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Phason mode in inclusion compounds
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Institute of Theoretical Physics, University of Nijmegen, Postbus 9010, 6500 GL Nijmegen, The Netherlands
(Received 16 October 2000; published 15 May 2001

The phason mode in inclusion compounds is investigated using the double chain model, which consists of
two mutually interacting chains. This model generalizes the Frenkel-Kontorova model to a system where both
sublattices are deformable. The phase diagram in parameter space contains a region with a zero-frequency
phason and a region with a phason gap. In comparison with earlier work, the phase-transition line is not
convex. The dynamic structure factor around Bragg and satellite peaks is calculated to find conditions needed
to measure the phason mode in experiment.
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I. INTRODUCTION its potential energy. Minimizing the energy leads to the
ground state of the system. Modulation functions provide

Incommensurate composites belong to the class of quasipformation about these ground states. This leads to a phase
periodic crystals. They consist of at least two interpenetratdiagram containing a region in which the modulation func-
ing crystalline subsystems. In one or more crystallographi¢ionS are analytic and a region in which they are nonanalytic.
directions the periodicities of these subsystems are incom-N€ dynamical matrix gives the phonon spectrum of the

mensurate, i.e., the ratio of the periodicities is not a rationaf'YStal- For weak interchain coupling, two zeror-]freqﬂency
number. modes exist. One of them is the phason mode, the other one

. . is the acoustic mode. If the interchain potential increases
Examples of such a system are the inclusion compoun

eyond a threshold value the degeneracy inlthgoint no
CnHan.o/urea for some valut_as ot The urea moleculehe longer exists and a phason gap appears. This also leads to a
hostg form a hexagonal lattice, with the alkane molecules

. ) i X ~>phase diagram, which coincides with the diagram obtained
(the guestgsituated in the channels of this lattice. The ratio by considering the modulation functions. Finally, the geo-

of the periodicities of the two subsystems along these chanmetrical and dynamical structure factors give insight in the
nels depends om, or in other words, depends on which experimental effects of the phason and acoustic modes.
alkane is present. For some alkanes this ratio is incommen- An interchain interaction with a long tail will be intro-
surate, e.g., heptadecame<(17). Theoretically these incom- duced in the double chain model. This interaction will lead to
mensurate systems show the existence of a sliding or phase@m asymmetric transition line in the phase diagram, which
mode for not too strong interchain coupling. However, ex-differs from the results found earlier using a Gaussian poten-
periments are still not conclusive on the existence of thigial. The shape of the transition line is found to depend on the
modé~23in alkane/urea systems. ratio of the numbers of particles in the two chains. The con-

This paper studies the theoretical aspects of the statics artitions needed to find a phason mode in neutron-scattering
dynamics of inclusion compounds to find conditions underexperiments are discussed as well.
which the phason mode can be observed in experiment. Ear- The paper is organized as follows. Section Il presents the
lier work used the Frenkel-Kontorova modélwhich con- model. Section Il describes the statics and dynamics of the
sists of a harmonic chain of atoms under the influence of gouble chain model, which will lead to the phase diagram.
rigid substrate potential. This system describes composite5he following section discusses the observation of the pha-
where one of the subsystems is infinitely rigid. DoubleSON Mode. Section V draws conclusions.
Frenkel-Kontorova modéi< allowed some understanding of
solitons involving deformation of both subsystems. How-
ever, these models are not able to explain correctly static The double chain model consists of two parallel chains of
properties like the intermodulation or give a full account of particles. Figure 1 visualizes this system. The interaction be-
the dynamics of both subsystems. tween particles in one chaifthe intrachain interactignis

