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Phason mode in inclusion compounds
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~Received 16 October 2000; published 15 May 2001!

The phason mode in inclusion compounds is investigated using the double chain model, which consists of
two mutually interacting chains. This model generalizes the Frenkel-Kontorova model to a system where both
sublattices are deformable. The phase diagram in parameter space contains a region with a zero-frequency
phason and a region with a phason gap. In comparison with earlier work, the phase-transition line is not
convex. The dynamic structure factor around Bragg and satellite peaks is calculated to find conditions needed
to measure the phason mode in experiment.
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I. INTRODUCTION

Incommensurate composites belong to the class of quasi-
periodic crystals. They consist of at least two interpenetrat-
ing crystalline subsystems. In one or more crystallographic
directions the periodicities of these subsystems are incom-
mensurate, i.e., the ratio of the periodicities is not a rational
number.

Examples of such a system are the inclusion compound
CnH2n12/urea for some values ofn. The urea molecules~the
hosts! form a hexagonal lattice, with the alkane molecules
~the guests! situated in the channels of this lattice. The ratio
of the periodicities of the two subsystems along these chan-
nels depends onn, or in other words, depends on which
alkane is present. For some alkanes this ratio is incommen-
surate, e.g., heptadecane (n517). Theoretically these incom-
mensurate systems show the existence of a sliding or phason
mode for not too strong interchain coupling. However, ex-
periments are still not conclusive on the existence of this
mode1–3 in alkane/urea systems.

This paper studies the theoretical aspects of the statics and
dynamics of inclusion compounds to find conditions under
which the phason mode can be observed in experiment. Ear-
lier work used the Frenkel-Kontorova model,4,5 which con-
sists of a harmonic chain of atoms under the influence of a
rigid substrate potential. This system describes composites
where one of the subsystems is infinitely rigid. Double
Frenkel-Kontorova models6,7 allowed some understanding of
solitons involving deformation of both subsystems. How-
ever, these models are not able to explain correctly static
properties like the intermodulation or give a full account of
the dynamics of both subsystems.

The recently introduced double chain model,8 provides a
suitable model to investigate inclusion composites as it takes
into account the discreteness of the real crystal and the mu-
tual interaction of both sublattices. The model generalizes
the Frenkel-Kontorova model, replacing the rigid potential
by a second deformable chain. Because both sublattices are
now mutually deformable, the influence of the chains on
each other can be studied more realistically. A study of
friction9 also used a double chain model, but here one of the
chains was attached to a substrate. Therefore, there is no
acoustic mode present in that model.

This paper studies the double chain model starting from

its potential energy. Minimizing the energy leads to the
ground state of the system. Modulation functions provide
information about these ground states. This leads to a phase
diagram containing a region in which the modulation func-
tions are analytic and a region in which they are nonanalytic.
The dynamical matrix gives the phonon spectrum of the
crystal. For weak interchain coupling, two zero-frequency
modes exist. One of them is the phason mode, the other one
is the acoustic mode. If the interchain potential increases
beyond a threshold value the degeneracy in theG point no
longer exists and a phason gap appears. This also leads to a
phase diagram, which coincides with the diagram obtained
by considering the modulation functions. Finally, the geo-
metrical and dynamical structure factors give insight in the
experimental effects of the phason and acoustic modes.

An interchain interaction with a long tail will be intro-
duced in the double chain model. This interaction will lead to
an asymmetric transition line in the phase diagram, which
differs from the results found earlier using a Gaussian poten-
tial. The shape of the transition line is found to depend on the
ratio of the numbers of particles in the two chains. The con-
ditions needed to find a phason mode in neutron-scattering
experiments are discussed as well.

The paper is organized as follows. Section II presents the
model. Section III describes the statics and dynamics of the
double chain model, which will lead to the phase diagram.
The following section discusses the observation of the pha-
son mode. Section V draws conclusions.

