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Abstract
Dietary fatty acid (FA) composition in early postnatal life can modulate growth and development and later metabolic health. Investigating programming
effects of early dietary FA manipulations in rodents may be stressful and complicated due to the need of artificial feeding techniques. It is largely unknown
to what extent breast milk (BM) FA composition can be directly manipulated by the diet. We exposed dams to different dietary FA compositions from
postnatal day (PN) 2 until PN28. Dams with litters were randomly assigned to control (CTRL), high-medium-chain FA (MCFA), low-linoleic acid
(LowLA), high-n-3 long-chain PUFA (n-3LCP) or high-n-3LCP and MCFA (n-3LCP/MCFA) diets, and diets were continued after weaning until
PN28. FA compositions were determined in feeds, milk and in erythrocytes. BM MCFA content was independent from dietary MCFA intake. In contrast,
the LowLA diet reduced BM LA content by about 50 % compared with the CTRL diet at PN7. BM of dams fed the n-3LCP or n-3LCP/MCFA diet
contained about 6-fold more n-3 LCP than BM of the dams fed the CTRL diet at PN7. These changes in milk FA composition established after 5 d
of dietary exposure did not further change over the lactation period. At PN28, the erythrocyte FA composition of the male pups correlated with analysed
milk FA profiles. In conclusion, manipulation of the diet of lactating mice can strongly and rapidly affect BM FA composition, in particular of n-6 LA and
n-3 LCP. Our present findings will facilitate mechanistic studies on the programming of adult metabolic health by dietary FA in the early postnatal period
via direct and selective manipulation of the maternal diet.

Key words: Dietary fat quality: Milk fatty acid composition: Mouse models

Infants derive dietary fatty acids (FA) from either human
milk or infant milk formula. In this early period of life, dietary
lipids are the main source of energy (about 50 % energy) and
the main supplier of fat-soluble vitamins and the essential FA
linoleic acid (LA; 18 : 2n-6) and α-linolenic acid (ALA; 18 :
3n-3). The latter FA are precursors for the long-chain PUFA
(LCP; C20–C24) arachidonic acid (ARA; 20 : 4n-6), EPA

(20 : 5n-3) and DHA (22 : 6n-3), constituents of biological
membranes and precursors for eicosanoid biosynthesis(1).
The FA composition of infant milk formula is constant and

relatively uniform to adhere to (inter)national legislation(2,3). In
Europe, the LA content of the different infant formulas must
range between 11 and 20 wt% of total FA according to the EU
Commission directive. ALA should range between 1 and 4 wt%

Abbreviations: ALA, α-linolenic acid; ARA, arachidonic acid; CTRL, control; FA, fatty acid; LA, linoleic acid; LCP, long-chain PUFA; LowLA, low linoleic acid; MCFA,
medium-chain fatty acid; n-3LCP, n-3 long-chain PUFA; PN, postnatal day.
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and the LA:ALA ratio between 5 and 15. The addition of LCP
is recommended by most authorities including the European
Union and WHO, but limits are currently set to maximal 1
wt% for n-3 LCP and 2 wt% n-6 LCP(4). DHA content may
not exceed ARA content(4).
The FA composition of infant formulas has been based on

analysis of the FA composition of human milk and, for LCP
content, on data concerning infant LCP status and on func-
tional outcome such as growth and visual acuity(5).
Interestingly, however, human milk FA composition and con-
tent are not very constant: human milk lipid content and FA
composition are affected by maternal diet and body compos-
ition, stage of lactation (colostrum, transitional or mature
milk), interval between feeds during 24 h and volume ingested
per feed, and, finally, lipid content even changes during a sin-
gle feed (fore- v. hind-milk)(6–8). The variation of human milk
lipid composition is related to the origin of milk FA. Milk FA
can originate from recent dietary FA intake, mobilised from
maternal adipose tissue depots, or synthesised endogenously
in the liver (i.e. de novo lipogenesis, from glucose and other diet-
ary precursors)(9). FA up to a chain length of fourteen carbon
atoms (C14) are largely synthesised de novo in the mammary
gland(10,11). Approximately 50 % of FA with a chain length
of sixteen carbon atoms (C16) is synthesised in the mammary
gland and 50 % is derived from dietary C16, mobilised from
adipose tissue or synthesised in other tissues, specifically the
liver. FA with a chain length of eighteen carbon atoms
(C18) and longer are derived from circulating plasma lipids,
mainly chylomicrons and VLDL, either originating from
maternal fat stores or recent dietary intake(9,12). Studies with
stable isotopes indicate that up to approximately 30 % of
the milk LA and LCP are of dietary origin(12,13).
The marked increase in dietary LA and decrease in n-3 LCP

