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l i b r a r y



ABSTRACT

The number of interacting variables influencing the drying of ceramic shells is large 

and to explore by experimental means is prohibitive. Therefore, the main advantage of 

the proposed theoretical model in this work, is that the effect of the drying conditions 

on their other important parameters (such as saturation, temperature, gas pressure) and 

transport properties (permeabilities, diffusivity) that control final properties of a 

multilayer ceramic shell can be investigated without extensive experimentation. This 

is very important in avoiding shell failure due to incomplete drying.

Due to the fact that a porous ceramic body is a three phase system (solid, liquid and 

gas), modelling its transport and thermodynamic behaviour involves a complex 

solution due to the highly nonlinear physics that capture their evolution. A two- 

dimensional numerical model based on the fundamental equations of heat, mass and 

gas transport was developed to establish the drying and thermodynamic response of 

the ceramic shell system. This complete coupled set is based on Whitaker’s model 

that includes the mass, momentum and energy equation which also embodies the 

constitutive diffusion and capillary flow theory and its evaporation-condensation term 

in the flow phases; conduction, convection and latent heat of evaporation in the 

energy equation; along with the gas transport equation.

The most widely implemented numerical solution (the fully implicit backward time 

stepping scheme) in the area of multiphase flow and drying in porous media was 

chosen for the temporal solution. The finite element method was employed for the 

spatial solution, due to its flexibility in dealing with complex geometries, and also it 

shows an ideal approach to employ in the solution o f this class of problem. Both of 

the temporal and spatial numerical solutions for the theoretical solution were 

implemented into a computational code by using the Fortran programming language.

This simulation scheme has been benchmarked against thermal test cases (to confirm 

the correct functioning o f the thermal analysis) and for the first time the brick drying 

benchmark by Stanish in which it is demonstrated to provide the best solution. The



scheme was then extended to address the drying o f a single ceramic layer and 

compared with the published work, again showing good agreement.

For the first time a simulation approach for the drying of a multilayer system that 

includes the impact of wet layer addition is proposed. The principles of an ab initio 

scheme are demonstrated that again show good agreement with experimental trends.

Further work is required to obtain a better match with experimental data, but to do so 

will require improvements in deriving a compatible material data set that is 

appropriate for this simulation approach. The scheme set out in this thesis may be 

used to guide the test selection to facilitate derivation of these material properties.
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CHAPTER 1

INTRODUCTION

1.0 Background

The investment casting process will be summarised in a later section in this chapter. 

However, for many years, precision investment casting foundries have periodically 

reported serious casting defects (Hyde, October 1995). One source is associated with 

the shell manufacturing process and is due to unremoved moisture during the drying 

of the layers as they form the shell. This results in a cracking mechanism in the dewax 

cycle as it may create vapour pressure build up in the shell body (Jones and Leyland, 

1994). This defect is attributed to uncontrolled drying. The drying condition is very 

critical to shell manufacture due to the fact that it can lead to hygrothermal stresses 

and hence the shell can exhibit a tendency to crack. Therefore, the production 

environment for the ceramic shell must be enclosed and incorporate temperature and 

humidity control systems. One of the longest steps in shell manufacture is the drying 

process which must be carried out in a controlled environment after each dipping and 

stuccoing stage in the build up process. Each layer can take typically up to two hours 

to complete the dipping and drying process. Therefore failure of an investment mould 

can be extremely expensive not only because of the loss of raw materials, but in terms 

of processing time and the cost of the drying process which is energy intensive.

One of the main reasons for failure is not having detailed knowledge of the drying 

process, such as controlling the drying parameters which are highly influenced by the 

transport mechanism especially in the case of a porous medium. Other factors that 

may contribute to failure are raw materials, such as binders, solution etc. but these are 

not taken into consideration in this work as they may be controlled through well 

established quality control procedures that may be established through laboratory 

based procedures (Roberts and Delaware, 1995).
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Experimentation has contributed to significant process understanding and hence 

improvement. Investigation has explored the changing of the drying parameters 

(Leyland and Jones, 1994), the drying time (Guerra et al., 1992), the raw materials 

(Jones, February-June 1994) etc. and their final impact on the final shell performance. 

This empirical approach is expensive, time consuming, and valid only for the 

conditions explored within the confines of the experiment. Recently, with the advent 

of powerful computers, more emphasis has been given to process modelling. The use 

of computer models has provided better understanding of several industrial processes, 

and the simulation of situations never considered before have resulted in innovative 

process improvements.

Before proceeding to the modelling approach it is appropriate to have some overview 

of the main stages in the ceramic shell making process and also its common failures. 

This may help to identify or give a clear description of the drying parameters and how 

they may contribute to process failure.

1.1 General process of the ceramic shell build up process

The complete investment casting process is shown in Figure 1.1. The current project 

focuses specifically on stages 4 and 5.

2



The Investment Casting 
Process

Die
manufacturing

Injection of 
wax 

p a t te rn s

Pattern  Ceramic shell build up Dewaxing by 
assem bly  by

to c lusters  rep ea ted  dipping in autoclave 
ceramic 

siurris followed by 
application 

of refractory stucko

Pouring of the  Ceramic shell Cut-off of 
liquid m eta l in removel the
the  p reh ea ted  by shake-ou t  pa r ts  from 
ceramic mould & the  m etal 

shot b lasting cluster

Grinding of 
the  ingates

Heat
trea tm ent,
calibration,
inspection

Figure 1.1: The investment casting process (P.I.Casting Ltd).

The term investment casting derives from the characteristic use o f mobile ceramic 

slurry, or investment, to form a mould that has an extremely smooth surface. 

Investment casting allows dimensionally accurate components to be produced and is a 

cheaper alternative than forging or machining, since the waste material is kept to a 

minimum (Jones and Marquis, 1995). Quantitative understanding o f the shell 

formation process can help to establish the structure and property relationship for the 

mould. Recently, many researchers have realized the importance o f the drying process 

and conditions to control the quality o f the final ceramic shell, however none have 

attempted to analyse this part o f shell formation rigorously through development of 

process simulation techniques.

The basic step in the production o f a ceramic shell is the dipping o f the assembled 

wax pattern into a muticomponent slurry which is composed o f a fine mesh refractory 

ceramic and colloidal binder system. After this, a layer o f fine ceramic powder is 

added to retain the fidelity o f the wax surface. Further layers are then added to build

3



up the shell thickness and hence strength. Thus, after every dipping process a ceramic 

layer is added by sprinkling refractory stucco that is then dried. The purpose of stucco 

addition in this way is to minimise the drying stresses and to facilitate a mechanical 

bond between the primary coating and the back up or secondary layer. Thus, an 

investment casting mould consists of individual layers of fine and granular refractory 

material held together into the required thickness. This can be seen in stages 4 and 5 

in Figure 1.1.

The rate of drying between consecutive layer applications plays an important role in 

economic production of shell moulds in order to get the optimum strength. Normally, 

each layer of the mould takes between 1 and 2 hours to produce due to the need for 

controlled moisture removal in every layer. Unless sufficient moisture is removed the 

layer will have insufficient mechanical strength to allow another to be applied (Jones 

and Leyland, 1994; Leyland and Jones, 1994). Drying and strength development are 

the most significant rate-limiting factors in reduction of lead times and production 

costs for the ceramic shell making process within the casting industry (Leyland and 

Jones, 1994).
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Figure 1.2: The stages of drying a ceramic body (Guerra et a l,  1992).

The drying mechanism depends on moisture removal in a very controlled manner, or 

severe cracking or warping can occur. Fortunately, the sequence of putting one dip on 

at a time allows for much greater flexibility in drying, as the slurry layer is thin and 

spread over a wide area. Also, the stucco layer (granular particle of refractory) acts to 

slow down the rate of drying on each individual dip by covering much of the surface 

of the slurry. Nevertheless, low relative humidity or excessive air movement can 

cause cracking. One reason often given for this occurring is drying too rapidly during 

which excessive moisture gradients are generated within the matrix, leading to high 

hygrothermal stress levels.

Figure 1.2 shows the drying process with regard to the ceramic particles. Figure 1.2 

(A) shows a group of particles separated by a large amount of water, which would be 

the case when a cluster has just been dipped. Figure 1.2 (B) is when some of the water 

has been removed. Some shrinkage has occurred, and many of the particles have
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started to touch. In Figure 1.2 (C), drying shrinkage has stopped, as all the particles 

have made at least some contact with other particles. A great deal of water is left in 

the pores and at interparticle contacts. In Figure 1.2 (D), most of the readily accessible 

water has been removed. Some liquid remains in small capillaries along with 

physically adsorbed water. A full description of drying can be found in many texts on 

drying where models are drawn from well known drying theories, such as by Scherer 

(1990), Whitaker (1977) and Luikov (1975),

The amount of water to be removed from the shell mould also depends on the amount 

of water contained in the slurry. Low viscosity slurry will have a greater amount of 

water and thus will allow more water to soak into the previously dried coats and will 

soak further back into the shell mould structure. The length o f time that the mould is 

immersed into the slurry will also increase the amount of soak back that occurs. 

Immersion for a short time (e.g. 10 s) may result in de-lamination due to insufficient 

binder soaking into the previous coats. Excessive wetting occurs when the moulds are 

immersed for longer periods resulting in softening of the previously dried coats and 

also increasing the amount of water to be removed during drying

Drying of the shell moulds after the seal coat has been applied is required in order to 

remove the remaining moisture. Failure to remove the mositure content from the inner 

coats will result in the moisture rapidly expanding as it turns into steam during the de­

wax cycle damaging the primary coat and inner secondary coats. The final firing stage 

in shell formation is undertaken to develop its strength as well as ensuring that the 

mould is completely dry during which bound water will be removed from the mould. 

This stage of drying in which bound water is removed will not be considered within 

this work.

1.2 Side effect of drying ceramic shell body

In the drying of ceramic porous material, the removal of moisture can cause shrinkage 

and warping which may lead to failure (Scherer, 1990). Shrinkage is caused primarily 

by self-contraction of the material as moisture is removed from the ceramic body. If
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the shrinkage is anisotropic or hindered, the drying material may warp and crack. 

Normally, tension tends to be greater near the drying surface (because the outer 

surface tends to contract faster than the interior) which produces a differential 

shrinkage of the solid that will cause cracking.

Cracking of a slurry and porous network is most likely to occur at the end of the 

constant rate period, i.e. the critical point when shrinkage stops (Scherer, 1990). As 

mentioned previously, during this period liquid flows toward the outside to prevent 

exposure of the slurry porous network. As the liquid stretches to cover the solid phase 

it goes into tension (concave meniscus form). The tension P is balanced by 

compressive stresses on the solid phase that tends to suck the network under the 

surface o f the liquid. The radius of curvature of the meniscus which is related to P is 

initially much larger than the pore radius. A fast evaporation rate and a stiff network 

leads to a greater tension, pulling the network together. Therefore, as long as the 

network is sufficiently compliant, the liquid vapour interface remains at the exterior 

surface o f the body. However, the maximum pressure that the liquid can exert is 

related to the pore size of the network. The critical point is reached when the tension 

in the liquid cannot compress the network fast enough for the contraction rate to 

match the rate o f evaporation. Also the physical contact between particles will 

ultimately lead to a system that will not contract further. This process is depicted 

schematically in Figure 1.3.

Also, during the constant rate period the tension in the liquid compresses the network 

and induces flow from the interior. For the meniscus to remain at the surface of the 

network, the rate of evaporation must equal the liquid flux to the surface, which is 

given by Darcy’s law in the form of surface flux as shown below:

( 1 1 )
M

where VP is a pressure potential gradient, K  is the permeability of the network and fi 

is the dynamic viscosity o f the liquid. The lower the permeability, the more difficult it 

is to draw liquid from the inside of the body, and therefore the greater the pressure 

gradient that develops to support a greater evaporation rate. The reason that slurries
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are more difficult to dry than ordinary ceram ics is that their perm eability is very low.

a) Initial Condition

b) Com  tant Rate Period

î rJwxAl<
V.

Liquid/vapour meniscus
flat

Pore liquid

Solid phase

Evaporation

Shrinkage

c) Falling Rate Period

Em ply pores

Minimum radius o f curvature

Figure 1.3: Schematic illustration of the drying stages in the pore network (Scherer,

1990).

Other factors that contribute to cracking during the shell building process is the role of 

the firing and drying time which may lead to variation in shrinkage in every layer of 

shell having a different orientation (Guerra et al., 1992). As reported by laboratory 

works on the shell layer build up process, a small temperature fluctuation may 

develop during the shell build up process due to the effect o f the latent heat of 

evaporation in every repetition of the dipping process. The fluctuation that occurs 

during each coating operation may therefore cause each individual coat to crack, 

producing a source o f weakness through the shell mould thickness (Leyland and 

Jones, 1994). The damaged section will then be prone to cracking during the



dewaxing stage as well as surviving the rigours of handling during the shell building 

process (Schiefelbein, 1987).

1.3 Research motivation

A thorough understanding of the mechanisms that govern ceramic shell drying 

process not only can avoid failure, but facilitate and design the drying cycle for every 

layer and thus lead to more precise moulds (Leyland, March 1996). Therefore, 

research into the drying of ceramic shell moulds should lead to improved production 

rates and lower operational cost through scrap reduction and time lost. One way of 

deepening understanding is by developing mathematical models that are incorporated 

into a numerical solution to give a good prediction of the important variables, such as 

temperature, moisture, gas pressure etc and their variation during the drying time.

Such a mathematical modelling process will also lead to prediction that will aid 

experimentation improvement in the drying performance and guide the choice of the 

various kinds or properties of material to be used. Besides this advancement, it allows 

the complex mechanisms that take place to be predicted and investigated, such as the 

mechanism of the water soak back into previous coats during the drying of the shell 

system. Other important or interrelated parameters also can be predicted during this 

period. This modelling also enables the investigation of drying for various geometries

i.e. linear and comer sections that will underpin modelling of full scale complex 

geometries.

Most experimental methods and results in drying are concerned with determination of 

drying kinetic curves, since a knowledge of the drying kinetics is necessary for drier 

design. Drying kinetics are connected with the changes o f average material moisture 

content and average material temperature with time. This is in contrast with drying 

dynamics that describe changes in the temperature, pressure and moisture profiles 

throughout the drying body. Drying dynamic variables are very important in 

describing the drying mechanism (capillarity, diffusivity or convection). Therefore the 

development of a mathematical model through integrating these dynamic variables
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that incorporate the governing equations of heat, moisture and gas transport provides 

an attractive possibility to investigate drying of a porous ceramic shell.

Therefore, the motivation of this study is to establish a process simulation tool based 

on a comprehensive model, implement this within a numerical framework and to 

undertake a validation of this scheme where it is possible to do so.

1.4 Objectives of the project

Based on the preceding discussion, the present research effort was undertaken with 

the following objectives:

1. To develop a theoretical formulation in two dimensions to describe two phase 

flow, with fully coupled heat, mass and gas transport for a nonhygroscopic porous 

system for drying of a ceramic body particularly for drying a ceramic shell mould 

system.

2. To develop a numerical solution of the above fully coupled theoretical form using 

a combination of a finite element formulation and a finite difference time stepping 

algorithm for predicting the important variables such as temperature, moisture, 

pressure, permeability, and relative humidity and etc. variation during the drying 

of the ceramic porous body.

3. To develop a model to capture the drying of a single and multilayer shell.

4. To verify the model against analytical solutions and to validate the numerical 

model against experimental studies and previously published numerical results.
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1.5 Research contributions

In this work, the fully coupled, heat, mass and gas transport governing equations was 

developed based on a continuum framework. This model provides a systematic way 

to incorporate transport through convective and diffusive mechanisms. The derivation 

of the transport equations is based on the drying working parameters such as 

temperature, gas and pore water pressure that can be measured within laboratory 

experiments. The advancement offered in this work is the development and 

application of a comprehensive model that is based on geomechanics to an industrial 

drying problem. This model may be contrasted against the previous work that used the 

irreversible thermodynamic modelling approach proposed by Malan (September 

2002) in which he recommended that material properties of the shell need to be 

determined based on a phenomenological approach.

This fully coupled set of transport equations was succesfully implemented. The 

numerical simulation was benchmarked against analytical studies on heat transfer, 

brick drying and drying of single and multilayer shells. The latter represents a first 

attempt at an ‘ab initio’ simulation of a multi layer shell drying process. The contour 

results provide a valuable insight to the dynamic variation of process variables during 

the drying process.

1.6 Outline of the thesis

The thesis is organized into seven chapters. In the first part of Chapter 1, a short 

introduction of the importance of the drying process and possible failure mechanisms 

that are always present in the ceramic shell build up process has been presented. An 

introduction to the ceramic shell mould making process is also included in here. Some 

objectives of the works, research motivations, research contributions and an overview 

of the Chapters are also presented.

In Chapter 2, the theoretical and numerical modelling developments are explained and
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illustrated in connection with the drying process. This traces their evolution and 

application, mainly in other fields. Some characteristics of drying in porous systems 

are also explained. This chapter also includes a short introduction to the well known 

basic drying models and their extension, for example to include temperature gradient 

influences, together with models based on irreversible thermodynamics are also 

discussed. Comparisons, limitations and advantage of the reviewed models are 

illustrated in connection with the drying process.

In Chapter 3, a range o f material properties required by the theory developed in 

Chapter 4 is presented. Ceramic bodies (brick and ceramic shells) can be represented 

by a three-phase system comprising liquid, gas (vapour and air) and solid particles 

which may contain water in bound and unbound form. This chapter focuses on the 

material properties and transport processes (heat, mass and gas) that are used for 

simulating the benchmark problems and for simulating ceramic shell drying.

In Chapter 4, a full derivation of the coupled heat, mass and gas transport equations in 

a two dimensional framework is presented. This partial derivation of the coupled 

equation is based on the temperature, moisture, pore water potential and gas pressure 

gradient. Generally, this formulation is follows the approach advocated in Whitaker’s 

model. The sets o f coupled equation consist of the constitutive derivative of their 

transport equations, material properties, thermodynamic state equilibrium etc., which 

have been presented in Chapter 3.

The set of the partial differential of the coupled governing equations presented in 

Chapter 5 sets out the equation solution by the Finite element method (for the spatial 

discretization) and difference time stepping algorithm (for the time discretization). 

The discretization process transforms the nonlinear partial differential equations 

where the unknowns are state variables at a discrete points in space. This is followed 

by implementing a fully implicit backward time stepping scheme. The skyline solver 

is used to manage the storage capacity required and the solution o f the coupled 

problem is achieved by an iterative method.

In Chapter 6, validation of the proposed model is tested. Validation is achieved by 

comparison against benchmark problems ranging from the simple linear heat flow for
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which the results compared well with the analytical solutions. Validation of the fully 

coupled heat, mass and gas transport problem is also presented for a documented 

study on brick drying, for which good agreement is again achieved. The coupled 

scheme is then implemented to simulate the shell drying process. This involves the 

isothermal drying of a plain linear shell section which is compared with industrial 

experimental work. This includes single and multi layer shells. This simulation shows 

a correct trend rather than close absolute agreement. For now, the lack of agreement 

has been attributed to the absence of good material model data. This shell drying 

simulation is then extended to a comer shape geometry that shows the moisture 

transport process under more complex geometric conditions.

Finally, Chapter 7 discusses the overall conclusions derived from this work, and 

makes pertinent recommendations for future work to extend and develop this 

research.
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CHAPTER 2

DRYING PROCESS IN POROUS MEDIA

CHAPTER LAYOUT

This chapter consists of several sections which review the most pertinent work that is 

relevant to the drying process that takes place in a porous ceramic media, especially in 

the application to ceramic shell drying that forms part of the investment casting 

process. An introduction to porous media was set out in Chapter 1 and this provides 

an outline to support the explanation and description in this chapter. A description of 

the physical variables, controlling parameters and thermodynamic reactions in the 

porous system and its interaction with the ambient conditions need to be included in 

order to have a better illustration of the drying mechanism. A description of drying is 

often summarised in the form of a drying curve which depicts the stages in the drying 

process. On a more detailed level, the coupling o f heat, mass and gas transport 

mechanisms enables a more complete scientific description of the drying process, 

especially when incorporated with the moving evaporation boundary inside the body 

and moving boundary condition in the drying environment.
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2.1 Introduction.

The drying process is energy intensive and is probably one of the least understood. 

Since phase change is often concurrent with the drying process in porous media, 

moisture can exist in a number of forms, including, liquid, vapour at a range of 

saturations that can tend to be a gas when dry. Furthermore, moisture transport within 

a porous medium becomes very complicated especially as pores assume a small size 

which may also contribute to hygroscopicity, bound water, moisture in 

multimolecular and monolayer layer etc. (Keey, 1975). Thus, the drying process 

needs a quantitative understanding of the physics involved that will include transport 

phenomena in all phases. This is relevant to shell drying in the investment “precision” 

casting manufacturing process, where attempts have been underway to improve 

investment casting ceramic shell-mould integrity through increasing the 

understanding of the diying process involved and its complicated porous structure 

interaction (Jones et al., 2003; Chakrabarti, 2002).

In order to theoretically describe the flow of moisture and heat through a porous 

medium, it is necessary to introduce and describe the structure of a porous body. 

Generally, a porous medium consists of intercellular spaces or voids which are 

interconnected and filled with air and a certain amount of free water. The cells 

themselves also contain water, which is also called bound water. The cellular 

membrane behaves like a perfectly semi-permeable structure and may act as a 

capillary path or for the bound water to migrate (as shown in Figure 2.1). When the 

water content is lower than the maximum irreducible water content, water will exist as 

bound water in the pores. However, when the water content exceeds the maximum 

irreducible water content, water will exist as free water and form a water ring, which 

may be continuous or discontinuous depending on the level. Other factors that 

contribute to water flow inside and outside of the porous medium (especially in the 

case of drying or under temperature gradient) include parameters such as the 

molecular forces in the capillarity flow, dynamic phase change in the pore and at the 

boundary that forms the moisture interface and hygrothermal equilibrium mechanisms 

within the capillary network (when interacting with specified ambient conditions).
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Figure 2.1: Schematic of the drying model (Zhang, 1999).

In general, most o f the drying works presented transport mechanisms (heat, moisture 

and gas) that is culminated in the form of a drying curve. The more recent and the 

most widely accepted qualitative explanation accounting for the characteristic drying 

curve is given by Scherer (1990). He suggests that in the constant rate period of 

drying the evaporation o f water occurs at the surface of the material in a manner 

similar to evaporation from a free water surface. Moisture exerts its full vapour 

pressure, and the migration of the moisture is determined primarily by capillarity, and 

thus is independent o f moisture content up to saturation (sometimes this is known as 

saturated drying). The falling rate period begins when depletion of water in the 

interior starts and the resistance to internal liquid movement becomes significant. The 

early stage of this period is characterized by “unsaturated surface drying”. Later in the 

falling rate period, the plane of evaporation retreats into the interior of the material. 

As drying proceeds the water removal continues and finally the body approaches the 

second falling rate period where the removal of bound water takes place under
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circumstances of strong hygroscopic action. This mechanism clearly shows the 

movement of liquid water from the interior of the porous system to a plane of 

evaporation at or toward a surface, which may also describe the evaporation front. 

Theoretically this evaporation front divides the system into two distinct zones: the wet 

and the dry zone as shown in Figure 2.2. In the dry zone, the free water content is zero 

and the main mechanism of moisture transfer is vapour flow. However in the case of 

hygroscopic material, the dry zone is called the sorption zone due to the adsorptive 

nature o f moisture retention. The general form of the drying curve as described in 

many drying books (Keey, 1975; Luikov, 1975) and in many papers that deal with 

drying (Scherer, 1990; Sherwood, 1929) is shown in Figure 2.2).

1* drying period! 
(constant rate) j

£** drying period 
(failing rate)

hygroscopic non-hygroscopic

eq "

Figure 2.2: Drying curve ; an average moisture content versus time (Keey, 1975).

