

University of Groningen

Natural Isotopes and Ion Compositions Identify Changes in Groundwater Flows Affecting Wetland Vegetation in the Drentsche Aa Brook Valley, The Netherlands

Elshehawi, Samer; Bregman, Enno; Schot, Paul; Grootjans, Albert

Published in: Journal of Ecological Engineering

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Early version, also known as pre-print

Publication date: 2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA): Elshehawi, S., Bregman, E., Schot, P., & Grootjans, A. (2018). Natural Isotopes and Ion Compositions Identify Changes in Groundwater Flows Affecting Wetland Vegetation in the Drentsche Aa Brook Valley, The Netherlands. Journal of Ecological Engineering.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

NATURAL ISOTOPES IDENTIFY CHANGES IN GROUNDWATER FLOWS AFFECTING WETLAND VEGETATION IN THE DRENTSCHE AA BROOK VALLEY, THE NETHERLANDS

Туре

Research paper

Keywords

ecohydrology, nature conservation, groundwater modelling, radiocarbon dating, groundwater abstraction

Abstract

This study uses groundwater isotopes and ion composition to verify model simulations and ecohydrological studies in the Drentsche Aa nature reserve in The Netherlands, which is representative for the northwestern wetland areas in the Ice Marginal Landscape zone. At eight field sites, a total of 24 samples were analysed for their 13C, 14C, 2H, and 18O isotopes and ionic composition. The isotopes indicate that most of the fen peatlands in the area depend on the exfiltration of sub-regional groundwater flows, which confirmed the previous model simulations and ecohydrological studies. At three sites, isotopes and ionic composition indicate that the groundwater from the sub-regional system has been replaced by local infiltrated rainwater, due to nearby groundwater abstractions for drinking water, which influenced the success rates of the restoration measures. Furthermore, the evidence from chloride and 14C contents was found to indicate the presence of more saline groundwater, which are influenced by the groundwater flows near salt diapirs. Groundwater abstractions may enhance the upward flow of the saline groundwater to eventually exfiltrate at the wetlands, affecting the biodiversity of the nature reserve.

Explanation letter

Dear Prof. Borowski,

We would like to thank you for the quick processing of our manuscript. The recommendations put forward by the reviewers have been accepted and implemented.

Best regards, Samer Elshehawi

Natural Isotopes and Ion Compositions Identify Changes in Groundwater Flows Affecting Wetland Vegetation in the Drentsche Aa Brook Valley, The Netherlands

Samer Elshehawi^{1,2}, Enno Bregman^{3,4}, Paul Schot⁵ and Ab Grootjans^{1,6}

- ¹Centre for Energy and Environmental Studies, University of Groningen, The Netherlands.
 - ² Centre for Isotope Research, University of Groningen, The Netherlands.
 - ³ Province of Drenthe, The Netherlands.
 - ⁴ Physical Geography Department, University of Utrecht, The Netherlands.
- ⁵ Copernicus Institute of Sustainable Development, University of Utrecht, The Netherlands.
- ⁶ Institute of Water and Wetland Research, Radboud University Nijmegen, The Netherlands.
- Corresponding author's e-mail: s.e.a.a.elshehawi@rug.nl

ABSTRACT

This study uses groundwater isotopes and ion composition to verify model simulations and ecohydrological studies in the Drentsche Aa nature reserve in The Netherlands, which is representative for the northwestern wetland areas in the Ice Marginal Landscape zone. At eight field sites, a total of 24 samples were analysed for their ¹³C, ¹⁴C, ²H, and ¹⁸O isotopes and ionic composition. The isotopes indicate that most of the fen peatlands in the area depend on the exfiltration of sub-regional groundwater flows, which confirmed the previous model simulations and ecohydrological studies. At three sites, isotopes and ionic composition indicate that the groundwater from the sub-regional system has been replaced by local infiltrated rainwater, due to nearby groundwater abstractions for drinking water, which influenced the success rates of the restoration measures. Furthermore, the evidence from chloride and ¹⁴C contents was found to indicate the presence of more saline groundwater, which are influenced by the groundwater flows near salt diapirs. Groundwater abstractions may enhance the upward flow of the saline groundwater to eventually exfiltrate at the wetlands, affecting the biodiversity of the nature reserve.

Keywords: ecohydrology, groundwater modelling, nature conservation, radiocarbon dating, groundwater abstraction.

INTRODUCTION

The wetland vegetation is strongly infleunced by hydrology [Wheeler & Shaw, 1995; Gilvear & Bradley, 2009], notably by the interactions between local, sub-regional and regional groundwater flow systems [Tóth, 1963; Schot & Molenaar, 1992; Dahl et al., 2007; Van Loon et al., 2009]. Such interactions among the groundwater flows lead to different types of groundwater-dependent ecosystems [Wassen et al., 1990]. An example of such systems is the Drentsche Aa Brook Valley, which is a nature reserve in the north of the Netherlands. This valley is characterized by various types of wetlands, agricultural fields, heathlands and small villages. The heathlands, forests and wetlands are all part of a protected nature reserve [Van Diggelen et al., 1995]. Different types of wetland vegetation are dependent on various water sources, with the biodiversity-rich fen peatlands primarily depending on the groundwater flows from phreatic and semi-confined groundwater aquifers [Grootjans et al., 1993; Van Diggelen et al., 1995]. Everts & De Vries [1991] illustrated the hypothetical groundwater systems in Drentsche Aa based on the vegetation gradients using the theoretical framework from the groundwater systems by Toth, [1963] (Figure 1). These local and sub-regional groundwater systems have been intensively studied and the results have been used for nature and landscape policy plans.

Figure 1. An illustration of the hypothetical groundwater flow systems conditioning the ecohydrological systems in Drentsche Aa Brook Valley [Source: Everts and De Vries, 1991]

However, the area is part of the Ice Marginal Landscape zone, and geological processes such as the
pro- and postglacial differential Saalian and Weichselian rebound and the sub-glacial deeply eroded
Elsterian channel systems are not well understood, especially in relation to the groundwater flows
(Figure 2a) [Smit et al., 2015]. On the basis of better geological input, Magri & Bregman [2011]
simulated the groundwater flows in the area using particle tracking, where they indicated the areas of
infiltration and exfiltration of groundwater on sub-regional and local scales. One of the model
outcomes was that salt plumes might diffuse into the groundwater exfiltrating into the wetlands, due to

50

51

52 53

54

55 56

57

58 59

60

61

62

63

64 65

66

67

68

69

70 71

72

73

74

75 76

77

78 79

80 81

82

83

84 85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

Download source file (65.92 kB)

the influence of double diffusive convection (DDC) processes [Diersch & Kolditz, 1998], and compromise the wetland biodiversity under increased groundwater abstraction rates (Figure 2b). These salt plume formations originate from the intrusive salt diapirs of the Zechstein formation [De Vries, 2007; Magri & Bregman, 2011].

Another threat to the nature reserve involves the groundwater abstractions for drinking water production from the semi-confined aquifers [Mendizabal & Stuyfzand, 2009; Mendizabal et al., 2011] at two locations adjacent to the brook valley (Figure 2). These may change the natural groundwater flow patterns, which in turn may affect the wetland vegetation and biodiversity. Such impacts have been reported for European wetlands [e.g. Wassen et al., 1990; Schot & Van der Wal, 1992; Grootjans et al., 1993].