II. DOUBLE CHAIN MODEL

The double chain model consists of two parallel chains of
particles. Figure 1 visualizes this system. The interaction be-
tween particles in one chain~the intrachain interaction! is
harmonic. The interaction between particles situated in dif-
ferent chains~the interchain interaction! is Lennard-Jones-
like. In a previous work,8 a Gaussian potential was used
instead of the Lennard-Jones potential. Results for these dif-
ferent potentials will be compared at the end of the next
section. The potential energy of the model is written as:
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where k1 and k2 are the force constants of the intrachain
potentials,a andb are the equilibrium distances, andxi and
yj are the positions of thei th ( j th! particle of the first and
second chain respectively. The masses of the particles are
taken unity. Note that the model is one dimensional, thex
variables denote positions in one chain, and they variables
denote positions in the other chain. The particles are allowed
to move only along the chain axis.

The ideal crystal is perfectly incommensurate and infi-
nitely long. Because a computer cannot deal with such sys-
tems, in numerical calculations it has to be approximated. An
approximant to the ideal crystal is made by considering a
large unit cell that containsp particles in the first chain andq
particles in the second chain, which is under the constraint of
periodic boundary conditions. The infinite summations in the
potential energy~1! are thus replaced by summations up top
andq particles. The ratio ofp andq approximates an irratio-
nal number. This article uses neighboring numbers of the
Fibonacci series forp and q, the ratio p/q5a/b then ap-
proximates the golden meant5(11A5)/2. The higher the
neighboring numbers are, the better the approximation is.
The behavior of the system for other ratios~no approximants
of an incommensurate system! is studied as well. Systems
with these different ratios are studied in Section III C.

The interchain potentialF(r ) was chosen to be a
Lennard-Jones potential:

F~r !52k12F S r 21d2

s2 D 26

2S r 21d2

s2 D 23G , ~2!

wherek12 is the force constant of the interchain potential and
d the fixed distance between the two chains. The parameters
s and d equal 1 and 1.2, respectively in the numerical cal-
culations. Figure 2 shows the Lennard-Jones potential. The
well of the Lennard-Jones is at a smaller distance~at r
51.12) than the distanced. Hence, only the attractive part
beyond the minimum of the Lennard-Jones potential plays a
role. The potential is cut off at a large distance, in these
calculations it has a range of seven unit cells. A smooth
steplike function at the endings prevents singularities in the
derivatives of the potential energy. The Lennard-Jones po-
tential introduces fairly long-range interactions, in contrast to
the previously used Gaussian potential. That is, the tail of the
Lennard-Jones-like interaction is longer than that of the

Gaussian interaction, therefore the Lennard-Jones is called
long range and the Gaussian short range.

III. PHASE DIAGRAM

A. Modulation functions

Ground states of the double chain model can be found by
minimizing the potential energy~1!. A quasi-Newton~the
Broyden-Fletcher-Goldfarb-Shanno algorithm10! method was
used to derive the equilibrium configuration in the numerical
simulations. The equilibrium configurations of the chains in
absence of the interchain interaction were used as a starting
point for the minimalization routine and the convergence tol-
erance was taken to be 1.0*10215.

If the interchain potential is weak compared to the intra-
chain interactions, a continuum of ground states is found.
This implies that the potential energy does not change when
the chains are moved with respect to each other. However,
when the interchain potential gets stronger, a transition is
found. Above the threshold value, neighboring ground states
are separated by Peierls Nabarro barriers and energy is
needed to go from one ground state to another.

The ground states can be studied by introducing modula-
tion functions in the same way as they are introduced in, for
instance, the Frenkel-Kontorova model.11 These modulation
functions can be defined as follows:

xi5a i 1 f ~ i !

yj5b j 1g~ j !J , ~3!

where xi and yj are the positions of the particles in the
ground state situated in the first and second chain, respec-
tively, a i andb j are the equilibrium~initial! positions of the
particles without interchain interaction, andf ( i ) andg( j ) are
the displacements of the particles with respect to their initial
positions. The modulation function of the first chain depends

FIG. 1. The double chain model. The intrachain potentials~in-
dicated by springs! are harmonic. The interchain potential is either
Lennard-Jones-like or Gaussian. The distanced between the chains
is fixed. The equilibrium distances between particles in chains 1 and
2 area andb, respectively.