It is very important in drying of all porous materials to know the internal interactions 

that occur within the porous medium and the drying environment. Therefore the 

complete analysis of drying can be generally viewed to comprise several 

phenomenological considerations. Mainly, this involves the introduction or transfer of 

heat into the porous system, the transfer or movement of heat and mass (liquid or 

gaseous phases) within the porous system, and the removal or mass transfer of water 

vapour from the system through the outer surface. Obviously, all three phenomena are
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coincidentally associated with any drying operation as described in many drying 

textbooks (Keey, 1975; Luikov, 1966). The first and last are primarily dependent on 

the mode of the drying employed, i.e, air drying, convective drying, hot surface 

drying, etc. They are referred throughout this thesis as boundary conditions. The 

second or middle factor, although affected by the boundary condition, is the 

characteristic of the porous system being dried. As mentioned earlier, drying of 

porous bodies involves complicated interactions that include dynamic phases and 

transport mechanisms of diffusion, convection and latent heat. Contributions from 

these transport mechanisms characterize the drying stages captured by the drying 

curve that has been modelled previously and implemented in several works (Stanish et 

a l , 1986; Zhang, 1999).

A complete analysis of drying involves representing the transport of heat, moisture 

and gas accounting for the interaction of all these mechanisms inside and outside of 

the body. A review of a sample of the most pertinent previous literature has showed 

that the transport mechanism in porous bodies has been modelled in several ways. For 

example, early investigation considered that liquid movement occurred as a result of 

diffusion under the influence of liquid concentration or moisture gradient without a 

heat transport gradient (Lewis, 1921). Then, this model was improved by including 

the coupling of heat and mass transfer (Luikov, 1966; Philip and de Vries., 1957). 

Recently, more complete models have been derived that account for simultaneous 

heat, mass and gas transport (Luikov, 1975; Whitaker, 1977). This complete model 

accounts for all phenomena in terms of temperature, moisture and gas and these are 

strongly inter-dependent. In fact it gives the best representation of the transport 

mechanisms in the theoretical drying model and good elaboration of the stages in the 

drying process as captured by the drying curve. Furthermore, some of the numerical 

drying models that had been published recently also couple transport in the porous 

body interior with transport in the form of flow around the external surface 

(Murugesan et al., 2000).
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2.2 Background of the drying model

In describing the drying of porous media, several view points have been postulated by 

previous researchers and scientists. Basically, there are several approaches that 

involve and contribute to the drying model development and these are given in the 

following paragraphs.

Early drying studies are commonly characterized by considering the rate of drying as 

a function o f the moisture content of the material being dried. The general curve of 

this early characteristic of simple drying is given in Figure 2.3 and has been found to 

apply presumably without exception, to all types of materials without regard for the 

particular drying condition employed. This typical or characteristic drying curve has 

resulted in the nomenclature which refers to a short heating up period leading to a 

constant rate period which continues to a critical moisture content at which point a 

falling rate drying period is inaugurated.

Moisture content

Figure 2.3: Characteristic of the simple drying curve (Higgins, 1951).

This early literature on drying deals only with the effect of boundary conditions on 

drying rate (Higgins, 1951; Keey, 1975). There are several methods that have been 

used previously to establish the drying rate. One of the most widely implemented and
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still used until now is based on a gravimetric method. This is used in developing the 

simple drying curve, where it involves the measurement of water loss from the moist 

body over an increment of time where smaller increments lead to a more accurate 

drying curve. In fact this classic measurement is still used today in many important 

fields such as in soil, building, food and also in the ceramic shell build up process 

(Chakrabarti, 2002; Jones and Leyland, 1994). This simple measurement of drying 

can sometimes be supplemented, dependent on the scope of the experiment. 

Examples include placing a highly sensitive thermocouple to capture thermal data and 

a probe that uses a conductivity principle to measure moisture within the porous body. 

Recording this data is very important when attempting to establish an accurate 

benchmark dataset as demonstrated in several works (Kallel et al., 1993; Shushang 

and Keey, 1994; Stanish et al., 1986).

However this simple measurement is still very limited because it reflects the influence 

of boundary conditions on drying and not the transport mechanisms and the factors 

that influence them. Measurement of these properties becomes very challenging due 

to the fact that the porous medium is heterogeneous and contains multiple phases. 

Unless care is taken, this simple measurement of the drying can lead to the wrong 

interpretation especially in the drying porous medium. This had been demonstrated 

through drying models (Scherer, 1990; Sherwood, 1929) and experimental work 

under temperature gradient condition (de Vries, 1958). Most o f them elaborated the 

drying measurement in terms of the thermodynamic and the thermo physical 

equilibrium in the porous section with consideration of the different phases (Scherer, 

1990) through integrating the experimental measurement with the theoretical concept.

While questions about these simple theories were being raised, researchers turned 

their attention to search more elaborated models. Early attempts to solve the drying of 

a porous body using a transport analysis included both heat and mass mechanisms. 

Due to the fact that simultaneous heat and mass transfer is a complex process, the first 

attempts to solve the problem neglected the thermal dependency of mass transfer or 

mass dependency of heat transfer. However, Philip et al. (1957) and Luikov (1966) 

revealed that the moisture diffusion equation alone is not adequate for describing 

moisture movement in drying of any porous medium or in any porous system that is 

subjected to a temperature gradient. Thus, the transfer of moisture and heat must be
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considered simultaneously in drying of a porous system. Basically, theories of 

coupled heat and mass transport phenomena in porous media come either from a 

mechanistic approach (de Vries, 1958; Philip and de Vries., 1957) or from irreversible 

thermodynamic concepts (Luikov, 1966). With the number of governing equations 

increasing and the physical properties that are contained within the ‘material model’ 

becoming more complex, the application range of these types of coupled models 

widens.

Luikov (1966) extended the previous treatment of the diffusion model by including 

effects of capillary flow and vapour transport. In his work, the thermal energy 

equation was also incorporated into the set of the governing equations. This set of 

equations represents the combination of moisture and temperature flow. He developed 

a set of equations and expressing conservation of mass for the moisture as well as 

conservation of energy by employing the principles of irreversible thermodynamics. 

Following the presentation set out in Equation (2.1), the basic assumption of 

irreversible thermodynamics is that Gibb’s equation, which was derived and proven 

for equilibrium conditions, is a good approximation for low rate heat and mass 

transfer. For an incompressible system (assuming that all gases may be approximated 

as being pressure incompressible) this equations reads

TdO = dy - 'L k adrja (2.1)a

where 0 denotes entropy, y internal energy, ka is a chemical potential of phase a  and

rtthe number of moles. This relation contains the two mechanisms encountered in 

drying, via heat and mass transfer.

For pure heat transfer the thermodynamic potential follows from the change in 

entropy, or TdO = dy  ,as

o9=vr 8 0 '

\ 8Y j
= - 4 r V r

T
(2.2)

where the thermodynamic force is a function of temperature gradient.
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For the case of isothermal mass transfer of a species a , the thermodynamic potential 

derived from Equation (2.1) follows

M = - V ^ l (2.3)
T

where the magnitude of the thermodynamic force is a function of the gradient of both 

the chemical potential and absolute temperature.

This thermodynamic force is the force that causes irreversible phenomena such as the 

transfer o f heat and mass to occur. In general, any transport phenomenon is governed 

by the action of all the thermodynamic forces and therefore it is assumed that each 

flux is linearly related to the force by

^ = f ( ^ } K )  f<*X = l.v.g (2.4)

This expression is known as Onsager’s system of linear equations and it is the 

principal expression of the thermodynamics of irreversible processes. The coefficients 

LxC are known as ‘phenomenological’ because they are determined by the rate at

which the phenomena proceeds. The generic coupled equation states that heat transfer 

depends not only on thermal conduction but also the redistribution of mass (Dufour 

effect) while mass transfer is governed not only by differences in chemical potential, 

and thus concentration of matter, but also by thermal diffusion (Soret effect).

— L ,, (  u, ̂
J q = - ^ - V T - L nV tLq  rp  2 IX rp

1 w

- L  f

(2.5)

Jm= ^ r V T - L 22v
\

M 1 (2 .6)

The employment cross-coefficients are equal and symmetrical for both the heat and 

mass transfer; the effect of unequal concentrations o f matter on heat-energy flow is 

symmetrical to that of temperature differences on mass flow, i.e LxC = . Therefore

these expressions of coupled governing equations are governed by correct definition 

of thermodynamic forces. Unfortunately these equations are not easily applied since 

the chemical potential is not an easily determined quantity. More useful expressions 

have been obtained by Luikov’s approach by replacing the thermodynamic force or 

the thermodynamic state by moisture content and temperature. This coupled
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interrelation between liquid and heat transfer are governed by two separate 

differential equations (Fourier’s equation for heat transfer and Fick’s equation for 

mass transfer).

J q - k nV T - k n Vm (2.7)

J m = k2lWT - k 22Vm (2.8)

The outstanding issues in the completion of the set of governing equations are 

obtaining expressions for the phenomenological coefficients (Lewis et al., 1996).

Although such a treatment makes the process easily understood, it is more difficult to

obtain the coefficients parameters that Luikov introduced in the governing equations 

of heat and mass transfer. In addition, some coefficients do not represent physical 

properties of the materials, but are process variables such as ‘phase change 

coefficients’. This makes it very difficult to establish material parameters that are 

required for the simulation process.

Meanwhile, Philip and de Vries (1957) and de Vries (1958) extended the previous 

diffusion model by including the effects of capillary flow and vapour transport. In 

their work, the thermal energy equation was also incorporated into the set of the 

governing equation to describe the drying process. This set of coupled equations was 

treated under the combination of moisture and temperature gradients. In this 

approach, the coupled partial differential equations of mass and energy are always 

presented as the overall thermal mass diffusivity (as shown in Figure 2.4) and the 

overall isothermal mass diffusivity along with the consideration of the convective 

energy terms are negligible. The obtained systems consist of diffusion-like equations 

whose coefficients must be determined by experiment. The capillarity action is 

macroscopically described by Darcy’s law and the gravity potential. The diffusion 

transport of water vapour by molecular diffusion is described as Fick’s law by using 

the simple theory of vapour transfer. They introduced some extended treatment of 

vapour transfer by substituting the thermal diffusivity of vapour flux is due to the 

average microscopic temperature gradient in the pore section. In general, this 

expression of diffusive terms are functions of porosity and moisture content which 

can be determined experimentally. Later then, this microscopic vapour transport was 

extended by Ewen et a l (1989). In this work some validation o f isothermal and
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thermal diffusivities according to the liquid and vapour transport of the proposed 

model and experimental values were examined and a good agreement was concluded.

Most of the previous studies which are based on two-way coupled heat and mass 

transfer model assumed that pressure was constant throughout the drying body. 

However they were claimed to be successfully employed to simulate temperature and 

moisture movement in the drying process (Kallel et al., 1993; Murugesan et al., 

2002). Despite this, there remains a question about the effect of pressure gradient on 

the heat and mass transfer, as to whether diffusion moisture movement is caused by a 

moisture gradient or a vapour transport as a consequence of a gas pressure gradient. It 

was then proved theoretically (Luikov, 1975), experimentally (Lewis and Schrefler,

1998) and numerically (Ilic and Turner, 1989; Lewis and Ferguson, 1990; Lewis and 

Schrefler, 1998) that a pressure gradient develops inside the capillary porous body, 

which causes moisture movement by filtration in addition to moisture transfer by 

diffusion (Hyde, October 1995). As for example the work presented by Thomas et al. 

(1980) was expanded upon by Ferguson (1991) and Lewis and Ferguson (1990) to 

include the effect o f pressure gradient. In the latter works, the approach is based on 

Luikov’s work or based upon on irreversible thermodynamics. As examples, these 

were applied to timber drying and an encapsulated electronic circuit. With comparison 

between a two component model (a model with coupled heat and mass transport) and 

a three component model (model with coupling o f heat, mass and gas transport), they 

found that during a period of intense drying the gas pressure gradient was shown to 

have a significant effect on the rate at which the temperature and moisture content 

reach steady state conditions They concluded that because of the marked gas pressure 

difference, the pressure cannot be assumed constant throughout the body. This is 

because the gas pressure term which is dependent upon material parameters, has a 

significant effect on the rate of moisture migration. This suggests Luikov’s (Luikov, 

1975) three phase coupled heat, mass and gas transfer model, in which heat transfer, 

mass transfer and pressure induced transfer are fully dependent, should be used.

Even though, Luikov’s three field variable model proposed a more reasonably 

acceptable method, it still inherited the introduction of the unknown coefficients 

which are still not easy to determine experimentally or otherwise, as pointed out
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previously. However, Luikov’s theory provides a well-established model in the 

treatment of simultaneous heat and mass transfer for the drying problem based on the 

extensive work that has been explained under the above section. In fact this approach 

is still commonly employed and quite often it is solved by employing the finite 

element method (Keum et al., 2000).

Most of the literatures and reviews of porous media indicate that the theory of Philip 

and de Vries provides the most comprehensive basis for the prediction of heat and 

moisture transfer in an unsaturated medium especially for soils. Most of the works 

that are based on this theory derived their constitutive capillary mechanism as a 

wetting curve (saturation curve), which is extensively determined and evaluated 

through experimental works (Ferguson and Kaddouri, 2004; Thomas and He, 1995) 

and similarly for the vapour movement (Ewen and Thomas, 1989). The major 

restriction o f this coupled theory is that it does not include the gradients of gas 

pressure; also there is no convection contribution in the heat equation. In the case of 

gas pressure being treated as constant, probably this is acceptable in the most cases 

when the total gas pressure gradient is small such as in soils. However, this 

assumption may not be applicable to most drying problems, where the contribution of 

the gas pressure plays an important role (as mentioned previously in Luikov model). 

This is due to the fact that the drying model involves phase changes (such as water 

phase to vapour phase) and circulation of the vapour pressure (vapour phase) from the 

drying front to the ambient condition. This is an important part in describing the 

drying process.
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Figure 2.4: Variation of moisture diffusivity with moisture content, (adapted from de

Vries (1958))

Independently of Philip de Vries and Luikov’s works, Whitaker presented a set of 

equations to describe the simultaneous heat, mass and momentum transfer in porous 

media. Whitaker started from heat and mass conservation equations for each phase 

(solid, liquid, and vapour plus inert gas) at the microscopic level, or the representative 

element volume (REV). By using the volume averaging method, the macroscopic 

differential equations were defined in terms of average field quantities. It assumes that 

the physical properties of the porous medium can be associated with mathematical 

field variables, whose time and space dependencies are represented in the form of 

differential balance equations of mass, momentum and energy. The theory of 

Whitaker was further developed and applied in the drying analysis of various porous 

media, for example in the drying analysis of brick (Ilic and Turner, 1989), wood 

(Spolek et al., 1985), sand (Whitaker et al., 1983) and cellular materials (Crapiste et 

al., 1988). In these works, the model is usually quite successfully matched against 

experimental data. Several listed works (Ilic and Turner, 1989; Ben Nasrallah and 

Perre, 1988; Nijdam et al., 2000; Perre et al., 1993; Zhang, 1999) have also shown 

that this complete set of equations based on the Whitaker continuum theoretical 

derivation are very good in representing the physical processes taking place in a wide 

range o f porous systems. For example in reference (Perre et al., 1993) the model was
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used to simulate the transport phenomena during convective drying with superheated 

steam and moist air applied to the seemingly diverse systems of light concrete and 

softwood board. Meanwhile in reference (Nijdam et al., 2000) the formulation was 

used to simulate a high-temperature drying model for softwood timber. In other 

related work, convective drying of brick with hygroscopic properties (Zhang, 1999) 

and nonhygroscopic properties (Ilic and Turner, 1989; Nasrallah and Perre, 1988) has 

been explored. In the Thermo-hydro-mechanical field, this method is widely accepted 

to solve a variety o f slow transient phenomena involving flow of heat, water and gas 

in deforming porous media (Gawin, 1996) and a multiphase model of concrete drying 

at high temperature (Gawin et al., 1998).

So with regard to the above discussion, most of the recent interest in development of 

drying analysis involves three field variables (temperature, moisture and gas pressure) 

obtained from the fundamental laws of conservation of mass, momentum and energy. 

The usual approaches to such an analysis have assumed that moisture moves by a 

range of mechanisms, including diffusion, capillarity and phase change. Heat is 

transported via conduction, latent heat and convection that includes contribution by 

gas transport, bulk flow and diffusion of the vapour. The gas phase is considered to be 

an ideal gas composed of dry air and vapour, which are regarded as two miscible 

species.

The governing equations are coupled through relationships that link the field variables 

with transport mechanisms that are often derived from analytical or empirical 

approaches. These constitutive relationships can be considered as being ‘material 

models’ as in many instances they are specific to the type of porous material that is 

being considered. For example, the moisture thermodynamic balance can be 

expressed through either the Kelvin law to describe the relationship between the pore 

liquid pressure, gas pressure and capillary pressure and saturation level. The 

saturation value can be linked directly to the gas and liquid permeability value. This 

approach gives a clear derivation of moisture, heat and gas transport. Furthermore, the 

chosen macroscopic primary variables such as gas pressure, capillary pressure and 

temperature correspond to real measurable quantities. In summary, this approach 

enables the solution of governing equations directly connected to the fluxes due to the
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molecular transport mechanisms of the conserved quantities. This provides a more 

practical approach than Luikov, because the ‘material model’ may be derived through 

measurement o f real physical quantities.

In modelling the drying process, the solution of the governing equations requires 

specification of boundary conditions. In their simplest form, they can be prescriptions 

that are linked to the field variables that reflect the drying environment in an 

approximate manner, for example through coefficients that reflect the average heat 

and mass transfer through convection at the surface. More recently surface transfer 

has been treated as a conjugate problem from continuum modelling point of view that 

allows consideration o f local heat and mass transfer at the bounding surface. Thus it 

involves the heat and mass transfer in both the porous material and surrounding fluid 

flow. Also the process is transient in nature wherein the resistance to heat and mass 

transfer at the boundary will vary with time. Hence, the heat and moisture transfer 

within the porous solid should be combined with the transport processes in the 

surrounding flow field. Murugesan et a l (2000, 2001) solved the evaporative drying 

of a brick by treating it as a conjugate problem. The conservation equations for the 

solid was obtained using the continuum approach. The Navier-Stokes equations had 

been employed for obtaining the flow filed and the corresponding flow solutions are 

used for predicting the drying behaviour of the rectangular of brick, the result showed 

that the leading edge dried faster, as compared to other regions. This work also 

observed that two dimensional results differ significantly from the prediction of one­

dimensional heat and mass transfer coupled with boundary layer approximations over 

the top surface especially in the regions away from the leading edge. In this instance, 

the result also indicated that it is essential to consider the buoyancy effects during 

forced convection drying o f the brick.

Some works related to the conjugate drying problem with relevance to shell drying 

have also been explored. The thesis presented by Malan (September 2002) explored 

the isothermal drying of a brick. The emphasis of his innovation was on fluid flow 

modelling in which he proposed the use of an unstructured edge-based finite volume 

artificial compressibility modelling algorithm that was evaluated on a number of flow 

problems. The method proved accurate and robust (stable) when applied to inviscid,
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as well as viscous flows ranging over a wide range of Reynolds and Rayleigh 

numbers. The proposed edge-based convective flux averaging procedure was found to 

result in a notable improvement in spatial accuracy. This fluid flow solver was then 

coupled with the model for the drying body. For both cases of a drying brick and 

extruded com-meal the predicted temperature and moisture evolutions were 

successfully validated against experimental data. However, to date, such conjugate 

solutions have been applied to simple geometry and do not reflect the complexity of 

ceramic shells used in investment casting. Extension to such geometry still remains a 

challenge.
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2.3 Closure

Following from the preceding review, the focus of the work in this thesis is to develop 

and test a comprehensive model for drying of an investment casting ceramic shell that 

will also include consideration of a multilayer system. Recent studies on improving 

the understanding of the shell making process have only focused on the effect of 

drying condition either by controlling the relative humidity, temperature and air flow 

velocity (Chakrabarti, 2002; Jones and Leyland, 1994). Usually the performance of 

the shell mould is measured by MOR (Modulus O f Rupture) evaluation (Hyde, 

October 1995). Also unfortunately, most of the works that have been done are not 

fully documented (Leyland and Jones, 1994; Leyland, 1996). Even until now, there 

are only a limited number of attempts to undertake the complete investigation of 

transport mechanisms in shell drying. Because of the underlying complexity of this 

process, this can only be achieved most effectively through application of simulation.

Therefore, in this work, effort has been put in to explore the combined heat, mass and 

gas transport mechanisms in ceramic shell drying. This may be contrasted against the 

work that has been done by previous researchers (Malan, September 2002) in which 

the scope focused on the development of a drying model using a mathematical 

formulation expressed via a volume averaged equation in one dimension. This 

excluded both multiple layers and the gravitational effect. Furthermore, much of the 

work has concentrated on the developing of the accuracy o f algorithms (Malan, 

September 2002; Malan and Lewis, 2003) rather than exploring transport mechanisms 

and their influence on the drying process. Thus few of the numerical investigations 

presented so far explore the importance of evolution of influence variables such 

temperature, saturation level etc during the shell drying process. There are no studies 

on modelling drying in multilayer shell systems.
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CHAPTER 3

MATERIAL PROPERTIES AND TRANSPORT 

PROPERTIES

CHAPTER LAYOUT

In this study of drying porous media, the definition o f parameters, such as transport 

parameters and any dynamic variables that are related to the transport and material 

properties need to be defined in order to describe the theory and mechanism of the 

drying process as reviewed in Chapter 2. These will be integrated into the complete 

coupled derivation that will be set out in Chapter 4. In the first section, the definition 

and characterization of the basic hygro-properties of porous material, the physical and 

material properties of solid, liquid water, vapour and gas are given. In the second 

section the transport properties (via mass, heat and gas) that include capillarity, 

diffusion mechanisms (conductivity) etc are presented based on the multiphase 

system. This also includes consideration of both internal and external behaviour.
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3.1 Introduction

This chapter contains two main sections which describe the introduction of material 

and physical properties and the transport properties during the drying process. The 

definition and characterization of the multiphase porous body is illustrated at the 

beginning, to give a brief idea about liquid, water and air proportion inside the body. 

This is followed by the classification of the liquid (saturation) which is an important 

parameter that defines the porous material category. In this model, the material is 

defined as a three-phase system comprising liquid, gas and solid (ceramic) particles. 

Therefore important physical and material properties for each phase are presented 

based on standard data or data from drying and flow in similar porous networks. 

These parameters are very important in closing the coupled governing equations as 

described in the next section and in Chapter 4. In reviewing the literature it became 

apparent that there are no relevant published data for ceramic shell drying for 

investment casting. For example, brick or concrete drying has been used extensively 

as a benchmark for comparing simulations and is therefore well documented 

(Baroghel-Bouny et al.t 1999; Ben Nasrallah, 1988; Ilic and Turner, 1989). There is 

only limited data on ceramic shell materials and generally this is aimed at end 

application or quality assurance and does not provide information that is directly 

applicable for the purpose of drying simulations (Jones, 1995; Jones and Leyland, 

1994; Leyland and Jones, 1994).

In the next section, the formulations of transport properties that are relevant to the 

drying process are given. The derivation of these transport properties is either 

physically-based (measured experimentally) or based on empirical or probabilistic 

functions. Some of the dynamic transport relationships such as the saturation curve is 

taken from well documented literature in the field of soil mechanics (Mualem, 1976; 

Van Genuchten, 1980) and hygrothermal porous media (Baroghel-Bouny et al.,

1999).
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3.2 Physical and material properties

The right input of parameters and their range need to be determined when undertaking 

simulation of the drying process and some of the materials exhibit a dependence on 

the dependent variables, leading to a solution that is highly nonlinear. Furthermore, 

the precision and range of some parameters is very important in order to facilitate and 

ensure an accurate solution. This is very critical especially when dealing with highly 

nonlinear parameters that may easily influence the convergence process and hence 

prevent a solution from being achieved. Due to the fact that some of the simulations 

studies that are carried out feature significant temperature change that reflects 

nonisothermal drying, therefore some physical properties that highly dependent on 

temperature cannot be assumed as constant (such as dynamic viscosity of air, liquid, 

gas or vapour). However other physical properties which are less affected or less 

dependent on temperature, are assumed to be constant in order to reduce complexity 

when dealing with the isothermal drying condition.

3.2.1 Porosity and saturation

Porosity {(/>) is one of the main and fundamental material properties which is used to 

describe a porous body. This value can be measured experimentally. It can be defined 

as the ratio of the total void or pore volume (Vvojd) to the total volume of the

material (Vlolal). Generally, it will describe how dense the body is and gives a general 

idea of the fluid and gas portion that may occupy the porous network.