The recently introduced double chain mofigitovides a  harmonic. The interaction between particles situated in dif-
suitable model to investigate inclusion composites as it takeferent chains(the interchain interactionis Lennard-Jones-
into account the discreteness of the real crystal and the muike. In a previous work a Gaussian potential was used
tual interaction of both sublattices. The model generalizesnstead of the Lennard-Jones potential. Results for these dif-
the Frenkel-Kontorova model, replacing the rigid potentialferent potentials will be compared at the end of the next
by a second deformable chain. Because both sublattices asection. The potential energy of the model is written as:
now mutually deformable, the influence of the chains on K K
each other can be studied more realistically. A study of _ oy N2, 2 v a2
friction® also used a double chain model, but here one of the E=3 2.: (=X — )™ 2 E,: i=Yi-1mA)
chains was attached to a substrate. Therefore, there is no
acoustic mode present in that model._ _ +z 2 (x;—Y)), (1)

This paper studies the double chain model starting from T

Il. DOUBLE CHAIN MODEL

0163-1829/2001/621)/2143027)/$20.00 63214302-1 ©2001 The American Physical Society
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FIG. 1. The double chain model. The intrachain potentials

dicated by springsare harmonic. The interchain potential is either
Lennard-Jones-like or Gaussian. The distashbetween the chains
is fixed. The equilibrium distances between particles in chains 1 anc 05
2 area and B, respectively. ' 4 2 0 5 4

wherek; and k, are the force constants of the intrachain
potentials,« and B are the equilibrium distances, ardand FIG. 2. The interchain potential. The solid lifle indicates the
y; are the positions of thith (j th) particle of the first and Lennard-Jones-like interaction, the dashed litl¢ the Gaussian
second chain respectively. The masses of the particles af@teraction used in previofiswork and the dotted linéfll) the
taken unity. Note that the model is one dimensional, xhe Gaussian interaction which is as strong as the Lennard-Jones-like
variables denote positions in one chain, and thariables interactiqn. The variabl_e is the distance between two particles
denote positions in the other chain. The particles are allowedituated in different chains.
to move only along the chain axis. o ] )

The ideal crystal is perfectly incommensurate and infi-Gaussian interaction, ther_efore the Lennard-Jones is called
nitely long. Because a computer cannot deal with such syd®nd range and the Gaussian short range.
tems, in numerical calculations it has to be approximated. An
approximant to the ideal crystal is made by considering a Ill. PHASE DIAGRAM
large unit cell that containg particles in the first chain angl
particles in the second chain, which is under the constraint of
periodic boundary conditions. The infinite summations in the Ground states of the double chain model can be found by
potential energyl) are thus replaced by summations ugpto minimizing the potential energyl). A quasi-Newton(the
andq particles. The ratio op andq approximates an irratio- Broyden-Fletcher-Goldfarb-Shanno algoritfimmethod was
nal number. This article uses neighboring numbers of theised to derive the equilibrium configuration in the numerical
Fibonacci series fop and g, the ratiop/q= /B then ap- simulations. The equilibrium configurations of the chains in
proximates the golden mear= (1+5)/2. The higher the absence of the interchain interaction were used as a starting
neighboring numbers are, the better the approximation igpoint for the minimalization routine and the convergence tol-
The behavior of the system for other ratio® approximants ~erance was taken to be 1.0¥19.
of an incommensurate systens studied as well. Systems If the interchain potential is weak compared to the intra-

A. Modulation functions

with these different ratios are studied in Section Il C. chain interactions, a continuum of ground states is found.
The interchain potentiald(r) was chosen to be a This implies that the potential energy does not change when
Lennard-Jones potential: the chains are moved with respect to each other. However,
when the interchain potential gets stronger, a transition is

r24d2) ° [r24g2)° found. Above the threshold value, neighboring ground states

D (r)=2ki e |2 : (2)  are separated by Peierls Nabarro barriers and energy is

needed to go from one ground state to another.

wherek,, is the force constant of the interchain potential and  The ground states can be studied by introducing modula-
d the fixed distance between the two chains. The parametef®n functions in the same way as they are introduced in, for
o andd equal 1 and 1.2, respectively in the numerical cal-instance, the Frenkel-Kontorova modélThese modulation
culations. Figure 2 shows the Lennard-Jones potential. Th&éinctions can be defined as follows:

well of the Lennard-Jones is at a smaller distartaer . )

