ity of PSi that are consistent with our results. Additionally,
we estimate the effect of multiple scattering on results
obtained from acoustic measurements.

A. Young’s modulus and Poisson’s ratio of cellular
solids

For cellular solids, Gibson and Ashby1 propose a
semiempirical relation between Young’s modulus E and
density q:

E=E0 ¼ Cðq=q0Þ
m; (1)

where E0 and q0 are the Young’s modulus and density of the
bulk material. The index notation “0” will be used for the
rest of this paper to indicate the value for bulk Si. Relative
density can be expressed as q=q0 ¼ 1! /, where / is
porosity.

Equation (1) describes Young’s modulus for many types
of foams. The constants C and m depend on the microstruc-
ture of the solid. Typically, for cellular solids m ranges
between 1 and 4 giving a wide range of possible elastic prop-
erties for a given porosity (see discussion by Roberts and
Garboczi20). For open-cell foams, experimental results sup-
ported by a model of bending beams1 suggest that C ¼ 1 and
m ¼ 2, while for honeycomb structures m ¼ 1.

For Poisson’s ratio, !, Gibson and Ashby1 assume
! & 1=3 independent of porosity for open cells. Roberts and
Garboczi20 for three-dimensional open-cell solids and Dunn
and Ledbetter21 for randomly oriented closed spherical and
needle-shape pores have shown that ! will be nearly inde-
pendent of porosity when !0 is close to 0.2. Herakovich and
Baxter22 have shown that, for open-cell material with elon-
gated pores with a square cross section, ! is independent of
porosity.

Overall, we conclude that for porous open-cell structures
for which the skeleton material has !0 & 0:2, there is a weak
or no dependence of ! on porosity. In analysis of X-ray data
for PSi, Barla et al.15 assumed a constant ! for a porosity
range of 34% to 72%, however at the value of 0.1 that is
inconsistent with the works cited above. ! for bulk Si is
given below (Sec. II B) for different crystallographic direc-
tions and can be seen to average to &0:22. Thus, we will
assume that ! in any crystallographic direction is independ-
ent of porosity and identical to that of bulk Si in a certain
direction.

B. Young’s modulus and Poisson’s ratio of cubic
crystals

In any direction through a cubic crystal, Young’s modu-
lus is given in terms of three compliances sij and directional
cosines.23 For the three crystallographic directions measured
in our experiments:

043534-2 Aliev, Goller, and Snow J. Appl. Phys. 110, 043534 (2011)

Downloaded 20 Sep 2011 to 138.38.0.53. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



1=E 100½ ( ¼ s11;

1=E 110½ ( ¼ s11 ! 1
2 S;

1=E 111½ ( ¼ s11 ! 2
3 S;

(2)

where S ¼ s11 ! s12 ! 1
2 s44. For isotropic solids S ¼ 0 and

E ¼ 1=s11. Compliances s0
ij and stiffnesses c0

ij for bulk Si are
given in Table I (from Ref. 24).

Poisson’s ratio for extensions along the principal direc-
tions mentioned above is given as25

! 100½ ( ¼ !s12=s11;

!21
110½ ( ¼ !ðs12 þ 1

2 SÞ=ðs11 ! 1
2 SÞ;

!31
110½ ( ¼ !s12=ðs11 ! 1

2 SÞ;
! 111½ ( ¼ !ðs12 þ 1

3 SÞ=ðs11 ! 2
3 SÞ;

(3)

where upper indices denote the two axes (xk) orthogonal to
the direction of extension. The values for bulk Si are
!0 100½ ( ¼ 0:28, !21

0 110½ ( ¼ 0:064, !31
0 110½ ( ¼ 0:36, and

!0 111½ ( ¼ 0:18 (with an average value of 0.21 for [110]-direc-
tion). For polycrystalline silicon, which is isotropic, the typi-
cal value measured is !poly ¼ 0:22 (Ref. 24), which is the
average value overall directions for crystalline Si.

Using relations between sij and cij given in Ref. 23
Young’s modulus and corresponding Poisson’s ratio for
100½ (-direction can be written in terms of stiffnesses as

E 100½ ( ¼ ðc11 ! c12Þðc11 þ 2c12Þ=ðc11 þ c12Þ; (4)

! 100½ ( ¼ c12=ðc11 þ c12Þ: (5)

From Eqs. (4) and (5) one can obtain

E 100½ ( ¼ c11ð1þ ! 100½ (Þð1! 2! 100½ (Þ=ð1! ! 100½ (Þ: (6)

Equations (4)–(6) are similar to those which are commonly
presented and used for isotropic solids having a single value
of ! and E.