* = (3-1)
'  total

In the drying of a moist porous body, the interaction of heat and mass transport inside 

the body will occur effectively in the large pore area. The liquid phase in the pore 

system will provide the opportunity for evaporation, which initiates vapour diffusion 

and interaction deep inside the body, leading ultimately to a dry porous system. 

Related to the porosity term is a saturation value (S',), it is defined as the volume 

fraction of void space filled by liquid;
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S, = —  (3-2)
1 V

void

Saturation is dimensionless and takes values from 0 (when medium is completely dry) 

to 1 (when the medium is completely saturated). Saturation can be subdivided further 

into two contributions;

S ^ S ^ + S f ,  (3.3)

where S ^  is the moisture content of free water and the irreducible moisture content 

Sirr is adsorbed water.

3.2.2 Hygroscopic and nonhygroscopic

In the case of nonhygroscopic material adsorbed water is zero. This assumption is 

applied to most concrete and brick where the latter is only weakly hygroscopic (Ilic 

and Turner, 1989; Ben. Nasrallah, and Perre, 1988; Stanish et al., 1986). On the other 

hand this adsorbed water cannot be ignored in the case hygroscopic materials (such as 

food, wood and etc). Theoretically, bound water migrates by a diffusion process that 

is driven by a gradient in the chemical potential of the sorbed water molecules. In the 

absence o f free water (nearly fully dry condition), the gas phase is assumed to be 

saturated with respect to the local bound water content and temperature. Normally,

this bound diffusivity coefficient shows a highly functional dependence on material

properties. It is more influenced by high temperature and explicitly relates vapour 

density to the bound water and it is determined through experimentation and by data 

correlation (Simpson, 1971). Therefore, in this work the existence of bound water is 

assumed to be negligible and the structure is assumed to be nonhygroscopic (or just 

weakly hygroscopic). So, the transport variables that will be explained in the next 

section just indicate the transport mechanisms which cover zone A as shown in the 

Figure 3.1 below. This covers the range for which shell drying occurs as successive 

layers are added, the final moisture content (irreducible moisture) is removed in the 

final stage of manufacture when the shell is fired at typically 800°C.
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Figure 3.1: Hygroscopic and nonhygroscopic zone (Keey, 1975).

3.2.3 The properties of ceramic porous bodies (based on the concrete or brick 

ceramic properties)

As mentioned earlier in the introduction, due to the limited data available especially 

on the dynamic transport properties of the ceramic shell body (such as its saturation 

curve, its permeabilities) available data on similar materials, such as brick (or 

concrete) were selected (Baroghel-Bouny et al., 1999; Ilic and Turner, 1989; Ben 

Nasrallah, and Perre, 1988; Stanish et al., 1986; Zhe Zhang, 1999). In relationship to 

these critical transport properties, almost all property values such as porosity, intrinsic 

permeability, etc. presented in the Table 3.1 need to be used and the values need to be 

consistent with each other in order to maintain the nonlinearity at a realistic level.

Table 3.1: The material properties of brick are taken from the related references 

(Baroghel-Bouny et al., 1999; Ilic and Turner, 1989; Ben. Nasrallah, and Perre, 1988; 

Stanish et al., 1986; Zhe Zhang, 1999)

Term Symbol Value

Density Ps 2000

Porosity 0.12

Intrinsic permeability K-intc 1 x lO’10
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Critical Saturation S e r i 0.3

Irreducible saturation S i r r 0.09

Thermal conductivity X s 1.45

Heat capacity C p 920

3.2.4 The properties of liquid water

The typical values of water density, molecular weight, specific heat capacity, thermal 

conductivity as given in Appendix 1 are considered to be constant and are taken from 

standard material properties (Rogers and Mayhew, 1976). The value of dynamic 

liquid viscosity,/// is given as below from a fit to standard data given in reference

(Kaye and Laby, 1973), over the range 1-100°C. When compared with other 

properties (as listed above), the dynamic viscosity of liquid water is highly influenced 

by temperature and its variation is strongly nonlinear when compared with the other 

properties that have been listed previously.

fi, -  661.2(7 -2 2 9 )" , 562x(1x10"3)±0.5%  (3.4)

3.2.5 The Properties of gas (vapour and air)

The gas phase, which is denoted by variables with the subscript g in this work, is a 

mixture o f air and water vapour which may be further denoted by the additional 

subscripts a and v, respectively. The total gas pressure is the sum of partial air and 

vapour pressure and it is assumed the gas obeys the ideal gas law. Therefore the 

density o f vapour and air are considered to be as below respectively;

(3-5)

p ‘ = ^ r t l  (3'6)

The density of the gas phase is simply;
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P g  = P a  + P v (3.7)

The dynamic viscosity of the vapour-air mixture, fi (Bird et al., 2002; Thai Hong, 

2006) is defined as below;

* 1 + 0 , i + o 2
(3.8)

where;

O. = i 3
V ^ a  J

o ,  = - ^
1

V8

1 +

1 +

f  V/2 
Mv

/  \U4
M .  '

\ Pa J

f  V '2 
ts .

f  w  N,/4
M

This represents a combination of the dynamic viscosity from both vapour and air. 

Both of these values will be presented in the next sections below.

3.2.5.1 The properties of dry air

The typical values of molecular weight, the specific heat capacity are given as below 

are assumed to be a constant and referred to the standard data (Mayhew and Rogers, 

1976) and can be found in the Appendix 1. The dynamic viscosity of dry air is again 

dependent on temperature. According to the study of Maitland and Smith (1972) the 

following equation gives the best result when compared to the experimental data at 

constant pressure.

H =182x10 7 exp 0.63404ln(r) -  45'638 + 38°'87 -  3.4505 Ns/m2 (3.9)

3.2.5.2 The properties of vapour

Coexisting liquid and vapour are assumed to be in local thermodynamic equilibrium. 

The pressure of vapour in equilibrium with the pore water is less than that of vapour 

in equilibrium with free water because of the effects of adsorption and capillarity. To
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account for this effect, the vapour pressure is expressed as;

K = P j h )  (3.10)

Or in terms of density of water vapour is given as;

Pv = Ps (h) (3.11)

where Psat, p sal and h are the saturated pressure of water vapour, vapour density and 

relative humidity. The relative humidity may be defined using Kelvin’s equation. The 

relative humidity is the ratio between the actual vapour in the air-vapour mixture, and 

the saturation vapour pressure at a given temperature. The relative humidity is 

dimensionless and can take values from 0 to 1. The saturated vapour density is a 

function o f temperature (Rogers and Mayhew, 1976; Reid and Sherwood, 1966) and 

is given b y ;

—  = 194.4exp{- 0.06374(r -  273) + 0.1634 * 1 O'3 (T  -  273)2} (3.12)
P s a t

Theoretically in a partially filled closed porous system, the air inside the pore will be 

in a good equilibrium with the water or water vapour. For the case of the saturated 

condition or in the existence of free water, this local water vapour is nearly close to 1 

and stays in constant equilibrium across the pore section. This local water vapour is 

particularly different from the water vapour in the boundary layer adjacent to the 

porous body especially in the case of drying through a convection process. Generally, 

the drying process is described by having a low relative humidity in the ambient 

condition, so that a moist body gives out moisture in the process of attaining 

equilibrium with the surrounding air. However as drying proceeds and moisture 

continues to be drawn out from the saturated body, the evaporation front will appear 

inside the body and divide the system into a two regions. During this stage, the vapour 

transport mechanism starts to play an important role inside the porous body and 

therefore below a critical value there is a big drop of relative humidity across the body
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(Gawin and Schrefler, 1996). Finally this is followed by the stabilization of the water 

vapour to the ambient condition as the body becomes nearly fully dried.

The molecular weight, the gas constant, the specific heat capacity of vapour and the 

latent heat of vaporisation are assumed to be a constant and referred to the standard 

data are (Mayhew and Rogers, 1976; Reid and Sherwood , 1966) and are given in the 

Appendix 1. These are assumed to be a constant and referred to as standard data. The 

dynamic viscosity of water vapour is again assumed to be dependent on temperature 

and is stated below;

ft, = 125.4*1 (T7 +3.711(7'-373) (3.13)

3.2.6 Effective thermal conductivity

In drying porous material, heat is conducted via liquid, gas and solid as described by 

Fourier’s Law. As heat conduction occurs in all phases in parallel, the heat flux or 

thermal conductivity contribution must be weighed according to their respective 

volume fraction. The formulation given below is derived based on the thermal 

conductivity of the porous matrix together with the thermal conductivity of air and 

liquid contained in the pores (Thai Hong, 2006). These properties will change as the 

liquid portion reduces during drying; this is due to the fact that the water conducts a 

larger amount of heat compared with the other phases.

(3.14)

3.2.7 Effective heat capacity

The time-dependent terms in the energy equation (Equation 4.27) represent the 

storage of latent heat due to the accumulation of vapour and the local capacity for heat 

comprising the capacity of the ceramic solids, the liquid, the water vapour and dry air 

inside the porous body. Expressing this heat capacity of ceramic body gives:-

43



// = [(!- t)p,cm + ̂ ,p,cpl + 4stp,c„ + <psePccpa J(r - r,) (3.15)

The specific heat capacity of water, vapour and air in the pores within the ceramic 

body, are material independent and can be obtained from standard thermodynamic 

tables ( Rogers and Mayhew, 1976) as set out in the Appendix 1.

3.3 Transport properties

As explained in the previous section, during the course of drying, transport of heat, 

mass and gas takes place inside the body as well as at the boundary layer. The 

transport properties inside the porous domain can be governed at the macroscopic 

range or microscopic range, and can be varied dependent on the regime of the drying 

process. In this work drying at the outer surface is governed by the heat and mass 

transfer coefficient that is determined by the environment for the convective drying 

process (this boundary mechanism will be explained in Chapter 4).

3.3.1 Transport of mass

Basically, in modelling most ceramic bodies (such as brick, concrete) it is assumed 

that the body is in the non-saturated condition (or partially filled with water and 

gaseous phases), (Ilic and Turner, 1989; Ben Nasrallah, and Perre, 1988). Therefore 

moisture transport in the non-saturated body is presented by the sum of liquid flow 

and vapour flow. Theoretically in the drying process, moisture transport in the porous 

material is described by the liquid flow due to the capillary forces, vapour flow due to 

the bulk gas flow and diffusion mechanism. This is presented as below;

•

Liquid flow; m, = - ( p lv , ) -m i  (3.16)

Vapour Flow; mv = -(pvvv+pvvg)+mv (3.17)
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The liquid velocity, v, can be described with Darcy’s law. However, now the 

permeability, k t and the pressure are functions of the liquid content;

The proportionality constant K t is termed hydraulic conductivity. Hydraulic potential 

is the sum of gas pressure, Pg and matrix potential, Pc, gravitational potentials, p , g .

The condensation and evaporation terms of vapour flow are given as, + mi and -  m i . 

The pressure potential is due to hydrostatic or pneumatic pressure applied to water. 

The gravitational component of water potential is simply due to difference in depth in 

the direction of gravity from a reference point. The matrix potential measures the 

physical forces, such as capillarity, which bind the water to the porous matrix (this 

will be explained in the next section below). The retention of water is a result of 

attractive forces between the solid and liquid phases. In a ceramic, for example, these 

matrix forces enable it to hold water against such forces as gravity, evaporation, etc. 

This matrix potential is important as a driving force for flow in unsaturated solid 

ceramic. In many unsaturated systems this relationship between the matrix potential 

and the saturation value is given in the form of saturation curve (this will be explained 

under the next section on the saturation curve and capillarity mechanisms).

As described and stated in the above equation, the vapour flow can occur by diffusion 

and convection of the bulk flow. Vapour migration may take place by molecular 

diffusion, due to the differences in a partial vapour pressure gradient in a curved 

surface (in properly organizing this section, therefore the diffusivity term definition 

will be explained under the next section). Meanwhile vapour transport in the 

convection term may take place at high mean temperature (viz, near the boiling point 

of water). Convection transport of vapour can occur in unsaturated porous media 

because o f the total gas pressure differences. These differences may be due to changes 

in barometric pressure, thermal gradients, velocity at the outer surface, or change of 

water phase. Any convective movement of gas phase within a porous media will also

(3.18)



move water vapour and may establish concentration gradients and diffusive fluxes in 

the same or opposite direction to the convective fluxes.

3.3.2 Transport of heat

Heat transfer in a porous moist body is governed by conduction of solid material, 

vapour diffusion and phase convection A major contribution of the heat transport 

comes from the conductivity term that is presented by Fourier law. Due to the fact that 

ceramic porous material is a three phase system that consists of solid liquid and gas, 

therefore the coefficients o f thermal conductivity and heat capacity (as presented in 

the above section) are based on the proportions of solid liquid and gas phases. This is 

very important when dealing with the drying of a moist body because their 

proportions are always changing as drying continues. As for example, in the early 

stage of drying, the body may have higher saturation, and therefore at this stage the 

thermal conductivity o f a ceramic porous body is more influenced by the water 

conductivity compared to the other phases. Furthermore, the water phase shows the 

highest value in conductivity compared to the components. As given below the 

transport of heat by conduction through the porous medium is stated as;

9 e = - ^ ( v r )  (3.19)

Heat transfer in a capillary porous body is no longer confined to the transport 

properties of conduction; other factors also need to be included. During drying heat 

transport plays an important role in initiating the moisture flow from the moist body. 

Heat is consumed in capillary porous materials in the vaporisation of water. 

Consequently, when moisture transfer takes place in the form of vapour the 

component of latent heat captured in the vaporisation process is also transferred. In 

order to evaporate a certain amount inside the pores the latent heat of evaporation 

must be supplied, which is relatively large in comparison with other terms in the 

energy balance. Therefore, latent heat is very important especially when drying at 

higher temperature because it contributes to the water loss significantly (Gawin, 

1996). Basically, the transfer of vapour is due to the diffusion and bulk flow
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contribution, therefore, this latent heat contribution can be represented by;

= ( P v V v + P v V g ) £  ( 3 -2 0 )

Furthermore, in some capillary porous materials, where the permeability is high, 

sensible heat may be transferred by the bulk flow of liquid and vapour. In other words 

convection of the flow phases driven by the gas and capillary action. This effect is 

very important in drying and widely introduced in models of drying for porous media 

(Liu et al., 2005; Thai Hong, 2006; Harun, et al., April 2007). Previously works have 

excluded this contribution due to the assumption that this is very small (Kallel et al., 

1993; Mauri Fortes and Okos, 1981)

={CpiPi'’i+ C p, p vv ,+ C p,p vvg +Clx,p l,vg 'X r -T r) (3.21)

3.3.3 Transport of gas

The total mass flux that is removed from the body can include a contribution from the 

gas phase (Luikov, 1975; Whitaker, 1997). As stated previously, the gas phase is 

modelled as an ideal gas that is composed of dry air and water vapour, which are 

considered as two miscible species. So therefore, the gas transport equation is 

governed by the gas bulk flow and the contribution of the vapour diffusion to the gas 

medium. As mentioned earlier the porous medium that is dealt with in this work is an 

unsaturated porous medium, where the pores contain a moisture and gas portion 

dependent on the properties of the material itself. In a porous medium, the gas phase 

starts to change inside the body when there is a change in the water phase in the pore 

section. The vapour diffusion mechanism effectively starts to occur when the porous 

domain exceeds the percolation threshold. At this time the vapour diffusion 

mechanism plays an important role in transferring moisture to the air as described in 

many drying sources (Keey, 1975; Scherer, 1990; Zhe Zhang, 1999). Meanwhile the 

air bulk flow is governed by the Darcy’s law as determined by the gas permeability 

value (that will be explained in the next section below).
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9,=ip,Vir)+m (3.22)

3.3.4 Constitutive equations of the coupled heat, mass and gas transport

All the transport variables that represent the heat, mass and gas transport properties 

are governed by the constitutive equations that describe the flow mechanism such as 

capillarity and diffusion. Most derivations of the diffusivity or flow variables show 

that these parameters are always a function of material properties and sometimes 

depend on the process variables, such as temperature, saturation etc. In these drying 

models, all constitutive transport derivations and also other dynamic state variables 

(i.e. saturation curve) are expressed as a function of three working variables, pore 

water pressure, temperature and gas pressure and this will be presented and explained 

further in Chapter 4.

3.3.4.1 Capillary mechanism

It has been recognized that the inclusion of the capillary effect in drying of 

nonhygroscopic porous media is essential since it distinguishes between transport 

when there is a high water content (where the surface of the porous matrix is covered 

with a continuous layer of free water) and transport under a regime of lower water 

content. Generally, mass transport in the saturated condition is governed by capillary 

action which may be described by a high permeability at the beginning of the process. 

This capillary action captures the condition of free water movement within the pore 

network and the reduction of this value indicates the starting of vapour diffusion in 

the critical stage.

Capillary pressure or potential is governed by the difference between the gas pressure 

and liquid pore pressure across the pore section. This also needs to take into 

consideration the surface energy and wetting contact angle. This is given in the 

Equation below.

2a  cos 6
= Pigh (3.23)

r
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and r is the radius of the capillary tube and 6 is the contact angle between the water 

and solid.

Capillary flow is due to the difference between the relative attraction of the molecules 

o f the liquid for each other and for those of the solid. As the radius becomes very 

small, capillary rise increases significantly. Capillarity is the reason, for example, the 

ceramic tissue does not completely drain by gravity. In a porous solid ceramic, the 

liquid will be attracted or held more tightly when there is less of it, i.e., at lower 

concentrations. Conversely, the liquid will be held less tightly when there is more of 

it. Due to the differences in capillary attraction, flow of liquid can occur from 

locations in the solid having more water to locations of having less water. This is 

referred to as unsaturated flow and is extremely important in drying of porous system 

such as a ceramic (or brick) body

As indicated previously by other researchers, the capillary curve can be deduced from 

experiment and commonly, this is expressed in terms o f a water retention curve (Sung 

et al., 2006). This is represented by the matrix potential and amount of water 

retained, related to the size of pore spaces which is highly dependent on the shape and 

angularity of individual pores. Hence it is strongly influenced by the porous structure 

(Tuller and Or, 2005). Practically, the experiment involves several procedures that 

have been developed particularly for unsaturated soil systems. However, this kind of 

method and measurement is now more widely used in various fields, other than soils. 

This will be covered under the next section on the water retention curve.

3.3.4.2 Water retention curve (water capillary curve)

There exists a non-linear relationship between the porous body moisture content and 

matric potential. This relationship is usually presented in the form of a water retention 

curve. Theoretically, the shape of the curve is different if the water content and 

potential data are generated by drying or wetting. When drying, the volumetric water 

content is larger for any value of matric potential than when wetting and this 

phenomenon is called hysteresis. This is shown as in Figure 3.3 below.
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Figure 3.2: Hysteresis of drying and wetting branches of a soil or cementatious 

material characteristics curve (Baroghel-Bouny et al., 1999).

Numerous empirical equations have been proposed to simulate the water retention 

curve. Among the earliest is an equation proposed by Brooks and Corey (1964), it is 

in the form of a power-law relationship. Another effective and commonly used 

parametric model for relating water content or effective saturation to the matric 

potential was proposed by Van Genucthen (1980). This model is also widely used in 

the application of drying of the nonhygroscopic cementitious materials (Baroghel- 

Bouny et al., 1999; Gawin, 1996) and also hygroscopic porous systems, such as 

foodstuff (Weerts et al., 2005). The Van Genuchten relationship can be written as;

(3.24)

w here;

(p = suction

a  = the air-entry value

6 = actual water content

6r -  residual water content
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0sa( = saturated water content

and the parameters a , n and m are three parameters that define the shape o f the 0(cp) 

curve. The degree of saturation with liquid water S , , considering together hygroscopic 

and capillary water (if the latter is contained in the pores) is an experimentally 

determined function of capillary pressure (matric potential) Pc and the temperature T 

as given below and will be explained under the next section.

A good fit of the capillary curve with experimental work on the water vapour 

desorption isotherm (in an isothermal drying process at relative humidity 50%) can be 

obtained through Equation 3.24. This has been shown for example by Baroghel et al. 

(1999), where the best fit o f parameters a , n and m showed a good agreement with the 

plotted experimental water vapour desorption characteristic for the case of cement 

pastes and concrete. Due to the fact that, there is not enough information or not many 

works that are concerned with obtaining the saturation curve (especially in the case of 

drying) for the ceramic shell and brick, the available data from similar groups of 

materials (ceramics), was used in this work and their parameter values for the 

saturation curve are given in Appendix 1 (Section A1.5). In this work the best fit of a 

desorption saturation curve for concrete was selected, due to the fact that this material 

shows the nearest characteristic to ceramic brick and shell possibly drying

3.3.4.3 Effect of temperature on the capillarity

Due to the fact that this work also deals with non isothermal drying (for the purpose 

of validation), it is also appropriate to include the effect of temperature on capillarity. 

Grant and Salehzadeh (1996) explored the extent to which capillarity is due to 

temperature-induced changes in the contact angle. The temperature effect on the 

capillarity pressure can be expressed through the relationship as below.

S ,= S ,(P C,T) (3.25)

(3.26)
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where T  is a reference temperature and a  is the surface tension. The temperature 

dependence of a  has been obtained from a semi-empirical correlation based on data 

from Grant and Salehzadeh (1996). In their recent paper, Grant and Salehzadeh 

developed a theory that connected assessable physical quantities like Pc with theory 

describing surface properties of the solid phase. In their derivation they partitioned the 

temperature effect of a  and y on the capillary pressure-saturation relationship by 

comparison with some experimental works. This derivation can be considered as a 

thermodynamic extension of the mechanistic Philip and de Vries (1957) model.

To describe this relationship, they introduced a theory to allow the formulation of the 

wetting coefficient as a function of temperature based on the thermodynamics of 

interfacial phenomena. Since the surface tension of water decreases with increasing 

temperature and vanishes at the critical point (T= 647.4 K), the simplest possible form 

of empirical relationship between a  and T is a linear fit, which describes the 

temperature effect and is given by:

The estimates for the two parameters are; a: 0.11766±0.00045 Nm^K'1 and b = - 

0.0001533±0.0000015 Nm ^K'1. Therefore

and T  is an arbitrary temperature and Tr is a reference temperature. Combination of 

Equation 3.28 with the Van Genuchten derivation in Equation 3.24 yields:

a  = a + bT (3.27)

/
sat irr (3.29)
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3.3.4.4 Diffusion

In the domain of liquid migration by capillarity, the vapour pressure is equal to 

saturated vapour pressure and so the gradient of vapour is negligible. Therefore, the 

effective diffusivity has no influence upon drying during this period. On the other 

hand in the hygroscopic domain (when the liquid phase becomes discontinuous and a 

curved meniscus is formed), the value of vapour diffusivity coefficient directly 

controls the migration of moisture especially in the later stage. Thus as capillary 

action falls away and air starts to diffuse into the pore this signals the starting point 

for vapour diffusion which also contributes to the loss o f water.

In many cases of the drying of a porous body, vapour moves together with non- 

condensible gas (air) due to the pressure difference (hence density difference) in the 

moist porous media. In this work, some combination of the diffusive motion of 

vapour with the motion of gaseous mixture that have been proposed in by Liu et. al 

(2005) and implemented also in other drying studies (Zhe Zhang, 1999) was chosen. 

Following this approach, the vapour diffusion term that has been defined in the 

vapour transport flow (in Equation 3.17) can be written as below. This diffusion term 

is presented in the form of the Fick’s law.