intake over the last decades(14,15) is reflected in human milk FA
composition(16) and translated to contemporary infant milk
formula FA composition(17). This increase in LA intake has
been hypothesised to induce adverse nutritional programming
during lactation, thereby contributing to the current high glo-
bal obesity incidence(16,18,19). In contrast, a high n-3 LCP
exposure in early life has been considered beneficial for later-
life body composition and metabolic phenotype develop-
ment(20–22). In other words, dietary FA composition in early
postnatal life is considered to modulate growth and develop-
ment and ultimately to affect later-life metabolic health(18).
Yet, proof of causal relationships of early FA intake on later
metabolic life is still rather scarce.
In order to establish the role of different dietary FA in post-

natal life on adult body composition and metabolic phenotype,
it would be helpful to modulate dietary FA intake of pups,
without inducing stress by artificial feeding. We reasoned
that the most natural way to modulate dietary FA intake of
pups would be via changing the milk FA composition. In
the present study we aimed to establish whether and to what
extent FA composition of the maternal diet during lactation
affects FA composition of murine breast milk. In order to pre-
vent the effects of the maternal diets on the pups mediated via
the placenta, we exposed dams to diets with different FA com-
positions after delivery, i.e. from postnatal day (PN) 2

onwards. Using different diets fed to the dams, we could
address the effects and kinetics of manipulation of medium-
chain FA (MCFA), of LA and ALA, and of n-3 LCP on
milk FA composition.

Methods

Animals and procedures

All experimental procedures were approved by the Animal
Experimental Committee (DEC consult) and complied with
the principles of good laboratory animal care, in line with
the ARRIVE guidelines for animal experimentation. Mice
were conventionally housed in a temperature- and humidity-
controlled room (21 ± 2 °C and 50 ± 5 %, respectively) on a
12 h light–dark cycle with lights on at 06·00 hours. Food
(American Institute of Nutrition (AIN)-93-compliant semi-
synthetic chow) and water were available ad libitum.
Female multiparous C57/BL6 mice were obtained from the

breeding facility of Harlan Laboratories (Horst) and mated
with males of the same strain. Males were introduced in the
home cage of two females and removed from the cage after
3 d. After 2 weeks, females were checked for pregnancy and
housed individually. On PN2, the dams were assigned to
one of the five experimental diets, each containing 10 wt%
fat (Table 1; four or five litters per diet). Litters (five to ten
pups per litter) were not culled and left undisturbed to assure
sufficient milk yield for subsequent analyses. Milk samples
were taken three times during the lactation period. Dams
and pups were anaesthetised (isoflurane–N2O–O2) and killed
with cervical dislocation after blood sampling through heart
puncture at PN28. Blood samples were collected in
K3-EDTA-coated 1 ml microtubes (Greiner Bio-one).
Erythrocytes of male pups were obtained by centrifugation
at 1350 g for 12 min at 4 °C (Biofuge fresco; Heraeus), super-
natant fractions were removed and erythrocyte samples were
stored at –80 °C until FA analysis. Samples were exclusively
collected from male pups, because planned studies at our
laboratory concerning metabolic programming by postnatal
dietary lipids involved only long-term follow-up of the male
offspring.