C. Sound velocity in cubic crystals

Acoustic velocities in solid crystals are obtained using
cij and angle of propagation to the principal axes.26 The
expressions for wave velocity along the three principal axes
of cubic crystal are shown in Table II.

Assuming ! 100½ ( is independent of porosity, one can
obtain from Eq. (6):

E 100½ (=E0 100½ ( ¼ c11=c0
11: (7)

For the LA velocity in [100] direction, using Eq. (1) with
C¼ 1, Eq. (7) and Table II we obtain the well-known semi-
empirical formula:

vL ¼ v0Lð1! /Þj; (8)

where j ¼ 1
2ðm! 1Þ. This form of velocity dependence on

porosity will be used to fit our experimental results. It is
shown below that this formula, with only one fitting parame-
ter j, fits the experimental data reasonably well, therefore
we do not use more complicated models.

We will show that, measuring only LA velocities in any
two of the principal directions, all three stiffness constants
for a cubic diamond-like crystal can be obtained.

The LA velocities in directions [100], [110], and [111] are
not independent. It can be shown, using expressions from Table
II, that v2

2 ¼ ðv2
1 þ 3v2

3Þ=4, where the principal LA velocities
are labeled as v1 ¼ vL 100½ (, v2 ¼ vL 110½ (, and v3 ¼ vL 111½ (. Thus,
knowing only LA velocities, all three stiffness constants c11,
c12, and c44 of PSi cannot be obtained independently. However,
the stiffness constants themselves are not independent; for ani-
sotropic cubic diamond-like crystals Keating27 derived the rela-
tion: c44 ¼ 1

2ðc11 ! c12Þðc11 þ 3c12Þ=ðc11 þ c12Þ. This should
be contrasted with the expression for the isotropic case:
c44 ¼ 1

2ðc11 ! c12Þ, assumed by some authors8,12 for PSi. Given
the evidence that PSi retains the Si crystal symmetry, we con-
clude that Keating’s relation will at least be a better approxima-
tion to the properties of PSi.

Using Keating’s relation and expressions from Table II
the following relations between stiffness constants and
velocity are obtained:

c11 ¼ qv2
1;

c12 ¼ q v2
1 ! 1

2v
2
2 !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4v

4
2 ! 2v2

1ðv2
2 ! v2

1Þ
q" #

;

c44 ¼ q 3
2ðv

2
2 ! v2

1Þ !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4v

4
2 ! 2v2

1ðv2
2 ! v2

1Þ
q" #

:

(9)

Thus, for anisotropic cubic diamond-like crystal, measuring
LA velocities in any two directions of [100], [110], and
[111] all three stiffness constants can be determined. For iso-
tropic solids, v1 ) v2 ) v3 ¼

ffiffiffiffiffiffiffiffiffiffiffi
c11=q

p
, and it is not possible

to obtain all three cij from only LA velocity measurement.

D. Velocity dispersion in porous material due to
multiple scattering

As discussed by Truell et al.,28 the phase velocity in a
medium with scatterers analyzed in a multiple scattering
(MS) theory is different to that through the same effective
medium with no scattering considered.

TABLE I. Elastic constants of bulk silicon at room temperature.

c : GPa
s : 10!12Pa!1 c11 c12 c44 s11 s12 s44 S

bulk Si 165.6 63.9 79.5 7.68 ! 2.14 12.6 3.52

TABLE II. Sound velocities in different directions of wave propagation in
cubic crystals. Lower indexes: L: longitudinal, T: transverse. For waves in
[110] direction: Tk: polarized in [001] direction, T?: polarized in ½1!10(
direction.