Although the Drentsche Aa nature reserve has been widely studied, uncertainties remain, i.e. regarding the reliability of the simulated flow patterns and possible up-coning of salt plumes. The accuracy of the groundwater simulation models depends on the underpinning assumptions and the availability of adequate data. The ecohydrological studies using plant species occurrence as indicators for groundwater flow systems may disregard the time lag in the response of plant species following groundwater flow changes due to e.g. buffering of soil water quality due to the buffering processes in the soil.

Figure 2. Groundwater sampling sites and geological features that control the flow patterns in the groundwater (a), simulation model results show the effect of the double diffusion convection along the X-Y transect in (a), which affects groundwater reaching the surface (b)

Simulated groundwater flows may be validated by independent hydrological tracers, such as chloride and natural isotopes [Schot & Molenaar, 1992; Gibson et al., 2005; Mayer et al., 2014]. The natural isotopes used as tracers in the ecohydrological research related to groundwater, have been mostly limited to the stable isotopes of oxygen and hydrogen [e.g. Schot & Wassen, 1993; Isokangas et al., 2017]. Radioactive isotopes, especially radiocarbon, are less commonly used due to practical reasons, e.g. sample volumes and analysis costs [Mook, 2006]. In the study area, the radiocarbon age dating of groundwater may provide insight into the residence times which reflects the groundwater flow systems affecting the wetland vegetation. Young groundwater will generally reflect the local flow systems with recently infiltrated water from the vicinity and possibly showing the human pollution signs in their ionic composition. Old groundwater may, however, indicate the deep groundwater flow from subregional to regional systems, which would have recharged long ago showing enhanced mineral dissolution and free from human pollution. Additionally, deep groundwater affected by the DDC near the salt domes would show lower ¹⁴C activity, and enriched δ^{18} O values and/or high salinity from the evaporites present in the salt diapirs. Stable isotopes may also indicate increased stable isotope values as a result of increased evaporation during slow infiltration through peat layers, as compared to present-day rain water, or signal different rain water isotope characteristics in ancient recharge water. This study uses groundwater isotopes in the Drentsche Aa brook valley to validate (i) the origin of groundwater flows to the fen peatlands as indicated by the model simulations by Magri and Bregman [2011] and by ecohydrological studies [e.g. Everts & De Vries, 1991; Grootjans et al., 1993 and Van Diggelen et al., 1995], (ii) the influence of groundwater abstractions on the groundwater flow, and (iii) the possible salination of shallow groundwater in the nature reserve by up-coning water from salt diapir evaporites. Furthermore, the study aims to assess restoration success in light of these investigations.

STUDY AREA

The Drentsche Aa brook valley is the best-preserved brook valley landscape in the Netherlands (53°1'52.18"N. 6°38'17.10"E, Figure 3). Almost all the streams still meander in a natural way and the heathlands, fen meadows, forests and cultural aspects of the landscape are still in good condition and were partly restored to a former state [Bakker et al., 1980]. The total catchment area of the Drentsche Aa is about 30,000 ha. Out of these, only 3,500 ha are managed to restore the semi-natural landscape of c. 1900. The topography of the landscape consists of a plateau at a height of about 28 m AMSL in the upper reaches, with the brook valley following the topographic relief to reach the height of about 0 m AMSL in the lower reaches at Kappersbult.

Journal of Ecological Engineering

Download source file (65.92 kB)

102 According to De Vries [2007], the rainfall averages in the Netherlands are relatively constant with a 103 precipitation surplus of 250-300 mm a year that mostly falls during winters. The fresh groundwater flows in the eastern parts of the Netherlands, including the Drentsche Aa valley, are within the Plio-104 105 Pleistocene sandy aquifer. This aquifer is mostly unconfined, with the thickness ranging between 150-250 m in Drenthe [De Vries, 2007; Mendizabal et al., 2011]. The aquifer sediments are mainly 106 medium-sized, with intercalation of finer sediments [De Vries, 2007]. The Breda formation is a clay 107 108 layer of marine origin that exists at a depth of 150-250 m in Drenthe, which represents the hydrological basis of the fresh water systems [De Gans, 2007]. The sub-regional and regional 109 110 groundwater flows are controlled by four elements: slip-fault systems that border a tilted tectonic block [Smit et al, 2018], the Zechstein salt diapir, the interspaced lacustro-glacial Elsterian clay layers 111 112 (Peelo 1 and Peelo 2 formations), and the Saalian tills (boulder clay) (Figure 2a). The slip-faults are 113 difficult to trace due to (un)consolidation of the sediments [De Gans, 2007]; however, it has been 114 improved by new interpretation techniques: such as extrapolation of deep faults in 3D and SKY-TEM 115 data [Smit et al. 2018]. Bregman et al., [2015] indicated that the faults influence the morphology of the 116 surface area, as well as the functioning of the regional hydrological systems which is based on top of 117 the Zechstein Formation. This formation is strongly undulating with salt diapirs at some areas.

METHODS

118

119

121

122

124

126

127

135

Selected sites

120 We selected eight study sites based on four hydrogeologic drivers and/or controllers: traced fault structures, Zechstein salt diapir depth, the Saalian tills (boulder clay) and Peelo-I and II clay formation(s) (Figure 2). The fault structures were obtained from Bregman et al. [2015]. The thickness and locations of the Zechstein and Peelo formations in the study area were obtained via "Dinoloket", 123 which is an online platform for 2D and 3D models of geological layers in the Netherlands [Dinoloket, 125 2014].

- The following eight study sites were selected (Figure 2a):
- Lower reach

The first one was Kappersbult in the lower reaches of the valley. It has a 6m-thick peat layer that 128 129 indicates paleo groundwater exfiltration, although it was identified as an infiltration area when investigated by Van Diggelen et al. [1994]. Restoration measures were applied to allow flooding in the 130 Kappersbult reserve, but the effects of drainage by agriculture and water abstraction could not be 131 132 prevented [Bakker et al., 1980; Van Diggelen et al., 1994]. Furthermore, it was indicated as an 133 infiltration area by groundwater flow simulation, due to the groundwater abstraction from the station 134 in Glimmen (Figure 2) [Magri & Bregman, 2011].

Middle reach

Six sites were investigated: Oudemolen, Taarlo-I and -II, Rolderdiep-I and -II and Loon. In this area, 136 137 the fault structures are traced in the northern part of the area. On top of the raised tectonic block, 138 which is slightly sloping to the north and borders with the two slip faults (Figure 2a) [Smit et al, 2018]. The Peelo-1 layer is present at Taarlo-II at a depth of about 10 m below the surface and Peelo-139 140 II layer at a depth of about 42 m below the surface. On top of the raised block, the peat layers have a thickness of 1.5 meter in the small river valley. The situation in this location is in strong contrast to 141 Loon and Rolderdiep-I. These two sites are just above a lowered tectonic block and part of the rim 142 syncline of the Anloo salt dome. At Loon, only the Peelo-2 layer is present at the depths of about 40-143 50 m below the surface. The peat thickness in this part of the study area with a broad valley reaches up 144 to 6.5 m. The differences in geology and morphology in this part of the study area and the downstream 145 146 part on top of the (raised) tectonic block are also reflected in the hydrological situation with strong 147 seepage. In spring, this part of the study area is impassable because of floating peat layers caused by 148 stagnation of drainage. Loon, is described by Grootjans et al. [1993] as a valley with groundwater exfiltration from the sub-regional groundwater system. However, the groundwater simulations 149 indicated the influence of groundwater abstraction from the nearby pumping stations, i.e. Assen 150 151 (Figure 2), which could have changed the groundwater flow paths [Magri & Bregman, 2011]. All of 152 these sites, except for Oudemolen, receive higher rates of groundwater discharge, ranging from 1.4 to 153 4.2 mm/day [Grootjans et al., 1993]. Oudemolen, is a small bog situated in a heathland within an 154 infiltration area [Grootjans et al., 1993]. It is characterized by very low productivity and only receives

E Journal of Ecological Engineering

Download source file (65.92 kB)

acidic rainwater poor in minerals [Van Diggelen et al., 1995]. The site has a podzolic B-horizon that
 prevents rapid infiltration of precipitation water.