Diets

Diets were AIN-93-compliant(23) and hence comprised 18 wt%
protein, 60 wt% carbohydrates, and 5 wt% cellulose. All diets
contained 10 wt% fat. FA composition of the diets was based
on the human diet distribution of SFA, MUFA and PUFA,
with 42 wt% SFA, 41 wt% MUFA and 17 wt% PUFA
(Table 1). FA composition of the experimental diets varied
due to the use of different oil blends comprised of vegetable
and fish oils. Litters were exposed to either a control (CTRL)
diet, with a FA composition comparable with that of infant
milk formula, a diet high in MCFA (8 : 0–12 : 0; 21 wt% of
total FA, 55 % increase compared with CTRL), a diet with
high-n-3 long-chain PUFA (n-3LCP; 5 wt% DHA of total
FA, 1·2 wt% EPA of total FA; this diet also contained a low
amount of the n-6 LCP ARA: 0·28 wt%), a diet with 57 %
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reduced LA (LowLA; 6·4 wt% of total FA) and a diet combin-
ing high n-3LCP and high MCFA (n-3LCP/MCFA). Table 1
shows the FA composition of the CTRL and experimental
diets according to recipe as calculated by the Department of
Processing and New Technologies of Nutricia R&D.
Analysis of the feeds for FA composition did not show any sig-
nificant deviations from calculated recipes.

Milk collection

Milk samples (30–550 μl) were obtained three times during the
second week of lactation from dams with litters consisting of
five to ten pups: on PN7–9, PN10–12 and PN13–15. Dams
were separated from their litters for at least 3 h; litters were
kept warm on a temperature-controlled surface. At 10 min
after a subcutaneous injection with 0·3 ml oxytocin (1 IU/
ml; Eurovet Nederland), dams were milked using an adjusted
human lactation pump. Milking occurred at a fixed time
(between 10·00 and 12·00 hours) to avoid diurnal rhythm con-
founding, and took about 10 min, after which dams were
returned to their litters. Milk samples were frozen (–80 °C)
until analysis for FA composition.

Fatty acid analysis

Lipid FA composition in milk and erythrocytes was deter-
mined after lipid extraction according to Bligh & Dyer(24).
Milk samples (10 μl) or erythrocytes (200 μl) were transferred
to glass tubes, 1 ml EDTA (1 %) solution, 2·2 ml methanol
and 1 ml dichloromethane were added and vortexed for at
least 5 min. Subsequently, 1 ml EDTA solution and 1 ml
dichloromethane were added and the tube was vortexed
again for 5 min. Tubes were centrifuged at about 2000 g for
10 min. Subsequently, 400 μl of the bottom (dichloromethane)
layer was collected and transferred to another, high-quality
glass tube and evaporated. Upon addition of 2 ml methanol
and 40 μl concentrated H2SO4, tubes were placed in a heating
block at 100 °C for 1 h. To the cooled tubes 2 ml hexane and

subsequently 0·5 ml 2·5 m-NaOH were added, whereupon
tubes were vortexed for 2 min. The top layer (hexane) was
transferred to a new tube and evaporated. Residues were
reconstituted in 200 μl iso-octane and FA composition was
analysed on a gas chromatograph equipped with a flame ion-
isation detector. Specific FA levels are expressed as percentage
of total FA, calculated as AUC of known and identified GC
peaks.

Statistical analyses

All data are expressed as means with their standard errors.
Statistical analyses were performed using SPSS 12·0·1 (SPSS
Benelux). Repeated-measures ANOVA was performed to ana-
lyse effects of experimental diets on milk composition with
time (PN7–9, PN10–12, PN13–15) as the within-subject fac-
tor and diet (CTRL, MCFA, n-3LCP, n-3LCP/MCFA and
LowLA) as the between-subject factor. Effects of experimental
diet on male pup erythrocyte FA were analysed by means of
univariate ANOVA. Post hoc analyses of significant main diet
effects and time × diet interactions were performed using mul-
tiple comparisons with Fisher’s least significant difference
correction.

