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ABSTRACT
In the last decade, the detection of individual massive dark matter sub-haloes has been possible
using potential correction formalism in strong gravitational lens imaging. Here, we propose
a statistical formalism to relate strong gravitational lens surface brightness anomalies to the
lens potential fluctuations arising from dark matter distribution in the lens galaxy. We consider
these fluctuations as a Gaussian random field in addition to the unperturbed smooth lens model.
This is very similar to weak lensing formalism and we show that in this way we can measure
the power spectrum of these perturbations to the potential. We test the method by applying it
to simulated mock lenses of different geometries and by performing an MCMC analysis of the
theoretical power spectra. This method can measure density fluctuations in early type galaxies
on scales of 1–10 kpc at typical rms levels of a per cent, using a single lens system observed
with the Hubble Space Telescope with typical signal-to-noise ratios obtained in a single orbit.

Key words: gravitational lensing: strong – galaxies: elliptical and lenticular, cD – dark matter.

1 IN T RO D U C T I O N

According to the Einstein’s General Theory of Relativity, light rays
(null geodesics) get deflected due to the presence of gravitating
objects, a phenomenon called gravitational lensing. In the regime
of strong lensing, massive and large cosmic bodies, such as galax-
ies, can bend light rays coming from a single astrophysical source
such that multiple images of the source are formed (e.g. Narayan
& Bartelmann 1996; Meylan et al. 2006). By measuring the red-
shift of the source and the lens galaxy and by analysing the relative
angular positions of the lensed images, their distortions and sur-
face brightness fluctuations, we can put constraints on the mass
power spectra of the foreground lens galaxy (Cohn et al. 2001;
Keeton 2001; Schneider 2003). Physical processes during the evo-
lution of galaxy, such as accretion, stellar-driven winds, mergers,
collapse, feedback from quasars, all have significant roles in shap-
ing a galaxy’s mass distribution (e.g. Somerville & Davé 2015), by
studying the mass power- spectrum of galaxies we can gain insight
in different galaxy formation scenarios (Kochanek et al. 2000; Rusin
et al. 2003). Besides, the smooth matter component, in recent years
it has been possible to accurately measure the mass distribution
in foreground lens galaxies and also individual dark matter subha-
los (down to ∼108 M�), using strong lensed images (e.g. Keeton &
Madau 2001; Vegetti & Koopmans 2009; Vegetti et al. 2010; Fadely
& Keeton 2012; Hezaveh et al. 2013; Hezaveh et al. 2016b).

In this paper, we develop a statistical description to relate the
mass power spectrum of lens galaxies, in particular small-scale

� E-mail: saikat@astro.rug.nl (SC); koopmans@astro.rug.nl (LVEK)

potential fluctuations in the lens plane, to the statistics of the surface
brightness fluctuations in the image plane. We assume that these
lens-potential fluctuations can be treated statistically as a Gaussian
random field. If the differential deflection of the photon bundles
due to these potential perturbations are small, we can reduce their
effect to that of weak lensing. We subsequently show that their
effect on the power-spectrum can be captured in to a Structure
Function, describing the ensemble average of the square of relative
deflections between two points in the deflection field as function of
their separation.

An analogous statistical method has been used before in weak
gravitational lensing of the cosmic microwave background radiation
(e.g. Challinor & Lewis 2005; Lewis & Challinor 2006), although
we have further generalized it to the case of strong galaxy–galaxy
lensing but without any assumptions of linear first order approx-
imation in the formalism which goes beyond the current statisti-
cal methodology available in the literature (see 2012 BSc thesis of
Sander Bus1; Hezaveh et al. 2016a). We present a detailed two-point
correlation function and power-spectrum analysis and we verify the
theory with several representative simulated lens systems (i.e. ring,
quad and arc).

The paper is organized as follows. In Section 2, we introduce a
two-point correlation analysis of residual surface brightness fluctu-
ations of the lensed images, after a smooth-model subtraction, and
statistically relate this to the power spectrum of residual fluctuations
in the lens potential which are not part of the smooth lens model.
In Section 3, we describe the steps we followed to test the proposed

1 https://www.astro.rug.nl/opleidingsinstituut/reports/bachelor/
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Dark matter power spectra 1763

theory on a set of simulated mock lenses. In Section 4, we end the
paper with conclusions and future plans.