157 Upper reach

Deurze is located in the upper reaches of the Drentsche Aa valley. The depth of the Peelo-I layer is about 10 m from the surface, where it prevents deep groundwater exfiltration [Grootjans et al., 1993; Van Diggelen et al., 1995]. The seepage intensities of groundwater were estimated to be around 0.7-1.4 mm/day [Grootjans et al., 1993]. This area was indicated by the model to be limited to local groundwater flows, due to the shallow depth of the Peelo Formation [Magri & Bregman, 2011].

163 *Groundwater sampling*

164 We installed Poly-Vinyl-Chloride (PVC) piezometers using a hand auger. Each piezometer had a 20-165 cm filter at the bottom. The piezometers were installed at each site at a depth of 1 m in the organic soil 166 and underlying mineral soil, depending on the thickness of the peat. At the Ta-II site, we sampled 167 water from a provincial well (reference number: B12D0281). This well had 8 piezometers at different depths up to 95 m. We sampled water at 5 depths: F2, 9 m; F3, 17 m; F4, 40m; F5, 58 m; F7, 82 m; 168 169 and F8, 95 m. We also sampled the surface water in the streams at Kappersbult and Taarlo. All the 170 pipes were flushed a day before sampling. The samples were collected at the end of October 2014, 171 December 2014 and January 2015. The samples were stored in polyethylene bottles of 50 and 100 ml 172 for chemical analyses, and in 30 ml bottles for oxygen and deuterium isotopes. The samples for 173 radiocarbon dating were collected in 500 ml dark glass bottles. All the samples were stored at the 174 temperatures between 4 and 10°C.

175 *Laboratory analyses*

176 <u>Isotopes</u>

177

187

Radiocarbon dating

¹⁷⁸ Dissolved Inorganic Carbon (DIC) in the samples was extracted and trapped into CO_2 gas, which was then converted into graphite. An Accelerator Mass Spectrometer (AMS) was used to count the carbon activity per second. The results are presented as ¹⁴C percent modern carbon (pMC), which is the sample activity compared to a reference material with a known activity: ¹⁴C_{sample} = (¹⁴C_{measured}/ ¹⁴C_{reference}) pMC [Mook, 2006].

181 Stable isotopes $(\delta^{18}O/\delta^2 H)$

The water samples were combusted and trapped into CO₂ gas, which was then calibrated with the CO₂ level of a reference material. The CO₂ content was then measured using a Dual Inlet Isotope Ratio Mass Spectrometry "DI-IRMS" [Meijer, 2009], and standardized using the Vienna Standard Mean Ocean Water Reference "VSMOW", which has a set reference value of ocean water at 0 ‰ [Mook, 2006].

The quantification of the stable isotopic elements in a sample is based on comparing the measured sample to a standard with the following equation:

$\delta_{sample} = (R_{measured} - R_{reference})/R_{reference}$

where R measured is the ratio of the measured heavy isotope content to the lighter one in a sample; R reference represents the global reference sample, which is "VSMOW" in this case; and δ is the standardized measurement of the sample isotopic content.

190 <u>Ion composition</u>

The ion composition analyses were conducted at the Department of Experimental Plant Ecology at the University of Nijmegen in January 2015. The samples were filtered and analyzed. One sub-sample was used to measure the pH and total alkalinity by titration. Cations were measured by means of inductive coupled plasma spectrometry. Nutrients, as well as the chloride and sodium contents were analyzed using an auto-analyzer scalar (AAS). Total inorganic carbon (TIC) was measured with 1-ml fractions of the samples using an Infrared Gas Analyzer (ABB Advance Optima). The water samples with errors in the ionic balance of more than 10% were discarded.

198Data analyses

$\frac{14C \text{ correction and graphical representation}}{199}$

Radiocarbon age is a function of the radiocarbon percentage in the samples, where the sample ages are inversely proportional to the radiocarbon percentage. The calculation of radiocarbon age is based on the following formula: sample age = -8033 ln (${}^{14}C_{measured}$ /A₀), where A₀ is the initial activity of radiocarbon at infiltration [Geyh, 2000; Mook, 2006]. We used two models for A₀: (i) Tamer's

E Journal of Ecological Engineering

Download source file (65.92 kB)

- alkalinity model to estimate A_0 [Tamers, 1975] and (ii) the correction model by Vogel [1970] for the Netherlands, which assumes A_0 = 85 pMC. The samples with the values >100 pMC are assumed to have been influenced by the bomb effect, indicating recent infiltration (after 1950). The samples with values < 100 pMC indicate possible infiltration before 1950.
- 206 <u>Stable isotopes</u>

In order to present the stable isotope data, we plotted the values of the $\delta^{18}O$ and $\delta^{2}H$ against the Global 207 208 and Local Meteoric Water Lines (GMWL and LMWL). The data for the GMWL and LMWL were obtained from the isotope observation network of the International Atomic Energy Agency 209 210 (IAEA/WMO); the LMWL data were measured at the Groningen station in the network [IAEA/WMO, 2017]. The recent rainwater values for δ^{18} O range around -7.5 ± 0.5 ‰ [IAEA/WMO, 2017]. These 211 212 meteoric water lines were then used for the evidence of evaporation processes resulting from the 213 exposure to the surface or high temperatures [Gat, 1996; Mook, 2006], which could indicate the DDC 214 effect.

- 215 Ion composition and Principal Component Analysis (PCA)
- In order to identify whether the water from various sources (different aquifers or DDC upwelling) exfiltrates into the fen peatlands at the Drentsche Aa, we used the multivariate statistical technique Principal Component Analysis (PCA). The *Factoextra* package in R was used to run PCA [Kassambara, 2017]. The data input consisted of the water concentrations of 15 ions and TDS (16 variables in total) measured in 32 water samples (26 plus the 6 repeated samples).