=1.12) than the distance. Hence, only the attractive part Xi=ai+f(i)

beyond the minimum of the Lennard-Jones potential plays a yi=Bi+a(i))’ C)

role. The potential is cut off at a large distance, in these

calculations it has a range of seven unit cells. A smoottwhere x; andy; are the positions of the particles in the
steplike function at the endings prevents singularities in thground state situated in the first and second chain, respec-
derivatives of the potential energy. The Lennard-Jones patively, @i andgj are the equilibriundinitial) positions of the
tential introduces fairly long-range interactions, in contrast toparticles without interchain interaction, ah@) andg(j) are

the previously used Gaussian potential. That is, the tail of th¢he displacements of the particles with respect to their initial
Lennard-Jones-like interaction is longer than that of thepositions. The modulation function of the first chain depends

214302-2
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FIG. 3. The modulation functions. The upper two plots show the D” (k)= Z 02:902! ex — kRO ®)

modulation function of the first chain, which contains 55 particles, 7 eq

the lower two plots that of the second chain, which contains 34yherez andz’ stand forx ory, E is the potential energgl),
particles. The plots on the left are for a system in the analytic phase js 4 wave vector, anB(l) is the equilibrium position of the

on the right in the nonanalytic phase. The model parameters atgp ynit cell? The frequencies of the phonon excitations in
kp=2, kip=1, a=1, andk, =2 for the former ank,=0.5for the ¢ crystal are given by the square roots of the eigenvalues of
latter. the dynamical matrix. The corresponding displacements are

, . . . given by:
on the configuration of the second chain and vice versa.

Therefore, the periodicity of the modulation of one chain
equals the periodicity of the other chain. Hentg) can be
mapped on one perio@ andg(j) on one periode. Equa-
tions (3) result in:

us(R(1))=Re{ei(k)exdikR(1)1}, (6)

wheres denotes the modéthe number of the particle in the
primitive cell, andeg the eigenvector corresponding to mode
s. The dynamical matrix is infinitely dimensional if the crys-
tal is truly incommensurate. However, because the crystal is
(4) approximated by a large unit cell to which periodic boundary
conditions are applied, the Bloch theorem may be used to
decomposée into a family of finite dynamical matrices. If

f(ia modg)=x,— ai
g(jB moda)=y;—Bj}’

If the ratio @/ B is incommensurate, the points in the domain h tem is in th Vi on. the ei ¢
of the modulation functions are dense within one period. Fof'€ System is in the analytic region, the eigenvector corre-

a commensurate ratio, only discrete points are found. sponding to the phason mode is the derivative of the modu-
Calculations of the modulation functions, for different lation function: Figure 4a) shows the modulation function
values of the force constants, show analytic and nonanalytief the second chain and the eigenvector of the phason, where
regions. If the interchain potential is weak in comparisonthe latter is clearly the derivative of the first. When the sys-
with the intrachain potentials, the modulation functions oft€m is just outside the analytic region, the phason can also be
both chains are analytic. That is, a smooth periodic functiorP®en as the derivative of the modulation function. That is, at
fits the points of the modulation functions. For strong inter-9aps in the modulation function also the phason eigenvector
chain coupling compared to the intrachain coupling, the anashows discontinuitiegthough they are finiteand the slopes
lyticity of the modulation functions is broken and gaps are©f the continuous parts of the modulation correspond to the
introduced. Note that the analyticity breaks simultaneouslyhason eigenvector, as Figh# shows. _ _
for the two chains. In Fig. 3 our results are shown. The The dispersion relations are constructed using the eigen-
critical value of the interchain coupling is the same valugvalues for different values of the wave vectarFigure 5
that was mentioned before at which the continuity of the senows the dispersion relations for two specific systems, in
of ground states was broken. This breaking of analyticity is & 19- 5@ the system is in the analytic region, in Figbin
phase transition from an analytic to a nonanalytic phase. 1§ nonanalytic region. The system in the analytic region has