FIG. 2. The interchain potential. The solid line~I! indicates the
Lennard-Jones-like interaction, the dashed line~II ! the Gaussian
interaction used in previous8 work and the dotted line~III ! the
Gaussian interaction which is as strong as the Lennard-Jones-like
interaction. The variabler is the distance between two particles
situated in different chains.
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on the configuration of the second chain and vice versa.
Therefore, the periodicity of the modulation of one chain
equals the periodicity of the other chain. Hence,f ( i ) can be
mapped on one periodb and g( j ) on one perioda. Equa-
tions ~3! result in:

f ~ ia modb!5xi2a i

g~ j b moda!5yj2b j J . ~4!

If the ratioa/b is incommensurate, the points in the domain
of the modulation functions are dense within one period. For
a commensurate ratio, only discrete points are found.

Calculations of the modulation functions, for different
values of the force constants, show analytic and nonanalytic
regions. If the interchain potential is weak in comparison
with the intrachain potentials, the modulation functions of
both chains are analytic. That is, a smooth periodic function
fits the points of the modulation functions. For strong inter-
chain coupling compared to the intrachain coupling, the ana-
lyticity of the modulation functions is broken and gaps are
introduced. Note that the analyticity breaks simultaneously
for the two chains. In Fig. 3 our results are shown. The
critical value of the interchain coupling is the same value
that was mentioned before at which the continuity of the set
of ground states was broken. This breaking of analyticity is a
phase transition from an analytic to a nonanalytic phase. In
subsection III C the opening of gaps in the modulation func-
tions will be discussed in more detail.

B. Phason gap

The dynamical properties of the double chain model are
derived from the eigenvalues and eigenvectors of the dy-
namical matrix. The elements of this matrix are defined as
follows:

Di j
zz8~k!5(

l

]2E

]zi]zj8
exp@2 ikR~ l !#U

eq

, ~5!

wherez andz8 stand forx or y, E is the potential energy~1!,
k is a wave vector, andR( l ) is the equilibrium position of the
l th unit cell.12 The frequencies of the phonon excitations in
the crystal are given by the square roots of the eigenvalues of
the dynamical matrix. The corresponding displacements are
given by:

us
i
„R~ l !…5Re$es

i ~k!exp@ ikR~ l !#%, ~6!

wheres denotes the mode,i the number of the particle in the
primitive cell, andes the eigenvector corresponding to mode
s. The dynamical matrix is infinitely dimensional if the crys-
tal is truly incommensurate. However, because the crystal is
approximated by a large unit cell to which periodic boundary
conditions are applied, the Bloch theorem may be used to
decomposeD into a family of finite dynamical matrices. If
the system is in the analytic region, the eigenvector corre-
sponding to the phason mode is the derivative of the modu-
lation function.13 Figure 4~a! shows the modulation function
of the second chain and the eigenvector of the phason, where
the latter is clearly the derivative of the first. When the sys-
tem is just outside the analytic region, the phason can also be
seen as the derivative of the modulation function. That is, at
gaps in the modulation function also the phason eigenvector
shows discontinuities~though they are finite! and the slopes
of the continuous parts of the modulation correspond to the
phason eigenvector, as Fig. 4~b! shows.