RESULTS

221 222

Radiocarbon dating (^{14}C)

- Table 1 shows the results from the radiocarbon dating and the corresponding calculated ages using 223 224 both conventional calculation [Tamers, 1975] and the Vogel [1970] model. The samples that have the ¹⁴C values higher than 85 pMC and bomb ¹⁴C values were interpreted as indicating the infiltration 225 areas (Kappersbult, Deurze, Oudemolen and Loon). The relationships of the ¹⁴C values with δ^{13} C 226 (Figure 3a) and the reciprocal of HCO_3 (Figure 3b) can be classified into two groups for the 227 groundwater with ¹⁴C between 45 to 65 pMC. The first group includes the samples from Taarlo II and 228 Rolderdiep I, which have the δ^{13} C values between -14 to -16 ‰ and and high HCO₃ content (1/HCO₃) 229 lower than 0.006 mg/l). Meanwhile, the other group includes the samples from Taarlo I and 230 231 Rolderdiep II.
- 232**Table 1.** Age of groundwater calculated using (1) the alkalinity correction model [Tamers, 1975],233where the A_0 values ranged from 50 to 70 pMC, except for L-a, and (2) Vogel's model, which assumes234 A_0 =85±5 pMC [Vogel, 1970]. Site codes are: RD-I= Rolderdiep-I, RD-II = Rolderdiep-II, TA-I =234Taarlo-I, TA-II = Taarlo-II, OM = Oudemolen, L = Loon, De = Deurze, KB = Kappersbult and SU=235surface river water, while the peat samples codes are annexed with "a".
- Figure 3. Relationships of the ¹⁴C (pMC) content in the water samples with (a) δ^{13} C (‰), and (b) the reciprocal of HCO₃ (mg/l)

238 Stable isotopes (^{18}O and ^{2}H)

239 Figure 4 shows the results of the $\delta^{18}O$ and $\delta^{2}H$ values with the GMWL and LMWL. We identified three groups (A, B and C) based on their δ^{18} O values and their location with respect to the LMWL. 240 Their δ^{18} O values were -7.5 to -7, -7 to -6.5 and -6.5 to -6 % respectively. On the other hand, most of 241 the samples in group A are above or right on the GMWL and the LMWL, the samples in groups B and 242 C are mostly below the meteoric water lines, which indicates the possible effects of evaporation 243 244 processes. Group A included the samples from Rolderdiep-II and Taarlo-I sites, while group B 245 included the river water samples and some peat water samples from Rolderdiep-I and II, as well as 246 Deurze. Lastly, group C included all the samples from Taarlo-II, and the samples from the mineral soil 247 at Rolderdiep-I (RD-Ib) and Kappersbult (KB-d). The samples collected earlier in October showed 248 only slightly different values from the ones sampled later in January.

Journal of Ecological Engineering

Download source file (65.92 kB)

249 Figure 4. Stable isotopic compositions were plotted with GMWL and LMWL. The water samples 250 collected from the peat layers are indicated with yellow filling

251 Ion composition

252 The PCA resulted in 16 principal components (PC) with the first two explaining 56.23 % of the data variation: 35.7% for PC1 and 20.5% for PC2, respectively. Figure 5 shows the ion variable loadings 253 254 onto the principal components PC1 and PC2. The arrow lengths represent the magnitude of the variable loadings onto the PCA axes. Ion variables are grouped into clusters: cluster 1 contains most of 255 the ions inversely proportional to PC1, cluster 2 contains the ions directly proportional to PC1 but 256 inversely correlated to PC2 with the exception for NH_4 , and cluster 3 contains the ions directly 257 proportional to both PC1 and PC2. For instance, the TDS and the bicarbonate and calcium ions are best represented by the first two components. In contrast, NH_4 in cluster 2 is only explained by PC1, as 258 an increase of a sample NH_4 content correlates with a positive position along PC1 and cannot be 259 explained by changes in PC2.

Figure 5. PCA plot of the macro-ionic content of the water samples. The arrow lengths indicate the 260 261 variable loadings (ion composition) along the PCA axes, where the maximum of each loading is 1. 262 The clusters indicate the proportionality relation between the variables and the PCA axes

- 263 Figure 6 shows the sample correlation to the first two PCs. Similarly, cos2 also indicates the quality of 264 the sample representation and contribution to the PCs, e.g. the samples 16, 17, 19, 22 and 32 are best explained by the first two PCs, while the samples 5, 7, 11 and 31 are poorly explained. There are 265 distinct differences in ion composition among the bog samples taken from Oudemolen (23 and 24), the 266 267 deep sample from Taarlo-II (Ta-IIc F8, 22) and the sample from the mineral soil at Kappersbult (KB-D, 32). The samples from Oudemolen are inversely proportional to both PC1 and PC2, which have 268 low ion composition, except for Fe, P and SO_4 . The deepest sample at Taarlo-II (Ta-IIF8), however, is 269 directly proportional to PC1 with a distinctive increase in chloride, sodium and potassium. Kappersbult was directly proportional to both PC1 and PC2, with distinctive increases in calcium, 270 271 bicarbonate, magnesium and overall TDS.
- 272 Figure 6. PCA plot of the sampling sites indicating correlations of the water samples to the first two 273 PCA axes. The statistic cos2 indicates the quality of representation (contribution) of the samples by these two PCs. Site codes are: RD-I= Rolderdiep-I, RD-II = Rolderdiep-II, TA-I = Taarlo-I, TA-II = 274 275 Taarlo-II, OM = Oudemolen, L = Loon, De = Deurze, KB = Kappersbult.
- Appendix 1. Full results of the Ion composition analyses of the water samples. TDS = total dissolved276 277 salts.
- Appendix 2. Vegetation mapping data from 1982-2012 to assess the success of restoration activities 278 279 (Adapted from Bakker *et al.* 2015). The vegetation type density per area is shown at four sites: Kappersbult, Gasterense Diep and Oudemolense Diep (Taarlo and Rolderdiep sites) and Deurzer Diep 280 281 (Deurze).

DISCUSSION

282

- 283 Isotopes and origin of water flow
- 284 Sub-regional groundwater exfiltration sites

285 We assumed that the samples with radiocarbon activities >100 pMC represent modern water. We 286 observed that the shallow groundwater samples collected from the Taarlo (I and II) and Rolderdiep (I 287 and II) sites indicate a possible exfiltration of water from the sub-regional aquifer. Using Han's graphical method, the sites with $^{14}C < 60$ pMC could be separated into two groups: the first group 288 289 contains Taarlo-II and Rolderdiep-I and the second, Taarlo-I and Rolderdiep-II. These two groups in 290 the ¹⁴C data were based on the $\delta^{18}O/\delta^2H$ plot (groups A and C) and to a lesser degree, the PCA plots. 291 These differences in stable isotopes could have resulted from the changes in the past climatic 292 conditions during the time of recharge [Gat, 1996; Mook, 2006] or the surface conditions under which

294

295

296

298

299

300 301

302

303

304

305

306

307

308

309

310

311

312

313

314 315

324 325

326

327

328

329 330

331

332

333

Download source file (65.92 kB)

the infiltration took place, e.g. slow infiltration through peat layers [Mendizabal et al., 2011]. 293 Therefore, it is more likely that the water flows exfiltrating into Taarlo-I and Rolderdiep-II are from similar sources but were influenced by different geochemical reactions from those at Taarlo-II and Rolderdiep-I. Taarlo-II and Rolderdiep-I could be also receiving water flows from the same sources.

Infiltration and local groundwater exfiltration sites 297

The groundwater samples under present-day infiltration regimes, post 1950, are identified by bomb 14 C (>100 pMC) as well as 14 C values higher than 85 pMC [Vogel, 1970]. Additionally, the δ^2 H and δ^{18} O values for these samples are similar to the rainwater values at the recharge time (δ^{18} O = -7.5 ± 0.5 ‰ for The Netherlands), which indicates the dominance of modern water [Clark & Aravena, 2005; Mook, 2006]. Such values were observed in four sites in this study: Oudemolen, Deurze, Loon and Kappersbult. The first two are hypothesized already to reflect the infiltration and local system supply regimes; however, earlier studies indicated that Loon and Kappersbult should be supplied by subregional groundwater flows [Everts & De Vries, 1991; Magri & Bregman, 2011]. Thus, the latter sites likely indicate groundwater abstraction influence on the natural groundwater flow systems.