Results

Change in milk fatty acid composition due to maternal diet

Our primary aim was to determine to what extent FA compos-
ition of the maternal diet during lactation affects the milk FA
composition in mice from PN7–9 onwards. Figs 1 and 2 depict
the correlation between specific dietary and milk FA at PN7–9.
Interestingly, increasing the dietary MCFA content by 50 %
compared with the CTRL diet did not affect the milk MCFA
content (Fig. 1(a)). The approximate 2·5-fold variation in diet-
ary MCFA content for the dams (between about 8 and 22 wt
%) was associated with a stable, around 15 % milk MCFA con-
tent. The results were quite different for LA and ALA. Milk LA
closely reflected dietary LA content (Fig. 1(b)). The 57 %

Table 1. Dietary fatty acid composition of the experimental diets (g/100 g fat)

Diet

FA composition Abbreviation CTRL LowLA MCFA n-3 LCP n-3 LCP/MCFA

Medium-chain fatty acids (8 : 0–12 : 0) MCFA 13·6 15·7 21·5 8·6 21·5
Docosahexaenoic acid (22 : 6n-3) DHA 0·0 0·0 0·0 5·0 5·0
Eicosapentaenoic acid (20 : 5n-3) EPA 0·0 0·0 0·0 1·2 1·2
Arachidonic acid (20 : 4n-6) ARA 0·0 0·0 0·0 0·3 0·3
Linoleic acid (18 : 2n-6) LA 14·8 6·4 14·3 11·9 11·8
α-Linolenic acid (18 : 3n-3) ALA 2·6 1·6 2·6 1·1 2·0
Saturated fatty acids (8 : 0–24 : 0) SFA 38·8 41·8 38·8 36·3 36·4
Monounsaturated fatty acids (16 : 1–24 : 1) MUFA 38·6 41·9 39·2 36·7 35·8
Polyunsaturated fatty acids (C18–C24) PUFA 17·4 8·0 16·9 20·0 20·8
Long-chain PUFA (C20–C24) LCP 0·0 0·0 0·0 6·5 6·5

C18 n-6:n-3 5·7 4·1 5·5 11·1 5·9
LCP n-6:n-3 0·0 0·0 0·0 0·04 0·04
Total n-6 14·8 6·4 14·3 12·2 12·1
Total n-3 2·6 1·6 2·6 7·8 8·7
Total n-6:n-3 5·7 4·1 5·5 1·6 1·4

CTRL, control.
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reduction of dietary LA in the LowLA group compared with
the CTRL group (6·4 v. 14·8 wt%, respectively) resulted in a
45 % lower milk LA content (3·7 v. 6·8 wt% in the LowLA
and CTRL groups, respectively; P< 0·001). Maternal ALA
content also strongly influenced that of ALA in milk, in an
apparent linear fashion (Fig. 1(c); P< 0·001). To address the
effect of maternal LCP, we supplemented diets with 5 wt%
DHA, 1·2 wt% EPA and 0·28 wt% ARA (the n-3LCP and
n-3LCP/MCFA diet groups). The increase in DHA and
EPA in the diet of the lactating dams corresponded with sig-
nificantly higher levels of these FA in the milk. Milk DHA con-
tent increased by 35 % in dams fed n-3LCP and n-3LCP/
MCFA, compared with dams fed either the CTRL, MCFA

or LowLA diet (Fig. 1(d); P< 0·001). Interestingly, lowering
LA increased milk DHA despite a concomitant decrease in
ALA in this diet to obtain a LA:ALA ratio of 5 (P< 0·001).
Milk EPA content even doubled, from 0·16 % to 0·33 %, in
dams fed n-3LCP and n-3LCP/MCFA, compared with dams
fed either the CTRL, MCFA or LowLA diet (P< 0·001,
Fig. 1(f)). In contrast to the n-3 LCP DHA and EPA, a higher
dietary content of the n-6 LCP ARA decreased milk ARA
levels (Fig. 1(e)) from 0·67 % in the milk of CTRL dams com-
pared with 0·52 % and 0·62 % in the milk of n-3LCP and
n-3LCP/MCFA dams (P< 0·001). Milk ARA content was
lower in LowLA dams (0·54 %) than in CTRL dams (0·67 %;
P= 0·018). The dietary C18 n-6:n-3 ratio was kept rather similar