/ \ — D ,  vaO V p
9, = P .K  = {p .) -----= ----------------------------------------------- (3.30)

PV

where Datm , v , a  , 6a are the molecular diffusivity of water vapour through dry air, 

mass factor, tortuosity factor and volumetric air term respectively. The available area 

for vapour flow is assumed to be equal to the volumetric air content, 0a or the part of 

the pores which are not filled with liquid. In a ceramic, the void structure presents a 

tortuous path for gas flow, which is taken into consideration by an empirical 

attenuation factor. The tortuosity factor was set to a value of 0.5 (Baggio et al., 1997; 

Stanish et al., 1986) in both the vertical and horizontal directions, assuming that the 

pathway is similar for diffusion horizontally and vertically in the ceramic structure. In 

this work, the expression for water vapour diffusion in air as given by Stanish et. al ( 

1986) is used;

53



Datm = 2.20 *10-5
Z101325V  

P +P

1.75

273.15
(3.31)

A mass flow factor is also introduced to allow for the mass flow of vapour arising 

from the difference in boundary conditions governing the air and vapour components 

of the diffusing system. It is calculated from the expression developed by Partington 

(1949):

v =
P -  Pg  v

(3.32)

3.3.4.5 Permeabilities

In defining the capillarity mechanism and gas bulk flow using the Darcy’s law, both 

these actions that are influenced by the saturation value are defined by the 

permeability parameters. The permeability of a material is simply defined as its 

openness to the transmission of fluid. Permeability is an important property which 

determines the rate of flow of phases in the porous structure during drying. The 

intrinsic permeability characterizes the aptitude of a single fluid to migrate within the 

porous medium. In the case of drying where two fluid phases exist together, this 

parameter is used for the calculation of the relative permeability for each phase. These 

parameters that are functions of relative saturation determine the resistance to 

migration of each phase (liquid and gas) with regard to those where the porous 

medium is fully saturated. Both have different significant influence where the gas 

relative permeability is effective when drying approaches the dry medium condition. 

Theoretically, the permeability in porous material depends on the porosity and also 

material properties itself (either very hygroscopic or weakly hygroscopic). The 

function is usually empirically determined and highly dependent on the saturation or 

saturation curve (Van Genuchten, 1980). Therefore in this work, the same 

corresponding parameters that have been used in the above saturation curve are 

chosen. In this selected work (Baroghel-Bouny et al., 1999), both the permeabilities 

of water and gas were approached using Mualem’s model. These formulations are 

given here as below.
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k , ( s , ) = 4 s i { S ,  > S lrr (3.33)

A,(S,) = 0 ,  S, < S,„ (3.34)

= 5 , < ^ , W(°-3) <3-35)

kg(S,) = 0 , S, > .Sot(e)(0.3) (3.36)

where Scrĵ  is a critical saturation for the gas permeability where the gas porous 

body starts to form the wet patched area (Zhe Zhang, 1999) and Sirr is a irreducible

saturation and is given in the range of (0.09-0.1) (Ben Nasrallah and Perre, 1988; Zhe 

Zhang, 1999).

In the present work an assumption is made that above this value of S irr, both Kelvin’s 

and Darcy’s laws can be implemented. Further, it is assumed that this value is small 

enough for brick, so that for most computing work this number is close to zero and 

when S, = S irr the medium is assumed to be dry. This assumption has been reported

in many simulation and theoretical works either for brick or wood based material 

(Ben Nasrallah , 1988; Ilic and Turner, 1989; Nidjam et al., 2000).

Based on the above permeability values, the hydraulic conductivity tensor for water 

flow, K, and gas flow, K g are given as below;

(3.37)

Mi

„  ( „ )  = f i« ( * £) (33g)

Ms

where AT^is the intrinsic permeability and//, and are the dynamic viscosity of 

water and gas respectively.
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3.4 Closure

The physical and material properties of the porous body, liquid water, air, vapour and 

gas phases are presented in this Chapter as required for the derivations in Chapter 4. 

Most of the physical and material properties are based on the materials that only 

approximate ceramics. The important transport properties of drying porous media via 

heat, mass and gas are governed by flow and diffusion mechanisms. These flow and 

diffusion mechanisms are derived based on the dynamic transport relationship for 

every phase during the drying process. Some of the constitutive equations of dynamic 

transport are given in the open literature for porous unsaturated media are 

implemented in this work. The values given are typical at a reference temperature of 

20°C (293 K) and a reference gas pressure of 101320 Pa (1 atm).
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CHAPTER 4

MATHEMATICAL FORMULATIONS AND 

THEORETICAL MODELLING

CHAPTER LAYOUT

This chapter discusses the development of a two-dimensional mathematical model, 

describing the heat, mass and gas transfer during the drying of brick and ceramic shell 

multilayer bodies. The mathematical model that is used in this drying modelling and 

simulating process was extracted from the comprehensive model by Whitaker and 

incorporates Fick’s law for the vapour transport mechanism. Three primary variables 

were considered during the model development: pore water pressure, temperature and 

gas pressure. The heat was transported by conduction; convection due to the fluid 

phase movement and the latent heat of evaporation. Water phases were transported by 

capillarity, convection of the bulk flow and diffusion due to the partial vapour 

pressure. Gas phase (vapour and air) was transported via air bulk flow due to the gas 

pressure gradient and vapour diffusion flow. By employing a constitutive derivative in 

expressing the related effective coefficients (diffusion and saturation coefficients) and 

incorporating the thermodynamic concept, leads to the integrating of variables into a 

coupled solution.
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4.1 Introduction
The analysis of heat and mass transfer in drying a ceramic porous system is very 

important because most ceramic properties change with temperature and moisture 

content. There have been various models available for porous material for prediction 

of temperature and moisture variation during drying. Most of the previous models 

neglect the gas transport (which is very important in the drying case study) or the 

model is presented in a one dimensional framework. So in this work, a comprehensive 

model which includes heat, mass and gas transport was selected to model the drying 

of a porous ceramic structure.

A ceramic porous material can be represented as a three phase (gas, liquid and solid) 

system. In this study, the liquid phase is considered to be pure water and in 

equilibrium with the gas phase that is a mixture of vapour and air. Both the liquid and 

gas phases are assumed to flow through a rigid porous matrix, hence the model 

reduces to a two-phase flow system. During the drying of ceramic, the internal 

conditions (capillarity, moisture and vapour content, gas and water pressure and 

temperature which are all linked together in terms of thermodynamics) will change 

according to the external conditions that prevail together with the initial conditions 

that have been prescribed. Also, the transport coefficients that were previously 

defined in Chapter 3 depend on the state o f the ceramic body and are often also a 

function of the field variables, such as water potential, temperature, gas pressure etc. 

This illustrates the fact that the system is a highly complex and highly nonlinear 

problem. So, by considering, the interaction of heat, mass and gas transport in the 

porous domain, the fully coupled model is derived based on two-dimensional 

temporal variations in temperature, pore water pressure, and gas pressure. The 

extension to three dimensions follows a similar path and is relatively straight forward 

to derive.

4.2 Background of the proposed model in this work
The analysis of drying porous media either through experimental work, theoretical or 

analytical research that has focused on the heat and mass transfer (two equation
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approach) or heat, mass and and gas transfer (three equation approach) has been 

reviewed and discussed in detail previously in Chapter 2. So therefore, this section 

will be focussed on the elaboration of the selected model, experimental and 

theoretical works that has led to the development of the fully coupled model in this 

work.

Various models have been developed to describe the drying o f a porous structure. At 

the end of the 1980s, Whitaker (1977) proposed one of the most comprehensive 

models to describe drying in a porous structure. By using a volume average method, 

Whitaker presented a set of equations to describe the simultaneous heat, mass and 

momentum transfer in porous media within a continuum framework. Based on the 

conservation laws, the model proposed by Whitaker, is an important milestone in the 

development of drying theory. It incorporates all mechanisms for heat and mass 

transfer: liquid flow due to capillarity forces, vapour and gas flow due to convection 

and diffusion, internal evaporation of moisture and heat transfer by convection, 

diffusion and conduction. By using the volume averaging method, the macroscopic 

differential equations were defined in terms of average field quantities. This theory of 

Whitaker was further developed and applied in the drying analysis of various porous 

media, for example in the drying of sand (Whitaker and Chou, 1983), brick (Ben 

Nasrallah and Perre, 1988), cellular material (Crapiste, 1988), wood (Spolek and 

Plumb, 1980) and etc. In these works, the model is usually quite successfully matched 

against experimental data. Some of the important advances made in developing 

Whitaker’s theory are selected for discussion below.

One o f the most significant advances in developing Whitaker’s theory as well as in 

modelling the drying of porous media comes from the work of Ben Nasrallah et al. 

(1988). They proposed a model of heat and mass transfer of porous media under 

convective drying within a one dimensional framework for two different porous 

media (clay brick and softwood). The model comprised a set of comprehensive 

equations, with three variables (temperature, pore water and gas pressure), with the 

gas pressure incorporating a mixture of vapour and dry air. The theoretical equations 

were obtained by averaging the classical fluid mechanics, diffusion and transfer 

equations over a control volume and the system of equations was solved by a finite 

differences method based on the notation of a control domain described by Patankar
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(1980). The evolution of variables as well as the overall drying kinetics was 

calculated for two different porous media in order to study the sensitivity of the model 

to the internal parameters and conditions at the interface as well as the effect of some 

simplifications within the model. A detailed study and some comparisons on the 

model reduction were discussed and it was concluded that it seems to give the best 

approximation for drying modelling. This is the reason why this model was selected 

to derive the basic governing equations in this work.

Stanish et al. (1986) presents one of the most comprehensive of the one dimensional 

mathematical models for simultaneous heat and moisture transfer in hygroscopic and 

nonhygroscopic porous material. The basis of the model was a set of fundamental 

transport equations (considering moisture water, bound and free water, water vapour 

and air content), coupled with a thermodynamic equilibrium equation. Different 

transport mechanisms were established for the separate phases. The heat transfer 

occurred via conduction, latent heat movement and convection. The mass transfer of 

the gaseous air and vapour was via combined diffusion and bulk (hydrodynamic) 

flow. The bound water only by diffusion and the free water only by the bulk flow. 

Some experimental works were set up for testing the model performance and 

verification of its predictions in a one dimensional scale, and the same experimental 

result was also chosen for the validation through a study of brick drying in this work.

It is clear either from the previous literature review in Chapter 2 and the previous 

models that are presented in the above paragraph that they have inherent limitations; 

either they were one-dimensional, the coupled problem neglected the gas transport 

mechanism, or gross simplifications were made concerning the transfer mechanisms 

to ambient conditions. In fact, none of them proposed an approach for modelling the 

drying o f a multilayer system. The most commonly used approach is to treat the 

multilayer as a single layer or homogenous layer. However the drying of a multilayer 

is different from the drying of a single layer. For example, a multilayer shell may 

contain several layers each having a different moisture and gas content. Traditionally, 

the multilayer shell making mould involves the dipping and drying of slurry layers for 

a certain time. Due to the fact that multilayer shell systems are built with similar 

materials, thus it may be assumed that there is no discontinuity between each layer 

and there is no interface to generate a contact resistance. This is due to the high
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absorption of water at the dipping part of the layering cycle leading to good wetting as 

layers are built up. This has been demonstrated by extensive works (Jones, 1995; 

Jones and Leyland, 1994) on assessing fluid uptake as the dry shell is immersed in 

slurry within the fabrication cycle. Eliminating consideration of this interface 

resistance simplifies the mathematical formulation and simulation of this layering 

influence (Mendes, 2005).

In this work, a general approach as mentioned above was followed during the model 

development, which allowed a comprehensive description of the heat and mass 

transfer along with the gas transport phenomena during the ceramic shell drying that 

is part o f the build-up sequence. Other factors that need to be considered when 

developing simultaneous heat, mass and gas transport equations are constitutive 

equations describing the specific behaviour of the considered material and phases that 

have been given in Chapter 3 are also included.

4.3 Model development: Theoretical and Mathematical 

formulation

In the present investigation, the complete theoretical formulation of the drying model 

proposed by Ben Nasrallah (1988) is presented. The model was developed and 

extended to two spatial dimensions (from which further generalisation into the three 

dimensional domain is relatively straight forward) and is expressed in terms of the 

three interdependent variables (moisture potential, temperature and gas pressure as 

working variables) in the form of partial differential equations, reflecting the 

conservation of mass, heat and gas transport. The transport properties which govern 

the thermophysical relationships in porous and ceramic media, drawn from several 

related references, were selected and used in these derivations. The key assumptions 

applied when developing this model are as follows;

• Solid, liquid and gaseous phases are considered, and these three phases are 

always in local thermodynamic equilibrium.

• The fluid is present in liquid and vapour phases.
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• The movement of moisture in the porous skeleton is sufficiently slow so that 

in practice the temperatures of the liquid and vapour phases in the body are 

equal at coincident points.

• The gas phase located in the voids is composed o f an air and vapour mixture, 

and the components follow the Ideal Gas Law.

• Dimensional changes which occur within the material, due to a temperature or 

moisture content change, are comparatively small and will be ignored.

• In this work, the brick and ceramic shell body are nonhygroscopic materials, 

so in this case also the sorption isotherm effect from bound water that is 

present below irreducible saturation is negligible. Bound water plays an 

important role in drying hygroscopic material such as wood, food and etc 

when the water contained within the cell structure is removed in the final 

stages of the drying process.

• Below irreducible saturation, the capillary mechanism becomes inoperative 

and the mechanism of water loss is only from vapour diffusion transport 

described through Kelvin’s equilibrium equation.

• No contact resistance exists between layers in drying multilayer structures.

• The matrix is rigid and homogenous and isotropic.

• Darcy’s law holds for the gas and liquid phases.

• Gravity is important for liquid, but not for the gas phase.

• Stresses developed through hygrothermal action are excluded from the scope 

of this study.

4.3.1 Derivation of mass transfer

An essential difference between solid and porous material is the potential for a 

substantial amount of water to be present in the material structure. Additionally, the 

water can be in the form of free (liquid), water partially filling the pore, vapour and 

bound water. In this work the ceramic body was considered to have the same 

properties as a nonhygroscopic brick. Based on the above consideration, moisture 

exists in two states i.e. liquid water and water vapour. The volumetric water content, 

6, is defined as the sum of these two phases.
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e  = e ,+ e v (4.i)

where 61 is the volumetric liquid content and 0 V is the volumetric vapour content.

To obtain the drying conservation law of mass flow, Equation 4.1 can be utilised to 

combine the laws of conservation of mass for its component phases, namely liquid 

and vapour during drying. Firstly the liquid phase is considered. The mass 

conservation law dictates that the time derivative of the liquid content is equal to the 

gradient of the liquid flux as given in Equation 3.16. Mathematically this can be 

expressed as:

= d 0 , p ,  = _ d p xv,  
dX d t  d x

-  m (4.2)

where <f>, p , , v ,, S, ,
. \

-  m 
\  J

are the porosity, liquid density, liquid water velocity,

liquid saturation and evaporation term (the evaporated water in units of time and 

volume) respectively.

As illustrated in Chapter 3, vapour flow in a porous medium under drying conditions 

is due to the vapour diffusion under the influence of a partial vapour pressure and as 

part of the bulk flow o f gas. Therefore, applying the mass conservation law to the 

vapour flow in Equation (3.17) gives;

d(t>s  g P v _  d O vp v _ p vv
d \ dx d x d x

(4.3)

where v, and v are the velocity of vapour and pore air , p v is density of water

vapour and + m
\  J

is the condensation term (the condensation of water in units of

time and volume) respectively.

The mass balance of the liquid water and water vapour, summed together to eliminate
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the occurrence of sources and sinks being equal zero (since the moisture is neither lost 

nor gained by the material). This forms the mass balance equation for the total amount 

of water inside the pores;

ddS.p. d(<t&oy)711 + L = -V(P, v,) -  V(p, v ,) - V(p, vf ) (4.4)
Ol <7t

Derivation of the left hand side term (the temporal change of water inside a control 

volume) based on Philip and de Vries approach uses the vapour density derivation 

(Liu et al.y 2005). The vapour density is given by

P ,= P u,h (4-5)

where, p sat is the density of the saturated vapour and h is the relative humidity.

The relative humidity as given by Kelvin’s law states that;

h = exp
f  P - P  ^r i r g

p ,r j  j
(4.6)

where Pi and Pg are the pore water pressure and total gas pressure respectively, and Rv 

is the specific gas constant for water vapour (461.5 J/kg K).

The saturated vapour density is a function of temperature (Rogers and Mayhew, 1976)

—  = 194.4 exp{- 0.06374(7 -  273) + 0.1634 * 10"3 (T -  273)2} (4.7)
Psat

Therefore,

_ dPsa, dT 
dt dT dt

(4.8)

£]Pl2L = (4.9)
dt dt
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where,

n  _  sat

dT

According to chain rule,

Note also,

— = — v /> + — v r + — v p  (4.io)
dt dP, 1 dT dPs *

as, as, as, as, „„
— '- = — '-VP. + — '-VT + — -V P , (4.11)
dt dP, dT dPe *

?£l  = ?£l VP + ^Bl v T + ^ - V P ,  (4.12)
dt dP, dT dP, %

ah

- A  =  L where ( 4  + 5/= 1) (4.13)
dt dt

Expanding the left hand side of Equation 4.4 and applying Equation 4.5 gives,

, dS, dp{ 3S, dh dpsat
r + p - # s , a + *#s» _ a r  (4.m )

= "V (A 1"/) “  v (P S V) - V(p wv )

Replacing equations (4.9), (4.10), (4.11) and (4.12) for and in

(4.14) gives

Jas, a/>, as, ar as, ap_l
* ( P i - ^ v ) ^ d - ^ r L + T ^ T 7  +a/>, dt dT dt dPg dt J

„ [aA ap, a/?, ar aA arJ f sa a/1, a/>ar a* a/»J
+ ^S,'S------------- 1-------------- 1---------------f + P sa t^ B l--------------*------------- 1 f (4.15)

aP, dt dT dt dP, dt 81 a/> dt dT dt dP, d t \

+ /,</& t \ S B s j  J  = -V (A v ,) -  V (p ,v v) - V (p ,v s )

Equation 4.15 can be rearranged as follows,
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d p . n  ar  , „  dpg
c " ^  + c „ ^  + C,, ■ =  - V( A V,) -  ■V(P> ) - V ( / ^ ) (4.16)

where,

n  , ,  x 55, . 5/? dp,
C u - f i i P l  P v )  ~ p  + P sat<PS g ~p

W W W

C „ - K P t - P j ^ + P ^ i S ' ^ + i s ^ + i S ' h p

n  mi \d $ l  wic 5/r ,c dp,
Q 3 — ^ ( P /  Pv) ^Psatffig5Pg " "  *5Pg '5/>g

Equation 4.16 can be written as:

ar, „  a r  _ 3/>,
 H C i2  H C 13 -----
at 12 at &

= j . (4.17)

where Jm is total moisture flux and can be defined as:

J m = -V (p ,v /) - V ( p vvv) -V (p ¥v ,)  or J m = -V .(J ,) -V .(Jv)-V .(Jvg)

Constitutive derivation of the right hand side term in the Equation 4.17 (the sum of 

water leaving or entering the control volume across its boundaries) takes 

consideration of vapour, gas and liquid velocity in the mass flows of fluid and 

gaseous water. The generalised form of Darcy’s law for the gas and liquid velocities, 

incorporating the effect of gravity, can be written as:

,( S . £ b A [ 7 ( p + z )]
Pi

V* = ” ^ - [ v ( r j
Pe

(4.18)

(4.19)

where, ki is the relative permeability to the liquid phase, kg is the relative permeability 

to the gaseous gas permeability, Kintc is a intrinsic permeability and Z is the vertical 

elevation from a datum (positive upward).
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The diffusion of water vapour was assumed to take place in the part of the pores not 

filled with liquid and this was represented previously in Equation 3.30. The gradient 

of vapour density that is given in the vapour diffusion equation can be derived as:

Vpv = P sa^h + h^Ps (4.20)

Substituting Equation 4.9 and Equation 4.10 for p0 and h into Equation 4.20 yields

Va . = P „  ^ - V P ,  + P„, ^ v r  + p m ^ ■ V P 1 + h /N T  (4.21)
dP, oT dP

Substituting Equation 4.21 in the expression for the vapour velocity Equation 3.30 

gives;

(4.22)

Based on the above constitutive equation for liquid transport, diffusion of vapour and 

bulk flow of vapour, the right hand side term of Equation 4.17 can then be written as;

j . = v \ p ,

>
_ ^ iA [ v (p / + z )]

Mi

dh

~SP,
+ P > « .v a 9 .\p u  — VP, + (p „  — + h 0 )V T  + p M - ^ f V P g

dh
~df

dh (4.23)

Therefore, from Equation 4.17 the governing equation for moisture flow can be 

written in the following form:

C , | —  +  C , 2 —  +  C | 3  —  =" a t  12 a  13 a
V(K„ V/>J + V(KI2VT) + V(KnVP ) + V(K 14VZ)

(4.24)
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where,

K n = Damvad.  (P,„, + hP)

K n = P»K S + D ^va O . p „  —
\  * /

K u = p ,K ,

4.3.2 Derivation of heat transfer

The generated heat is transported by the combination of the three basic mechanisms: 

conduction, convection and radiation. Conduction involves energy transfer through 

the contact of materials of different temperature, convection involves the heat transfer 

between a surface and a moving fluid at different temperatures, and the radiation is 

the energy transfer through electromagnetic waves when there is no conveying 

medium present. Although all three modes are manifested during the drying process, 

their relative importance is different and their contribution to heat transfer changes 

during the drying of porous media. For example, radiation has negligible contribution 

to heat transfer during convective drying, and therefore it is not considered in this 

study. The conservation equation for transport o f energy is given by;

Applying the energy conservation law to the heat flow through the porous shell body 

indicates that the time derivative of the heat content, H  , is equal to the spatial 

derivative of the heat flux, Q. Mathematically this can be expressed as;

(4.25)
+  { / V ' v + / V , J Z '

(4.26)
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The heat content o f the ceramic porous body per unit volume is defined as

H  = H (T  - T r) + (f>Sg p vL (4.27)

where L is the latent heat of vaporisation, Tr is the reference temperature and heat 

capacity of ceramic body is previously defined in Equation 3.15.

By substituting Equation 4.27 for H , Equation 4.26 can be expressed as:

H  ̂  + (T -  Tr) + </>pvL + <fiSgL  ̂  = -V . 6  (4.28)
dt dt dt * dt

From Equation 3.15, the partial differentiation of the heat capacity in Equation 4.28 

with respect to time can be expressed as:

dH
dt

dp, dS, dp.
-<t>s,cP, dt +<f>p,cpl dt +</>SgCpv dt

dSj_
dt

dp a
— (bp C  —  + <AS C C p  —Y h 'v ' - 'p v  ^ s  pa Q j  r  a p a r  a

as,
dt

(4.29)

Dalton’s law of partial pressure states that the total gas pressure is equal to the sum of 

the partial pressure of each gas component as stated in Equation 3.5 and in Equation 

3.6. Mathematically, this can be expressed using the ideal gas laws as follows,

Pt =Pv +Pa = P vRvT + PaR T  (4.30)

where R is specific gas constant for ideal gas (8.314 J/ mole K ) .