subsection |1l C the opening of gaps in the modulation functWo modes at zero wave vector with zero frequency. One
tions will be discussed in more detail. corresponds to the acoustiGoldstong¢ mode, the other to

the phason or sliding mode. The first mode is a uniform
displacement of the particles in the unit cell. The second
corresponds to a mode where the two chains move in oppo-
The dynamical properties of the double chain model aresite directions. As the interchain potential increases, the de-
derived from the eigenvalues and eigenvectors of the dygeneracy is lifted which introduces the phason gap. This oc-
namical matrix. The elements of this matrix are defined agurs at the same point where the analyticity of the
follows: modulation functions breaks. Figurébb shows such a pha-

B. Phason gap

214302-3
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FIG. 5. Dispersion relations. This figure shows part of the dis-
persion relations. The parameters of the systempar&5, q= 34,
ki;=1, a=1, andd=1.2, andk;=k,=2 in the case ofa) and 0 T
k,=k,=1.2 for the system ofb). (a) At " there are two modes
which have(almos} zero frequency. One is the acoustic mode, the
other is the phason mode. Due to the weak interaction some band ks
crossings open. The model is in the analytic phdbg.Now the . . . .
degeneracy disappeared and the phason gap opened. The system iézlG' 7. The phase C_j'agram' ob_talned m two different m_anr_1ers
here in the nonanalytic phase. for the Lepnard-.]ones-.ll!(e interchain poteptlal. The. squares indicate

the breaking of analyticity of the modulation functions of the two

_ ) ) _ chains, the triangles the disappearance of the phason gap. The sys-
son gap. This gap is defined as the difference between them parameters ag=55, =34, k;,=1, @=1, andd=1.2.

frequencies of the phason mode and the acoustic mode. The

phason mode is defined as the mode showing the Iargesxp(—kf). The two lines coincide everywhere, except close
displacement of the chains in opposite directions and is ndb thek, axis, so the lower approximant already gives a good
always the second mode in the dispersion. Crossing the tramesult.

sition line from the nonanalytic to the analytic phase the gap

closes rapidly. Figure 6 shows the closing of the gaR,if C. The phase diagram

andk,, are kept constant ari, is varied for two approxi-  The previous two subsections showed that for weak inter-
mants. As can be seen the gap falls off rather quickly, likechain interaction compared to the intrachain interactions, the

modulation functions are both analytic and no phason gap
0.5 . : exists. If the interchain coupling exceeds a threshold, the
analyticity of the modulation functions breaks and the pha-
son gap opens, both at the same time. At this threshold a
phase transition from an analytic to a nonanalytic regime
takes place. Whether the system is in the analytic or nonana-
lytic region depends on the force constants, although one of
them, e.g.kq,, can be scaled away. The actual shape of the
transition line in the phase diagram depends on the ratios
kq/kqo andky /kqs.

Figure 7 shows the phase diagram of an approximant
which has 55 particles in one chain and 34 in the other chain.
The diagram was obtained in two ways, using the analyticity
breaking of the modulation functions and the opening of the
phason gap. As the figure shows, the two lines coincide very
well. Note that the transition line is asymmetric. The value of
k, at which the transition takes place for high valugsis

FIG. 6. Closing of the phason gap. Only one of the force con-"0t the same value & for high values ok,. Another result
stants k;) changes, the other two are fixed. As can be seen, the gf:f the nonconvex part in the transition line. If in this region
closes quickly. The solid line describes the closing of the gap for &1 is fixed, for increasind, the system first passes the tran-
system withp=55 andq= 34, the dashed line for a system with Sition line from the nonanalytic to the analytic region, later
p=144 andq=89. Both approximants almost coincide entirely. on it passes the line again and enters the nonanalytic region.
The other system parameters &g=1, a=1, d=1.2, andk, In the numerical calculations, a criterion has to be chosen
=2. whether the transition line is crossed. The approximants are