Fig. 1. Effect of maternal dietary fatty acid (FA) intake in lactating mice on milk FA composition: correlations of mouse milk and dietary medium-chain FA (MCFA) (a);

linoleic acid (LA) (b); α-linolenic acid (ALA) (c); DHA (d); EPA (e); and arachidonic acid (ARA) (f). Concentrations in milk at postnatal day (PN) 7–9 of dams fed a

control (○), MCFA (Δ), n-3 long-chain PUFA (▲), n-3 long-chain PUFA/MCFA (█) or low-LA (☐) diet between PN2 and PN28. Concentrations are represented as wt%

of total FA. Values are means (n 5 for all groups), with standard errors represented by vertical bars.
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between experimental diets, except for an approximately twofold
higher ratio in the n-3LCP-containing diet (Fig. 2(a)). The latter
diet also strongly increased the C18 n-6:n-3 ratio in the milk FA
(P< 0·001; Fig. 2(a)). The LCP n-6:n-3 ratio in milk was higher
in the two LCP-containing diets, comparable with the results of
the C18 n-6:n-3 ratio (Fig. 2(b)). The total n-6:n-3 ratio in the
diets was manipulated more evenly across the experimental
groups. Fig. 2(c) shows that the milk total n-6:n-3 ratios strongly
(and linearly) correlated with those in the maternal diets.

Time-dependent changes in milk fatty acid composition

The relative milk SFA content, which accounted for approxi-
mately 50 % of the total FA in all groups, increased by 5–10 %
from about 48 % to about 55 % from PN7 to PN15 in all
groups (P < 0·001; data not shown). The relative increase in
SFA coincided with a slight, but significant, decrease in milk
levels of MUFA (approximately 40 % of total FA) and
PUFA (< 10 % of total FA; each –2 to –5 %, P < 0·001,
data not shown). These effects were observed in all experi-
mental groups, and thus seemed independent of the maternal
dietary FA composition.
In all experimental groups, milk MCFA increased signifi-

cantly by 30 % between PN7–9 and PN13–15 (P < 0·001;
Fig. 3(a)). In contrast, milk LA decreased in all groups between
PN7 and PN15 (P < 0·001; Fig. 3(b)). Milk ALA content was
rather constant over the time period studied (P = 0·333 l;
Fig. 3(c)), whereas the kinetics of DHA were mixed (P =
0·881; Fig. 3(b)). Finally, milk EPA content remained constant
from PN7 to PN15 (P= 0·633) and milk ARA decreased by
about 28 % from PN7 to PN15 (P < 0·001; data not shown).

Effect of milk and dietary fatty acid composition on
erythrocyte fatty acid composition in pups

Finally, we determined to what extent the milk composition at
PN13–15 and the continued dietary manipulations after lacta-
tion from PN16 onwards influenced erythrocyte FA compos-
ition of the male pups at PN28 (Figs 4 and 5). The FA
composition of the erythrocyte membrane consisted of about
45 % SFA, about 22 % MUFA and about 33 % PUFA for all
experimental groups. Of the dietary FA that differed between
the experimental diets, LA, DHA and ARA were the main
erythrocyte membrane constituents with 6–8 %, 6–13 % and
7–14 % of total FA in the experimental groups, respectively.
MCFA ( <0·1 %) and ALA (0·1–0·2 %) were barely incorpo-
rated in the erythrocyte membrane. Although to a lesser extent,
the same applied for EPA: only 0·5–2·7 % of the total erythro-
cyte FA was composed of EPA. Comparable with the results on
dietary and milk MCFA composition (Fig. 1(a)), erythrocyte
MCFA content did not significantly correlate with milk MCFA
(Fig. 4(a)), or with dietary MCFA (Fig. 5(a)). In contrast, the dif-
ferences in milk LA (Fig. 4(b)) and in dietary LA (Fig. 5(b))
between the experimental groups were reflected in male pup
erythrocyte LA content at PN28. Despite low absolute levels,
similar correspondences were observed for ALA (Figs 4(c)
and 5(c)). Erythrocyte DHA content correlated with the DHA
content of milk and the maternal diet (Figs 4(d) and 5(d)) simi-
larly as erythrocyte EPA content did (Figs 4(e) and 5(e)). Milk
ARA content was partly reflected in erythrocyte ARA: CTRL
and MCFA groups had a higher milk ARA compared with the
LowLA group (Fig. 4(f)). However, the LowLA group had com-
parable milk ARA as the n-3LCP and n-3LCP/MCFA groups,
whereas erythrocyte ARA was lower in the latter two groups
(Fig. 4(f)). As stated above, dietary ARAwas inversely correlated
with erythrocyte ARA. Correspondingly, erythrocyte ARA was
lower in n-3LCP and n-3LCP/MCFA pups concurrent with a
higher dietary ARA content in these groups (Fig. 5(f)).