The dispersion relations are constructed using the eigen-
values for different values of the wave vectork. Figure 5
shows the dispersion relations for two specific systems, in
Fig. 5~a! the system is in the analytic region, in Fig. 5~b! in
the nonanalytic region. The system in the analytic region has
two modes at zero wave vector with zero frequency. One
corresponds to the acoustic~Goldstone! mode, the other to
the phason or sliding mode. The first mode is a uniform
displacement of the particles in the unit cell. The second
corresponds to a mode where the two chains move in oppo-
site directions. As the interchain potential increases, the de-
generacy is lifted which introduces the phason gap. This oc-
curs at the same point where the analyticity of the
modulation functions breaks. Figure 5~b! shows such a pha-

FIG. 3. The modulation functions. The upper two plots show the
modulation function of the first chain, which contains 55 particles,
the lower two plots that of the second chain, which contains 34
particles. The plots on the left are for a system in the analytic phase,
on the right in the nonanalytic phase. The model parameters are
k252, k1251, a51, andk152 for the former andk150.5 for the
latter.

FIG. 4. The circles correspond to the modulation function, the
triangles to the eigenvector of the phason mode.~a! The system is
in the analytic regime.~b! The system is in the nonanalytic region,
but near the transition line. The parameters of the system arep
555, q534, k1251, a51, andd51.2, andk15k252 in the case
of ~a! andk151.2, andk252.0 for the system of~b!.
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son gap. This gap is defined as the difference between the
frequencies of the phason mode and the acoustic mode. The
phason mode is defined as the mode showing the largest
displacement of the chains in opposite directions and is not
always the second mode in the dispersion. Crossing the tran-
sition line from the nonanalytic to the analytic phase the gap
closes rapidly. Figure 6 shows the closing of the gap ifk2
and k12 are kept constant andk1 is varied for two approxi-
mants. As can be seen the gap falls off rather quickly, like

exp(2k1
3). The two lines coincide everywhere, except close

to thek1 axis, so the lower approximant already gives a good
result.

C. The phase diagram

The previous two subsections showed that for weak inter-
chain interaction compared to the intrachain interactions, the
modulation functions are both analytic and no phason gap
exists. If the interchain coupling exceeds a threshold, the
analyticity of the modulation functions breaks and the pha-
son gap opens, both at the same time. At this threshold a
phase transition from an analytic to a nonanalytic regime
takes place. Whether the system is in the analytic or nonana-
lytic region depends on the force constants, although one of
them, e.g.,k12, can be scaled away. The actual shape of the
transition line in the phase diagram depends on the ratios
k1 /k12 andk2 /k12.

Figure 7 shows the phase diagram of an approximant
which has 55 particles in one chain and 34 in the other chain.
The diagram was obtained in two ways, using the analyticity
breaking of the modulation functions and the opening of the
phason gap. As the figure shows, the two lines coincide very
well. Note that the transition line is asymmetric. The value of
k2 at which the transition takes place for high valuesk1 is
not the same value ofk1 for high values ofk2. Another result
is the nonconvex part in the transition line. If in this region
k1 is fixed, for increasingk2 the system first passes the tran-
sition line from the nonanalytic to the analytic region, later
on it passes the line again and enters the nonanalytic region.

In the numerical calculations, a criterion has to be chosen
whether the transition line is crossed. The approximants are

FIG. 5. Dispersion relations. This figure shows part of the dis-
persion relations. The parameters of the system arep555, q534,
k1251, a51, andd51.2, andk15k252 in the case of~a! and
k15k251.2 for the system of~b!. ~a! At G there are two modes
which have~almost! zero frequency. One is the acoustic mode, the
other is the phason mode. Due to the weak interaction some band-
crossings open. The model is in the analytic phase.~b! Now the
degeneracy disappeared and the phason gap opened. The system is
here in the nonanalytic phase.

FIG. 6. Closing of the phason gap. Only one of the force con-
stants (k1) changes, the other two are fixed. As can be seen, the gap
closes quickly. The solid line describes the closing of the gap for a
system withp555 andq534, the dashed line for a system with
p5144 andq589. Both approximants almost coincide entirely.
The other system parameters arek1251, a51, d51.2, andk2

52.