Therefore, the density of dry air (pa) is given by,

p  n n (431)
RT R

Using the chain rule, V p a can be written as follows,
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where,

d P a  _ P s a t  K dh

dPt R d P w

d P  a _ p g K
dT R T 2 R

d P a 1 P .
D

sat v

d P g RT R

Vp = ^ - W P .  + ^ L V r  + ^ V P  (4.32)
Fa dP, ' dT dPg

- ^ L lh /1  + p.
dh 

sa,~dT

dPs

Incorporating equations (4.11), (4.12),(4.13),(4.21),(4.32) in Equation 4.28 gives,

c 2, ^  + c 22^  + c 23^  = - v .0  (4.33)
ot ot ot

where,

C2. = ( T - T ) < A T]^ -  + dS C ^ -  + <bS C p ( — +
21 r |  T d?, 8 90 d?, 8 p dP, p dP, J

dS, dh
dP, + 8 Psa‘ dP,

C22 = H  + (7- -  Tr) \A n  H  + 4SsC„ (h/3 + g )  + «B,Cp, M

- t o &  + i S 'W i p  + p m ^ )
dT dT

C2, = { T - T ) \ a t > ^ -  + (I)SC —  + </fSC / ? , —  + (/>SlC23 v r / |  71 /** -ap p v r ' s a t  ^ p  I p i  ~ p
[ g  g  g  g

dS, dh
-  $PVL  +  <l>SgLpsal —ap g sa‘ d?pg g

\ And,
[

I = (j>Pi Cpl —$CpvPv — (f>Cpy Pa
I
i
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The heat flux per unit area, Q, is defined as

Q = - XefV T  + (P-Vv + P ,V,  )L
+ ( T -  T ^P fC ^v , + p,Cp,v, + p ,C p,vg + p aCppVg }

Q = + ( j v+J,g )L + V T (J,C pl + J ,C „  + y „ C ,J

where is the effective (is given in Equation 3.14) thermal conductivity of the

ceramic shell body. Interrogation of Equation 4.34 shows the heat flux includes heat 

transfer due to:

i) Conduction as inter-molecular flow of heat energy

ii) Latent heat flow associated with movement of vapour due to both mechanisms 

o f vapour flow.

iii) Convection of heat due to the mass flow i.e. liquid phase, vapour phase 

associated with the diffusion mechanism and bulk flow

By substituting Equation 4.34 for Q, Equation 4.33 can be expanded as:

^  dP, „  dT „  dP
C2,  H C22-----1" C23-----

at at at
= V ( ^ V r )  -  V (p ,v , + p ,y g )L -  V{(r -  Tr )p lCplv, }

-  v{(r -  Tr )P,Cp,v, } -  v{(r -  t ,  ) p , c ptvg}- vfcr -  Tr )P„ cp,y g}
(4.35)

Substituting equations (4.18), (4.19) and (4.22) for v, , vg and vv respectively in 

Equation 4.35, the governing equation for heat transfer can be written as:

C21—  + CZl —  + C23 —21 at 22 at 23 at (4.36)
= V.(K2IV P J  + V.(K22VT) + V.(K23VPg) + V.(K24VZ)

where,

K 2, = p ,L K vl + c  p ,K vl( T - T r) + ( T - T r)
r ,
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^ 2 2  — ^eff Pv^Kv 2 +  CpvPv^vi (T Tf )

^ 2 3  -  PVL K V3 +  P vL K g +  Cpvp vK vl ( T - T r) 

+ ( T - T r )K  {Cpvp v +  Cpap a }

S  PV

rg  K~ p v r v  ■ ' - 'p a

K » = C flp lK l ( T - T r) 

and

K „ = Dmmvae,

K ,z = O ^va O ,

K ,i = D„,mvada

dh 
P,“ dP,

iP s a t TZ7 + h f l )  Ol

dh
dP.

4.4.3 Dry gas transfer derivation

The gas phase is more complicated than the solid and the liquid phase since it 

contains two components: air and vapour as defined in Section 3.2.5. So, in this work 

other gases that might be exist or produce during the process were neglected. 

Applying a mass balance to the flow of dry gas within the pores of the ceramic shell 

body dictates that the time derivative of the dry gas content is equal to the spatial

derivative o f the dry gas flux plus a condensation term, m that has been defined 

previously in Equation 3.22. Mathematically this can be expressed as

8 $p ,  _  8 p s v ,
d t  d x

+ m (4.37)

By substituting the evaporation term in Equation (4.3) into the Equation (4.37), 

reduces the equation to;

8 ^ S g p a = _ d p av ,  _  d p  , v  , (4  3g)
d t  d x  d x

The bulk flow is given by Darcy’s law and is governed by the relative gas
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permeability, kg, and at the same time the gas bulk flow due to gravity is assumed not 

exist in the case o f convective drying (Ben Nasrallah, and Perre, 1988). The molecular 

diffusion rate depends on the effective diffusivity, Datm which was given in the 

previous derivation and formulation under vapour transport flow in Equation 3.30. By 

considering the partial differential equation of air gas transport above with respect to 

time, gives:

d d>S p  d o  d S
■ '  = t S s ^ f -  + 4p  .  (4.39)
o t  o t  o x

Substitute Equation 4.31 and Equation 4.12 into Equation 4.39 and expanding gives;

Ci,i r +Cji1 r +C” i r = - Vk v*)-  v^ v/-) (4-40)

where.

C =(j8 — L
33 g dP, dP,

r  dp° dS>
32 8 dT dT

C = jS  —
8 dP dP

g  g

The spatial derivative in the right hand side term of Equation 4.38 is obtained by 

substituting Equation 4.22 and Equation 4.19 to give;

where,



4.3.4 Boundary Conditions

In solving the above governing equations, the conditions for mass heat transfer and 

gas transport at the external surfaces must be specified in order to establish the flux 

boundary condition in the convective drying. Both the boundary prescription and the 

flux boundary condition that were implemented in this work are expanded fully as 

below.

4.3.4.1 Convection boundary condition

This section will present the boundary conditions calculated using heat and mass 

transfer coefficients and the consequent fluxes (on the outward normal) on the body 

surface. The boundary conditions govern the heat and moisture transfer phenomena 

between the exposed surfaces of the body with the external environment. The 

magnitude o f convection of the heat and mass depends also on the amount of water 

available in the structure and the void fraction. The higher the initial moisture, the 

more water is vaporized, increasing the pressure differential and mass flux, thus 

increasing the rate of the convective mass transfer. The voids in the structure create 

pathways for convection. The general formulation is given below for convection of 

mass and heat transfer at the boundary for many drying porous materials such as brick 

and concerte (Baggio et al., 1997; Nidjam et al., 2000; Zhe Zhang, 1999):

= hm{PvH -  Pv(calculated)) (4-42)

= fco ~Pcalculated ) (4-43)

At the same time, this condition is balanced by the continuity of moisture transfer 

normal to the surface as the drying proceeds. This can be expressed as;



K  (p:  - P m ,L ) = [- V.(Jv) + v(j, )\n (4.44a)

Or by neglecting the liquid flux contribution to water loss, Equation 4.44a can be 

written as;

- K  {p :  ) = [- V.(J, )J» (4.44b)

By setting the ambient temperature higher than the porous body, heat is transferred to 

the matrix through the convection process. This will continue until the temperature 

outside and inside the body are in equilibrium, which must also occur concurrently 

with the mass convection process. Below is the equation for heat transfer at the 

convective boundary when considering the continuation of heat flux movement from 

the body (in Equation 4.25) towards normal the heat convective boundary surface;

* r ( r „ - 7 ’s ) = [ ^ V 7 ’J» (4.45)

where n is the unit outward normal to the surface.

4.3.4.2 Dirichlet boundary conditions

These are applicable to the mass, heat and gas transport equations as specified water 

potential, temperature and gas pressure at the boundaries respectively. These may be 

constant or be allowed to vary with time, i.e,

P, (x, t) = P, (x, t) on TP] (4.46)

T( x , t )=T(x , t )  on Tr (4.47)

P  (x, /) = P  (x, /) on Tp (4.48)

A A A
where P ,,T ,P  are the specified pore water pressure, temperature and gas pressure 

respectively.
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4.3.4.3 The relationship between the heat and mass transfer coefficient and the

The analogy between heat and mass transfer at the surface of a drying material is 

covered in standard textbooks (Keey, 1975) where the mass transfer coefficient is 

applicable principally in the falling rate period. The experimental results Nissan et. al 

(1959) show that the relation between the heat and mass transfer coefficient and the 

surface water content is as given below and was introduced in this work;

where the S jrr is the irreducible saturation, S cri is the critical saturation, and rjT and 77 m

are constants, determined experimentally and the values are given in Appendix 1 (see 

Section A1.6). This is not a standard boundary condition, but was explored during the 

course o f this work. This exploration is reported in (Harun et al., April 2007; Harun 

et al., 2006; Zhang, 1999).

surface water content

K  =  *r,o I t +  0  -  Vr ) j! '
cri in

(4.49)

(4.50)

78



4.4 Closure

The chapter has focused on the derivation o f the governing equations that will need to 

be solved to simulate the drying of a porous material accounting for moisture, heat 

and gas transport. The governing equations describing moisture transfer, heat transfer 

and gas transport through a partially saturated ceramic porous body are presented in 

Equation 4.16, Equation 4.36 and Equation 4.41 respectively. These equations are 

expressed in terms o f three system variables pore-water pressure (Pw), temperature (T) 

and gas pressure (mixture o f air and vapour) (Pg). The model also assigns a 

convective heat and mass transfer boundary condition to capture the drying 

mechanism. The formulation o f a finite element scheme to solve these equations will 

be set out in the following chapter.
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CHAPTER 5

NUMERICAL SOLUTION

CHAPTER LAYOUT
The theoretical formulation of the proposed two-phase flow of the drying model 

presented in Chapter 4 is complex and governed by a set of second order partial 

differential equations that need to be solved, subject to incorporating principally 

convective boundary conditions. The solution is complex because the variables are 

coupled and the governing equations are nonlinear due to the dependence on the 

coefficients on the field variables. Analytical solution is unattainable unless the 

system is one-dimensional with simple boundary conditions and the equation 

coefficients are linear. Therefore a numerical approximation method is needed to 

obtain a solution to the governing non-linear partial differential equation set and this 

will be discussed in this chapter. In this work a weak formulation of the governing 

equations is obtained by applying Galerkin’s procedure for weighted residuals. Terms 

involving second spatial derivatives are transformed by means of Greens theorem. 

Then, the field variables are approximated in space using the usual finite element 

technique, and expressed in terms of their nodal variables. This analysis must include 

the temporal discretization to capture the transient nature o f the drying process. This 

was achieved by the implementation of a fully implicit backward time stepping 

scheme and coupled equation set was solved by a skyline solver. Iterations need to be 

included during the solution process to capture and stabilize the nonlinearity 

associated with the governing equations describing the drying process. Convergence 

is monitored between every successive solution steps and is deemed to have been 

achieved when the specified tolerance criteria have been satisfied. The principles used 

in the implementation in the finite element method are documented in the work of 

(Palananthakumar, 2004), but are included here for completeness. Within this work, 

some numerical developments were undertaken to incorporate boundary conditions 

that represent a surface that is partially or fully covered by water.
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5.1 Introduction

Since the 1950’s much literature has been published on coupled heat and mass 

transfer (de Vries, 1958; Luikov, 1975; Philip and de Vries, 1957; Whitaker, 1977) in 

which the basic principles of numerical modelling for the drying process, water 

permeation in soil and hygrothermal flow problems etc are described. In fact, this 

coupled analysis is being applied to problems, such as drying in unsaturated porous 

bodies, such as brick, wood, fibre etc. These are characterised by a combination of 

three phases (solid, liquid and gas). The integration o f these mathematical models 

into a numerical scheme and programming solution has led to the exploration and 

development of the coupled model to represent heat and flow in a porous structure 

that has application in various fields. In fact, the use of computer models and 

solutions has provided a better understanding of the whole process, leading to 

innovative process improvements. Furthermore, most of the numerical analysis is 

validated against well documented experimental data and extensive data is available 

in the open literature (Lewis et al., 1975; Ben Nasrallah and Perre, 1988; Stanish et 

al., 1986). Simulation is being applied to both hygroscopic (Nijdam et al., 2000) and 

nonhygroscopic systems (Malan and Lewis, 2003).

To treat the porous medium as a system in which the properties are continuous 

functions of the space coordinates, numerical methods such as the Finite Element 

method (FEM), the Finite Difference Method (FDM), Boundary Element Method 

(BEM), Finite Volume Method (FVM) are very meaningful. The application of the 

FEM to porous media is becoming increasingly relevant to the application of drying 

problem, in particular when involving the coupling of fluid and heat flow phases 

(Lewis et al., 1996; Lewis and Schrefler, 1998). The recognised advantages of using 

the FEM that remain up to today are:

-  Representation of the true physical geometry is easier than with the finite 

difference method where the geometry is usually adjusted to fit the grid 

spacing.

-  Boundary conditions associated with complicated geometries can be applied in 

a straight forward consistent manner.
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-  Variable grid spacing can be used, whereby small elements are used in regions 

of interest or zones in which rapid changes occur and large elements are used 

in regions o f little interest or slowly changing conditions.

-  Universal programs can be written and applied to any geometry and a large 

number of physically different situations without changing the code.

Because of the aforementioned facts, the FEM is employed for the spatial 

discretisation in the present work. The methodology is well established and the basic 

principle o f the method is that the behaviour of continuous body can be represented 

by the combined behaviour of a finite number of subregions, known as elements 

(Zienkiewicz, 1989). Approximating functions are used to define the response of 

individual elements to applied load and adjoining elements are interconnected through 

a finite number of nodal points. Continuity of the variables across element boundaries 

is satisfied by suitably choosing functions which uniquely define the variables within 

each element in terms of the nodal values.

In realising a numerical solution, the governing differential equations need to be 

expressed in a spatially discretised form, and the time variation captured by a finite 

difference recurrence relationship. This method is widely used in the solution of 

almost all coupled equations and the strategy and limitations are well documented for 

a range of transport problems (Murugesan et al., 2002; Tenchev et a l,  2001; Thomas 

and Ferguson, 1999). When handling multiphase flow, multi-component transport, 

and heat transfer in a multiphase flow system, investigators predominantly use a fully 

implicit scheme. Although it may be less accurate than an explicit scheme, it does 

allow larger time steps and is unconditionally stable. Also, this approach was adopted 

because it had been shown previously to provide stable solutions to the highly non­

linear problem under consideration. So in this work, a fully implicit time stepping 

scheme has been used in the temporal discretisation o f the coupled equations.

Transient algorithms must have the property of convergence to be viable. This means 

that the time discretisation error must approach zero as the size of the time internal, At 

approaches zero. According to the Lax equivalence theorem, if the algorithm is stable 

and consistent it will converge. It is advantageous in most transient problems to adapt
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the time step-size to the temporal gradients of the solution to reduce running costs. 

This may be done by simply reducing or increasing the time step-size depending upon 

the number of iterations required for convergence in the previous step. The time step 

increment is controlled by two factors, maximum iterations and minimum iterations. 

Should the actual number of iterations for convergence exceed the maximum 

specified, the time step is reduced. Likewise, should the iteration number be less than 

minimum, the time step size will be increased. This procedure enables a variables 

time step size to be employed, which will benefit in the analysis of heat and moisture 

transfer taking place over a long period of time but with more rapid variations taking 

place during the initial stages of the process.

In a computational implementation, the solution of the discretized equations leads to 

the formation of element stiffness and mass matrices of equations that can be 

assembled and solved conveniently using an appropriate solver. In the present 

investigation the solution matrix is diagonally dominant and symmetric, so therefore 

a skyline solver provides the best solution method, saving storage and is easily 

incorporated into any existing program (Trikha et al., 1996).

The approach adopted in this study employs two-dimensional, eight node iso­

parametric elements. Fluid pressures and temperature are taken as the primary 

unknown variables. The basic concepts and programming method for the finite 

element formulation employed have been described in detail elsewhere (Hinton and 

Owen, 1977).

5.2 Implementation of the Finite Element method to spatial 

discretization of the equations

In Section 4.2, the moisture, heat and gas transport equation have been 

formulated based on the three variables which are pore water pressure, temperature 

and gas pressure. The variation of the temperature, gas pressure and water pressure 

content throughout the domain of interest,Q, is approximated in terms of the nodal 

values Ts, and Pi as follows
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P , « P l = T .N ,(x ,y )P l, (5.1)
5 = 1

T * T = Z N , ( x , y ) T ,  (5.2)
5=1

P , * P .  = X N ,(x ,y )P ',  (5.3)
5 = 1

where Ns(x,y) is the shape function, n is number of nodes in a element (Qe) and Pis, Ts 

and Pgs are the nodal values of pore-water pressure, temperature and gas pressure.

The shape functions are normally stated based on the element nodes. Many types of 

shape function are available e.g. linear, quadratic, cubic, 3-node, 4-node, 6 -node, 8 - 

node, 9-node elements, etc and these are well documented in the literature 

(Zienkiewicz, 1989).

In this work, the eight node serendipity element was selected. By coupling and 

assembling the discretized equations of moisture, heat and gas transport that have 

different coupling coefficients leads to non-symmetrical formation of K and C 

matrices. For a linearised set of governing differential equations these can be 

expressed in the form shown below.

OcnVP, + K l2V T  + K„VPg + K „VZ  n 

K 2lVPl + K 22V T  + K 2iVPg + K 24VZ  

K„VPl+ K u V T  + K„VPg +0

rdP, '

C,, + C ,2 + C ,3 ^ dt
dT

^21 + ^22 + ^23 dt
+ C32 + C33 j dPg

\  dt )

=  0 (5.4)

If the approximations for variables value given by Equations 5.1, Equation 5.2 and 

Equation 5.3 are substituted into Equations 5.4 a residual error (Rq) is obtained. The 

residual error can be written as:
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dPi

V „ V P/) + .(K12VT) + .(K13V/»,) + (K14VZ) '  

(K21V P /) + .(K22VT) + .(K23V Pg ) + (K24VZ) 

(K31 VP/) + .(K32VT) + -(K33V Pg) + 0

( r'■'li c  ^13
dt

+ C12 +
dTr 21 + C22 + *̂23 dt

c,̂ 31 + C32 + 3̂3 j A

dP
dt

= Rn (5-5)

The Galerkin weighted residual approach can be used to minimise this residual error 

(Rq) in Equation 5.5. This states that the integral o f the weighted errors (Rn) over the 

element, Qe, must be zero and is written mathematically as:

(5.6)

with the shape function Nr being used as the weighting for errors over the domain Q. 

Substituting Equation 5.5 into Equation 5.6 yields,

0CI1VP,)+.(K12VT)+.(K13VPf )+(K14VZ) 

(K21VP,)+.(K22VT)+.(K23V P,)+(K 24VZ) 

(K31V P/)+.(K32VT)+.(K33V P g)+0

c  + c + c'-'II 12 13
c  + c +c21 22 23
r  +c +cV 31 32 33 A

f  * ^
dPi

dT_ 
dt

dPg 
dt

v JJ

dQe =0- n  <5'7)

A simplified form of Equation 5.7 can be obtained by integrating the dispersive terms 

by parts. Considering the first term of Equation 5.7 and the first governing equation, 

integration by parts yields;

jAf,[V.(A:ilV /,/)](jn* = \v . (NrK uVPi)dCl' -  \ K nWP, VNrdCl‘ (5.8)

Similarly, the remaining dispersive term are simplified by employing this procedure. 

Equation 5.7 is therefore written as;
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f  A A \

v.(a â; yB)-K , yPi VNr +v.(a^2vz)-a;2v t w ,+

vV.(A^3VP,)-/q3VPgWr+V.(^K14VZ)-A14WWr ,
(  . ,  ̂
V.(A^,V/J/)-A;iVP; Wr +V.(A^2V7)-A22V7Wr +

V

V.(A^,V^)-/:31V/>/Wr +V. (N'KyfJT) -  KiyTVNr +

y.(NjqiVPi)-K2iVPlW r+V(N&4W )-K2FZ7Nr J 

v xN ^yp yK .yp vN ,-  

v.(A^3vpg) - ^ 3v p ,w r

W q . ^ + q ^ + q ^ )a “ a a

A f(Q ,^+ q :f + q , ^ )

A M Q .^ + Q a f+ q ,^ )

a!nf = 0
(5.9)

Application of Green’s theorem to Equation 5.9 gives;

n *

-  K„V P , V N r -  K,2V T V N r -  K l3V P g V N r - K i4V Z V N r -

N r{Cx dP,  _  a r  d P g
+  13 )dt

+ c,
dt dt

-  K , tV P i V N -  K n V T V N -  K n V P . V N .  - K ^ V Z V N ,  -

N ' (C» H r + c ^ + c ” a.
d P « . )

V
f * ^

-  A:3IV P i  V N r -  K n V T V N r -  K„V P g V N r -

ki ir dPl _l. r  dT ^  rN r \C 3 1 -----------------------C 3 2 ---------------*"r 31 at 32 at 3
d_Pj_

dt

K UV P,+ K l2VT+ K n V P g + K14VZ 

A:2IV / j /+ K 22V T  + K 2iV P g+ K 24VZ

* 3Iv  />,+ k 32v  r+ /c33v  p g + o 

where T® is the element boundary surface.

nd r

a n 1

= o

(5.10)

The surface integrals introduced by Green’s theorem in Equation 5.10 will be zero in 

adjacent elements and will only contribute at the boundary to the domain. From 

Equation 5.10, the vector of total moisture f lu x ,Jm , through the domain boundary T 

can be written as:

l m = (K n V J \ ,  + K I2VT+ K 13V P g + K 14VZ).« (5.11)
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where ( n - outward normal vector to the boundary, T, of the domain Q).

Equation 5.10 is further simplified by substitution o f the derivatives of the shape 

function approximation given in Equations 5.1 to 5.3 and Equation 5.11 to give

' r J[*,.v/£rv £ j </n '£ h + J[K12v v fv v jd Q X +
tr n' ir

<5 n /57"* 3 P
+ \itLrCuNAdV Jjvrc 12AU</Q'-=^+ \U L C v N W  ^=*-- \Nrl mdr

*  or a  cr a  r.
J[/:2,V ^ rVA^JrfQ‘ £ & + \ [ Kn V N rV N t y a ' T t + \ [ Kn V N rV N , W P t

3 P 3T 3 P
+ i K i i P Y t  + \{N_,Ca ? L , } d J * , i , 4 r

J[K32vwfv;vjrfQX + J[K„vwrvwI]</n, £ i
3 n 5T Ap

+ f[AL,c„/v,]rfn '^-+ Jal,cm * ,]< « '- i f  + Jw,,/_<«-

=  0

=  0

=  0

(5.12)

where N r andN s is the shape function in a matrix form and P ls, T s and P gs are the 

nodal values o f the three system variables in a matrix form as follows,

L ,  = {Pn 

L  ={^,

p , = fc

12

g 2

P j

T j

P j

(5.13)

(5.14)

(5.15)

(n-number o f nodes per elements)

The first part of the Equation 5.12 can be written in a concise matrix as:

fiP r)T dP 
£ ..£ *  + K a T,  + £ „ £ „  + c 11̂  + Cll- ^ -  + Cn -==- + £  =0

where

K U = X \KuVN,VN,dCr
" ‘n-

K n = X (k ,2VNrV N ,d n ‘
,=[ a-

K n = S  \K . ,V N V N d C l‘
'=1 J

(5.16)

(5.17)

(5.18)

(5.19)
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£.. = £  fc „ N rN,da'i = | JCl‘

£,2= ’f  [cnNrN,dn‘
s=i in‘

C n = Z  \ C]3N rN sdQe
*=,n‘

I ,  = \ K ^ N rVZdQ.e -  \N rJ mdT*

(5.20)

(5.21)

(5.22)

(5.23)

The same concise form can be written to the others part in Equation 5.12 The whole 

equations can be combined and expressed more conveniently in matrix form as:

(5.24)

where,

J  =

o  =

A . J

'K„ Kn * , 3 '

K = Kn Kn Kn
Kn * 3 2 .

'£„ Qn £ . 3

c  = £ n £ 2 2 — 23
.£), £ 3 2 —  33 _

(5.25)

(5.26)

(5.27)

(5.28)

0 =

dP,s
dt

d L
dt

dP gs

(5.29)
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In which typical elements o f the matrix are

= t  \ K t V N rV N ,d a ‘ (i,j= l,2 ,3 ) (5.30)
5=1 ae

C , = ' £ \ c , N r! f , d a ‘ (5.31)
5=1 ae

J ,  = \K ,t WNrVzdO.‘ -  \ N rJ_r ndT‘ (5.32)
n£ r*

( n -  outward normal vector to the boundary, T, of the domain Q)

5.3 Temporal Discretisation - Time Stepping Algorithms

The matrix Equation 5.24 generates a system o f first order linearised differential 

equations. This can be written in a more concise form as follows:

£(<D)® +  C (® )®  + J(<D) =  {0 } (5.33)

where, K, C, J and <D are the matrices defined in Equations 5.25 to 5.28.

The time derivative is replaced by a finite difference approximation and, 

consequently, a fully implicit backward level time stepping scheme results:

-  <t>”+1 - < T ) ”
+ « < £ " ) = ------ ^ -  + J (® " )  = 0 (5.34)

A t

where O ” , the level at which the matrices K, C and J are to be evaluated, is given by,

O" =
/ o '7+1 + 0 ” ^

v
(5.35)

where m defines the required interval, with value 1 for the
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Equation 5.34 can be rearranged as:

K (<b")  +  — (5.36)

From Equation 5.36, On+1 can be computed as follows.