Oudemolen reflects the sole dependency on rainwater supply. The chemical analysis of the water samples from the small bog at Oudemolen confirmed that this water is acidic (pH = 4.7) and poor in minerals. The low Cl⁻ content (~ 5-7 mg/l) also indicates rain water infiltration [Appelo & Postma, 2005]. However, the stable isotope values indicate enrichment of $\delta^{18}O$ and $\delta^{13}C$ isotopes (5.8 and 10.2 ⁵/₆ respectively), which is due to evaporation as the precipitation is hampered by the impervious organic layer [Schot & Wassen, 1993]. This site reflects a natural infiltration zone, which is isolated from the surrounding due to the podzol zone formation. Here, it reflects the water quality of rainwater/infiltration patterns. This pattern is then different for the other site, i.e. Deurze, Loon and Kappersbult, which reflect an anthropogenic influence.

316 The Deurze-b site in the upper reaches of the valley, which is also underlain by thick impervious 317 Elsterian clay layers at shallow depths, is identified as being supplied by the phreatic groundwater flows from a local hydrological system [Magri & Bregman, 2011]. The isotopic evidence indicate that 318 the site is supplied by infiltration and local groundwater flow. For instance, the samples show bomb 319 320 ¹⁴C values (>100 pMC) as well as the δ^{13} C content, which shows a shift towards enrichment by organic material (-20 ‰). However, the groundwater has a higher mineral content, especially in Na⁺ 321 and Cl. The nutrient content of this site is higher than in the rest of the study sites (NO₃ > 2.5 mg/l), 322 323 which indicates possible pollution due to the agricultural activities [Schot & Van der Wal, 1992].

As for Kappersbult and Loon, ¹⁴C the data also indicate that they are infiltration sites or locally supplied. Both these sites are situated close to the groundwater abstraction facilities in Glimmen and Assen, respectively. The hydrogeologic setting of these sites would suggest possible exfiltration of the sub-regional groundwater flows similarly to the Taarlo and Rolderdiep sites. Yet, the radiocarbon data in Kappersbult showed the values of bomb 14 C, indicating infiltration of water on the surface. The macro-ion composition showed the values of high Ca and HCO_3 compared with the other infiltration areas. This most likely resulted from the dissolution of the minerals from the deeper peat layers, due to infiltration of CO₂-rich groundwater from upper layers [Schot & Wassen, 1993; Brandyk et al., 2007]. The released CO₂ enhances the dissolution of soil minerals, in our case Ca and HCO₃ [Appelo & Postma, 2005]. Therefore, we can conclude that the flow regime has been changed, most likely by the activities of the groundwater abstraction facility near Glimmen [Van Diggelen et al., 1993].

The samples at Loon (both at depths of 1 and 4 m) had low concentrations of macro-ions. This was 334 unexpected, since thick peat layers are present here at the depth of 3 m, and indicates strong seepage 335 336 conditions in the past. The ¹⁴C analysis of Loon showed a modern water signature of 91 pMC. 337 Therefore, we argue that a change in the water regime had also occurred at this site, in which an 338 exfiltration area was shifted towards infiltration. The Loon site now likely receives the groundwater 339 from a nearby extensive heathland infiltration area, Balloerveld. The existing groundwater abstraction 340 facility near the city of Assen has apparently reduced the discharge of groundwater from the second aquifer and consequently increased the inflow of groundwater from more local groundwater systems. 341 342 It confirms the effect of groundwater abstraction on natural groundwater flows, which was indicated 343 by Magri & Bregman [2011]. In their study, different scenarios were computed, which indicated that 344 even lowering the groundwater abstraction from 6 mm³ to 3 mm³ did not stop the negative impact on 345 the groundwater system.

Manuscript body Download source file (65.92 kB)

Journal of Ecological Engineering

346 Relic situations

There was one unexpected outcome of the ¹⁴C measurements. On two occasions while sampling at Loon and Taarlo-II, we found older groundwater in the upper peat layer (at the depth of 1 m below the surface) compared with the groundwater in the underlying mineral sand deposits. We have interpreted this as the presence of older relic groundwater in the peat layer. Under the conditions of changed groundwater flows, sand deposits can react faster to the hydrological changes compared with thick organic peat layers.

353 *Evidence of double diffusive convection (DDC)*

The radiocarbon data indicate that the sample from the provincial well (B12D0281 at Taarlo-II) at a 354 355 depth of 95 m has the lowest ¹⁴C content, about 33 pMC. This makes the sample clearly distinct from 356 the groups related to the samples indicating sub-regional groundwater flows. Furthermore, it deviates 357 from the rest of the samples in the PCA plot (sample nr. 22; Figure 6), due to a water type change from CaHCO₃ to NaHCO₃. This sample, and some other ones all south of the slip-fault (Figure 2a) that 358 were also sampled and reported in 1995 by the province of Drenthe [1995], are the only ones 359 indicating the upwelling of the deep groundwater. It is likely to originate from below the, currently 360 considered, hydrological basis of the regional groundwater, Breda Formation. Despite this, the DDC 361 effect on the fen water quality cannot be confirmed at our sites, as the deep groundwater flows were 362 not shown to mix with exfiltrating sub-regional/shallow flows near the surface. It would still be wise 363 to take more measurements from other deep wells in the valley to check whether salt plumes could 364 exist at the depths shallow enough to affect the vegetation communities at the surface.

Conclusions

365

388

The study area is part of the Ice Marginal Landscape with salt formations in the deeper subsurface. Due to the glaciological processes and geo-hydrological conditions, we expect that the results of our study are important not only for the Drentsche Aa area, but also for other countries and regions in the IML zone from the Netherlands to Lithuania. We think that the results of our study contribute to a better understanding of groundwater flows as a base for nature conservation and other functions of the landscape.

372 The data indicated that the groundwater abstraction activities affecting these sites appear to have also 373 affected the restoration success in various sections of the study area. The analysis of 30 years, in 10year lapses, of vegetation data from 1992 to 2012 indicated good recovery after restoration 374 375 management in the areas not affected by the abstraction of groundwater, e.g. Taarlo and Rolderdiep 376 (Appendix 2) [Bakker et al., 2015]. In contrast, the areas that were affected did not show similar increases in target species, e.g. Kappersbult. Unlike other sites, Kappersbult showed poor results in the 377 378 restoration of the hydrological conditions and its target species. Although the groundwater abstraction 379 has been reduced, the groundwater flow simulations of lowered abstraction scenarios indicate that the 380 impact still will have a negative influence on the wetland vegetation in future [Magri & Bregman, 381 2011]. However, it could be that the impact of the taken measures would simply take more time to recover. Despite the measures to reduce drainage in the area south of the fault zone, between Loon 382 383 Oudemolen and Rolderdiep, which leads to drainage and floating of peat, the groundwater system seems to be still in unbalance. However, recovery of the groundwater system seems to be successful. 384 It is necessary to follow up on the inter-relationship of the deep saline groundwater flows to the 385 relatively shallow fresh groundwater systems. Hence, further monitoring of the groundwater quality in 386 387 combination with study of the vegetation development is advised.

Acknowledgements

We would like to acknowledge StaatsBosBeheer (Dutch State Forestry) for allowing us to sample groundwater, the Province of Drenthe for sampling the deep wells, Christian Fritz for analyzing the macro-ion data at Radboud University, Harro Meijer and Hans van der Plicht for allowing the isotope analysis to be conducted at CIO, Groningen, and Rien Herber for his help with this project.