FIG. 7. The phase diagram, obtained in two different manners
for the Lennard-Jones-like interchain potential. The squares indicate
the breaking of analyticity of the modulation functions of the two
chains, the triangles the disappearance of the phason gap. The sys-
tem parameters arep555, q534, k1251, a51, andd51.2.
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not truly incommensurate crystals, in fact they are commen-
surate. As a consequence, there will always be a finite num-
ber of points in the domains of the modulation functions, i.e.,
they are not densely spread. Nonetheless, a nonanalytic and
an analytic regime can be distinguished. In the analytic re-
gion, the points of the modulation functions can be fitted by
a smooth periodic function, whereas, in the nonanalytic re-
gion clearly gaps appear~see Fig. 3!.

A similar argument holds for the phason gap. If a crystal
is truly commensurate, it will always possess a phason gap.
However, in case of the approximants, there is a region with
a large gap in respect to another region which contains a tiny
but finite gap. At the transition line, which divides those two
regions, the phason gap closes rapidly as Fig. 6 shows. If the
phason gap is less then 0.004, the system is considered to be
in the analytic region.

The existence of the phason mode was used to determine
also the phase diagrams of systems with a different ratio than
the golden mean. The results are depicted in Fig. 8. The
transition line becomes more asymmetric and the nonconvex
region increases for increasing number of particles in the first
chain, where the number in the other chain is kept fixed. The
diagram for the approximant withp/q't is not a special
case, i.e., it is not an extremum beyond which no other tran-
sition lines for other ratios are found. Note that the transition
line for the case where the system contains 51 particles in the
first and 34 particles in the second chain lacks. In this case
the ratio ofp andq is commensurate with small denominator

~3/2! and therefore the system never shows a gap as small as
the other approximants. Thus the actual ratio ofp/q deserves
special attention.

As already mentioned, in previous work8 a Gaussian po-
tential of the form:

F~r !52exp~2r 2! ~7!

was used instead of the Lennard-Jones potential. Figure 9
shows the results for the Gaussian and the Lennard-Jones
potential for an approximant of the incommensurate crystal.
The transition line for the Gaussian is symmetric and con-
vex. As Fig. 2 shows, the two potentials differ in range and
in magnitude. Therefore another Gaussian was taken as to
make a better comparison. The well of the Gaussian was
made as deep as that of the Lennard-Jones potential. Note
that the ranges are still very different, the Gaussian goes to
zero exponentially, whereas the Lennard-Jones potential
goes asr 26. Figure 9 shows also the phase diagram for this
Gaussian potential. As can be seen, the transition line is sym-
metric and convex, just as in the case of the other Gaussian.

In case of the Lennard-Jones-like potential an asymmetric
transition line was found. This in contrast to the transition
line found using the Gaussian potentials. The asymmetry was
found when the ratio of the numbers of particles in the chains
does not approach an integer number. The impact of this
irregularity in the input parameters becomes apparent for the
long range interchain interaction. The sensitivity of the
Gaussian potential is negligible for this long-range effect.
Note that in the model used to examine friction9 reentrant
behavior was also found. In this model a Gaussian interchain

FIG. 8. Phase diagrams for different ratios of the periods of the
two chains. For all cases, the number of particles in chain 2 is 34.
The number of particles in chain 1 is 47~I!, 49 ~II !, 53 ~III !, 55
~IV !, 59 ~V!, and 57~VI !. The corresponding ratios are 1.38, 1.44,
1.56, 1.62, 1.74, and 1.68, respectively. There is no line in case of
51 particles in the first chain~ratio is 3/2!, because this is a truly
commensurate case.

FIG. 9. Phase diagrams with different interchain potentials
shown in Fig. 2. Line I indicates the phase diagram of the model
with the Lennard-Jones potential, line II that of the short-range
Gaussian potential, and line III that of the deeper Gaussian poten-
tial. The system parameters arep555, q534, k1251, a51, and
d51.2.
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potential was used in a two-chain structure where one chain
was attached to a bulk. This model shows a different struc-
ture, i.e., one chain is attached to a bulk whereas the other
chain is free, which probably causes the reentrant behavior in
this system. A further elaboration on these asymmetries is
out of the scope of this article that concentrates on differ-
ences between long- and short-range interchain interactions.