-i
=Jso”)+^2^ (5.37)

The superscript n refers to the time level and At is time step. It can be seen that the

nature of the phenomenological coefficients i.e. K, C and J. A Picard iterative method 

is utilised to account for non-linearity (Skorokho et al., 1973). A converged solution 

is deemed to have been achieved when the iteration error (the difference of O between 

successive iterations) falls below a specified tolerance at all nodes. This can be 

expressed mathematically as:

In order to stabilise and to increase the convergence rate o f the iterative procedure, it 

is often desirable to slow down the changes that occur in the system variable from one 

iteration to the next. This process is known as under-relaxation and is given by:

The system of simultaneous equations, generated within each iteration, is diagonally 

dominant and block symmetric and this property assures a stable solution may be 

achieved using a range of direct or iterative solvers. In this work a well established

solution for O at time level n+1  (On+1) can be obtained directly from the matrices of 

coefficients K, C and J, and O at time level n (On).

The procedure for solving the above algorithm is iterative because of the non-linear

0 "+l _ o «+' < £
S  J - l

(5.38)

where s is a prescribed tolerance and subscript ‘s’ is the iteration number.

=®4>, + (1 -<»)<!>,_, where 0  < w < 1 (5.39)
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memory efficient Skyline scheme was used (Balasubramanian P. et a l,  1991).

For an efficient solution over a long time scale (a few hours) that is also capable of 

capturing transient details, early in the drying process requires the implementation of 

a variable time stepping scheme. The number o f iterations required to reach 

convergence plays an important role in determining the time step increment. In 

implementation, two constants, a minimum and maximum number of iterations, are 

set. When the number of iterations required for convergence falls below the 

minimum, the time-step size is increased. Similarly, when the number of iteration 

exceeds the specified maximum, the time-step size is reduced. This condition enables 

a variable time stepping scheme to be employed. When the time step is reduced, the 

current time step is factored by A (A<1.0) and when it is increased, the factor value 

assigned is B (B>1.0).

5.4 Incorporation of Boundary Conditions

The discretised governing equations are to be solved simultaneously within a domain 

Q, bound by a closed curve T, subject to boundary conditions and to initial conditions.

Dirichlet boundary conditions take the form of prescribed values for the system 

variables along all or part of the boundary. This is implemented in the model by 

equating the prescribed values of system variables to <|> in Equation 5.27.

Convective boundary conditions take the form of prescribed fluxes for moisture and 

heat loss across the boundary T or part of the boundary. The relationship between 

moisture content, vapour and temperature through thermodynamic equilibrium, results 

in an air phase flux (as a gas pressure) that changes through convection at the 

boundary. This can be modelled in the boundary system by substituting the prescribed 

flux into the J matrix.

92



5.5 Closure

The finite element solution of the governing system of three fully coupled non-linear 

partial differential equations described in Chapter 4 has been described. This 

macroscopic balance equations, after introduction of the This includes a spatial 

solution by the finite element method using the Galerkin Weighted Residual 

technique, his This was followed by the temporal discretization of the coupled set by 

the finite difference method using a fully implicit backward time-stepping algorithm. 

Nonlinearity was taken into account by implementing an iterative procedure 

incorporating an under relaxation to stabilise and increase the convergence rate. The 

simultaneous equation set within each iteration was solved using a skyline solver due 

to the fact that the generated system was diagonally dominant and block symmetric.
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CHAPTER 6

RESULTS AND VALE)ATIONS

CHAPTER LAYOUT

This chapter describes the exploration of the proposed model that is governed by the 

theoretical formulation and implemented in the numerical scheme set out in the 

previous chapters. The validation comprises three parts. The first is the problem of 

one dimensional heat transfer, accounting for Dirchlet and flux boundary conditions. 

This is followed by the validation of the coupled heat, mass and gas transport model 

where validation is based on experiment and numerical work. The third stage of 

validation of the fully coupled model is extended to include shell drying, including a 

multilayer system. Finally, the proposed model is used to explore drying of a generic 

comer shape to illustrate the transport mechanisms that take place.



6.1 Introduction

This chapter deals with the validation and the verification of the proposed model in 

order to test the scheme described in Chapter 3 and to examine the accuracy of the 

numerical solution methods described in Chapter 4. A series of case studies was 

chosen with the aim of rigorously testing the developed model by comparison against 

a variety of analytical solutions, previously verified numerical works and 

experimental results.

Verification of the model is carried out with different related problems. In Section 6.2, 

the linear heat flow incorporating the prescribed (Dirichlet) and the flux (Neumann) 

boundary conditions were solved numerically using the thermal model incorporated 

into the code, and the computed numerical results compared with analytical solutions 

given by Carslaw and Jaeger (1959).

In Section 6.3, a one dimensional verification of the fully coupled proposed model 

which has been derived in Chapter 4 was tested for a convection drying process with 

application to the benchmark brick drying problem. This exercise considers the 

simulation of temperature, pore water and gas pressure, moisture movement, relative 

humidity and the other related transport parameters within the brick. The results 

obtained from the proposed model are compared with the experimental results 

presented by Stanish et a l (1986).

Section 6.4 describes the implementation of the proposed model that has been verified 

against the brick benchmark to a two dimensional shell drying problem. This section 

considers the simulation of a single and a multilayer shell in which the wet layering of 

the ceramic shell build-up process is approximated. In these works, a plain linear shell 

section and a generic comer shape was investigated and compared against some 

experimental data from industrial work. Two different case studies (for the linear 

section) which describe the layering process in the ceramic shell build up process 

were proposed in order to determine the ability o f the model to capture shell drying. 

Some comparison between the two proposed methods are also included here.
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6.2 Thermal model verification against analytical solution

In analysing the thermo-physical response for the drying of a porous body, heat 

conduction plays an important role in providing information for the moisture and gas 

transport contribution. The solutions to thermal problems have been studied 

extensively and have led to analytical solutions that may be used to benchmark 

numerical approximations. These have been formulated, principally in one and two 

dimensions and in this work a one dimensional linear heat flow accommodating 

various initial conditions and boundary conditions is used to examine the accuracy of 

the solutions obtained by the numerical solution technique. Two case studies, which 

incorporate Dirichlet and flux boundary conditions are solved numerically using the 

proposed model. The computed numerical results are compared with the analytical 

solutions derived from a series expansion (Carlaw and Jaeger, 1959).

6.2.1 Dirichlet boundary conditions

In this case, a simple problem with a Dirichlet boundary condition is considered, 

featuring the non-steady heat flow in a solid bounded by a pair o f parallel planes, 

usually referred to as a ‘slab 0<x<F. The slab of length L, has an initial temperature 

T0, and both ends are held fixed at the 0°C and with no loss of heat from top and 

bottom surfaces. The temperature along the length of the slab, after a certain time, is 

computed using the model.

Using the energy balance, the heat transfer across a domain in the rod can be written

where p , Cp and Acoa are the density, the heat capacity and thermal conductivity of 

the medium respectively.

as;

dt
(6 .1)

Equation 6.1 can be simplified into one dimensional systems as follows;
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dt T dxT (6.2)

where kT =

Expressed mathematically, the boundary conditions are:

T(x, 0) = To °C 

T(0,t) = 0 °C 

T(L,t) = 0 °C

The series expansion analytical solution for the problem described above is given by 

Carslaw and Jaeger (1959) and is expressed in Equation 6.3. The series expansion 

comprising up to 1 0 0  terms was found to be adequate.

length and 0.05 m width. The initial temperature o f the sample was set as 30°C. The 

temperature at both ends was fixed at 0°C. To simulate heat transfer in the slab, a 

uniform mesh comprising 200 elements, each 5mm thick, was used. The spatial 

discretisation is shown in Figure 6.1. A variable time step, based on an initial and 

maximum time step size of 0 .0 0 1  and 1 sec respectively, was employed for the 

simulation. The analytical solution for the temperature along the sample was 

computed from Equation 6.3.

Numerical and analytical results of temperature along the sample from x=0 to x= 0.5 

m at times of 240 seconds and 2400 seconds are itemised in Table 6.1. The same 

result was recorded for the other half (from x=0.5m to x=1.0m) due to the symmetry 

of the specimen and boundary conditions. The comparison and errors between 

numerical and analytical results are shown in Figures 6.2 and 6.3. The percentage 

error was computed as follows:

K(2n+\)2n
(6.3)

The following values were taken for this test case.

L=lm, Arr =10"5 m2/sec, To=30 °C.

The problem considered in this case was solved numerically using a domain of 1.0 m
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anal.solution -  num.solution *, ^error(%) = --------------------------------------* 100 (6.4)
anal .solution

In the early stage of simulation, for example at t=240 sec in Figure 6.2, the numerical 

results deviate slightly from the analytical, but the maximum observed error is only 

0.0026%. This error shows the dispersion in the numerical solution at the beginning 

of the process. However, as time proceeds and as the steady state is approached, the 

effect o f this numerical phenomenon is minimised and the deviation of the numerical 

results from the analytical results becomes very low at 2400 seconds (see Figure 6.3). 

These trends are identical to those observed in (Palananthakumar, 2004).

200 elements *5mm = 100 cm

A

5cm

v
X=0 -> <- X=lm

5mm

Figure 6.1: Schematic of the figure and finite element mesh for the thermal case

study.

Table 6.1: Comparison between analytical and numerical results -  case study one

Dirichlet boundary conditions.

x(m)

t = 240 seconds t = 2400 seconds

Analytical Numerical Analytical Numerical

0 0 0 0 0

0.025 8.4535200 8.4309001 2.7252900 2.7209416

0.05 15.8854000 15.8648877 5.4153100 5.4125692

0.075 21.6295000 21.6109351 8.0361500 8.0344318

0.1 25.5326000 25.5158253 10.5565000 10.5554153

0.125 27.8641000 27.8489628 12.9488000 12.9481221
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0.15 29.0885000 29.0748599 15.1900000 15.1895932

0.175 29.6538000 29.6415287 17.2622000 17.2619737

0.2 29.8833000 29.8722826 19.1529000 19.1527847

0.225 29.9651000 29.9552341 20.8550000 20.8549498

0.25 29.9908000 29.9819937 22.3665000 22.3664795

0.275 29.9979000 29.9900804 23.6897000 23.6896915

0.3 29.9996000 29.9926970 24.8310000 24.8309966

0.325 29.9999000 29.9938649 25.7992000 25.7992001

0.35 30.0000000 29.9947925 26.6053000 26.6052995

0.375 30.0000000 29.9955931 27.2611000 27.2610999

0.4 30.0000000 29.9963835 27.7783000 27.7783000

0.425 30.0000000 29.9971789 28.1678000 28.1678000

0.45 30.0000000 29.9979959 28.4389000 28.4389000

0.475 30.0000000 29.9988559 28.5986000 28.5986000

0.5 30.0000000 29.9997808 28.6513000 28.6513000

0.003

0.0025

25
0.002

0.0015

0.001

0.0005

0.35 0.4 0.45 0.50.05 0.15 0.2 0.25
x(m)

0.3

Error at 240 se c Analytical results at 240 se c Numerical results at 240 se c

Figure 6.2: Com parison betw een the analytical and num erical results in case study

one at 240 seconds.
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0.0016
30

0.0014

25 0.0012

0.001
20

0.0008

0.0006

0.0004

0.0002

- 0.0002
0.05 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

x(m)

 Analytical results at 2400 se c  ♦ Numerical results at 2400 se c  —■—  error at 2400 se c

Figure 6.3: Com parison betw een the analytical and num erical results in case study

one at 2400 seconds.

In general, both Figures 6.2 and 6.3 show a very good agreem ent both spatially and 

tem porally. This leads to the conclusion that the therm al m odel gives accurate 

answers when solving num erically the heat conduction and diffusion equations when 

subjected to prescribed tem perature (D irichlet) boundary conditions.

6.2.2 Flux boundary  condition

This case study determ ines the capability o f  the num erical m odel to solve the energy 

equation (as presented in Equation 6.1) w hen subjected to a com bination o f  prescribed 

and flux type boundary conditions. In this case, the slab (Figure 6.1) has a zero initial 

tem perature. A non-zero flux is applied at one end o f  the slab, the other end is 

m aintained at the initial tem perature. There is no loss o f  heat from its surface. 

Expressed m athem atically, these can be stated as follows:
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T(x, 0)= 0 

T(0, t) = 0 

Ft (L, t) = F0

The series expansion analytical solution for the problem described above is given in 

Carslaw and Jaeger (1959) and is expressed in Equation 6.3. An expansion 

comprising up to 2 0 0  terms (n=2 0 0 ) was found to be adequate.

—K  ( 2 n + \ ) 2 x 2t

.e 412 dx (6.5)K Kn1 S ( 2 n  +  1)'

( 2  n + 1  )nx
2 L

The following values were taken for this case study.

L= lm , K=10 ’5 m 2/sec, F0 = 0.002 J/m 2/sec.

A variable time step, based on an initial and a maximum time step size o f 0.01 and 1 

sec respectively, was employed for the simulation. The analytical solution for the 

temperature along the sample was computed from Equation 6.5.

Table 6.2: Comparison between numerical and analytical results- case study 2 - Flux

boundary condition.

x(m)

t = 1000 sec t = 2000 sec

Numerical Analytical Numerical Analytical
0 0 0 0 0

0.025 0 0 6.3E-06 2.1E-06
0.05 0 0 1.53E-05 0.000006

0.075 0 0 3.03E-05 1.79E-05
0.1 0 0 5.68E-05 3.75E-05

0.125 0 0 0.000104 8.36E-05
0.15 0 0 0.000187 0.000159

0.175 0 5E-09 0.000333 0.000292
0.2 1E-07 8E-08 0.000582 0.000542

0.225 2E-07 2.5E-07 0.001003 0.000958
0.25 6E-07 5.5E-07 0.001706 0.001642

0.275 1.7E-06 1.9E-06 0.00286 0.002775
0.3 4.3E-06 0.000005 0.004728 0.004629

0.325 1.07E-05 0.00001 0.007708 0.007584
0.35 2.59E-05 0.00003 0.012394 0.012244

0.375 6.11E-05 0.000009 0.019657 0.019455
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0.4 0.00014 6.51 E-05 0.03075 0.030498
0.425 0.000313 0.000252 0.047451 0.047155
0.45 0.000678 0.000588 0.072235 0.07186

0.475 0.00143 0.00132 0.108495 0.108036
0.5 0.002933 0.002772 0.160791 0.160246

0.525 0.005854 0.005692 0.235153 0.234515
0.55 0.011365 0.011105 0.339412 0.338662

0.575 0.021472 0.021146 0.48355 0.482707
0.6 0.039483 0.039014 0.680066 0.679153

0.625 0.070677 0.070072 0.944313 0.943334
0.65 0.123193 0.122407 1.294793 1.29378

0.675 0.209149 0.208176 1.753369 1.75237
0.7 0.345954 0.34479 2.345353 2.34441

0.725 0.557733 0.556416 3.099442 3.0986
0.75 0.876685 0.875298 4.047463 4.0468

0.775 1.344167 1.34279 5.223907 5.22345
0.8 2.011219 2.01001 6.665238 6.66504

0.825 2.938225 2.93735 8.408995 8.40911
0.85 4.193492 4.19311 10.4927 10.4931

0.875 5.850596 5.8508 12.9526 12.9534
0.9 7.984551 7.98542 15.82241 15.8235

0.925 10.66705 10.6685 19.1319 19.1332
0.95 13.96123 13.9632 22.90576 22.9073

0.975 17.9166 17.919 27.16245 27.1641
1 22.56476 22.5672 31.91339 31.915

g 10 
0)Q.

0.2 0.3 0.4 0.5 0.6 0.7 0.9
x(m)

 Numerical results at 1000 sec  ♦ Analytical results at 1000 sec Error at 1000 sec

Figure 6.4: Com parison betw een the analytical and num erical results in case study

two at 1000 seconds.
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t  0.535

25

-  -2

0.6
-2.5

0.2 0.3 0.4 0.5 0.90.7
x(m)

Error at 2000 sec Numerical results at 2000 sec  ♦ Analytical results at 2000 sec

Figure 6.5: Com parison betw een the analytical and num erical results in case study

two at 2000 seconds.

Analytical and num erical results o f  tem perature along the sam ple at tim e o f  1000 sec 

and 2000 sec are presented in Table 6.2. The percentage error has also been com puted 

and the differences betw een the analytical and num erical results are also shown in 

Figure 6.4 and 6.5. Some num erical dispersion in the early stages indicates that the 

com puted nodal tem peratures are slightly higher than the analytical solution. Again, 

the sam e reduction in dispersion is recorded in this case study as tim e increases. The 

results also show differences at discrete points (x=0.375 at 1000s and x=0.025 at 

2000s). However, the num erical values are small and so the analytical and num erical 

values o f  tem perature are actually very close together.

In general, a very good agreem ent, spatially and tem porally, betw een analytical and 

num erical results is observed at both t= l 000 seconds and t=2000 seconds. The same 

pattern o f  dispersion and its reduction with tim e as reported in (Palananthakum ar, 

2004) is again experienced. The conclusion from these case studies is that the 

num erical im plem entation o f  the therm al model is functional and accurate for both 

prescribed and flux type boundary conditions. Thus it is suitable for coupling with the 

equations for m oisture and gas transport.
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6.3 Mathematical model validation on convection drying of a brick

This section explains the verification o f the fully coupled heat and mass transfer along 

with the gas transport equation when applied to convective drying o f a brick. This 

fully coupled model consists o f moisture transport by capillary and vapour diffusion 

together with the gas transport mechanism. Energy transfer accounts for conduction, 

latent heat and convection. The gas transport is governed by the air pressure gradient 

due to the bulk condition and vapour diffusion due to the partial vapour pressure. The 

problem chosen to validate this coupled model was a drying experiment reported by 

Stanish et al. (1986). For convenience, this experimental work is summarised in the 

next section.

6.3.1 Background to the drying brick case study problem by Stanish et al 
(1986)

In this work, a comprehensive mathematical model was developed to simulate the 

drying o f  a non-hygroscopic (brick) body and a hygroscopic material (wood). The 

model equations are fully coupled heat transfer (by both conduction and convection) 

together with mass transfer (by gaseous diffusion and bulk flow o f gas and liquid 

through the void space). The governing equation was solved using the continuous 

time approach (finite_space) and the spatial approximation o f derivatives was 

expressed in finite-difference form.

To complement the numerical work an experimental programme was also conducted 

to facilitate validation o f  predicted temperature variation and moisture movement 

during the drying process for both nonhygroscopic and hygroscopic materials. W ith a 

focus on the nonhygroscopic material, the drying rate experiment was performed 

using a porous ceramic brick with geometry 22.7cm long x 10.4cm wide x 3.2cm 

high. The sample was dried to achieve an initial dry weight o f 1.55kg and after 

repeated pressure impregnation cycles, the brick absorbed a maximum o f  2 0 0 g o f 

water. The saturated brick was then inserted flush into a well that had been machined 

in a 40 cm long section o f dry 2 x 6  inches wood. The side and bottom surfaces o f the 

brick were sealed with 3 mm thick rubber sheets, thus ensuring a tight fit, preventing 

moisture loss from those five surfaces with an added benefit o f  providing a level o f
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thermal insulation. Drying rate experiments were performed in a specially designed 

drying chamber. The specimen was suspended from a load cell and positioned so that 

its upper and lower surfaces were flush with an air flow divider both upstream and 

downstream o f the sample. A ir at controlled and measured dry bulb temperature, dew 

point temperature, and linear velocity was circulated past the specimen, and the 

sample weight and internal body temperature at 3 points (at the centreline, quarter line 

and within approximately 1 mm o f the surface) were recorded over a period o f  time. 

Flow in the channel below the specimen was blocked. In this work, the test was 

carried out at two different drying conditions, at 75°C and 125°C. In general, this 

experiment is a basic or simple procedure that captures the temperature and total 

moisture loss from the brick in an approximately one dimensional manner. However 

this measurement could be improved by measuring temperature and moisture levels at 

points through the brick depth so that a more detailed description o f  temperature and 

moisture level could be obtained. Further, statistical confidence could be obtained by 

repeating the same schedule experiments several times. However, for now it remains 

as the best benchmark and so it has been adopted in this study.

6.3.2 Results validation on the drying convection of a brick problem

The geometry was described by a rectangular domain having the dimensions o f  the 

component described in the above section, i.e. length 22.7 cm by depth 3.2 cm. This 

effectively represents a section through the centre plane o f the brick. The domain was 

mapped using an uniform finite element mesh comprising 51 nodes and 1 2  quadratic 

serendipity elements, was used to represent the sample. A variable time step, based on 

initial, minimum and maximum time step size o f lsec, 0.001 sec and 9 hr respectively, 

was employed for the simulation. The above mentioned spatial and temporal 

discretisations were applied after a thorough investigation to obtain a converged 

solution. The short sides and bottom were treated as being insulated and impermeable 

and therefore the heat transfer and drying process takes place at the top exposed 

surface only. For this purpose, heat and mass transfer by convection is assumed to 

take place captured by the heat and mass transfer coefficients o f h j=  5 W/m /K  and hm 

= 0.0086 ms' 1 and a reference temperature o f 75°C and an ambient relative humidity
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o f  50% respectively. These are com patible w ith drying w ithin a slow airflow 

environm ent and these m ay be derived from a num ber o f  sources in the literature, 

such as (Ilic and Turner, 1989; Ben N asrallah and Perre, 1988) and (Zhang, 1999). 

This enables validation against the work by Stanish et. al (1986). The relevant 

m aterial properties are presented in Table A l (in Appendix 1) and transport related 

equations such as perm eability, saturation curve, including all flow phases and solid 

properties are defined as presented in C hapter 3. The m atrix is assum ed to be 

saturated uniform ly at 60%  at the com m encem ent o f  the drying process as defined by 

the benchm ark. This is sim ilar to other related w ork on concrete and brick (Baroghel- 

Bouny et al., 1999; Kallel et al., 1993; Zhang, 1999).

60 T 80
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co 20
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0 20 40 60 120 180 240 300 360 420 480 540
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♦ Experiment(sl),[Stanish] ----------Proposed model(sl)

----------S tanish model (si) ▲ Experiment(T), [Stanish]

----------Proposed model, (T) ---------S tanish model, (T)

Figure 6.6: Liquid saturation and tem perature changing over the drying time.

Com parison betw een the experim ental data from the above related work (Stanish, et 

a l ., 1986) and the sim ulation results for brick drying at 75°C are show n in Figure 6.6, 

in which m oisture and tem perature at the mid height o f  the brick are depicted over 

time. The tem perature prediction coincides with a therm ocouple positioned in the 

brick, whereas the m oisture level at the centre is assum ed to approxim ate the average 

value in the brick, reflecting the trend in gravim etric loss as captured in the
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experiment.

The result shows that the moisture drops quickly at the beginning, corresponding to 

the constant drying rate period. At this point, the internal moisture transfers to the 

surface nearly as rapidly as it evaporates from the surface. During this stage the 

movement o f liquid is maintained by the capillary action and the surface experiences 

a film o f free water that evaporates steadily and continuously, and thus the drying rate 

is determined by the rates o f external heat and mass transfer. U nder these conditions, 

the temperature gradient is low and consequently the diffusion mechanism that is 

determined by the temperature gradient is small. Over the drying duration, the 

saturation level decreases and at nearly 60-70 minutes, it displays the characteristics 

o f  a falling rate period where there is a reduction in the rate o f moisture loss. 

Theoretically, the saturation level will recede continuously into the interior o f the 

material and the dry zone will extend gradually. Normally this corresponds to a 

critical saturation at about 0.3 for most porous material (de Vries, 1958.; Zhang, 

1999). This shows the start o f the falling rate period. During this period the drying 

process will slow down and it is now controlled by the water vapour movement. The 

same trend o f  the drying curve has been demonstrated by others researcher while 

validating their numerical models for drying (Ilic and Turner, 1989; Ben Nasrallah 

and Perre, 1988). In general, the proposed model shows a very good agreement. The 

moisture loss response is comparable with that predicted by Stanish et al. whereas 

superior agreement has been achieved for the thermal characteristic. This may due to 

the fact that, as explained in Chapter 4, the model proposed in this work takes into 

account the latent heat contribution which is not presented in the numerical work by 

Stansih et al. Clearly, this comparison with experimental data displayed in Figure 6 .6  

is very good, confirming the basis and quality o f the simulation model that has been 

developed and applied in this case study.