[100] [110] [111]

v2
L

c11

q
c11 þ c12 þ 2c44

2q
c11 þ 2c12 þ 4c44

3q

v2
Tjj

c44

q
c44

q
c11 ! c12 þ c44

3q

v2
T?

c44

q
c11 ! c12

2q
c11 ! c12 þ c44

3q
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In the limit of pore size smaller than the wavelength of
ultrasound used, Sayers29 derived an analytic expression for
the ultrasonic dispersion in an isotropic porous medium. For
mesoporous PSi studied in our work at 1 GHz (see Sec. III),
this limit is well fulfilled: ka < 0:03, where k ¼ x=vL is the
wave number and a is the pore radius. For ka* 1, the rela-
tion between LA velocities v0L with and vL without MS con-
sidered is given as29:

v0L=vL + ð1! uAÞ!1=2; (10)

where u ¼ 4
3pa3n0, n0 is the concentration of scatterers,

A ¼ 2! 3
4n

2 þ 5 1! 9
4n

2
$ %!1

and n ¼ vL=vT .
In spite of the fact that the theory was developed for an

isotropic medium, we will apply it to our case of anisotropic
PSi neglecting the second order effect of anisotropy. In other
words, we assume that n is independent of the crystal orien-
tation and n2 ¼ c11=c44. As c11 and c44, as shown below (Eq.
(15) in Sec. IV A), have the same dependence on / for PSi,
n is independent of /. Thus, using values for bulk Si from
Table I we obtain for whole range of porosity: n ¼ 1:44 and
A ¼ !0:916.

Although Eq. (10) is derived for spherical voids, it is
also correct for voids of any shape (see Ref. 30). For scatter-
ers of different shape, e.g., an ellipsoid, a cylinder, and a
right prism, with the aspect ratio f, u can be expressed in
terms of porosity as /=f, 2

3/=f, and p
6/=f, respectively

(u ¼ / for sphere).
Inset (a) in Fig. 1 demonstrates velocity dispersion ver-

sus porosity calculated using Eq. (10) for pores with a shape
of a right prism with different aspect ratios of 1, 2, and 3.

Thus, if we are to consider velocity dispersion due to the
effect of MS then in order to calculate elastic constants using
Eqs. (9) we have to obtain vL from measured velocities v0L
using Eq. (10).

To fit to experimental velocity data two simple techni-
ques are consistent with the previous discussions.

The first way would be to use a formula:

v0L ¼ v0Lð1! /Þj
0
ð1! uAÞ!1=2; (11)

with a new fitting parameter j0 and an estimation of probable
shape of pores via the form of u. Figure 1 shows an example
of this function for values of j0 ¼ 0:5 and cubic pores,
f ¼ 1, which gives an almost linear dependence of v0L on po-
rosity up to / ¼ 0:7 as shown by the solid line. We illustrate
the effect for j0 ¼ 0:5 as we consider this as a “lower bound”
value for an “ideal” open-cell foam (see Sec. II A). Bellet et
al.2 obtained j0 ¼ 0:5 for Young’s modulus of mesoporous
PSi by nanoindentation, i.e., “static”, experiments.

The second way is to use Eq. (8) with a single fitting pa-
rameter j, with no assumption about the shape of pores, but
with an understanding that the j is slightly different due to
the effect of MS. Hence, for fitting to our experimental
results, we will use

v0L ¼ v0Lð1! /Þj: (12)

The dotted line in Fig. 1 shows that a close match is obtained
to the curve above from Eq. (11) for a value of j of 0.65.

For the porosity dependence of Young’s modulus from
Eq. (1) and elastic constants from Eqs. (15), m ¼ 2j0 þ 1
will be used with j obtained by a correction of j by the dec-
rement d:

j0 + j! d: (13)

We note that from Eqs. (11)–(13) one can obtain:
d ¼ ! 1

2 lnð1! uAÞ=lnð1! /Þ. In Fig. 1(b) d is plotted versus
/ calculated for pores with the shape of a right prism. We take
a value of d at / ¼ 0:5 as a mean value for the whole porosity
range. For voids with shapes of right prisms with an aspect ra-
tio, say, 1 and 4, the mean values of d are 0.15 and 0.04,
respectively (see inset (c) in Fig. 1). This indicates the order of
magnitude of the MS effect for micro- and mesoporous PSi for
acoustic measurements up to 20 GHz range.