2 TH E O RY A N D A S S U M P T I O N S

In this section, we explain the foundation behind the statistical
method to measure the power spectrum of the gravitational-lens
potential. The initial assumption is that, to first order, we can
model the surface brightness of the observed lensed images us-
ing a smooth lens potential (in this paper, we illustrate this by us-
ing a non-singular Isothermal Ellipsoid, see Kormann, Schneider &
Bartelmann (1994), but any smooth model will do). Subtracting that
smooth model from the original images leaves surface-brightness
residuals, which we subsequently assume to arise from small poten-
tial perturbations in the lens plane. We make a number of upfront
assumptions in this paper:

(i) We assume that there is negligible covariance between the
smooth lens mass model parameters and the small-scale potential
perturbations. This assumption might break down on the largest
scales, but it is likely very accurate on scales well below the Einstein
radius.

(ii) We assume there is negligible covariance between intrinsic
source-brightness fluctuations and induced residual image bright-
ness fluctuations as a result of the lens-potential fluctuations. We
think this is justified, to some level, because the source brightness
distribution is overconstrained, thanks to the multiplicity of the
lensed images.

(iii) We assume that all lens perturbations are Gaussian random
fields. For low-mass subhaloes the Gaussianity assumption holds
extremely well as long as the number of the stochastically dis-
tributed subhaloes is more than a few within the area in which the
power spectra are estimated.2 But if the lens potential is dominated
by a very few massive structures then this assumptions breaks down
and then one has to model them by potential correction formalism
(Vegetti et al. 2010).

We will strictly assume these in the current paper but in sev-
eral follow-up papers, we investigate each of these assumptions in
greater detail.

2.1 Lens potential and surface brightness

We start with the principle of conservation of surface brightness in
lensing. If we denote the surface brightness of source and image by
S( y) and I (x), respectively, then we have

S( y) = I (x), (1)

where y and x are coordinates in the source and in the lens plane,
respectively. Here, we neglect the PSF and noise in our analysis,
which is taken care of in the next section. The lens equation maps
points from the image plane to the source plane in the following
way:

y(x) = x − ∇ψ0(x) − ∇δψ(x), (2)

2 We have verified, by generating a large number of realizations, that the
probability density function (PDF) of N number of Poisson distributed par-
ticles over an ensemble closely resembles as a Gaussian PDF as long as
N�4. This follows from central limit theorem.

where ψ0(x) and δψ(x) are the potentials for the smooth lens
model and perturbations, respectively. Combining this non-linear
lens equation and equation (1) gives us

S( y) = S(x − α − δα) = I (x), (3)

where we have denoted the deflection angle due to smooth model
as α = ∇ψ0 and deflection due to potential perturbations as δα =
∇δψ . Assuming that ψ0 and δψ are uncorrelated random fields, the
two-point correlation function of the lensed images ξ II(r) becomes
(for a detailed calculation, please see Appendix A)

ξ II (r) = 〈I (x)I (x′)〉

=
∫

d2k
(2π)2

[
P II

s (k)〈eik·(δα′−δα)〉δα
]
eik·r , (4)

where P II
s (k) is the power spectrum of the images, when lensed

only by ψ0. The angle brackets denote the ensemble average over
the stochastic field δα. Hence, we assume that we can obtain an
unbiased, or sufficiently good, estimator of the true source and
smooth part of the potential (i.e. the two upfront assumptions).

In short, the deflections due to the stochastic potential perturba-
tions act as a multiplicative filter on the unperturbed lens-image
power spectrum. The two-point correlation function of the lensed
image is then the integral transform of the power spectrum of the
smooth model using this filter. If we further assume δα is a Gaus-
sian random field, then k · (δα′ − δα) is a Gaussian random variate
as well and the expectation value in equation (4) reduces to (see
Appendix A),

〈eik·(δα′−δα)〉 = e− 1
2 〈[k·(δα′−δα)]2〉. (5)

We call the term
〈
[k · (δα′ − δα)]2

〉
on the right-hand side of

the above equation the deflection-angle structure function or the
deflection-angle transfer function. We note here that unlike similar
functions in the literature, this function depends on the distance
r and thus is related to a convolution kernel of the smooth im-
age which depends on scale.3 Hence, the final result for the lensed
correlation function in terms of structure function becomes

ξ II (r) =
∫

d2k
(2π)2

[
P II

s (k)e− 1
2 〈[k·(δα′−δα)]2〉

]
eik·r . (6)

The physical interpretation is that the deflection angle structure
function,

〈
[k · (δα′ − δα)]2

〉
acts as a blurring function in the kernel

over the smooth model due to the small-scale structures present in
the lens potential.