Given this agreement w ith temperature evolution and moisture loss, it is appropriate 

to explore and illustrate the variation o f other parameters and material properties 

during the drying process. This will be presented in the following paragraphs.
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Figure 6.7: Saturation variation along the depth.

Figure 6.7, depicts the change in saturation over the brick depth at discrete tim es, 

showing the gradient through the depth and that the m oisture content decreased 

slow ly after the falling rate period. The same pattern for tem perature is also exhibited 

in Figure 6.8, show ing a small increm ent during the constant rate period, a big 

increm ent after falling rate period and finally stabilizing tow ards the am bient 

condition o f  75°C. This is also reflected in the perm eability properties in Figure 6.9, 

where the perm eability  change starts to show a small reduction w hen nearing 

hygroscopic saturation. Also, as can be seen from this figure, the perm eability 

properties drop close to zero at the saturation value 0.09 (or 0.1).
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Figure 6.8: Tem perature variation along the depth.

This is due to failure o f  liquid transport by capillary action and this is no longer 

possible below the irreducible saturation level (Ilic and Turner, 1989; Ben N asrallah 

and Perre, 1988; Spolek et al, 1981; Tesoro, 1974). It has been found that the 

experim ental detection o f  very low perm eability  is extrem ely difficult and it is 

generally taken as equal to zero in the drying process. Figure 6.9, also includes the 

variation o f  relative hum idity within the porous m atrix as a function o f  saturation. 

A bove the critical saturation, the hum idity  rem ains close to a saturated hum idity  

condition and below this value it showed the falling rate condition where the vapour 

transport m echanism  plays an im portant role in changing the local hum idity w ithin the 

matrix. W hen near to the irreducible saturation level, the relative hum idity  ju st shows
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a very small change, indicating the m inim um  water content to which the m aterial can 

theoretically be dried under the non hygroscopic condition.
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Figure 6.9: Perm eability and relative hum idity  against saturation.

The gas pressure variation is presented in Figure 6.10. In the beginning, the m oisture 

variation through the capillary body is assum ed to be uniform  and the gas pressure 

stays constant at the atm ospheric level. As soon as the dry zone occurs, the 

tem perature starts increasing, and consequently there is a rise in gas pressure. As the 

drying proceeds and approaches the falling rate period, the body tem perature starts to 

increase m ore rapidly and this increases the gas pressure in the body. The pressure 

inside the sam ple increases to its m axim um  value w hereas the pressure at the surface 

always stays at the atm ospheric level, reflecting the boundary condition at this 

surface. This is shown clearly in Figure 6.10. A large increm ent in gas pressure is 

shown during the falling rate drying period. However, w hen the body approaches 

irreducible saturation and is therefore nearly fully dried, the tem perature increm ent 

also reduces, settling at the am bient condition after sufficient duration o f  6 hours 

drying time. This is also reflected in the gas pressure which now decays towards the 

atm ospheric condition as the drying process is allowed to continue for a long time. 

The same kind o f  evolution in gas pressure during convective drying has been 

presented in several other works, such as in brick drying (Ben N asrallah and Perre, 

1988), in consolidating a slab o f  porous m aterial (Ilic and Turner, 1989), in drying o f 

a concrete wall (Gawin and Schrefler, 1996) and in drying o f  light concrete (Tai
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Hong, 2006).
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Figure 6.10: Gas pressure variation with different tim e along the depth.

Pore w ater pressure evolution is shown in Figure 6.11. At the beginning, the pore 

w ater pressure rem ains at a nearly constant condition. This drying regim e indicates a 

free w ater m ovem ent at nearly atm ospheric am bient pressure. The sam e trends o f  

change in the pore w ater pressure are clearly shown in the falling rate period where a 

big decrem ent is recorded as drying proceeds w ithin this range This shows the 

condition when w ater recedes into the inner o f  the body and the capillary action is 

slow ly dim inished as w ater is strongly bonded to the porous m atrix. Reduction o f  

capillary action in the porous body is accom panied by a gas pressure that is higher at 

the outer surface. This restricts m oisture transport that is achieved through convection 

by the gas phase. As drying proceeds towards the irreducible value, the pore w ater
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pressure decrem ent start to slow down indicating that the body is in a nearly fully dry 

state. In general the range o f  com puted values for the pore w ater pressure that is 

presented in Figure 6.11 is high. However, it is appropriate for the suction curve for 

concrete and cem ent paste that has been assigned in this case (Baroghel-Bouny, et 

al, 1999). Som e further case studies (as presented in A ppendix 2) based on different 

m aterial property values has been carried out to determ ine response sensitivity o f  this 

param eter to the m easured variables or to the final com puted value. Based on the 

com parison with the benchm ark case study as presented in this section, it can be 

concluded that all the results are appropriate to describe the drying process according 

to the selected m aterial properties.
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Figure 6.11: Pore w ater pressure variation with different tim e along the depth.
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6.4 Shell drying on a simple linear section

Based on the validation case studies described above, the simulation was extended to 

address the drying o f  a ceramic that forms the shell for the investment casting process. 

This work includes single and multilayer systems and incorporates simple linear and 

com er geometries that are generic to a range o f investment cast parts. W here possible, 

results will be compared with experimental data. Principally this will be drawn from 

the work described by Leyland and Jones (11-14 September 1995)

In general, there are differences between the drying response o f a ceramic shell mould 

and a brick. As explained and elaborated in the works by Leyland and Jones, drying 

o f the ceramic shell mould is presented by the drying curve o f a sol-gel mixture. This 

can be seen in Figure 6.12 where water loss from the first coat is quite high at the 

beginning o f  the drying process. In this case, a coat comprises the slurry and ceramic 

particulate that forms the layer thickness. Thus, the slurry and the ceramic that forms 

the shell have a high water content within the porous network. This is not the case for 

brick or concrete. Therefore most o f the sol-gel ceramic type compositions have a 

very steep drying curve at the beginning (Briscoe et al., 1998). As explained in the 

previous section, brick drying involves two stages that correspond to constant and 

falling rate periods. The same drying stages are inherited for the ceramic shell coat 

that has also been described in previous work (Hyde, October 1995) and (Pierre, 

1990). Therefore, in this section, validation o f simulation will be based on trends 

rather than precise values. This is due principally to the difficulty in obtaining precise 

data and characteristics to describe the drying behaviour for the coating materials in a 

form comparable to that set out in Chapter 3 and that is appropriate for incorporation 

into simulation.
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Figure 6.12: Percentage o f  m oisture loss at different tim e (Leyland and Jones, 11-14

Septem ber 1995).

In this work, num erical experim ents have been conducted on sim ple linear geom etries 

under closely defined boundary conditions that represent the drying atm osphere 

com m only im plem ented in a shell drying facility. Both single layer and m ultilayer 

shells are sim ulated and presented w ithin this section. Com parison between the 

experim ental data on shell build up (denoted as coats in Figure 6.12) and the 

sim ulated results are given. M ost com parisons are based on the m oisture loss 

m easurem ent as presented in the works by Leyland and Jones. This has been done to 

facilitate validation o f  the schem e. Also because shell drying occurs slow ly under 

near isotherm al conditions there will be little contribution from tem perature and hence 

gas pressure effects. The m aterial properties that have been assum ed are given in 

Table 1 (in Chapter 3) and the liquid and gas perm eability, vapour diffusivity, ceramic 

porous conductivity and other related data have been presented and discussed in 

Chapter 3. Based on the inform ation from industry, m ost shell drying is achieved by 

controlling relative hum idity  w ith air velocity  and a nearly  constant tem perature. 

Therefore, the sim ulation has been conducted w ith regard to the above conditions for 

both single layer and m ultilayer shells.
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6.4.1 Single layer case study

This section focuses on the drying o f a single layer o f  the ceramic shell mould. The 

simulation was carried out on a simple linear section as described in Figure 6.13 

below. The body was assumed to have high initial water content and can be 

considered to be nearly fully saturated. The boundary condition for drying is applied 

at the side that contains nodes 3, 26 and 2. The remaining sides are assumed insulated 

and to be impermeable. This reflects the zero gradient that is appropriate for a section 

through a long straight shell section and the condition that applies at the wax surface 

corresponding to nodes 1, 52 and 4. All other parameters such as temperature (at

23 °C), gas pressure (1 bar) are assumed constant throughout the body. The heat and
0 1mass transfer coefficient values which are 2 W/m K and 0.001 m s' along with the 

ambient relative humidity o f  50% and temperature at 23 °C are used as the best 

approximation in describing the slow and controlled drying process. The domain is 

mapped using a uniform finite element mesh comprising 53 nodes and 10 quadratic 

serendipity elements applied to a layer thickness o f  1 mm. A  variable time step, based 

on initial, minimum and maximum time step size o f  lsec, 0 .0 0 1  sec and 2  hours 

respectively, was employed for the simulation. The above mentioned spatial and 

temporal discretisations, similar to those in the previous section are considered 

appropriate for this case study.
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Figure 6.13: Schematic o f  the single layer problem .
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Figure 6.14: Saturation at 15 m inutes (a), 30 m inutes (b), 1 hour (c) and 2 hours (d) o f

the drying times.
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The results for saturation and moisture loss are presented in Figures 6.14 and 6.15. In 

the latter, moisture loss represents the progression o f water loss that has been derived 

from an average o f the moisture content within the sample. The moisture loss m ay be 

obtained from the saturation data predicted by the simulation. This is given by the 

expression below;

Percentage moisture loss =
59 % -  y  % 

59
xlOO % (6.6)

where the value o f  59 % indicates saturated percentage o f  the new dipped layer andy  

% is saturation level that remains in the body after it has gone through the drying 

process.

This trend reflects the gravimetric measure that captures a global water loss, rather 

than a local value as depicted in the contours in Figure 6.14. The results show that the 

saturation starts to reduce as drying proceeds. At the beginning o f  drying a high 

percentage o f  moisture loss is presented in both o f the curves in Figure 6.15. This 

illustrates the trend from the constant rate drying period and indicates the high free 

water content that is present in the single layer. The simulated curve showed a big 

deviation from the experiment over the early stages o f  drying. This has been attributed 

to the ceramic shell properties that have been used in the proposed model, such as the 

saturation curve that has been demonstrated to be appropriate for the brick material 

(no equivalent curve has been found for the ceramic shell material). Data from the 

experiments also show that within 20 minutes, drying nearly achieves the critical 

saturation (0.3) that corresponds to a 70% moisture loss. The simulated curve 

achieves the critical saturation after about 45 minutes. As drying continues beyond 

this critical value, the difference between experiment and simulation falls 

progressively to a very small value near to the irreducible level after 2 hours. Both 

plots show the same pattern o f moisture reduction and so it is assumed that the 

proposed model can be used to simulate drying o f ceramic shell layers and therefore it 

will be used to explore a multilayer system.
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6.4.2 Multilayer study

As described in Chapter 1, the multilayer ceramic shell build up process involves the 

dipping and the drying process for every layer that makes up the ceramic shell body. 

Consequently, there is an impact on the drying behaviour due to the slurry soak back 

throughout the previously dried layer(s) during each coating cycle (Jones, 1995). This 

is clearly described and shown in Figure 6.12 above, where for every layer there is a 

slightly different percentage water loss. This directly influences the drying time as the 

thickness o f  the shell increases during the layering process. In the work by Leyland 

and Jones (11-14 September 1995) three variations o f intercoat time were explored 

(30 minutes, 1 hour and 2 hours) from which it was found that 2 hours intercoat 

drying time gave the shortest total drying time for the whole shell system. This is the 

result depicted in Figure 6.12 and this will be used to explore the multilayer drying 

simulation capability. Therefore in this set o f numerical experiments, a two hour 

coating cycle time was chosen. Experimentally, the weight loss data took into account 

the water contained in the slurry calculated from the total solids content, slurry soak 

back into the previous coats during dipping and water that is not removed from the 

inter coating layers (Leyland and Jones, 11-14 September 1995).

In this work there are several options that may be explored in modelling drying o f the 

multilayer shell. This is due to the fact that the layered domain is not as simple as a 

single layer model (where the domain may be assumed to be homogenous). In a 

precise simulation, the process o f  shell build up as explained in Chapter 1 should be 

emulated. This comprises dipping and soak back, addition o f  a zircon layer by 

sprinkling powder over the wet surface to build a layer o f about 1mm thickness, 

wetting o f  this sprinkled powder and then drying o f  the layer that is added as well as 

re-drying o f  previously dried layer(s). I f  simulation is to capture layer addition, a 

dynamic meshing strategy to capture the addition o f  the sprinkled layer will be 

required. There are also further physical difficulties such as the need for a wetting 

model to capture the redistribution o f water from the slurry into this freshly added 

layer. Because o f  these difficulties two simpler approaches were explored in an 

attempt to establish their ability to capture the drying o f the multilayer system.
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The First approach describes the multilayer stage by simulating a single layer, and 

then adding a second wet layer with a different percentage water content that reflects 

a homogenisation o f the added slurry and zircon powder that makes up that layer. 

The drying period is then simulated and the final results are averaged over the shell 

thickness that has been built up. A third layer is then added to the averaged data for 

the first two and the drying simulation carried out. This process is then repeated for 

as many layers as required. The Second approach describes the multilayer by 

assigning a moisture gradient through the layers, as derived from experimental 

observation. Unlike the first approach, this requires some knowledge o f  the moisture

gradient and therefore it is not a strictly ‘ab initio’ simulation approach.

Besides the factors that have been mentioned in the above paragraphs, numerical 

problems will arise at the sharp discontinuity introduced by the low to high saturation 

as a fresh layer is added. This can be accommodated by having a finer mesh. In this 

work, one example multilayer case study will be simulated using two different meshes 

to explore mesh sensitivity issues related to the sharp discontinuity that exists at the 

interfaces between existing and new layers. The results are presented in Section 

6.4.2.3 shows a mesh with 20 elements which is double that for the case study 6.4.2.1. 

For the finer mesh the interface area that has been defined is quite narrow compared 

with Figure 6.16 (or Figure 6.32(b)). The simulated results for every node in the two 

meshes do not show a big difference (less than 1 %) which is acceptable for most 

numerical solutions. Therefore throughout the next case studies, all the domains are 

mapped using the coarse mesh.

6.4.2.1 Case study for the First Approach

This section can be considered as an analysis o f  drying o f  a ceramic shell mould

effectively comprising two layers. The procedure for the simulation has been 

described in the above section. In defining the initial condition, coupled with a 

relatively coarse mesh, a gradient is prescribed between the two layers. As well as 

avoiding the introduction o f a discontinuity at the interface, this also reflects the soak 

back mechanism that occurs during the dipping process.
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Figure 6.16: Schem atic o f  two layers o f  the shell showing the initial condition and 

including the selected nodes 1, 9 and 2.
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123



The sim ulation was carried out on the sim ple linear section as shown in Figure 6.16 

above. The sam e dom ain m esh which com prises 51 nodes and 12 quadratic 

serendipity elem ents but w ith different thickness to represent the build up o f  the shell 

was used in all o f  the analyses, the results from which will be set out in the figures 

below. The variable tim e step, based on initial, m inim um  and m axim um  tim e step size 

o f  lsec , 0.001 sec and 2 hr for every layer. The exception is the last layer; layer 9 for 

w hich the m axim um  tim e step o f  48 hours has been im plem ented. All the figures that 

will be described below  and in A ppendix 3 show the sim ulated results with their 

selected nodes that are appropriate to describe the transience o f  m oisture gradient 

throughout the m ultilayer system  especially at the beginning o f  the drying process and 

in the later stage.
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Figure 6.18: Saturation level o f  coat 2 at the selected nodes over a 3 m inutes drying

duration.
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Figure 6.19: Saturation level o f  coat 2 at the selected nodes over a 2 hour drying

duration.

Figures 6.16 to 6.19 show the initial condition and sim ulated results for the first two 

layers system  in m odelling o f  the drying ceram ic shell build up process. A t the 

beginning o f  the drying in Figure 6.17 there is a balancing or transition that shows 

m ovem ent o f  the m oisture content from the wet layer to the inner dried layer w ithin 1 

minute. This penetration o f  m oisture to the inner layer is also strongly influenced by 

the properties that initially exist w ithin the previously dried inner layer(s). This still 

indicates that the process occurred in the presence o f  free water. As the initial 

transient is finished, then the m oisture gradient starts to decrease and the m oisture 

distribution across the dom ain levels out. The com plete contour evolution o f  the 

m oisture transition are given in A ppendix 3.

To continue this sim ulation the excess m oisture from the previous layer is assigned as 

the initial condition for the next dried layer after that. Therefore, m odelling this 

sim ulation case study does not need an initial experim ent for each layer derived from 

experim ent. Figure 6.20 shows the initial condition for a three layer system  where the 

excess m oisture in the dried layer is equal to a saturation level o f  12 % (which is the
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excess m oisture that is present in the com bined first and second layers after two hours 

drying time).
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Figure 6.20: Schem atic o f  three layers o f  the shell coat.
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Figure 6.21: Saturation  level o f  coat 3 at the selected  nodes over  a 3 m inu tes  drying

duration.
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Figure 6.22: Saturation level o f  coat 3 at the selected nodes over a 2 hours drying

duration.
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Figure 6.23: Saturation  level o f  coat 4 at the selected  nodes over  a 3 m inu tes  drying

duration.
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Figure 6.24: Saturation level o f  coat 4 at the selected nodes over a 2 hours drying

duration.

The same condition is exhibited in the case o f  the three and four layer system s as 

described in the previous two layers system , where again results show the transition in 

m oisture constant takes place over the early stages. These are shown in Figure 6.21 

and Figure 6.23. In general there is only a slightly difference in the m oisture change 

as each layer is added. As can be seen from Figure 6.18, 6.21 and Figure 6.23, the 

w ater penetration (which reflects also the w ater soak back m echanism ) take a longer 

tim e as layers are added and the thickness o f  dried layer increase. This shows the 

effect o f  thickness build up as layers are added and the effect o f  previous layers that 

have an increasing excess m oisture content due to the soak back m echanism .
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Figure 6.25: Com parison betw een the sim ulated result o f  layer 1, layer 2, layer 3 and 

layer 4, and the experim ent data within 2 hours drying time.
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Figure 6.26: Com parison betw een the sim ulated result o f  layer 5, layer 6, layer 7 and 

layer 8, and the experim ent data within 2 hours drying time.

A com parison o f  all the sim ulated results for layer 1, layer 2, layer 3 and layer 4 are
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presented in Figure 6.25, and for the next four layers are given in Figure 6.26 and 

lastly the result for layer 9 is given in Figure 6.27. Figure 6.25 shows quite a good 

trend agreem ent betw een the sim ulated w ater losses distribution and the real 

experim ent. The difference m ay be attributed to a num ber o f  reasons, that include 

m aterial m odel definition and boundary conditions. All o f  the experim ental responses 

are m ore rapid than the sim ulation that implies that either the m ass transfer coefficient 

at the exterior surface is too low or that the m aterial m odel param eters that control 

transport (perm eability and saturation curve) are not appropriate, even though the 

latter m ust be m atched. Further work is required to establish m aterial m odel data that 

is appropriate for investm ent casting shell m aterials.

Figure 6.26 illustrates the condition o f  drying for layers 5 to 8. Again data from the 

experim ents show that the rem aining w ater in the shell layers from layers 5 to 8 does 

not achieve the critical saturation, which indicates that the m atrix is still wet. This 

agrees with the related published experim ental works (Leyland and Jones, 11-14 

Septem ber 1995) where the w ater rem oved in each coat and the soak back into the 

previous coat becom es relatively constant after coat 4 and achieves about 60 to 50% 

saturation. This indicates that the previous layers have a build up in m oisture content 

and that the intercoat duration is not sufficient. The same patterns o f  sim ulated 

m oisture losses are presented in Figure 6.26 and which is sim ilar in pattern to the 

experim ent data. In general the m oisture loss follows the same trend as the 

experim ental data, show ing the highest w ater loss in the first layer and increasing 

drying duration as further coats are added to the shell.
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Figure 6.27: Comparison between the simulated results of layer 9 for two difference 

calculations within 2 days drying time of the first approach.

Simulation of the layer 9 (the seal coat) for the longer period of drying in Figure 6.27 

show that the results are quite close as been used to represent the result in Figure 

6.25 and Figure 6.26. Finally after 25 hours the simulated plot shows 100 % of water 

removal. In general the moisture loss follows the same trend as the experimental data, 

showing the lower reduction in the latter stage and finally approaching to the 100% 

moisture loss, as measured in the lab based work after 2 days drying period.

6.4.2.2 Case study of the Second Approach

This section can be considered as an analysis of the drying of the complete multilayer 

shell (which consists of 9 layers) that has a prescribed initial moisture gradient across 

the thickness. This moisture gradient captures the full sequence of dipping and drying 

and the prescribed gradient has been derived from the related reference (Leyland and
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Jones, 11-14 Septem ber 1995) as given in the Figure 6.12 above. The sim ulation is 

im plem ented on the sim ple linear section as described in the Figure 6.28 below. In 

this problem  no gradient is prescribed at each layer interface due to the fact that the 

difference in saturation betw een each layer is small. Also the coarse m esh within this 

m ultilayer structure is enough to solve via the proposed schem e. The sam e boundary 

condition and the drying environm ent as presented in Section 6.4.1 has been used to 

have the same drying effect for the layered system  (as im plem ented in the 

experim ental work). The dom ain was m apped using a uniform  finite elem ent mesh 

com prising 53 nodes and 9 quadratic serendipity elem ents, w ith an overall thickness 

o f  9 m m, representing the m ultilayer shell body. A variable tim e step, based on initial, 

m inim um  and m axim um  tim e step size o f  lsec, 0.001 sec and 48 hours respectively, 

w as em ployed for the sim ulation. The above m entioned spatial and tem poral 

discretisations were applied after a thorough investigation to obtain a converged 

solution. Com parison o f  the sim ulated average value o f  w ater loss within the 

m ultilayer dom ain was m ade w ith the experim ental data. This com parison was made 

by referring to the drying results for the fully layered system.
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Figure 6.28: Schem atic o f  m ultilayer shell with 9 layers -  initial m oisture variation.
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Figure 6.30: Com parison between the predicted and experim ental values o f  the 

m oisture loss for the fully layered system  in the second approach.

Sim ulation o f  the drying o f  the fully layered system  shows m ore deviation from the 

experim ental data as com pared to the previous case study (see Figure 6.29). The m ost 

clear difference can be seen at the beginning o f  the drying tim e, where m oisture loss 

for the whole body is slow er than in the first approach This is not shown in the 

experim ental data. Com parison betw een the case studies under A pproach 1 (from 

Figure 6.27) and Approach 2 (Figure 6.30) with the experim ent r e s u l t , show a slight 

difference, where most o f  the sim ulated results under Approach 1 agrees with the 

same pattern w ith the experim ental data. So, therefore it can be concluded that the 

A pproach 1 shows the best solution in sim ulating the drying o f  shell. In fact it is the 

m ethod that m ay be used ‘ab in itio ’ to sim ulate the drying process.
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6.4.2.3 Mesh Sensitivity study

This section is presented in order to determ ine the accuracy o f  the prediction in every 

case study which is m apped by a coarse m esh. Therefore, som e com parison w ith 

different m eshes in a straight layer geom etry and com er shape with two different 

distinct layers were investigated and these are presented in follow ing sections. All 

figures are presented based on the same scale o f  contour colour in order to enable a 

direct com parison to highlight m esh sensitivity.

6.4.2.3.1 Two layer linear section

In this case study, a two layer system  m apped with a coarse m esh (10 elem ents) and a 

finer m esh (20 elem ents) was exam ined. Both dom ains have the sam e level o f  

saturation with two different distinct layers. In describing the two distinct layers in the 

dom ain, the interface area that captures the steep gradient betw een the two layers 

needs to be defined in both dom ains.
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Figure 6.31: Schem atic for node num bering across the dom ain

The same drying condition and the same tim e step, based on initial, m inim um  and
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m axim um  tim e step respectively w ere chosen as in the Section 6.4.2.2 w as employed 

for both sim ulations in both case studies. Both dom ains are exposed to the convective 

boundary condition at one side w hile the other side is insulated and im perm eable. 