Journal of Ecological Engineering ISSN 2299-8993

Download source file (65.92 kB)

REFERENCES

393

394 395

396

397

398

399 400

401

402

403

404

405

406

407

408

409

410

411

412

413

414 415

416

417

418 419

420

421

422

423

424

425

426

427

428 429

430

431

432

433

434 435

436

437 438

439

440

441

442

443

444

445

- 1. Appelo C.A.J., Postma D. 2005. Geochemistry, Groundwater and Pollution (2nd ed.). Amsterdam.
- 2. Bakker J.P., Dekker M., & De Vries Y. 1980. The effect of different management practices on a grassland community and the resulting fate of seedlings. Acta Botanica Neerlandica 29, 469-482.
- 3. Bakker J.P., Everts H., Grootjans A.P., De Vries N.P.J., De Vries Y. 2015. The big experiment – Fifty years of Nature Management. In: Spek, T., Elerie H., Bakker, J.P., Noordhoff, I. (eds.), Landscape biogeography of the Drentsche Aa (pp. 418-461). Koninklijke Van Gorcum BV, Assen. (In Dutch)
- 4. Bregman E.P.H., Maas G., Makaske B., & Meyles E, 2015. Formed by Ice, Water and Wind In: Spek T, Elerie H, Bakker JP, Noordhoff I (eds): Landscape biogeaography of the Drentsche Aa, pp. 18-53. Van Gorcum, Assen. (In Dutch)
- 5. Clark I., & Aravena R. 2005. Environmental Isotopes in Ground Water Resource and Contaminant Hydrogeology. National Ground Water Agency, US.
- Dahl M., Nilsson B., Langhoff J.H., Refsgaard J.C. 2007. Review of classification systems 6. and new multi-scale typology of groundwater-surface water interaction. Journal of Hydrology 344, 1–16.
- 7. De Gans W. 2007. Quaternary. In: Wong TE, Batjes DAJ, De Jager J (eds.), Geology of the Netherlands (pp. 173–195). Royal Netherlands Academy of Arts and Sciences, Amsterdam.
- Diersch H., & Kolditz O. 1998. Coupled groundwater flow and transport: 2. Thermohaline and 8. 3D convection systems. Advances in Water Resources 1708, 401-425.
- 9. DINOLOKET (2014). Retrieved October 15, 2014, from https://www.dinoloket.nl/
- 10. Everts F.H. & de Vries N.P.J. 1991. De vegetatieontwikkeling van beekdalsystemen. Proefschrift Rijksuniversiteit Groningen/ Historische uitgeverij Groningen.
- 11. Gat J.R. 1996. Oxygen and hydrogen isotopes in the hydrologic cycle. Earth and Planetary Science 24, 225–262.
- 12. Geyh M. 2000. An overview of 14C analysis in the study of groundwater. Radiocarbon 42, 99–114.
- 13. Gibson J. J., Edwards T.W.D., Birks S.J., St Amour N.A., Buhay W.M., McEachern P., & Peters D.L. 2005. Progress in isotope tracer hydrology in Canada. Hydrological Processes, 19(1), 303–327.
- 14. Gilvear D.J., & Bradley C. 2009. Hydrological Dynamics II: Groundwater and Hydrological Connectivity. In: Maltby, E. & Barker, T. (eds.): The Wetlands Handbook (pp. 169–193). Wiley-Blackwell Publishing, Chichester.
- 15. Grootjans A.P., Van Diggelen R., Everts F.H., Schipper P.C., Streefkerk, J., De Vries N.P.J., & Wierda A. 1993. Linking ecological patterns to hydrological conditions on various spatial scales: a case study of small stream valleys. In: Vos, C.C., & Opdam, P. (eds.): Landscape Ecology of a Stressed Environment (pp. 60–78). Chapman and Hall, London.
- 16. IAEA/WMO 2017. Global Network of Isotopes in Precipitation. The GNIP Database. Accessible at: <u>http://www.iaea.org/water</u>
- 17. Isokangas E., Rossi, P.M., Ronkanen A.-K., Marttila H., Rozanski K. & Kløve B. 2017. Quantifying spatial groundwater dependence in peatlands through a distributed isotope mass balance approach. Water Resour. Res., 53, 2524-2541.
- 18. Kassambara A. 2017. Practical Guide to Principal Component Methods in R. Accessible at: www.Sthda.com.
- 19. Magri F., & Bregman E.P.H. 2011. Regional-scale numerical model of coupled fluid flow and mass transport along a deep geological profile in the Drenthe area, The Netherlands. Final Report of the Demo Pilot Project. Geowissenschaften Institut für Geologische Wissenschaften, Berlin.
- 20. Mayer A., Sültenfuß J., Travi Y., Rebeix R., Purtschert R., Claude C., & Conchetto E. 2014. A multi-tracer study of groundwater origin and transit-time in the aquifers of the Venice region (Italy). Applied Geochemistry 50, 177–198. http://doi.org/10.1016/j.apgeochem.2013.10.009

446

447

448

449 450

451 452

453

454 455

456

457

458

459

460

461

462

463

464

465

466

467

468 469

470

471

472

473 474

475 476

477

478 479

480

481

482 483

484

485

486

487

Journal of Ecological Engineering ISSN 2299-8993

- 21. Meijer H.A.J. 2009. Stable isotope quality assurance using the "calibrated IRMS" strategy. Isotopes in Environmental and Health Studies 45, 150–163.
- 22. Mendizabal I., & Stuyfzand P. 2009. Guidelines for interpreting hydrochemical patterns in data from public supply well fields and their value for natural background groundwater quality determination. Journal of Hydrology 379(1-2), 151-163.
- 23. Mendizabal I., Stuyfzand P. & Wiersma A. 2011. Hydrochemical system analysis of public supply well fields, to reveal water-quality patterns and define groundwater bodies: The Netherlands. Hydrogeology Journal 19, 83-100.
- 24. Mook W.G. 2006. Introduction to Isotope Hydrology. International Association of Hydrogeologists, Vienna.
- 25. Province of Drenthe 1995. Research on the dynamic behaviour of groundwater systems. Report (in Dutch). Province of Drenthe, Assen.
- 26. Schot P.P., & Van der Wal J. 1992. Human impact on regional groundwater composition through intervention in natural flow patterns and changes in land use. Journal of Hydrology 134, 297-313.
- 27. Schot P.P., & Wassen M.J. 1993. Calcium concentrations in wetland groundwater in relation to water sources and soil conditions in the recharge area. Journal of Hydrology 141, 197-217.
- 28. Smit F.W.H., Magri F., Bregman E.P.H. 2018. Coupling earth surface processes and geological structures to explain environmental features as observed onshore Northern Netherlands. SEG conference 2018 paper (accepted).
- 29. Tamers M.A. 1975. The validity of radiocarbon dates on groundwater. Geophysical Survey 2, 217-239.
- 30. Tóth J. 1963. A theoretical analysis of groundwater flow in small drainage basins. Journal of Geophysical Research 68, 4795–4812.
- 31. Van Diggelen R., Grootjans, A.P., & Burkunk, R. 1994. Assessing restoration perspectives of disturbed brook valleys: the Gorecht area, The Netherlands. Restoration Ecology 2, 87-96.
- 32. Van Diggelen R., Beukema H., & Noorman K.J. 1995. Ranunculus hederaceus L. as indicator of land use changes in the Netherlands. Acta Botanica Neerlandica 44, 161–175.
- 33. Van Loon A.H., Schot P.P., Griffioen J., Bierkens M.F.P., Batelaan O., Wassen M.J. 2009. Throughflow as a determining factor for habitat contiguity in a near-natural fen. Journal of Hydrology 379, 30–40.
- 34. Vogel J.C. 1970. Carbon-14 dating of groundwater. In: Isotope Hydrology, Proceedings of a symposium. (pp. 225–236). Vienna: International Atomic Energy Association.
- 35. De Vries J.J. (2007). Groundwater. In: Wong, T.E., Batjes, D.A.J. & De Jager, J. (eds.), Geology of The Netherlands. Royal Netherlands Academy of Arts and Sciences (pp. 295-315), Amsterdam.
- 36. Wassen M.J., Barendregt A., Palczynski A., De Smidt J.T., & De Mars H. 1990. The relationship between fen vegetation gradients; groundwater flow and flooding in an undrained valley mire at Biebrza, Poland. Journal of Ecology 78, 1106–1122.
- 37. Wheeler B.D., & Shaw S.C. 1995. Plants as Hydrologists? An assessment of the value of plants as indicators of water conditions in fens. In: Hughes M.R., Heathwaite A.L. (eds.), Hydrology and Hydrochemistry of British Wetlands (pp. 63-82). West Sussex: John Wiley.