IV. OBSERVING THE PHASON MODE

Attempts have been made to observe the phason or sliding
mode in incommensurate compounds. There is a claim2 that
this mode is measured in alkane/urea, but this result is dis-
puted by others.3 So, the question now is, what are the con-
ditions to observe a sliding mode. When the crystal is in the
analytic part or just near the transition line in the nonanalytic
part of the phase diagram, the phason branch will be the
second branch. By x-ray diffraction the main Bragg and sat-
ellite peaks can be determined. At these peaks, the phason
mode can be measured if it exists, as here the intensities of
the phonon modes will be large. Inelastic neutron scattering,
for instance, might reveal the phason mode.

Using x-ray or neutron scattering, main Bragg peaks will
be found atKa52np/a and Kb52mp/b, with n and m
integers. The former are just the Bragg reflections due the
first chain, the latter are due to the second chain. Besides
these main reflections there also exist satellite peaks. These
can be found atKa1Kb52np/a12mp/b, where bothn
andm are nonzero. The labeling of the peaks will be (n,m),
where n stands for contributions of the host andm of the
guest. Both the main and satellite reflections can be given in
terms of the Bragg reflections of the large unit cellK
52lp/ap, wherel is an integer. The relative intensities of
the reflections can be calculated using the geometrical struc-
ture factor:

I ~k!}uS~k!u25(
i

n

(
j

n

exp@ ik~zi2zj !#, ~8!

wherez stands forx or y, the positions of all the particles in
the unit cell andk is the difference between incoming and
outgoing wave vector. Figure 10 shows the intensities for an
approximant in the analytic phase. The lower graph shows
the logarithm of the intensity. Clearly, for higher values of
the wave vector, the intrinsic computational inaccuracies in-
crease, as is to be expected. This figure shows also that the
peaks are dense. This is because the approximant has a very
small Brillouin zone, and therefore the Bragg reflections of
the large unit cell given byK above, will all show some
intensity, though many of these peaks will be very small.
More satellite peaks can be discovered in the logarithmic
figure.

The response function which gives information about the
phonon spectrum of a crystal, is the dynamic structure factor.

FIG. 10. The geometrical structure factor. Thex axis is the
difference in incoming and outgoing wave vectors, they axis is the
calculated intensity. The lower plot shows the logarithm of the up-
per plot. The labels (n,m) correspond to those used in Table I. The
model is in the analytic regime, its parameters beingp555, q
534, k15k252, k1251, a51, andd51.2.

TABLE I. Some intensities of the acoustic and phason mode.
The subscriptp denotes the phason,a the acoustic mode. The ve-
locity of the phason mode equals 2.246, of the acoustic mode 1.363.
Four main Bragg peaks and two satellite peaks and their neighbor-
hoods are examined. The boundary of the first Brillouin zone is at
0.057. The indices of the peaks are~0,1!, ~0,2!, ~1,0!, ~2,0!, ~2,-1!,
and ~1,1!, respectively. The system is in the analytic region of the
phase diagram, its parameters beingp555, q534, k15k252,
k1251, a51, andd51.2.

k vp va S(vp) S(va) S(v)p

S(v)a*1022 *1022 *102 *102

~0,1!
3.89 2.3 1.4 31.75 0.67 47.05
3.90 4.5 2.7 23.13 0.43 54.17
3.91 6.8 4.1 12.89 0.21 62.64
~0,2!
7.78 2.3 1.4 23.71 0.48 49.72
7.79 4.5 2.7 17.30 0.30 57.80
7.80 6.8 4.1 9.66 0.15 63.16
~1,0!
6.29 2.3 1.4 0.67 40.36 0.02
6.30 4.5 2.7 0.41 29.51 0.01
6.31 6.8 4.1 0.19 16.51 0.01
~2,0!
12.58 2.3 1.4 0.82 39.54 0.02
12.59 4.5 2.7 0.67 28.81 0.02
12.60 6.8 4.1 0.43 16.06 0.03
~2,21!