1 2

0.25 |

®phason ~ Pacoustic

0

0.5 1 1.5 2
Ky
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FIG. 8. Phase diagrams for different ratios of the periods of the FIG. 9. Phase diagrams with different interchain potentials
two chains. For all cases, the number of particles in chain 2 is 34shown in Fig. 2. Line | indicates the phase diagram of the model
The number of particles in chain 1 is 4F), 49 (Il), 53 (lll), 55 with the Lennard-Jones potential, line Il that of the short-range
(IV), 59 (V), and 57(VI). The corresponding ratios are 1.38, 1.44, Gaussian potential, and line Il that of the deeper Gaussian poten-
1.56, 1.62, 1.74, and 1.68, respectively. There is no line in case dfal. The system parameters gue=55, q=34, k;,=1, «=1, and
51 particles in the first chaifratio is 3/2, because this is a truly d=1.2.
commensurate case.

(3/2) and therefore the system never shows a gap as small as

not truly incommensurate crystals, in fact they are commenEhe o_ther approximants. Thus the actual ratipaf deserves
special attention.

surate. As a consequence, there will always be a finite num- . . . .
N . ! . ) As already mentioned, in previous wér Gaussian po-
ber of points in the domains of the modulation functions, i.e. . .
. ’t%ntlal of the form:
they are not densely spread. Nonetheless, a nonanalytic an
an analytic regime can be distinguished. In the analytic re- O(r)=—exp—r?) (7)
gion, the points of the modulation functions can be fitted by . . .
was used instead of the Lennard-Jones potential. Figure 9

a smooth periodic function, whereas, in the nonanalytic re- X
gion clearly gaps appedsee Fig. 3. shows the results for the Gaussian and the Lennard-Jones

A similar argument holds for the phason gap. If a Crystalpotential for an approximant of the incommensurate crystal.

: o The transition line for the Gaussian is symmetric and con-
is truly commensurate, it will always possess a phason 9Wyex. As Fig. 2 shows, the two potentials differ in range and

However, in_ case of the approximan?s, ther_e ok region W_itr?n magnitude. Therefore another Gaussian was taken as to
a large gap in respect to another region which contains a ting, 516 3 better comparison. The well of the Gaussian was
but.flnlte gap. At the transition line, _vvhlch d|y|des those tWo jade as deep as that of the Lennard-Jones potential. Note
regions, the phason gap closes rapidly as Fig. 6 shows. If th@at the ranges are still very different, the Gaussian goes to
phason gap is less then 0.004, the system is considered to Bgro exponentially, whereas the Lennard-Jones potential
in the analytic region. goes ag ~°. Figure 9 shows also the phase diagram for this
The existence of the phason mode was used to determingaussian potential. As can be seen, the transition line is sym-
also the phase diagrams of systems with a different ratio thametric and convex, just as in the case of the other Gaussian.
the golden mean. The results are depicted in Fig. 8. The In case of the Lennard-Jones-like potential an asymmetric
transition line becomes more asymmetric and the nonconvetxansition line was found. This in contrast to the transition
region increases for increasing number of particles in the firdine found using the Gaussian potentials. The asymmetry was
chain, where the number in the other chain is kept fixed. Théound when the ratio of the numbers of particles in the chains
diagram for the approximant witp/g~ 7 is not a special does not approach an integer number. The impact of this
case, i.e., it is not an extremum beyond which no other traniregularity in the input parameters becomes apparent for the
sition lines for other ratios are found. Note that the transitionong range interchain interaction. The sensitivity of the
line for the case where the system contains 51 particles in th@aussian potential is negligible for this long-range effect.
first and 34 particles in the second chain lacks. In this casdlote that in the model used to examine friclaeentrant
the ratio ofp andq is commensurate with small denominator behavior was also found. In this model a Gaussian interchain

214302-5
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o0 am e eo TABLE |. Some intensities of the acoustic and phason mode.