2.2 The deflection angle structure function

To compute the deflection angle structure function, we compute the
correlation matrix:

〈δαiδα
′
j 〉 = 〈δαi(x)δαj (x + r)〉 = 〈∇iδψ(x)∇j δψ(x′)〉, (7)

where i, j = 1, 2 denote the components of the deflection δα.
The correlation matrix of deflections 〈δαiδα

′
j 〉 can be decomposed

into a diagonal component and an off-diagonal component as in
Hezaveh et al. (2016a):

〈δαiδα
′
j 〉 = A1(r)δij + A2(r)r̂i r̂j , (8)

3 A more physical picture is that, to first-order, only fluctuations in δψ on
scales � r significantly contribute to the de-correlation between two points
separated by r in the image plane, or k � 2π/r . Hence, as r increases,
increasingly more of the power spectrum at lower k-values will contribute
to deviations from the expected smooth model between two points.

MNRAS 474, 1762–1772 (2018)
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1764 S. Chatterjee and L. V. E. Koopmans

where the functions A1(r) and A2(r) defined above depend only on
the magnitude r = |r| due to the assumptions of homogeneity and
isotropy of the perturbation field. Calculating these functions in
terms of the projected surface-mass density (δκ) associated with
the potential perturbations, we find (see Appendix B)

A1(r) = 4

2π

∫
dk

k
|δκ(k)|2 J1(kr)

kr
, (9)

A2(r) = − 4

2π

∫
dk

k
|δκ(k)|2J2(kr), (10)

where A1(r) and A2(r) represent the correlation in the deflection
field between two points separated by a distance r, integrated over
all k modes, assuming that the power spectra of the potential or in
this case the convergence (i.e. |δκ(k)|2) perturbations are isotropic.
We now express the required expectation value in equation (5) in
terms of A1 and A2 (a detailed derivation is given in Appendix B):〈

[k · (δα′ − δα)]2
〉 = k2[σ 2(r) + cos 2φ ζ (r)]

= k2σ 2(r) + (k2
r‖ − k2

r⊥ )ζ (r), (11)

where φ is the angle between k and r . We also have resolved k into
two components, parallel and perpendicular to r. The r appearing
in the functions σ 2(r), ζ (r) is the distance between two points in the
random field between which we are measuring the correlation. Here,
we defined the isotropic term as σ 2(r), which is half the variance of
the relative deflection of the two points, as follows:

σ 2(r) = 1

2
〈(δα − δα′)2〉

= 1

2
〈δα · δα + δα′ · δα′ − 2δα · δα′〉

= [(2 A1(0) + A2(0)) − (2 A1(r) + A2(r))]

= 2(A1(0) − A1(r)) + (A2(0) − A2(r)) (12)

and the function ζ (r), which determines the anisotropy in the cor-
relation matrix, is defined as follows:

ζ (r) = A2(0) − A2(r). (13)

If the field is isotropic then ζ (r) = 0 and the structure function
in equation 6 reduces to a (scale-dependent) Gaussian convolution
kernel (section 4.2.3 in Lewis & Challinor 2006).

So far all the results from our analysis are without any approxi-
mations. But we can also Taylor expand the exponential up to first
order to get the following perturbation series,

ξ II (r) ≈ ξ II
s (r) −

∫
k dk

2π
P II

s (k)
k2

2
σ 2(r)J0(kr)

+
∫

k dk

2π
P II

s (k)
k2

2
ζ (r)J2(kr), (14)

where ξ II
res (r) = ξ II (r) − ξ II

s (r) is the correlation function of the
residuals which is only a function of the correlation length r. The
power spectra of the residuals can be obtained from ξ II(r)res by a
Hankel Transform.

Although any integrable power-spectrum model can be used, for
the sake of simplicity in this paper assume that the power spec-
trum of lens potential fluctuations follow a power law and hence
(from equation 25), convergence fluctuation power spectra in the
integral expressions of A1(r) and A2(r) in equation (9) and (10)
can also be expressed as a power law. In this case, those integrals
have analytically exact results in terms of hypergeometric functions

(Appendix C) which are inserted into the expression of the transfer
function and are used in our Markov Chain Monte Carlo (MCMC)
fit of the power spectrum (see Section 3.3). In our subsequent anal-
ysis, we drop the anisotropy term and only keep the isotropic term
in the structure function. To compare with the simulations and the
real data and to set constraints to the observed power spectrum, we
need to incorporate a point spread function (PSF) and noise to our
two-point correlation formalism. We take these into account in the
next section.

3 SI M U L AT I O N S A N D R E S U LT S

In this section, we summarize the methodology that we followed
to test the theory on the simulated mock lenses and discuss the
results. First, we show how we take into account PSF and noise
in our theoretical expression and then we briefly explain how we
simulate the mock lenses to test our theory. We test the formalism
on three different topologies, a ring, a fold and a cusp, and for each
of these cases we consider three different slopes and three different
normalizations (i.e. set by the variance of the GRF inside the field
of view being simulated) for the power spectrum of the potential
fluctuations.