Table 1 Download source file (15 kB)

JEE Journal of Ecological Engineering ISSN 2299-8993

#	Codo	Donth (m)	рН	¹⁴ C	Tomore	Vogel model		
#	Code	Depui (iii)	(at 20 ° C)	(pMC)	Tamers	(A ₀ = 85 pMC)		
					A ₀ (pMC)	Age (yrs)	Age (yrs)	
1	Oudemole n	0.2	4.76	109.3				
2	TA-SU	0	7.59	71.01	55		1490	
3	TA-Ia	0.9	7.08	73.19	58		1240	
4	TA-Ib	3.5	7.38	45.26	55	1610	5210	
5	TA-IIa	1	7.30	47.32	55	1245	4845	
6	TA-IIb	3	7.42	65.39	55		2170	
7	T A-IIc F2	9	7.54	58.95	55		3025	
8	T A-IIc F3	15	7.58	102.2				
9	T A-IIc F4	25	7.50	49.08	55	940	4540	
10	T A-IIc F5	38	7.57	45.33	55	1600	5110	
11	T A-IIc F7	82	7.52	52.38	55	405	4005	
12	T A-IIc F8	95	7.75	33.82	55	4020	7620	
13	RD-Ia	0.9	6.93	71.03	64	0	1485	
14	RD-Ib	5	6.84	55.78	64	1135	3485	
15	RD-SU	0	6.53	103.7		0		
16	RD-IIa	0.9	7.1	86.05	58	0		
17	RD-IIb	3.5	6.74	46	68	3230	5080	
18	L-a	1	6.01	46.03	85	5070	5070	
19	L-b	4	6.99	91.8	58			
20	De-b	5.5	7.13	104.0	58			
21	KB-SU	0	7.75	73.9	52		1160	
22	KB-a	1	6.69	104.2				
23	KB-c	3	6.87	106				
24	KB-d	6.3	7.16	108				

Table 2 Download source file (19.79 kB)

#	Date	Code	Depth	pН	TDS	HCO₃	SO4	Cl	NO₃	Са	Na	Р	κ	Mg	Mn	Fe	Al	Si	NH₄	Zn
			(m)	(20° C)	(mg/l)															
1	10-30-14	RD Ia	1	6.93	279	180.5	0.7	10	0.6	61	7.5	0.02	0.3	4.6	0.25	0.40	0.25	12.01	0.005	0.26
2	12-5-14	RD Ia	1	6.84	265	167.7	1.2	12	0.7	57	8.4	0.05	0.3	4.5	0.25	0.43	0.35	12.00	0.01	0.44
3	10-30-14	Rd Ib	5	7.30	295	196.1	0.6	12	0.8	56	9.9	0.03	1.2	5.7	0.33	0.04	0.35	12.05	0.02	0.22
4	12-5-14	RD Ib	5	7.16	290	206.4	0.3	5	0.3	54	4.9	0.03	0.7	5.6	0.33	0.02	0.30	11.88	0.02	0.12
5	12-5-14	RD SURF	0	6.53	230	142.1	0.9	20	1.2	42	11.0	0.03	1.6	4.8	1.11	0.05	0.20	5.48	0.13	0.15
6	12-9-14	RD IIa	1	7.10	222	118.8	19.3	16	1.0	41	9.0	0.03	1.2	4.2	0.00	0.06	0.18	11.11	0.02	0.10
7	10-30-14	RD IIb	3.5	6.74	242	152.2	0.9	17	1.0	45	10.1	0.03	2.6	4.7	0.69	0.56	0.15	7.95	0.01	0.12
8	12-5-14	RD IIb	3.5	7.22	238	135.1	18.2	16	1.0	43	8.8	0.02	1.1	4.3	0.07	0.07	0.12	10.82	0.03	0.10
9	12-5-14	TA SURF	0	7.59	308	180.7	14.6	28	1.7	50	15.3	0.04	2.2	5.1	0.00	0.16	0.12	8.97	0.03	0.10
10	10-30-14	TA la	1	7.08	312	187.1	10.6	20	1.2	60	14.1	0.03	3.2	4.4	0.02	0.02	0.08	11.42	0.28	0.13
11	12-5-14	TA la	1	7.24	290	191.0	4.8	14	0.9	52	10.5	0.10	1.8	4.1	0.01	0.80	0.08	10.33	0.03	0.09
12	10-30-14	TA Ib	3.5	7.37	260	143.7	18.7	19	1.2	48	12.3	0.02	2.4	4.1	0.12	0.07	0.07	10.13	0.05	0.17
13	12-5-14	TA Ib	3.5	7.36	291	164.0	16.3	25	1.5	50	18.1	0.02	2.7	4.1	0.00	0.02	0.05	10.02	0.08	0.07
14	12-5-14	TA IIa	1	7.32	375	268.1	0.5	10	0.6	69	9.8	0.03	0.7	7.5	0.15	0.06	0.09	8.27	0.03	0.13
15	12-5-14	TA IIb	3	7.42	362	243.4	0.3	20	1.3	59	19.2	0.02	2.0	6.5	0.08	0.01	0.05	9.59	0.03	0.15
16	12-9-14	TA IIc F2	9	7.54	408	253.1	2.8	39	2.4	73	17.7	0.02	2.1	7.5	0.13	0.02	0.04	9.86	0.26	0.06
17	12-9-14	TA IIc F3	17	7.58	434	263.0	3.4	47	2.9	72	26.2	0.02	2.0	7.1	0.14	0.01	0.03	10.10	0.24	0.06
18	12-9-14	TA IIc F4	26	7.50	351	247.9	0.3	12	0.7	60	12.9	0.02	1.3	6.0	0.21	0.04	0.06	9.60	0.25	0.10
19	12-9-14	TA IIc F5	40	7.57	547	376.3	0.2	49	3.0	60	41.0	0.02	1.9	5.8	0.12	0.02	0.04	9.56	0.27	0.07
20	12-9-14	Ta IIc F6	58	7.44	389	273.3	0.1	15	0.9	70	12.6	0.01	1.2	6.3	0.18	0.06	0.03	9.56	0.22	0.08
21	12-9-14	TA IIc F7	82	7.52	384	271.2	0.2	13	0.8	72	9.5	0.01	1.1	6.6	0.13	0.03	0.05	10.01	0.21	0.08
22	12-9-14	TA IIc F8	95	7.75	545	262.3	0.2	115	7.1	35	105.9	0.04	5.4	6.7	0.04	0.05	0.04	7.47	0.94	0.07
23	10-29-14	OM	0.2	4.73	19	0.4	2.6	5	0.3	1	5.9	0.06	0.6	0.7	0.02	0.34	0.23	1.47	0.71	0.24
24	12-9-14	ОМ	0.2	4.76	22	0.4	2.0	7	0.5	1	6.6	0.03	0.6	0.6	0.03	0.26	0.18	1.42	0.16	0.37
25	12-7-14	L-a	1	6.91	166	99.3	8.4	5	0.3	29	5.4	0.05	0.4	2.1	0.00	0.49	0.10	15.38	0.06	0.18
26	12-7-14	L-b	4	7.13	165	76.4	21.3	10	0.6	27	10.8	0.02	0.8	2.0	0.00	0.26	0.07	16.38	0.05	0.12
27	12-5-14	De-a	1	6.01	95	11.7	2.7	37	2.3	8	17.8	0.04	0.8	1.2	0.03	3.40	0.40	9.50	0.06	0.22
28	12-7-14	De-b	5.5	6.99	257	79.0	50.6	40	2.5	39	21.2	0.07	2.6	6.8	0.01	5.97	0.03	8.31	0.07	0.14
29	12-5-14	KB SURF	0	7.75	267	147.7	15.4	28	1.7	44	15.4	0.01	2.2	4.9	0.00	0.22	0.04	8.16	0.04	0.09
30	12-5-14	КВ-а	1	6.69	155	81.5	3.2	10	0.6	32	5.0	0.05	0.3	2.2	0.10	10.96	0.12	8.24	0.06	0.23
31	12-5-14	КВ-с	3	6.87	288	176.8	2.5	22	1.4	54	11.0	0.17	0.4	4.7	0.40	5.39	0.09	9.15	0.16	0.20
32	12-8-14	KB-d	6.3	7.16	643	445.8	1.8	21	1.3	131	13.4	0.02	0.7	9.5	0.70	0.14	0.03	17.30	1.17	0.37