The results from the sim ulation are shown below in the form o f  saturation contours.
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Figure 6.32: Initial condition for saturation level in the coarse and fine m esh for a two

layer shell system
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Figure 6.33: Com parison o f  saturation level at 17 seconds((a),(b)), 19 

seconds((c),(d)), 21 seconds((e),(f)), 23 seconds((g),(h)), 1 hour((i),(j)) and 2

hour((k),(l)) for both meshes.
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0.005 
X -coord  (m)

0.005 
X -coord  (m)

6.35: Initial condition for saturation level in the coarse and fine m esh for the

com er section.

E
•g
o
oo
>-

(c)
Scale 0.94 = 54 .734  

0.00 = 54 .604

(d)

Scale 0.94 = 54.735 
0.00 = 54.605

0.002

0.009

0.008

0.007

0.006

0.005

0.004

0.003

0.0025 0 0 0 5  0.0075
X -coord  (m)

0.004

0.003

0.002

0.001

0.0075

0.009

0.008

0.007

0.006

0.005

0.0025 0.005
X -coord  (m)

141



Scale : 0.94 = 50.770 
0.00 =50 .615

000 8

0.007

E
—  0 005

0.004

0 003

0002

0.001

Scale : 0.94 = 28 .914  
0.00 =28 .365

0 0 0 9

0.0025 0 0 0 5  0 0 075
X-coord (m)

Scale :

Scale :

0.94
0.00

0.94
0.00

(f)

= 50.757 
= 50.601

0.0025 0.005
X-coord (m)

( h )

= 28.977 
= 28.429

0.0075

0.009

0.008

0.002

Figure 6.36: Com parison o f  the coarse m esh (12 elem ents) and finer m esh (75 

elem ents) over 2 hours drying times.

In these case studies (linear section and com er section), both m eshes (fine and coarse) 

show very little difference in saturation level, being less than 2%  over the two hour 

drying period. H ow ever there is a big different in com puting time. U sing the same 

com puting platform , the coarse m esh (10 elem ents) needed less than 30 m inutes, but
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the finer mesh required more than 5 hours computing time which is 10 times longer 

than the coarse mesh. Therefore, the coarse mesh was considered to be adequate to 

run the the single layer and multilayer case studies in Section 6.4.1 and in Section 

6.4.2.

6.5 Drying Case Study of the shell with Corner Geometry

Based on the above validation, the simulation was extended to include moisture and 

heat transport from two sides effectively capturing a com er which is a generic shape 

in a ceramic shell body. This was done in order to demonstrate the robustness o f  the 

code and also to illustrate the hygrothermal response especially in the com er zone o f  a 

single and multi layer shell. The same material properties that have been used in 

Section 6.4 were used in this work. In this section, the same condition for shell 

drying as presented in the previous Section 6.4 was used.

6.5.1 Corner shell with single layer

The simulation was completed for a single layer ceramic shell with thickness o f  1 

mm. A uniform size o f  mesh comprising 53 nodes and 12 quadratic serendipity 

elements was used to represent the sample. The m esh configuration o f the sample is 

shown in Figure 6.31. A  variable time step, based on initial, minimum and maximum 

time step size o f 1 second, 0.001 second and 2 hours respectively, was employed for 

the simulation. The convective boundary is shown in the Figure 6.37 and other parts 

o f boundary are assumed insulated. Initially the shell layer has saturation equal to 

59% and pore water pressure -7.5 x 106 (Pa) constant throughout the body. Results o f 

the simulation for the level o f  saturation and pore water pressure with different times 

are shown in Figure 6.38.
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Figure 6.38: Saturation and pore water pressure at 15 minutes (a), 30 minutes (b), 1 

hour (c) and 2 hours (d) o f drying times for the single layer case study (comer shape).

At the time increments, the saturation value shows only a small variation across the 

body due to the geometry o f the ceramic shell layer (1 mm thick) and its ability to 

promote moisture transport. Over the drying times, as expected the greatest changes 

are observed in the com er zone where the saturation reaches its minimum value due to 

the convection from two adjacent sides. In the early stage o f drying (constant rate 

period) or above the critical value (0.3), saturation drops drastically within 30 

minutes. This condition indicates the capillarity effect and free water movement that 

leads to the moisture loss. As drying proceeds and exceeds the critical value after 30 

minutes, moisture loss slowly starts to reduce and the same result is exhibited in the 

pore water pressure. This is clearly shown by comparing the value o f saturation in 

Figure 6.38, where it took nearly 1 hour to have a reduction o f 5% in saturation as 

compared to the beginning o f drying time, where its shows a 34% loss in saturation in 

less than 30 minutes.
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6.5.2 C orner Shell with m ultilayer

The multilayer system was simulated for just two layers. This case study follows the 

previous approach set out in Section 6.4 under Approach 1. A uniform size o f mesh 

comprising 341 nodes and 75 quadratic serendipity elements was used to represent the 

sample with 5 mm length and 2.5 mm thickness. In presenting the layering system 

that is clearly shown by the two distinct layers, a finer mesh needs to be used to 

capture the interface layer that has a very steep difference in moisture content. The 

interface gradient needs to be define to avoid numerical difficulties in the simulation. 

The mesh configuration is shown in Figure 6.39. A variable time step, based on 

initial, minimum and maximum time step size o f 1 second, 0.001 second and 2 hours 

respectively, was employed for the both simulations. The same convective boundary 

as implemented in the previous case study (is shown in the Figure 6.37) is also 

implemented in this problems, and their initial saturation that describes the two layer 

system is given in Figure 6.39. The same drying condition as implemented in the 

previous Section 6.4 is used in this problem. Simulated results o f the working 

variables with different times are shown in Figures below.
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Figure 6.39: Initial condition o f the saturation and pore water pressure for two layer

systems with comer shape.
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Figure 6.40: Saturation and pore water pressure at 25 seconds; (a) and (b), 45 

seconds; (c) and (d), 50 seconds; (e) and (f), 1 minute; (g) and (h), 30 minutes; (i) and 

(j), 1 hours; (k) and (1), 2 hours; (m) and (n).

At the beginning o f drying o f the multilayer system there is a considerable shift in the 

moisture condition, as has already been discussed and illustrated in the linear plain 

sections. The saturation level in Figure 6.40 shows a big moisture loss at the 

beginning o f drying. Less than 30 minutes is needed to dry the body to the critical 

value at 22 % saturation level (which is equal to 70-75% moisture loss). The two 

layers systems show a nearly fully dried condition within 2 hours. The average value
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o f  saturation (12 %) indicates the value o f  90% m oisture loss at tw o hours drying 

time. In general, the results show  the expected  trends, but they need to be compared  

w ith  experim ental data w hen  these becom e available.

6.6 Closure

In this chapter, the accuracy o f  the solutions obtained by  the num erical approxim ation  

used in the proposed m odel w as investigated. The problem s chosen  for the validation  

and analysis w ere one-dim ensional linear heat flo w  accom m odating various initial 

conditions and boundary conditions. D irichlet boundary condition and flux boundary 

condition in w hich  related to a convection  m echanism  w ere so lved  num erically using  

the proposed m odel. The com puted num erical results w ere com pared w ith  analytical 

heat transfer solutions (Carslaw and Jaeger, 1959) and show ed a good  agreement.

The verification o f  a fu lly  coupled m odel in one d im ensional scale, w h ich  considers 

m oisture, heat transfer and gas transport (air and vapour) for brick drying, w as carried 

out using data from a previous num erical work presented b y  Stanish et a l (1986). This 

analysis considered the sim ulation o f  temperature, m oisture and other material 

transport evolution  during the drying process. Sim ulation results o f  the measured  

variables at different tim es and across the drying body section  show ed a good  

m atching w ith results reported b y  Stanish et a l (1 986) and in others related work.

E xtension o f  the m odel validation into a tw o dim ensional scale w as done for the 

drying o f  a ceram ic layer (single layer and m ultilayer) on the sim ple linear section  and 

the com er shape geom etry. T hese sim ulations and investigations w ere done w ith  

considering the nearly isotherm al ambient condition that are pertinent to shell drying 

conditions. It w as observed that the sim ulation results o f  the m easured variables 

show ed a right pattern tem porally and spatially betw een interrelated measured  

variables in the proposed m odel in every case study. A  good  correlation also w as 

noticed  betw een the sim ulated results and experim ental data for the case o f  sim ulation  

o f  m ultilayer system  that fo llow s directly the experim ental work. The sam e procedure
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for a m ultilayer system  as im plem ented for to the sim ple linear section  also proved to 

be applicable to the com er shape problem.

Therefore, it can be concluded that the proposed fu lly  coupled  m oisture, air and heat 

transfer m odel is able to describe the heat and m ass transport that varies tem porally  

and spatially during the shell drying process. The verifications and validations o f  the 

proposed m odel have also been published in tw o conference proceedings ( H amn, et 

a l ., A pril 2007; Harun, et al., 2006).
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CHAPTER 7

SUMMARY, CONCLUSION AND 

RECOMMENDATION FOR FUTURE WORK

7.1 Summary and conclusion of the research

The proposed theoretical m odel to describe the drying o f  a porous m edium  has been  

su ccessfu lly  im plem ented w ith respect to the hygrothermal drying o f  a brick and the 

isotherm al drying o f  shell that com prises either a single layer or m ultilayer dom ain  

that includes the addition o f  w et layers to replicate shell build up. The com pleteness  

o f  the proposed m odel has been  dependent on the successfu l integration o f  the 

governing equations based on W hitaker’s m odel (W hitaker, 1977) into a num erical 

solution that uses the finite elem ent spatial discretisation and a fu lly  im plicit 

backward tim e stepping schem e. Som e earlier works have been taken to verify the 

proposed m odel against analytical solutions, benchmark experim ents and data derived  

from laboratory studies on  drying w ithin the shell build up process.

This fu lly  coupled m odel that is proposed in this work describes the m oisture transfer 

as both liquid and vapour and includes the evaporation and condensation term. The 

condensation term also is considered in the gas and vapour transport equations. The 

transport equation o f  gas flow  contributes to the m ovem ent o f  vapour flo w  under the 

control o f  the con vective am bient condition. Heat transfer m echanism s o f  conduction, 

liquid, vapour and air convection  and latent heat have been accom m odated. In the 

proposed m odel som e consideration o f  the relationship betw een  the heat and m ass  

transfer coefficien t and the surface water content at the bounding surface o f  the 

dom ain are also included in the convection  m echanism . In general this proposed  

m odel that is based on the solid, liquid and gas phases represents a m ost rigorous
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approach to simulate the drying o f  a ceramic porous system.

T he fo llow in g  conclusions m ay be drawn from the work presented in this thesis:

T he validation o f  the thermal com ponent o f  the proposed m odel w ithin  a one  

dim ensional framework show s an excellent agreem ent for prescribed and gradient 

boundary conditions w hen  com pared w ith an analytical solution. The accuracy o f  the 

proposed tim e stepping schem e has been  investigated  in the both case studies and has 

show ed  a good  agreem ent w hen  com pared to the analysis solutions and previous 

works.

Com parison o f  this proposed coupled m odel w ith  its solution schem e against the brick  

drying benchm ark b y  Stanish et. a l (1986) for the first tim e has dem onstrated that the 

m odel and solution  schem e are com patible w ith  the brick drying benchmark. B y  

develop ing the heat transfer formulation to include latent heat contribution, the 

current proposed m odel show ed a good  im provem ent over previous w ork published in 

(Stanish et a l ., 1986). In general this com plete fu lly  coupled m odel show s a good  

agreem ent w ith  m ost previous drying m odels w here the w orking variables such as 

temperature, m oisture content, gas pressure, etc. show  at least identical trends in both  

space and tim e variation.

The capability o f  the fu lly  coupled m odel w as further extended to investm ent casting  

shell drying b y  including single and m ultilayer dom ains. The sim ulation w as  

benchm arked against the single layer shell data in the experim ental work b y  Leyland  

(11 -14  Septem ber 1995), again g iv ing  a good  agreem ent w ith the experim ental data 

recorded for m oisture loss.

F ollow ing on from the above validation, investigation  w as extended to the m ultilayer 

case study w ith  tw o different sub-case studies to explore the correctness o f  the 

sim ulation work. The second case study w as a com parison for a m ultilayer that has 

the initial saturation gradient defined from the experim ental work and so the em phasis 

w as on predicting the final drying transient o f  the fu lly  assem bled shell. This show ed  

a sm all deviation from the experim ental results. The first case study focused  on  

replicating the dipping and drying sequence o f  shell build up. Investigation o f  the
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latter show ed that the sim ulated result in every layer show ed the right pattern o f  

reduction in m oisture lo ss w hen com pared w ith the experim ent and gave a superior 

agreem ent w ith  experim ent w hen drying o f  the final assem bled shell w as undertaken. 

Therefore, the First approach has been  demonstrated to be applicable to sim ulate the 

drying process during the build up o f  an investm ent casting shell. In fact the First 

approach can be defined as an “ab initio” m ethod for sim ulating the drying o f  an 

investm ent casting shell as it is built up b y  su ccessive  layering.

The investigation w as further extended to the tw o dim ensional com er shape dom ain  

that is exposed  to tw o convective boundaries that are pertinent to shell drying. A  

single and tw o layer shell system  w as explored. B oth  system s show  a consistent 

relationship betw een  the m oisture content and pore water pressure where both show ed  

the fastest changes at the tip o f  the com er zone because this is the area w here heat and 

m oisture loss is com es from tw o sides.

Regarding the above com er shape it can be concluded that the fu lly  coupled m odel 

w ith  selected  num erical schem e is robust and m ay be extended to m ore com plex  

shape geom etries.

In designing the sim ulation process for the m ultilayer dom ain, both linear and com er  

sections show  a short transient during w hich  balancing o f  the m oisture lev e l betw een  

the dried and the w et layer takes place. This is fo llow ed  b y  a drying schedule that 

fo llow s the w ell recognised  constant and falling rate periods.

Through investigation  o f  m any case studies (either (hying o f  brick or shell bodies) 

that have been  exam ined under Chapter 6, the sim ulated result not on ly  show ed a 

good  agreem ent w hen  tested against experim ental data but also a good  agreem ent 

w ith  trends that have been published in works that describe developm ents and 

im plem entation o f  num erical sim ulation w ith in  the w ider field  o f  drying that has been  

discussed  in Chapter 2. In fact this investigation has demonstrated that a sim ulation  

tool that has been  developed principally for geotechnical application m ay be adapted 

appropriately for ceram ic shell drying.
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7.2 Recommendation

T he m odel developed to sim ulate drying o f  the ceram ic shell layer and ceram ic brick  

incorporating fu lly  coupled heat and m ass transfer has show n to be capable o f  g iv ing  

g o o d  results in  all case studies presented in Chapter 6. H ow ever, extension  o f  this 

w ork is still possib le. Suggestions regarding the further developm ent are proposed  

below :

T he m oisture transport either via capillarity, d iffusion  and gas m igration process is 

h ig h ly  influenced b y  material properties or transport properties such as the water 

retention curve, relative perm eability o f  each phases, d iffusiv ity  coefficien t etc. The 

approach in this thesis has the advantage that relevant material data can be determined  

through experim entation. Therefore, is h igh ly  recom m ended that characterisation that 

is  aligned w ith the material m odel defined in this is work is undertaken to establish a 

coherent data set that w ill im prove the accuracy in analysing the drying o f  the shell 

m ould.

A lthough  considerable progress has been m ade in the verification o f  this fu lly  coupled  

drying m odel, further validation o f  the w h ole  system  for the m ultilayer problem  needs 

to be done to explore and establish a better material m odel.

The m odel has been im plem ented in tw o dim ensions, extension  to fu ll-scale  

sim ulation in three d im ensions is straight forward and w ill be a requirement for 

com plex shell system s. Extension to three dim ensions w ill also require careful 

consideration o f  com puting requirem ents, especia lly  for com plex geom etries that are 

typical o f  investm ent cast parts.

The anisotropy o f  the ceram ic body (ceram ic shell or brick) w as not considered in the 

m odel. Natural porous m edia exhibit the characteristic anisotropy in properties such  

as hydraulic conductivity, gas perm eability and m echanical dispersion. To achieve  

this, the anisotropy o f  ceram ic properties should be included.
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To obtain accurate values in the convective transport m echanism , the conduction and 

diffusion  through the stagnant layer o f  air at the im m ediate boundary surface m ay  

n eed  to be considered. This involves the introduction o f  a correction factor in the 

correlation o f  heat and m ass transfer coefficient.

T his work has used existing em pirical heat and m ass transfer coefficien t that govern  

drying o f  m ost porous m edia. Further im provem ent m ay be gained b y  m odelling the 

surrounding fluid flow . Therefore som e work needs to be done in order to couple the 

ex istin g  drying m odel w ith  the external flow  domain.

The current m odel is capable o f  sim ulating the drying process. H ow ever, the porous 

ceram ic body is also subjected to shrinkage and cracking, w h ich  is the m ain factor 

that contributes to the loss o f  casting production. Therefore, the inclusion  o f  a 

deform ation m odel to capture the hygrothermal stress due to m oisture gradient is also  

recom m ended.

This drying study presents on ly  the drying due to free water rem oval. A  fu lly  

integrated m odel could include bound water d iffusion  m echanism s, especia lly  w hen  

considering high temperature drying that w ill occur as part o f  the d ew axing and firing 

sequence for the shell. The critical part dealing w ith  the bound water coefficien t is to 

find their d iffusiv ity  coeffic ien ts w hich  are h igh ly  depended on material properties, 

w h ich  can on ly  be determ ined experim entally.
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APPENDIX A1

MATERIAL CONSTANT

A l . l .  The Properties o f  Liquid W ater

Liquid water density, p /= 1000 kg/m 3

M olecular w eight, M w = 18 .02  g / m ol

The specific heat capacity, Cpf= 41 8 0  J/ kg K

The thermal conductivity o f  liquid water, =  0 .6  W /m K

A 1 .2. The Properties o f  gas (vapour and air)

The value universal gas constant; i? =  8 .3 1 4 J /K  m ol

A 1.3  The Properties o f  Vapour

The m olecular w eight, Mgv =  18.02 g / m ol

The vapour gas constant, Rv =  461 .5  J/ K  kg

The specific heat capacity o f  water vapour, Cpv = 1870  J/ kg K

The latent heat o f  vaporisation, L =  2 .4 x 1 06 J/ kg

A 1 .4 The Properties o f  air

The dynam ic v iscosity  o f  air, jua = 0 .02965

The thermal conductivity o f  vapour, A,a =  0 .028  W / m  K

A 1.5. W ater retention curve parameters 

n =  0 .5146  

m =  0 .4853  

a  =  37 .5438 M Pa
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A 1.6 . The relationship betw een the heat and m ass transfer coeffic ien t and the surface 

water content

Vk =  °-8 

rjT =  0.1
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A PPEN D IX  A2

M A T E R IA L  P R O P E R T Y  S E N S IT IV IT Y

This section is presented in order to determine response sensitivity with respect to 

selected material properties. Some comparison o f the output variable evolution with 

the benchmark case study is presented in here. Two parameters that define the 

material properties have been chosen for the investigation. These are the intrinsic 

permeability value and the porosity value. This is due to the fact that theoretically 

these variables have a significant influence on the saturation and transport through the 

porous network during the drying process. All the results comparisons are based on 

the fully coupled model investigation for the one dimensional convective drying o f 

the brick in Section 6.3. In conducting this sensitivity study, material parameters were 

disturbed by only a small amount, because to achieve a converged solution it is 

necessary to have a compatible data set for the material parameters, the solution does 

not converge under any arbitrary assignment o f  material properties.

A2.1 In trin sic  p erm eab ility  va lue, Kintc ch an ged  by a factor  o f  10.
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Figure A2.1 : The pore water pressure with different time at intrinsic permeability 
value, Kintc = 1.0 x 10'16 (a) and K intc = 1.0 x 10'1' (b). The gas pressure variation with 
different time at Kintc = 1.0 x 10'16 (c) and K intc = 1.0 x 1 0 17 (d).

In this case study, a slightly lower intrinsic permeability value compared to the 

standard value (in Table 3.1) was selected for the investigation. The result o f the pore 

water pressure shows that all evolution o f pore water pressure is very steep along to 

the convective boundary with the lower permeability value. This is linked directly to 

the ease o f liquid movement in the pore section as it described by the permeability 

level and hygroscopicity o f the body. Therefore from the plots, it can be concluded 

that this lower permeability value will result in a higher pore water pressure and gas 

pressure created within the network as water is removed.
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A2.2 Porosity value, <t>=0.1 to 0.45.
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Figure A2.2: The pore water pressure with different time at porosity value, ({> = 0.12
(a) and (j) = 0.1 (b). The gas pressure variation with different time at porosity value, (j)
= 0.12 (c) and <J) = 0.1 (d).
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Based on the above selected porosity, the simulated results for the gas and pore water 

pressures are presented in Figure A2.2. The pore water pressure evolution (in Figure 

A2.2(b)) and gas pressure evolution (in Figure A2.2(d)) showed a slightly higher 

value than the previous computed values as presented in Figure A2.2(a) and in Figure 

A2.2(c). Therefore at this lower porosity value, the pore and gas pressures will 

increase as the movement o f the fluid is more restricted within the network. The next 

sets o f comparisons illustrate sensitivity with respect to higher porosity values that are 

expected to approximate those o f a ceramic shell material.

-1E+07

-2E+07

-3E+07

-4E+07

-5E+07

-6E+07

W -8E+07

^  -9E+07

-1E+08

V 11E + 08

-1.2E-

-1.3E+08

4 houfs
-1.4E+08 hours

-1.5E+08

0 0 0 5  0 01 0 0 1 5  0.02 0 025 0.03 0 0350

i Hours.
6 houf6

depth (m)

(b)

0.01 0 .015 0.02 0 .025 0 .03  0 .035

depth (m)

(a)

-1E+07

-2E+07

-3E+07

-5E+07

j? -6E+07 
Q ,

£  -7E+07

<0 <
w  -8E+07
£a

-9E+07
CD-4-*
^  -1 E+08

^ 1 .1  E+08 

CL
-1.2E+08

-1.3E+08

-1.4E+08

-1 .5E+08

0 0.005

0 minutes 

30 frxnotes -

1 hour!

2 houc£------

165



130000

^  30 minutes

125000

120000

13 115000

O 110000

105000

1 ooooo#— —»• 1 ♦—I#— *— —»■ ‘ ■
0 0.005 0.01 0.015 0.02 0.025 0 03 0 035

140000

hours! 

5 hours!

130000

c n

-  120000

Q .

TO 110000

100000!

90000
0 0 0 5  0.01 0 0 1 5  0 0 2  0.025 0 03 0.0350

depth(m) depth(m)

(c) (d)

Figure A2.3 : The pore water pressure with different time at porosity value, <j> = 0.12 
(a) and (}> = 0.15 (b). The gas pressure variation with different time at porosity value, 
(j) = 0.12 (c) and (j) =0.15 (d).
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Figure A2.5 : The pore water pressure with different time at porosity value, (j) = 0.12 
(a) and (j) = 0.45 (b). The gas pressure variation with different time at porosity value, 
(j) = 0 .12(c) and (j) = 0.45 (d).

With regard to the above case study (as presented in Figure A2.2), several 

investigations have been carried out to explore a range o f porosity values. By 

increasing the porosity values the results show that the pore water pressure evolution 

is reduced when compared with the validation datasets.

Based on the above case studies and comparisons that have been done, the material 

properties do have an impact on pore water and gas transport highlighting the need for 

accurate determination o f these material parameters.
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APPENDIX A3

F igu res for the case stu d y  for a tw o layer linear section .
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APPENDIX A4

List of Publications;

•  Harun, Z., Gethin, D .T ., L ew is, R .W ., and Ferguson, W .J., D rying o f  A  

M ultilayer Ceramic Shell Body: Proceedings o f  the F ifteenth U K  Conference 

o f  The A ssociation  o f  Com putational M echanics in  Engineering, G lasgow , 

U K , 2nd-3rd April, 2007,

•  Harun, Z., Gethin, D .T ., L ew is, R .W ., and Ferguson, W .J., C om bined Heat 

and M ass Transfer for Drying Ceram ic Shell: The International Sym posium  on  

M ultiphysics, Maribor, S lovenia, 14th-1 5 th Decem ber, 2006 .
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