3.1 Point spread function and noise

To take account of the observational effects (e.g. seeing and noise),
we first incorporate the effect of a PSF in the two-point corre-
lation analysis. The surface brightness of the unperturbed model
becomes,

Ĩs(x) = Is(x) ⊗ PSF(x). (15)

So, the observed two-point correlation function of the smooth model
will be,

〈Ĩs(x)Ĩs(x′)〉 = ξ II
s (|x − x′|) ⊗ ξPSF(|x − x′|), (16)

and the power spectrum becomes

〈Ĩs(k)Ĩ ∗
s (k′)〉 = P II

s (k) · P PSF(k), (17)

where we have used the convolution theorem. In our simulation, we
have added Gaussian noise with a flat power spectrum to the lensed
images. We assume that the noise realizations and the images are
independent random fields, the power spectrum of sum becomes the
sum of their power spectra,

P̃ II
s (k) = P II

s (k) · P PSF(k) + P n(k), (18)

where Pn(k) is the power spectrum of the noise. Thus, the theoretical
expression of two-point correlation function becomes,

ξ II
obs(r) =

∫
d2k

(2π)2
P̃ II

s (k)eik·r〈eik·(δα′−δα)〉δα

=
∫

d2k
(2π)2

[
P II

s (k) · T (k) + P n(k)
]

eik·r , (19)

with the modified transfer function

T (k) ≡ P PSF(k) · e− 1
2 〈[k·(δα′−δα)]2〉. (20)

3.2 Lens model and potential perturbations

To test the above theory, we simulate the lensed images of Sérsic
(Sérsic 1963; Sersic 1968) sources by a non-singular isothermal

MNRAS 474, 1762–1772 (2018)
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Dark matter power spectra 1765

Table 1. The lens and source parameters chosen for simulating mock lenses
of 121 × 121 pixels in 4.84 arcsec × 4.84 arcsec field of view.

Parameter Value Unit

Lens (NIE) (ring, fold, cusp cases)

x-coordinate 0.0 arcsec
y-coordinate 0.0 arcsec
Einstein radius 1.0 arcsec
Axis ratio 0.99, 0.6, 0.7 –
Major-axis angle 0.0 deg
External shear 0.0 –
External-shear angle 0.0 deg

Source (Sérsic) (ring, fold, cusp cases)

x-coordinate 0.0, 0.15, 0.35 arcsec
y-coordinate 0.0, 0.15, 0.0 arcsec
Effective radius 0.1, 0.07, 0.08 arcsec
Axis ratio 0.99 –
Major-axis angle 45 deg
Sérsic index 2 –

ellipsoid (NIE) (Kormann et al. 1994) lens which we call as smooth
model. The values of the lens and source parameters are given in
Table 1. All the simulated images have roughly the same resolution
as that of HST in the F390W-band.

We perturb the lens potential by a simulated Gaussian random
field (GRF) potential with a power-law power spectrum of the form

P δψ (k) = A · k−β, (21)

where the amplitude A in the power law is determined using Parse-
val’s theorem, which is related to the variance of the GRF potential
fluctuations inside the image σ 2

fluct via the normalization factor

A = σ 2
fluctN

2
pix

2
∑

k−β
, (22)

where the sum is over all k-values, where k =
√

k2
x + k2

y calculated

on the Fourier grid of size 121×121 in our simulations. In this case,
a DFT of one random realization of the above power spectrum leads
to a GRF potential field with a variance of σ 2

fluct. Now because of the
symmetry, we only create half of the grid and the rest is generated
from the complex conjugate of it. However, in Fourier space, a point
and it’s complex conjugate aren’t independent of each other which
results in an increase in variance by a factor of 2 which is taken care
of in the denominator of the normalization factor above. We choose
the power law exponent in the range of β = 4 ∼ 6 and the power
spectrum is set to zero at k = 0 to avoid a non-zero mean value.

We convolve the lensed images with the HST U-band PSF (WFC3
UVIS channel; F390W) obtained using TinyTim (Krist, Hook &
Stoehr 2011). We add white noise of variance comparable to a
typical single-orbit HST image, and we determine the residuals by

Figure 1. Columnwise from left to right: The Sérsic source model, the lensed images using a NIE lens model with 1 arsec Einstein radius (smooth model),
the lensed images perturbed by an additive GRF potential with σ 2

fluct = 10−3 (over the field of view) and a power law of the form ∝ k−4, respectively. White
Gaussian noise is added and the difference between the smooth and perturbed images is shown in the right-most column. The three cases from top to bottom
are: Einstein ring, fold and cusp.