III. EXPERIMENTAL TECHNIQUE AND RESULTS

In order to systematically investigate the dependence of
the LA velocities on the crystallographic direction and the
sample morphology, determined by the substrate resistivity,
several sets of commercial Si wafers with different resistivity
specifications were used. Room-temperature anodization was
performed using a 1:1 solution of 49% aqueous-HF and
hydrous ethanol, unless indicated otherwise. The thickness d
of the layers was controlled by the etch duration time. The
layers were etched to thicknesses in the range of 10! 70lm
to give a resolvable (,5 ns) time-of-flight for sound waves
in the porous layer. The thickness of the layers was deter-
mined by scanning electron microscopy. The porosity was
set by the etching current density and was varied in the range
of 0:25! 0:85. After etching, the porosity of layers was veri-
fied by analysis of Fabry-Pérot interference fringes to obtain
the effective optical path length nd of the layer, where n is

FIG. 1. Porosity dependent effect of multiple scattering for pores of the
cubic shape (f ¼ 1). Solid line from Eq. (11) with j0 ¼ 0:5, dashed and dot-
ted lines from Eq. (12) with j ¼ 0:5 and j ¼ 0:65, respectively. Insets: (a)
v0L=vL vs porosity; (b) d vs porosity. Lines in (a) and (b) are calculated for
right prism with the indicated aspect ratios 1, 2, and 3. (c) d calculated for
/ ¼ 0:5 vs aspect ratio of pores with different shape: right prism (solid), cyl-
inder (dashed), and prolate ellipsoid (dotted).
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the effective refractive index. The effective medium approxi-
mation method in Bruggeman formulation31 was used. Addi-
tionally, the porosity and thickness were self-consistently
determined by a pore filling technique; two different substan-
ces (air and ethanol) were used to fill the pores, thus chang-
ing n while the layer thickness and Si content (porosity)
were constant.9

The LA velocity was obtained by acoustic transmission
spectroscopy at room temperature using a vector network an-
alyzer (VNA) with & 0.5 ns resolution in the time domain. A
specimen was placed between two transducers Tr1 and Tr2
(Fig. 2(a)) operating with a central frequency at 1 GHz. Each
transducer consists of a ZnO piezoelectric layer driving
waves into a square silicon pillar ð160 lm- 160 lm
-500 lmÞ. Transducers were coupled to the specimen via
water or In-Ga eutectic. Penetration of the coupling liquid
into pores was not detected and switching from one liquid to
the other did not affect the measured sound velocity. Acous-
tic waves were emitted normally into the PSi layers with
uncertainty in alignment of less than 0.5.. Under these condi-
tions, no shear waves were excited in the PSi.

The transducers were connected to two ports of the VNA
and transmission parameters were measured as a function of
frequency. The equivalent response in the time domain (Fig.
2(b)) was calculated using a fast Fourier transform algorithm.
The first peak observed, t0, is equivalent to a pulse passing
directly through the transducers, PSi and Si layer. The later
peaks correspond to longer times-of-flight due to reverbera-
tion in layers of the structure. In Fig. 2(b) a part of the time
response that gives measurable peaks up to &800 ns after t0 is
shown. We consider PSi as an effective medium for optical
and acoustical waves as the wavelength is much greater than
the pore sizes of the samples.

The LA phase velocity for the PSi layer can be calcu-
lated as: v0L ¼ 2jd=ðtj=t0Þ, where d is the thickness of the PSi
layer, t0 and tj ðj ¼ 1; 2; 3Þ are the arrival times with no and j
roundtrips within the PSi layer, respectively (Fig. 2). The
obtained velocities are shown in Figs. 3(a)–3(c). Each point
is the average of values obtained from all tj measured on sev-
eral different places of the specimen. Simultaneously, the

LA velocity for the bulk silicon substrate can be calculated
as v0L ¼ 2D=ðT1 ! t0Þ, where D is thickness of the underlay-
ing bulk Si, and T1 is the arrival time after a single round trip
within the substrate (Fig. 2). For Si substrates of (100),
(110), and (111) crystallographic orientation, we obtained
LA velocities v0L of 8.43, 9.13, and 9.35 km/s, respectively.
These results agree with the literature values32 and are
shown in Figs. 3(a)–3(c) at zero porosity.

Our experimental technique allowed us to measure only
LA velocity. Our etching method does not produce porous Si
layers on which velocities in different crystallographic direc-
tions, within the same sample, could be measured (with our
technique). Instead, porous layers were etched in standard
commercial wafers cut in different directions. During etch-
ing, the main pores etch along the (100) direction and the
side pores along the (111) direction33 so the set of pores pro-
duced for the (110) and (111) samples are at angles to the
surface of the wafer and not fully identical to what would be
viewed in the (100) sample in that direction. This variation
in micro-morphology does not change the overall symmetry
or regularity of the porous structure as shown below.