Journal of Ecological Engineering ISSN 2299-8993

Figure 1 . An illustration of the hypothetical groundwater flow systems conditioning the ecohydrological systems in Drentsche Aa Brook Valley (Source: Everts and De Vries, 1991).

Figure 2 Download source file (1.56 MB)

E Journal of Ecological Engineering ISSN 2299-8993

Figure 2 . Groundwater sampling sites and geological features that control the flow patterns in the groundwater (a), simulation model results show the effect of the double diffusion convection along the X-Y transect in (a), which affects groundwater reaching the surface (b).

Figure 3. Relationships of the 14C (pMC) content in the water samples with (a) δ 13C (‰), and (b) the reciprocal of HCO3 (mg/l).

Figure 5 Download source file (34.82 kB)

Journal of Ecological Engineering ISSN 2299-8993

JEE Journal of Ecological Engineering ISSN 2299-8993

Figure 6 Download source file (243.29 kB)

Figure 4. Stable isotopic compositions were plotted with GMWL and LMWL. Water samples collected from the peat layers are indicated with yellow filling.

Figure 7 Download source file (140.52 kB)

Journal of Ecological Engineering

Figure 5. PCA plot of the macro-ionic content of the water samples. Arrow lengths indicate the variable loadings (ion composition) along the PCA axes, where the maximum of each loading is 1. The clusters indicate the proportionality relation between the variables and the PCA axes.

Journal of Ecological Engineering ISSN 2299-8993

Figure 6. PCA plot of the sampling sites indicating correlations of the water samples to the first two PCA axes. The statistic cos2 indicates the quality of representation (contribution) of the samples by these two PCs. Site codes are: RD-I= Rolderdiep-I, RD-II = Rolderdiep-II, TA-I = Taarlo-I, TA-II = Taarlo-II, OM = Oudemolen, L = Loon, De = Deurze, KB = Kappersbult.

JEE

ISSN 2299-8993

Journal of Ecological Engineering

Appendix 2. Vegetation mapping data from 1982-2012 to assess the success of restoration activities [Adapted from Bakker et al., 2015]. The vegetation type density per area is shown at four sites: Kappersbult, Gasterense Diep and Oudemolense Diep (Taarlo and Rolderdiep sites) and Deurzer Diep (Deurze).

JEE Journal of Ecological Engineering ISSN 2299-8993

Manuscript body

Manuscript body 1 - Download source file (65.92 kB)

Tables

Table 1 - Download source file (15 kB)

Table 1. Age of groundwater calculated using (1) the alkalinity correction model [Tamers, 1975], where the A0 values ranged from 50 to 70 pMC, except for L-a, and (2) Vogel's model, which assumes A0= 85±5 pMC [Vogel, 1970]. Site codes are: RD-I= Rolderdiep-I, RD-II = Rolderdiep-II, TA-I = Taarlo-I, TA-II = Taarlo-II, OM = Oudemolen, L = Loon, De = Deurze, KB = Kappersbult and SU= surface river water, while the peat samples codes are annexed with "a".

Table 2 - Download source file (19.79 kB)

Appendix 1. Full results of the Ion composition analyses of the water samples. TDS = total dissolved salts.

Figures

Figure 1 - Download source file (197.54 kB)

Figure 1. An illustration of the hypothetical groundwater flow systems conditioning the ecohydrological systems in Drentsche Aa Brook Valley (Source: Everts and De Vries, 1991).

Figure 2 - Download source file (1.56 MB)

Figure 2. Groundwater sampling sites and geological features that control the flow patterns in the groundwater (a), simulation model results show the effect of the double diffusion convection along the X-Y transect in (a), which affects groundwater reaching the surface (b).

Figure 3 - Download source file (206.19 kB)

Figure 4 - Download source file (36.62 kB)

Figure 3. Relationships of the 14C (pMC) content in the water samples with (a) δ13C (‰), and (b) the reciprocal of HCO3 (mg/l).

Figure 5 - Download source file (34.82 kB)

Figure 6 - Download source file (243.29 kB)

Figure 4. Stable isotopic compositions were plotted with GMWL and LMWL. Water samples collected from the peat layers are indicated with yellow filling.

Figure 7 - Download source file (140.52 kB)

Figure 5. PCA plot of the macro-ionic content of the water samples. Arrow lengths indicate the variable loadings (ion composition) along the PCA axes, where the maximum of each loading is 1. The clusters indicate the proportionality relation between the variables and the PCA axes.

Figure 8 - Download source file (250.13 kB)

Figure 6. PCA plot of the sampling sites indicating correlations of the water samples to the first two PCA axes. The statistic cos2 indicates the quality of representation (contribution) of the samples by these two PCs. Site codes are: RD-I= Rolderdiep-I, RD-II = Rolderdiep-II, TA-I = Taarlo-I, TA-II = Taarlo-II, OM = Oudemolen, L = Loon, De = Deurze, KB = Kappersbult.

Figure 9 - Download source file (87.96 kB)

Appendix 2. Vegetation mapping data from 1982-2012 to assess the success of restoration activities [Adapted from Bakker et al., 2015]. The vegetation type density per area is shown at four sites: Kappersbult, Gasterense Diep and Oudemolense Diep (Taarlo and Rolderdiep sites) and Deurzer Diep (Deurze).