MNRAS 474, 1762–1772 (2018)
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1766 S. Chatterjee and L. V. E. Koopmans

subtracting the unperturbed smooth model from the perturbed one.
Again, we assume that there is no strong covariance between δψ

and the parameters of the lens and source models. This likely holds
for intermediate k-values (see Bayer et al., in preparation), but not

for those comparable to the scale of the lens or very small k-values,
where they can either be affected by the smooth lens model or by the
grid-based source model. In ongoing simulations, and expansion of
the theory, this co-variance will be further investigated in the near

Figure 2. Corner plots (left) for a two-parameter MCMC fit for σ 2
fluct and β of the GRF potential fluctuations. From top to bottom, we show the three different

geometries: the ring, fold and cusp. The red lines indicate the input parameters. In the right-hand panels, the red dashed curves are the theoretical power spectra
of the surface brightness fluctuations (from which the results are inferred), overplotted by the recovered mean residual power spectra of 100 realizations (shown
in blue with the error bars for a single realization [large] and one hundred realizations [small]) and the white Gaussian noise (green horizontal line) with a
variance of 1.0.

MNRAS 474, 1762–1772 (2018)
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Dark matter power spectra 1767

Figure 3. Power spectra of surface-brightness residuals for a set of different variances and slopes of the Gaussian random field of potential fluctuations. Shown
are the three different geometries: ring, fold and cusp. We notice that the results are not strongly dependent on the geometry, but for a fixed overall variance,
the less-steep power spectra for the GRF yield strong surface-brightness fluctuations.

Figure 4. Power spectra of residual convergence map δκ , corresponding to different combinations of variances σ 2
fluct and slopes β of the lens potential

fluctuations, δψ . From upper to lower rows (blue, red and green), σ 2
fluct corresponds to 10−5, 10−4 and 10−3 and from left to right, β corresponds to −4.0,

−5.0 and −6.0, respectively.

MNRAS 474, 1762–1772 (2018)
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1768 S. Chatterjee and L. V. E. Koopmans

Figure 5. Plots of 2πk2P δκ corresponding to the same combinations of variances and slopes of potential fluctuations, δψ as shown in Fig. 4.

future. A panel of simulated lensed images for the case of a ring,
a fold and a cusp are shown in Fig. 1, for both the smooth and a
perturbed case, as well as their difference.

3.3 Realizations

We finally simulate one hundred realizations for each of the three
geometries and fit the ensemble-average power spectrum of resid-
uals using equation (19). We use a MCMC method to infer the
variance and the exponent of the power spectrum of the lens-
potential fluctuations that we defined in equation (21). We assume
that the power spectrum of smooth lensed image P II

s (k) can be es-
timated within sufficient accuracy with limited covariance between
the source model and potential fluctuations. This assumption has
recently been validated by numerical simulations over most angular
scales in the lensed images (Bayer et al., in preparation).

In principle, we could also fit for the rms of noise power spectrum
in the likelihood function, but it is not needed at this point (it
can often be determined from other parts of the image without
lensed images) and we co-add the power spectra of simulated noise
and of the residuals. The error (variance on the variance) of the
power spectrum is calculated for each bin j via the root-mean-square
deviation from the mean within the ensemble of realizations,

rms(Pj ) =
(

N∑
i=1

(Pij − 〈P 〉j )2

) /
(N − 1), (23)

where in our case we took N = 100. This is the error for a single
measurement and error for N observations is determined by dividing
the error for a single measurement by a factor of

√
N . In reality, the

N = 100 lenses will have different sets of lens-model parameters,
which we ignore in this paper. We note that the ESA space-mission

Euclid might discover sufficient numbers of lenses that samples
of order 100 similar geometries could be discovered, although our
method also works for ensembles of very different lens geometries.
The MCMC corner plots for the three geometries are shown in
Fig. 2. We also show power spectra of surface brightness residuals
for different combinations of σ 2

fluct and β in Fig. 3. Power spectra of
residuals in convergence maps corresponding to those combinations
of parameters and their variances are shown in Figs 4 and 5. Also
in Fig. D1, we have shown a comparison of power spectra obtained
from numerically calculated convergence by directly applying a
Laplacian on the potential map:

δκ = ∇2δψ/2 (24)

and the theoretical one:

P δκ (k) = (2πk)4 · P δψ (k)/4 (25)

assuming Pδψ (k) follows a power law as defined in equation (21).
The factor (2π)4 in equation (25) comes from our definition of
Fourier kernel where k ≡ 1/L, which differs from the standard
cosmological definition via a simple coordinate transformation.