Figures 3(a)–3(c) show the porosity dependence of LA
velocity for the three principal crystallographic directions for
a range of doping levels of the starting Si wafer, as indicated
in the figure. All results in Figs. 3(a)–3(c) were obtained
with the same HF concentration in the etchant. The lines in
the figures are obtained by a fit using Eq. (12) to obtain the
single fitting parameter j. The general trend observed is that
j increases as the doping level of the Si wafer decreases.

In Fig. 3(d) the fitting parameter j is plotted on a semi-
logarithmic scale versus the resistivity of the Si wafers for
all values of j obtained from all the wafers used, and two
points from the literature.12,14 It can be seen that with other
conditions (HF solution, etching temperature, etc) being the
same j does not depend on crystallographic direction but
only on wafer resistivity. The dependence shown is logarith-
mic versus resistivity of the substrate. The error bars in resis-
tivity arise from wafer specification. A line of best fit is
shown in Fig. 3(d), given by

j ¼ 0:23 logðRÞ þ 1:15: (14)

To demonstrate another degree of freedom for controlling
the samples morphology, using (100)-wafers with resistivity
of 15–25 mX cm, we etched a set of samples varying the vol-
ume fraction of aqueous-HF to ethanol (VHF=VEth). Assum-
ing the validity of Eq. (12), we obtained j from a velocity
measurement on each sample in this set of samples as
j ¼ lnðv0=v0Þ= lnð1! /Þ. Results are shown in Inset of Fig.
3(d). The value of j for VHF=VEth ¼ 1 is obtained by averag-
ing data from Fig. 3(a). To verify nonmonotonic behavior
near VHF=VEth ¼ 0:75, we etched several samples with this
concentration but of different porosity and thickness. The
averaged values are shown with the uncertainty on the value
of j. As can be seen from j -values, pþþ samples etched
using VHF=VEth <

&
0:5 exhibit a j -value, and hence morphol-

ogy, like typical p! samples etched using VHF=VEth ¼ 1.
These two results on the effect of wafer resistivity and

etchant concentration on the velocity of sound, for any given

FIG. 2. (a) Schematic illustration of reflection-dependent paths for sound
waves in the structure consisting of transducers Tr1 and Tr2, coupling
liquids L1 and L2, and PSi layer of thickness d on Si substrate of thickness
D; t0, tj, (j ¼ 1; 2; 3) and T1 label times as in (b). (b) Example of transmitted
signal amplitude in time domain for the specimen with the parameters:
d ¼ 56:7 lm, D ¼ 474 lm, / ¼ 0:7, R ¼ 10! 20 mX cm, (110)-oriented.
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porosity, show that PSi samples must be well specified for
the velocity to be predicted. Equally, to achieve a required
acoustic velocity for a PSi layer, various parameters can be
adjusted. This can also help to explain the diverse velocity
results previously reported.

IV. DISCUSSIONS

A. Dependence of elastic constants on porosity

Figure 3 demonstrates that vi (i ¼ 1; 2; 3) measured for
PSi samples etched from wafers with the same resistivity
(i.e., having the same level of pore regularity) have the same
dependence on porosity /, i.e., the same j. This can be
observed in Figs. 3(a)–3(c) where the same fitting parameter
holds for the pþþ and p! samples in the three crystallo-
graphic directions, but is better illustrated in Fig. 3(d) which
shows that the general trend is obeyed for all crystallo-
graphic directions at different resistivity values.

From Eqs. (9) it is clear that if v1 and v2 have the same
dependence on / then all three stiffness constants cij in a
cubic crystal must have the same dependence on / and,
using Eq. (8), can be expressed as

cij ¼ c0
ijð1! /Þm; (15)

where m ¼ 2j0 þ 1 has the same meaning as in Eq. (1).
If all the stiffness constants have this form of depend-

ence on porosity then the compliances sij all vary with poros-
ity as sij ¼ s0

ijð1! /Þ!m.
To derive Eqs. (9), no speculation about Poisson’s ratio

was necessary. From Eqs. (3), it can be seen that the Poisson’s
ratios depend on ratios between the individual compliances

and because the compliances depend on porosity in the same
form, the Poisson’s ratios do not depend on porosity. This
agrees with the assumption discussed above (see Sec. II A).