Fig. 2. Effect of maternal dietary fatty acid (FA) intake in lactating mice on milk

FA composition: correlations between linoleic acid:α-linolenic acid ratio (LA:

ALA) (a); long-chain PUFA (LCP) n-6:n-3 ratio (b); and total n-6:n-3 ratio (c)

in milk at postnatal day (PN) 7–9 compared with dietary ratios of dams fed a

control (○), medium-chain FA (MCFA) (Δ), n-3 LCP (▲), n-3 LCP/MCFA (█)

or low-LA (☐) diet between PN2 and PN28. Concentrations are represented

as wt% of total FA. Values are means (n 5 for all groups), with standard errors

represented by vertical bars.
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Discussion

We aimed to determine whether changing the FA composition
of the maternal diet during lactation in mice allows for a rapid
and specific manipulation of milk FA composition and thus of
the dietary FA supply to the pups. This approach would select-
ively change the FA quality in the early diet of mice in a non-
stressful manner. Our data clearly show that in particular the
LA, ALA and n-3 LCP content of the milk can be rapidly
and specifically manipulated by the maternal diet composition
(i.e. within 1 week), and further indicate that these short-term,
relatively modest dietary changes are propagated into the
erythrocyte FA composition of the pups after weaning. In con-
trast, milk MCFA content appears very resistant to manipula-
tion of the dietary FA composition. These data clearly indicate
that modulating dietary PUFA intake by newborn pups is feas-
ible via postnatal alterations in the maternal diet and strongly
support the concept that this approach can be used in
mouse models to study nutritional programming.
The resistance of milk MCFA content against the manipula-

tion of the dietary FA composition was evident across a wide
range of maternal MCFA contents. The lack of effect of diet-
ary MCFA manipulations are probably explained by the fact
that milk MCFA are mainly synthesised de novo from carbohy-
drate and SCFA precursors(10). Indeed, studies in rats(25,26) and
dairy cows(27) have demonstrated that the dietary carbohy-
drate:lipid ratio determines MCFA content in milk: a higher
carbohydrate content increases de novo MCFA synthesis in
the mammary gland and reduces the uptake of longer-chain

FA (LCFA;≥ C18) from plasma, whereas a high-fat diet
decreases mammary MCFA synthesis in rats and human sub-
jects(26–29). Novak & Innis(30) have suggested that the availabil-
ity of plasma LCFA determines MCFA synthesis, because
lowering plasma TAG due to a low-fat or high-n-3LCP diet
increases milk MCFA content in rats. Additionally, the FA
composition of these high-fat diets influenced the extent by
which MCFA synthesis was suppressed in rats; PUFA were
more effective than MUFA whereas SFA were least effect-
ive(31). In accordance, milk MCFA content in lactating
women on a low-fat, high-carbohydrate diet was significantly
higher than milk MCFA content of women on a high-fat, low-
carbohydrate diet(32). Indeed, MCFA biosynthesis pathways in
the human mammary gland are similar to those in rodents(10),
but human MCFA synthesis is quantitatively low, probably
related to the considerable higher lipid contribution in the
human diet(10,29). Our present observations indicate that inves-
tigating the role of early-life MCFA in the programming of
later-life metabolic health in an animal model would either
need artificial feeding of pups during lactation, an increase in
the dietary carbohydrate:lipid ratio of the maternal diet during
lactation, or would implicate a start of the dietary intervention
after the lactation period. Modulating milk MCFA by exposure
of lactating mice to a high-carbohydrate/low-fat v. low-
carbohydrate/high-fat diet might be most effective.
However, this change in dietary macronutrient composition
might affect total lipid content of the milk(33–35), although
studies in rats showed that a low-fat/high-carbohydrate diet