4 D I S C U S S I O N A N D C O N C L U S I O N S

We have shown that small fluctuations in the gravitational-lens po-
tential, if well approximated by a (Gaussian) random field, can
be treated as a stochastic contribution to the smooth lens model.
Assuming further that there is no strong covariance between the
smooth lens potential and these lens-potential fluctuations and that
the surface brightness fluctuations are not affected too much by
the inference of the source model, we have developed a statistical
method which can be used to measure the power spectrum of these

MNRAS 474, 1762–1772 (2018)
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Dark matter power spectra 1769

lens-potential perturbations directly from the power spectrum of
the surface brightness fluctuations after subtracting the best smooth
lens model. In a forthcoming paper (Bayer et al., in preparation),
we will apply this method to HST images of one particular lens sys-
tem, more precisely defining (via simulations) to what level these
assumption hold.

Quantitatively, we have shown that perturbations to the potential
or convergence at the per cent level (rms) can be inferred from
a single lens system with HST-like images and a typical signal-
to-noise ratio in a single orbit. The inference does not strongly
depend on the geometry of the lens (e.g. ring, fold or cusp), al-
though the ring geometry seems to show somewhat smaller errors
(see Fig. 3).

In a forthcoming paper (Bayer et al., in preparation), we will ap-
ply this approach to HST data to set limits on the power spectrum of
the potential fluctuations around a massive early-type galaxy. Our
new method can infer density fluctuations in galaxies on scales of
typically 1–10 kpc, in the regime where very little is known about
the galaxy (or CDM) power spectrum. The final goal is to com-
pare these power spectra to different galaxy-formation scenarios,
by applying the method to mock lenses simulated via N-body hy-
drodynamic simulations. This method will also pave the way for
the future (statistical) modelling of hundreds of thousands strong
lenses expected to be found from ESA’s Euclid mission.
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A P P E N D I X A : D E TA I L E D D E R I VAT I O N O F
T H E T WO - P O I N T C O R R E L AT I O N F U N C T I O N

Within the field of view of strong lensing we can apply flat sky ap-
proximation and thus we can expand the image intensity as follows

I (x) =
∫

d2k
2π

I (k)eik·x

I (k) =
∫

d2x
2π

I (x)e−ik·x . (A1)

If we assume the surface brightness fluctuations of image are statis-
tically isotropic, the real space two-point correlation function ξ of
the surface brightness can therefore only depend on the separation
between the two points,

〈I (x)I (x′)〉 = ξ II (|x − x′|). (A2)

With this assumption the covariance of the Fourier components of
the surface brightness is

〈I (k)I ∗(k′)〉 =
∫

d2x
2π

∫
d2x′

2π
e−ik·xeik′ ·x′

ξ II (|x − x′|)

=
∫

d2x
2π

∫
d2r
2π

ei(k′−k)·xeik′ ·rξ II (r)

= δ(k′ − k)
∫

d2reik·rξ II (r). (A3)

In the second line, we changed variables to r = x − x′ and then
r → −r , and have defined r ≡ |r| which is the correlation length
in image plane. The power spectrum of the surface brightness field
of source is therefore diagonal in k, and is given by

〈I (k)I ∗(k′)〉 = P II
k δ(k − k′), (A4)

where we have defined the power spectrum P II
k as follows,

P II
k =

∫
d2reik·rξ II (r) (A5)

Now, if we use the following expansion of eik·r into Bessel functions
Jn(r)

eikr cos φ =
∞∑

n=−∞
inJn(kr)einφ

= J0(kr) + 2
∞∑

n=1

inJn(kr) cos(nφ) (A6)

and then if we integrate over φ, the only term that remains is J0(r).
This makes the Fourier transform as a Hankel transform which
allows us to write the power spectrum as follows,

P II
k =

∫
d2reik·rξ II (r)

=
∫

r dr

∫
dφr eikr cos(φk−φr )ξ II (r)

= 2π

∫
r dr J0(kr)ξ II (r) (A7)

If we neglect PSF, noise and window function the theoretical lensed
correlation function ξ II(r) is given by,
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ξ II (r) = 〈I (x)I (x′)〉
= 〈S( y)S( y′)〉
= 〈S(x−∇ψ0(x)−∇δψ(x))S(x′−∇ψ0(x′) − ∇δψ(x′))〉