Alternatively, from Eqs. (3) and Keating’s relation if
it is proposed that the key starting point is the assumption
that Poisson’s ratio is independent of porosity then all
three compliances (and thus stiffnesses) must have an
identical dependence on porosity. From Eqs. (9) it can be
seen that (ignoring anisotropy in MS) all LA velocities in
all directions will have the same dependence on porosity,
hence the same j, if the stiffnesses have identical porosity
dependence. Our measurements are consistent with this
assertion.

As for transverse acoustic (TA) velocities, dispersion
with porosity due to the effect of MS is slightly stronger than
for LA velocities as shown by Varadan et al.35 This will give
a slightly bigger j for the porosity dependence of v0T than for
v0L. The assertion is consistent with the literature
results,6,8,12,14 where the obtained value of jT is always big-
ger than the value of jL.

B. Analysis of results from the literature

In previous work, the porosity dependence of the velocity
for TA waves along with that for LA waves has been meas-
ured or deduced, for various sample parameters. Fan et al.12

obtain close j-values for LA (jL ¼ 1:083) and TA waves
(jT ¼ 1:086). Da Fonseca et al.6,8 obtained jL ¼ 1:095 with
jT ¼ 1:19. This latter value for TA waves was deduced via
the Rayleigh wave velocity vR in an acoustic microscopy
experiment assuming isotropic PSi. The authors used the Vic-
torov’s relation: vR + vT 0:718! v2

T=v2
1

$ %
= 0:750! v2

T=v2
1

$ %
,

FIG. 3. (a)–(c) Experimental values of
LA velocity v0L in PSi for the layers pro-
duced from Si wafers of indicated crys-
tallographic orientation and resistivity
are depicted by symbols fitted by
v0L ¼ v0Lð1! /Þj with different fitting
parameter j. (d) Dependence of j on
wafer resistivity. Symbols correspond to
samples with orientation: / (100), D
(110), . (111), and from literature ?
(100) (Ref. 14) and ^ (100) (Ref. 12).
Inset: j vs VHF=VEth, volume ratio of
etchant HF to ethanol.
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assuming an isotropic shear wave velocity v2
T ¼ c44=q. For

bulk Si this relation gives viso
0R ¼ 5:07 km/s. However, for ani-

sotropic cubic crystals, vR in (100) plane has to be deduced
from Victorov’s relation using t2

Tk½110( ¼ 1
2ðc11 ! c12Þ=q (see

Ref. 34). For bulk Si this gives the correct value v0R ¼ 4:15
km/s – a result 20% lower than that obtained with the iso-
tropic approach. As discussed above, PSi is anisotropic with
c44 > 1

2ðc11 ! c12Þ, thus, the value of c44 (and vT½100() deduced
from vR measured in (100) plane of PSi assuming it to be iso-
tropic will be smaller (jT bigger) than the correct value.

For anisotropic cubic solids, the ratio g ¼ 2c44=
ðc11 ! c12Þ is the commonly defined anisotropy factor. It is
equal to 1.56 for bulk Si (using values from the Table I),
while for an isotropic solid g ¼ 1. Our results above give
a constant anisotropy for PSi with porosity (Eq. (15)).
For (111)-oriented 2.7 lm thick sample with / ¼ 0:30,
Andrews et al.10 found g ¼ 1:5, which is close to the value
for bulk Si.

Assuming anisotropy, Polomska14 obtained for PSi
jL ¼ 0:7360:07 with jT ¼ 0:960:1. These values of j for
LA and TA waves overlap within the experimental error
but with the measured value of jL smaller than jT . How-
ever, as Polomska used samples of small thickness (few
micrometers) for Brillouin scattering measurements, there is
a possibility that, in addition to the MS effect, negative ve-
locity dispersion with thickness reported by Fan et al.12

could affect the results. This experimentally observed dis-
persion was attributed to the presence of a transition layer
between PSi film and Si substrate and is stronger for LA
waves than for TA waves,12 i.e., difference between jL and
jT increases with decreasing thickness of PSi film below
10lm range.