o 21 | | 02} @ L The subscripp denotes the phason,the acoustic mode. The ve-
8_ 1 l locity of the phason mode equals 2.246, of the acoustic mode 1.363.
> Four main Bragg peaks and two satellite peaks and their neighbor-
§ 14 r hoods are examined. The boundary of the first Brillouin zone is at
S 0.057. The indices of the peaks df®1), (0,2, (1,0, (2,0, (2,-1),
0 | L . l ] Lol and(1,1), respectively. The system is in the analytic region of the
0 10 20 phase diagram, its parameters beipg 55, q=34, k;=k,=2,
k12:1, C(:l, andd=12
s 4
5 k wp W, S(wp) Sw,) S(w),
= -2 -2 2 2 S(w)a
2 o | *10 *10 *10 *10
2
£ 0,9
E’ 4 3.89 2.3 1.4 31.75 0.67 47.05
0 10 20 3.90 4.5 2.7 23.13 0.43 54.17
wavevector 3.91 6.8 4.1 12.89 0.21 62.64
0,2
FIG. 10. The geometrical structure factor. Theaxis is the 7,78 2.3 1.4 23.71 0.48 49.72
difference in incoming and outgoing wave vectors, yraxis is the 7 79 45 27 17.30 0.30 57.80
calculated intensity. The lower plot shows the Ioga_rithm of the up-7 go 6.8 41 9.66 0.15 63.16
per plot. The labelsr(,m) correspond to those used in Table I. The (1,0
model is in the analytic regime, its parameters bepg55, g !
34 k;—k,=2. kp— 1, a—1, andd—1.2. 6.29 2.3 1.4 0.67 40.36 0.02
6.30 4.5 2.7 0.41 29.51 0.01
potential was used in a two-chain structure where one chaifi-31 6.8 4.1 0.19 16.51 0.01
was attached to a bulk. This model shows a different struc(2:0
ture, i.e., one chain is attached to a bulk whereas the othé@-58 2.3 1.4 0.82 39.54 0.02
chain is free, which probably causes the reentrant behavior ih2-59 4.5 2.7 0.67 28.81 0.02
this system. A further elaboration on these asymmetries i$2.60 6.8 4.1 0.43 16.06 0.03
out of the scope of this article that concentrates on differ{2,—1)
ences between long- and short-range interchain interaction8.69 2.3 1.4 0.40 1.18 0.34
8.70 4.5 2.7 0.31 0.77 0.40
IV. OBSERVING THE PHASON MODE 8.71 6.8 4.1 0.19 0.38 0.51
(1))
Atte_mpts have been made to observe the phason or S“dmﬂ).lS 23 14 0.17 0.32 0.54
mode in incommensurate compounds. There is a éléiat
thi de i di Ik / but thi Itis di 10.19 4.5 2.7 0.18 0.20 0.86
Is mode is measured in alkane/urea, but this result is dis; , 6.8 a1 013 0.10 135

puted by others.So, the question now is, what are the con-

ditions to observe a sliding mode. When the crystal is in the

analytic part or just near the transition line in the nonanalytic

part of the phase diagram, the phason branch will be the 5 nl )

second branch. By x-ray diffraction the main Bragg and sat- 1(k)e[S(k)] :Z > exdik(z—z)], ®)

ellite peaks can be determined. At these peaks, the phason .

mode can be measured if it exists, as here the intensities of

the phonon modes will be large. Inelastic neutron scatteringwherez stands forx or y, the positions of all the particles in

for instance, might reveal the phason mode. the unit cell andk is the difference between incoming and
Using x-ray or neutron scattering, main Bragg peaks willoutgoing wave vector. Figure 10 shows the intensities for an

be found atk,=2nw/a and Kz;=2m=/B, with n andm  approximant in the analytic phase. The lower graph shows

integers. The former are just the Bragg reflections due théhe logarithm of the intensity. Clearly, for higher values of

first chain, the latter are due to the second chain. Besidethe wave vector, the intrinsic computational inaccuracies in-

these main reflections there also exist satellite peaks. Theseease, as is to be expected. This figure shows also that the

can be found aK,+Kg=2nm/a+2mn/B, where bothn  peaks are dense. This is because the approximant has a very

andm are nonzero. The labeling of the peaks will ber(), small Brillouin zone, and therefore the Bragg reflections of

where n stands for contributions of the host andof the the large unit cell given by above, will all show some

guest. Both the main and satellite reflections can be given imtensity, though many of these peaks will be very small.

terms of the Bragg reflections of the large unit cBll More satellite peaks can be discovered in the logarithmic

=2l w/ap, wherel is an integer. The relative intensities of figure.

the reflections can be calculated using the geometrical struc- The response function which gives information about the

ture factor: phonon spectrum of a crystal, is the dynamic structure factor.