8.69 2.3 1.4 0.40 1.18 0.34
8.70 4.5 2.7 0.31 0.77 0.40
8.71 6.8 4.1 0.19 0.38 0.51
~1,1!
10.18 2.3 1.4 0.17 0.32 0.54
10.19 4.5 2.7 0.18 0.20 0.86
10.20 6.8 4.1 0.13 0.10 1.35
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For a fixed wave vectork, the intensities in a neutron-
scattering experiment can be calculated using:

S~k,v!5(
s

U(
j

es
j exp@ ikzj #U2

d„v2w~s!…, ~9!

where es
j are the eigenvectors of the dynamical matrix

~which are complex outsideG), zj is the position of the
particle,k is the wave vector,v is the frequency of the wave
andw(s) are the square roots of the eigenvalues of the dy-
namical matrix.

Table I shows calculations around Bragg and satellite
peaks for a specific choice of parameters. If the static struc-
ture factor shows a relative high intensity at a Bragg or sat-
ellite peak, the scattering of neutrons by phonons can be
measured better near these peaks than at reflections with
much lower intensity of the static structure factor. The pha-
son mode appears both near main and satellite reflections.
However, the relative intensity of the phonon modes at the
satellite peaks is less than at the main peaks, as is to be
expected from the relative intensities calculated by the static
structure factor~see Fig. 10!. Just next to the main~0,1!
reflection ~first main Bragg peak of the guest lattice!, the
phason mode is much stronger than the acoustic mode.
Whereas next to the main~1,0! peak the acoustic mode has
more intensity than the phason mode as is also the case for
~2,0!. Near the calculated reflections the phason mode has
more intensity than the acoustic mode near main peaks of the
second chain. Near the satellite peaks, the phason mode has
half the intensity of the acoustic mode. The velocity of the
phason mode equals 2.246 and of the acoustic mode 1.363. If
there is no coupling between the chains, the velocities are
2.291 and 1.410, respectively. When the wave vector in-
creases, the intensities of the modes decrease. The Brillouin
zone contains many branches. These branches are actually
the branches of the dispersion relations of the two separate
chains folded into the Brillouin zone of the unit cell. It
turned out that halfway the Brillouin zone the lower folded
branch decreases its intensity whereas the next folded branch
~the two folded branches actually belong to the same chain!
increases in intensity. Thus, the intensity is ‘‘taken over’’
half-way through the Brillouin zone by a higher mode.

V. CONCLUSIONS

Both the modulation functions and the existence of the
phason gap lead to a phase diagram. At the transition line the
analyticity of the modulation functions break and the phason
gap appears. The transition line depends on the ratio of the
force constantsk1 /k12 andk2 /k12.

In the case of an approximant of an incommensurate crys-
tal, the transition line is asymmetric and has a nonconvex
part. The transition line of the approximant withp/q't is
not an extremum, beyond which no other lines exist. For
commensurate systems with a small denominator, such as the
one with 51 particles in one chain and 34 in the other, the
gap is always large compared to the gap of the approximant
in the analytic region. As a consequence, no transition was
found in this case.

Performing the same calculations for an approximant us-
ing a Gaussian interchain potential of depth comparable to
that of the Lennard-Jones interaction, the transition line is
more symmetric and does not contain a nonconvex region.
Therefore, the asymmetry and the nonconvex shape are due
to the long range of the Lennard-Jones-like potential. The
range of the latter comprises seven unit cells, that of the
Gaussian potentials is much smaller.

Just outside the main Bragg reflections of the second
chain, the intensity of the phason mode is relatively larger
than the intensity of the acoustic mode. The group velocity
of the phason mode is larger than of the acoustic mode, so
the second branch is the phason branch.

In future work, the one dimensional model will be ex-
tended to higher dimensions. Incorporating the actual values
of the three force constants, the distance between the chains
and the periods within one chain, makes it possible to make
a better comparison with experimental work.
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