=
∫

d2k
2π

∫
d2k′

2π
eik·xe−ik′ ·x′ 〈e−ik·∇ψ0(x)eik′ ·∇ψ0(x′)〉

×〈e−ik·∇δψ(x)eik′ ·∇δψ(x′)〉〈S(k)S(k′)∗〉

=
∫

d2k
(2π)2

P S(k)eik·r〈eik·(∇ψ0(x′)−∇ψ0(x))〉〈eik·(δα′−δα)〉δα,

(A8)

where in the second and third lines above we have incorporated
the principle of conservation of surface brightness and thereafter
we have inserted the lens equation. In the fourth line, we have ex-
panded the source surface brightness in its Fourier modes without
using any Taylor expansion or linear approximation, where ψ0(x)
and δψ(x) are the potentials for the smooth lens model and per-
turbations, respectively. Finally, in the last line the power spectrum
of the source is denoted by PS(k) and the deflection angle due to
potential perturbations is denoted as δα = ∇δψ . Now, if there are
no perturbations, then equation (A8) reduces to,

ξ II (r) =
∫

d2k
(2π)2

P S(k)eik·r〈eik·(∇ψ0(x′)−∇ψ0(x))〉, (A9)

which basically turns into the two-point correlation of the smooth
model. Now, using the standard result that the two-point correlation
function is Fourier transform of the power spectrum, we can write
equation (A8) as follows

ξ II (r) =
∫

d2k
(2π)2

P II
s (k)eik·r〈eik·(δα′−δα)〉δα, (A10)

where P II
s (k) is the power spectrum of the smooth lens model.

Now, we have the following standard identity for a Gaussian
variate x with a complex source term:∫ ∞

−∞
dx e− 1

2 ax2+iJ x =
√

2π

a
e−J 2/2a. (A11)

Using this, we get

〈eix〉 = 1√
2πσx

∫ ∞

−∞
dx eixe−x2/2σ 2

x = e−σ 2
x /2 = e−〈x2〉/2. (A12)

So, if we assume δα is a Gaussian field, then k · (δα′ − δα) is a
Gaussian variate, and the expectation value in equation (A8) there-
fore reduces to

〈eik·(δα′−δα)〉 = e− 1
2 〈[k·(δα′−δα)]2〉. (A13)

A P P E N D I X B: TH E D E F L E C T I O N A N G L E
S T RU C T U R E F U N C T I O N

〈δαiδα
′
j 〉 = A1(r)δij + A2(r)r̂i r̂j . (B1)

To determine A1 and A2, we use two following properties of covari-
ance matrix. First, if we take trace of the covariance matrix then we
get

〈δαiδα
′
i〉 = 2 A1(r) + A2(r) ≡ 〈δα · δα′〉 (B2)

and if the correlation matrix 〈αiα
′
j 〉 is contracted with r̂ i r̂j , we get

〈δαiδα
′
j 〉r̂ i r̂j = A1(r) + A2(r), (B3)

where we have used the Einstein’s summation convention in both
the equations above.

Now, from the theory of strong gravitational lensing, we know,

∇ · δα = 2δκ, (B4)

where κ is the convergence or the dimensionless surface mass den-
sity corresponding to the lensing potential δψ of the dark matter
substructure of the galaxy which was not incorporated into our pre-
vious smooth lens model and this is responsible for the deflections
α. Taking Fourier transform of the both sides of the above equation,
we get

ikj δαj (k) = 2δκ(k)

δαj (k) = 2δκ(k)

ikj

. (B5)

Now, using the above relations and we get,

〈δα · δα′〉 =
∫

d2k
(2π)2

δα∗
j (k′)δαj (k)eik·r

= 4
∫

d2k
(2π)2

|δκ(k)|2
k2

eik·r

= 4

2π

∫
dk

k
|δκ(k)|2J0(kr)

= 2 A1(r) + A2(r) (B6)

〈δαiδα
′
j 〉r̂ i r̂j = r̂ i r̂j

∫
d2k

(2π)2
δαi(k)δα∗

j (k′)eik·r

= 4
∫

d2k
(2π)2

(r̂ · k̂)2 |δκ(k)|2
k2

eik·r

= 4
∫ ∞

0

k dk

(2π)2

|δκ(k)|2
k2

∫ 2π

0
cos2 φeikr cos φdφ

= 4
∫ ∞

0

k dk

(2π)2

|δκ(k)|2
k2

∫ 2π

0
dφ

[1+cos(2φ)]

2
eikr cos φ

= 1

2
4

∫ ∞

0

k dk

2π

|δκ(k)|2
k2

(J0(kr)−J2(kr))

= A1(r) + A2(r), (B7)

where we defined φ as the angle between k and r , φ = φk − φr

and used equation (A6) to express the integrals in terms of Bessel
functions. Now, comparing the last two results of the integrals we
find,

A1(r) = 1

2

(
4

2π

∫
dk

k
|δκ(k)|2J0(kr) + 4

2π

∫
dk

k
|δκ(k)|2J2(kr)

)