214302-6



PHASON MODE IN INCLUSION COMPOUNDS PHYSICAL REVIEW B3 214302

For a fixed wave vectok, the intensities in a neutron- V. CONCLUSIONS
scattering experiment can be calculated using: . . .
g exp 9 Both the modulation functions and the existence of the
j _ 2 phason gap lead to a phase diagram. At the transition line the
S(k,w)= Zs 2 esexdikz]| s(w—w(s)), (9  analyticity of the modulation functions break and the phason

_ gap appears. The transition line depends on the ratio of the

where €, are the eigenvectors of the dynamical matrixforce constantk; /k;, andky /K.
(which are complex outsid&’), z; is the position of the In the case of an approximant of an incommensurate crys-
particle,k is the wave vectory is the frequency of the wave tal, the transition line is asymmetric and has a nonconvex
andw(s) are the square roots of the eigenvalues of the dypart. The transition line of the approximant wigiq~ 7 is
namical matrix. not an extremum, beyond which no other lines exist. For

Table | shows calculations around Bragg and satellitg;ommensurate systems with a small denominator, such as the
peaks for a specific choice of parameters. If the static strucsne with 51 particles in one chain and 34 in the other, the
ture factor shows a relative high intensity at a Bragg or sat; ap is always large compared to the gap of the approximant
ellite peak, the scattering of neutrons by phonons can b, ihe analytic region. As a consequence, no transition was
measured better near these peaks than at reflections Wifgund in this case. ’

much lower intensity of the static structure factor. The pha- Performing the same calculations for an approximant us-

son mode appears both near main and satellite reflection% a Gaussian interchain potential of deoth comparable to
However, the relative intensity of the phonon modes at th Y P P P

satellite peaks is less than at the main peaks, as is to ggat of the Lennard-Jones interaction, the transition line is

expected from the relative intensities calculated by the stati@!°r® Symmetric and does not contain a nonconvex region.
structure factor(see Fig. 1@ Just next to the maifri0,1) Therefore, the asymmetry and the honconvex shape_ are due
reflection (first main Bragg peak of the guest latticghe to the long range of the _Lennard-Jones_-Ilke potential. The
phason mode is much stronger than the acoustic modé&ange of the latter comprises seven unit cells, that of the
Whereas next to the maifl,0) peak the acoustic mode has Gaussian potentials is much smaller.

more intensity than the phason mode as is also the case for Just outside the main Bragg reflections of the second
(2,0). Near the calculated reflections the phason mode haghain, the intensity of the phason mode is relatively larger
more intensity than the acoustic mode near main peaks of tH&an the intensity of the acoustic mode. The group velocity
second chain. Near the satellite peaks, the phason mode hakthe phason mode is larger than of the acoustic mode, so
half the intensity of the acoustic mode. The velocity of thethe second branch is the phason branch.

phason mode equals 2.246 and of the acoustic mode 1.363. If In future work, the one dimensional model will be ex-
there is no coupling between the chains, the velocities aréended to higher dimensions. Incorporating the actual values
2.291 and 1.410, respectively. When the wave vector inof the three force constants, the distance between the chains
creases, the intensities of the modes decrease. The Brillouhd the periods within one chain, makes it possible to make
zone contains many branches. These branches are actuaijyhetter comparison with experimental work.

the branches of the dispersion relations of the two separate

chains folded into the Brillouin zone of the unit cell. It

turned out that hal_fwgy the_ Brillouin zone the lower folded ACKNOWLEDGMENTS
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