Fig. 3. Changes in milk fatty acid (FA) composition over time in lactating mice fed different dietary FA composition. Milk medium-chain FA (MCFA) (a), linoleic acid

(LA) (b), α-linolenic acid (ALA) (c) and DHA (d) concentrations during lactation (from postnatal day (PN) 7to PN15) of dams fed a control (○), MCFA (Δ), n-3 long-

chain PUFA (LCP) (▲), n-3 LCP/MCFA (█) or low-LA (☐) diet between PN2 and PN28. Concentrations are represented as wt% of total FA. Values are means (n 5 for

all groups), with standard errors represented by vertical bars.
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increased the percentage of MCFA, but did not affect total FA
content of rat milk(30,36).
In contrast to MCFA, modulation of dietary n-6 and n-3 FA

in dams was highly effective in changing milk n-6 and n-3 FA
content, including LA, ALA, DHA, EPA and (although nega-
tively) ARA. These findings were in accordance with observa-
tional data in human volunteers, showing that 42 % of the
variation observed in milk PUFA in the first month of lacta-
tion correlated with their variations in dietary PUFA intake(37).
In addition, a significant increase in milk ALA, LA, EPA and
DHA was found in lactating women within 6 h after ingestion
of a single bolus of various vegetable and fish oils, which cor-
related with the FA composition of the respective oils(38). In
our present study, lowering dietary LA effectively reduced
milk LA and increased DHA. The latter might represent
changes in the conversion rate of ALA to DHA due to
lower dietary LA levels. Demmelmair et al.(13,39) demonstrated
that 23 to 30 % of milk LA was directly derived from dietary

LA. A rat study with an experimental design comparable with
our present study showed that dietary LA supplementation of
rat dams from PN2 to PN15 increased milk LA at PN15(40).
Taken together these data suggest that the observation for
translation of dietary LA levels in milk is rather generic and
species independent.
The LowLA diet not only decreased LA content in the milk

but also milk ARA content. This suggests that a quantitative
part of the (maternal) dietary LA is metabolised before it is
transferred as ARA into the milk. In contrast, studies with
stable isotopes in human subjects indicate that the amount
of milk ARA derived directly from LA synthesis is very lim-
ited(6). Also, ARA content was comparable between women
on a low-fat-diet v. an adequate-fat diet, and using a
13C-labelled LA tracer, only 0·01 % could be recovered
from the milk ARA fraction, indicating that the majority of
the milk ARA was obtained from pre-existing maternal fat
stores(41). Since rodents have a higher LCP biosynthesis

Fig. 4. Effect of milk fatty acid (FA) composition during lactation on male pup FA status at weaning: medium-chain FA (MCFA) (a); linoleic acid (LA) (b); α-linolenic
acid (ALA) (c); DHA (d); EPA (e); and arachidonic acid (ARA) (f) concentration of erythrocytes of male pups at postnatal day (PN) 28 (n 4–9) compared with milk

MCFA, LA, ALA, DHA and ARA at PN13–15 (n 5) of dams fed a control (○), MCFA (Δ), n-3 long-chain PUFA (LCP) (▲), n-3 LCP/MCFA (█) or low-LA (☐) diet

between PN2 and PN28. Concentrations are represented as wt% of total FA. Values are means, with standard errors represented by vertical bars.
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capacity than human subjects(31,42–44), this may explain the sig-
nificant effect of low LA on milk ARA content in our mouse
study.
Our data showed that supplementation of DHA and EPA

resulted in a 6-fold increase in milk DHA and EPA compared
with the CTRL diet. Milk DHA and EPA levels correspond
with approximately 30 and 28 % of dietary DHA and EPA
levels, respectively. These percentages are in accordance with
human intervention studies showing that 30 % of milk LA
and LCFA could be derived from dietary sources, whereas
60 % was derived from maternal lipid stores(12,13). The
6 weeks of dietary supplementation of ALA and n-3 LCP dur-
ing lactation, with similar LA and ARA content of the CTRL
and supplemented diet, increased milk ALA and DHA and did
not affect milk LA and ARA content(45). Supplementation of
200 mg DHA to lactating women for 2 weeks doubled milk
DHA content, without any effect on milk ARA. The use of