The difference in LA and TA velocity dispersion with
thickness and with porosity will affect the values of the ani-
sotropy factor measured via acoustic waves. Compared with
the “static” value, the reduction factor affecting c11 obtained
from acoustic measurements is smaller than the factor reduc-
ing c44. Thus, “acoustic” g will be smaller than the “static”
one. This assertion is consistent with the literature results
discussed above.

C. Dependence of the parameter j on wafer resistivity

For the form of velocity dependence on porosity that we
use, Phani et al.36 noted that for composite materials j
depends on the microstructure of the porous material and its
value for relatively well ordered structure lies between 0.5
and 1.5, with higher values corresponding to a more disor-
dered structure. Thus we conclude that the values of j that
we obtained from velocity measurements are consistent with
this overall understanding of the micro-morphology of PSi
and the relationship that we present (Eq. (14)) allows the ve-
locity, or level of disorder of the pore structure, to be pre-
dicted. This is especially useful when preparing PSi layers,
for use as acoustic devices, from wafers of known resistivity.

For acoustic devices, e.g., a PSi Bragg reflector and a
rugate filter18,19 the characteristic impedance of an acoustic
layer, Z ¼ qv0, depends on mass density of the layer and the
acoustic velocity in the layer, which depends on the porosity

and morphology of the layer as shown above. Thus, a general
dependence of j on wafer resistivity is necessary if acoustic
devices are to be successfully designed and etched. Using
Eq. (12) the characteristic impedance can be expressed as
Z ¼ Z0ð1! /Þjþ1.

In contrast, for passive optical devices, e.g., multilayers
for optical filtering or sensing applications,5,33 knowledge of
the refractive index calculated from the porosity (or vice
versa) is normally sufficient to characterize a sample or its
constituent layers. This is the case because the effective me-
dium methods for dielectric constant depend predominantly
on the porosity of a layer with only a weak dependence on
the micromorphology of the PSi.

D. Dependence of the parameter j on HF
concentration

It is known that the physical properties of electrochemi-
cally etched PSi depend on the concentration of HF in the
etchant.37 Thus, for a wafer of a given resistivity, the mor-
phology—and hence j -parameter controlling the acoustic im-
pedance as a function of porosity—depends on the conditions
of the wafer etching. For the wafer used with resistivity 15–25
mX cm it was possible for j to increase or decrease showing
the associated change in morphology versus HF concentration.
We cannot explain the non-monotonic variation of j with HF
concentration for values just below 1. However, for future
work it is clearly desirable to work in a region where there is
not a strong dependence of j on HF concentration so that it is
not a critical parameter of the etching process.

V. CONCLUSIONS

This systematic experimental study of the porosity de-
pendence of the elastic constants of PSi, with the accompa-
nying theoretical considerations has shown that there is one
form of porosity dependence obeyed by all the elastic con-
stants in PSi as given in Eq. (15). Hence, the same porosity
dependence applies for the anisotropic elastic moduli.

This is demonstrated by the fact that samples grown on
wafers of different orientation, but with the same doping
level, demonstrate the same dependence of LA velocity on
porosity.

The fitting parameter j, which is the exponent in the ve-
locity dependence on porosity, depends on the doping level
of the wafer from which the porous layer is etched and is
also an indicator of the morphology of the PSi layer. We find
that samples grown on wafers with different doping level
have different morphology. The parameter j depends on wa-
fer resistivity as given in Eq. (14).

The parameter j and thus morphology depends on the
etching conditions via the HF concentration in the etchant.

The initial assumption that Poisson’s ratio is effectively
constant for PSi as porosity changes is validated by the con-
stancy of the velocity-porosity dependence observed in the
measured samples in different crystallographic directions.
Additionally, we have shown that for PSi, considered as a
cubic anisotropic material, all three elastic constants can be
obtained by LA velocity measurements in any two principal
directions by use of Keating’s relation.
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We have shown that velocity dispersion due to MS
effect from pores must be considered as part of acoustic
measurements of the elastic properties of PSi. We have esti-
mated the order of magnitude of the effect by adapting exist-
ing theory on MS to the case of PSi.

Overall, the pleasing simplicity of the universal scaling
of elastic constant with porosity clarifies the elastic proper-
ties of porous silicon. The results presented are consistent
and explain variations in experimental results of previous
studies on acoustic velocity in PSi. As a consequence of this
work, acoustic devices depending on the velocity of sound in
PSi can be designed for a wide range of Si wafer resistivity.
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