= 4

2π

∫
dk

k
|δκ(k)|2 J1(kr)

kr
, (B8)

where we have used the following recursion relation of Bessel func-
tions,

2 n
Jn(x)

x
= Jn−1(x) + Jn+1(x). (B9)

And A2(r) turns out to be:

A2(r) = − 4

2π

∫
dk

k
|δκ(k)|2J2(kr). (B10)

We now express the required expectation value in equation (A13)
in terms of A1 and A2:
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〈
[k · (δα′ − δα)]2

〉
= kikj 〈(δα′

i − δαi)(δα
′
j − δαj )〉

= kikj
[〈δαiδαj 〉 + 〈δα′

iδα
′
j 〉 − 〈δα′

iδαj 〉 − 〈δαiδα
′
j 〉

]
= 2kikj

[〈δαiδαj 〉 − 〈δα′
iδαj 〉

]
= 2kikj

[(
A1(0)δij + A2(0)r̂i r̂j

) − (
A1(r)δij + A2(r)r̂i r̂j

)]
= 2 k2[A1(0) − A1(r)] + 2kikj r̂i r̂j [A2(0) − A2(r)]

= 2 k2[A1(0) − A1(r)] + 2k2 cos2 φ [A2(0) − A2(r)]

= k2 [2 (A1(0) − A1(r)) + (A2(0) − A2(r))

+ cos 2φ (A2(0) − A2(r))] = k2σ 2(r) + (k2
r‖ − k2

r⊥ )ζ (r). (B11)

APPENDIX C : A1( r) A N D A2( r) IN TERMS
O F H Y P E R G E O M E T R I C F U N C T I O N

Assuming a power law, δκ(k) ∼ k−γ , we can write the values of
A1(r) and A2(r) in terms of the generalized hypergeometric function
1F2 and regularized generalized hypergeometric function 1F̃2 using
the following integral identities:∫

k−α Jn(kr)

kr
dk = 2−n k−α

r(n − α)
(n + 1)
(kr)n 1F2

×
(

n

2
− α

2
;
n

2
− α

2
+ 1, n + 1; −1

4
k2r2

)
(C1)

∫
k−αJn(kr) dk = 2−n k1−α

(−α + n + 1)
(n + 1)
(kr)n 1F2

×
(

− α

2
+ n

2
+ 1

2
; −α

2
+ n

2
+ 3

2
, n + 1; −1

4
k2r2

)
(C2)

Here, the generalized hypergeometric function pFq is defined as
follows:

pFq (a1, . . . ap; b1, . . . bq ; z) = ∞
�

n=0

(a1)n(a2)n . . . (ap)n
(b1)n(b2)n . . . (bq )n

zn

n!
, (C3)

where we have used the following notation:

(x)n = x(x − 1) · · · (x − n + 1) = 
(x + 1)


(x − n + 1)
. (C4)

Using the above results, we get

A1(r) = 4

2π

∫
dk

k
|δκ(k)|2 J1(kr)

kr

= 4

2π

∫
k−α J1(kr)

kr
dk

= 4

2π

k1−α

2(1 − α)
1F2

(
1

2
− α

2
; 2,

3

2
− α

2
; −1

4
k2r2

)
, (C5)

where α = 2γ + 1. Similarly, we can write A2(r) as follows:

A2(r) = − 4

2π

∫
dk

k
|κ(k)|2J2(kr)

= − 4

2π

∫
k−αJ2(kr)dk

= − 4

2π

1

24 − 8α
r2k3−α

1F2

(
3

2
− α

2
; 3,

5

2
− α

2
; −1

4
r2k2

)
(C6)

A P P E N D I X D : POW E R S P E C T RU M O F L E N S
P OT E N T I A L F L U C T UAT I O N S A N D
C O R R E S P O N D I N G C O N V E R G E N C E M A P S

Figure D1. Theoretical (red) and numerically computed (blue) power spectra of δκ (only one realization) corresponding to different combinations of variances
and slopes of potential fluctuations, δψ as shown in Fig. 4. The first, second and third row corresponds to variance levels of 10−5, 10−4 and 10−3, resepctively,
and first, second and third column corresponds to slopes of −4.0, −5.0 and −6.0, respectively.
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Figure D2. Theoretical (red) and numerically computed (blue) power spectra of lens potential fluctuations δψ corresponding to different combinations of
variances σ 2

fluct and slopes β shown in Fig. 4, 5 and D1. The first, second and third row corresponds to variance levels of 10−5, 10−4, 10−3, respectively, and
first, second and third column corresponds to slopes of −4.0, −5.0 and −6.0, respectively.

Figure D3. Plots of 2πk2P δψ corresponding to different combinations of variances and slopes of potential fluctuations as shown in Fig. D2.
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