a stable isotope tracer indicated that approximately 20 % of
dietary DHA was secreted into the milk(46).
In contrast to the C18 and the n-3 LCP FA, results were dif-

ferent for ARA. Feeding dams the n-3LCP or the n-3LCP/
MCFA diet reduced milk ARA, compared with the maternal
CTRL diet. This observation was counterintuitive, since the
two experimental diets were supplemented with 0·28 %
ARA, whereas the other diets did not contain any ARA. We
speculate that this unexpected decrease in ARA may originate
from the dietary DHA and EPA that were co-supplemented.
Dietary DHA and EPA are known to decrease plasma and tis-
sue ARA(47), presumably because incorporation of n-6 and n-3
LCP in phospholipids depends on the dietary intake(48). Also,
dietary DHA and EPA inhibit Δ5 and Δ6 desaturase which
inhibits the ARA synthesis from LA(49). In order to determine
whether the reduced ARA is indeed caused by the concurrent
high dietary n-3 LCP, we would have to supplement ARA in

Fig. 5. Effect of dietary fatty acid (FA) composition from postnatal day (PN) 2 to 28 on FA status of male pups at weaning: medium-chain FA (MCFA) (a); linoleic acid

(LA) (b); α-linolenic acid (ALA) (c); DHA (d); EPA (e); and arachidonic acid (ARA) (f) concentrations of erythrocytes of male pups at PN28 (n 4–9) compared with

dietary MCFA, LA, ALA, DHA, EPA and ARA of a control (○), MCFA (Δ), n-3 long-chain PUFA (LCP) (▲), n-3 LCP/MCFA (█) or low-LA (☐) diet fed to litters between

PN2 and PN28. Concentrations are represented as wt% of total FA. Values are means, with standard errors represented by vertical bars.
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an isolated fashion, which we did not investigate in the present
study. Alternatively, the negative relationship between maternal
diet ARA and milk ARA may be a species-specific effect.
Increasing dietary ARA, despite high dietary DHA and
EPA, resulted in increased milk ARA in lactating women,
for instance(50). These changes in diet and milk LCP content
were also strongly correlated with maternal erythrocyte LCP
content(50).
The net balance of n-6 and n-3 PUFA in tissues of either

dams and their offspring is determined by dietary intake of
LA and ALA as well as of intake of their respective LCP,
because LA and ALA depend on the same set of elongases
and desaturases for conversion to their respective LCP, and
because dietary LCP inhibit endogenous LCP synthesis. For
instance, supplementation of ALA to a high-LA diet may
have very limited effects on n-3 LCP status and metabolic
health, because LA inhibits both n-3 LCP synthesis from
ALA and incorporation in biological membranes(16). To use
the concept of maternal diet manipulation in mouse models
for nutritional programming, it needs to be demonstrated
that the dietary manipulation is propagated into the tissues
of the growing pups. Indeed, dietary and milk FA composi-
tions changed the erythrocyte FA composition of the male
pups at PN28. Most evident effects of experimental maternal
diet were found in DHA and ARA, and to a lesser extent in
LA. We suggest that the explanation for this specificity relates
to the fact that these PUFA are preferentially incorporated in
membrane PL and are thus relatively abundant in biological
membranes. The n-3 essential FA ALA is neither incorporated
in membranes to a large extent, nor stored in adipose tissue
depots. A considerable amount is oxidised to generate energy
rather than being substrate for DHA and EPA conversion(9).
In conclusion, our data show that short-term dietary manip-

ulations of n-6 and n-3 essential FA and LCP are rapidly and
specifically translated in maternal milk. These results indicate
that modulation of PUFA supply to the pups during lactation
by changing maternal dietary PUFA content is effective and
can be used in mouse studies of nutritional programming. If
the intention would be to investigate metabolic programming
effects of MCFA, alternative dietary or artificial feeding meth-
odologies seem warranted.
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