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Influence of exogenous growth hormone
administration on circulating
concentrations of α-klotho in healthy and
chronic kidney disease subjects: a
prospective, single-center open
case-control pilot study
Aaltje Y. Adema1, Camiel L. M. de Roij van Zuijdewijn1, Joost G. Hoenderop2, Martin H. de Borst3, Piet M. Ter Wee1,
Annemieke C. Heijboer4, Marc G. Vervloet1,5* and for the NIGRAM consortium,

Abstract

Background: The CKD-associated decline in soluble α-Klotho (α-Klotho) levels is considered detrimental. Some
studies suggest a direct induction of α-Klotho concentrations by growth hormone (GH). In the present study, the
effect of exogenous GH administration on α-Klotho concentrations in a clinical cohort with mild chronic kidney
disease (CKD) and healthy subjects was studied.

Methods: A prospective, single-center open case-control pilot study was performed involving 8 patients with mild
CKD and 8 healthy controls matched for age and sex. All participants received subcutaneous GH injections
(Genotropin®, 20 mcg/kg/day) for 7 consecutive days. α-Klotho concentrations were measured at baseline, after
7 days of therapy and 1 week after the intervention was stopped.

Results: α-Klotho concentrations were not different between CKD-patients and healthy controls at baseline (554 (388–659)
vs. 547 (421–711) pg/mL, P= 0.38). Overall, GH therapy increased α-Klotho concentrations from 554 (405–659) to 645
(516–754) pg/mL, P< 0.05). This was accompanied by an increase of IGF-1 concentrations from 26.8 ± 5.0 nmol/L to 61.7 ±
17.7 nmol/L (P< 0.05). GH therapy induced a trend toward increased α-Klotho concentrations both in the CKD group (554
(388–659) to 591 (358–742) pg/mL (P= 0.19)) and the healthy controls (547 (421–711) pg/mL to 654 (538–754) pg/mL
(P= 0.13)). The change in α-Klotho concentration was not different for both groups (P for interaction = 0.71). α-Klotho
concentrations returned to baseline levels within one week after the treatment (P< 0.05).

Conclusions: GH therapy increases α-Klotho concentrations in subjects with normal renal function or stage 3 CKD. A larger
follow-up study is needed to determine whether the effect size is different between both groups or in patients with more
severe CKD.

Trial registration: This trial is registered in EudraCT (2013–003354-24).
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Background
The excessively high cardiovascular (CV) risk in patients
with chronic kidney disease (CKD) is only partially explained
by the higher prevalence of traditional risk factors [1]. There-
fore, other CKD-related factors are believed to play a causal
role, such as deregulation of the fibroblast growth factor 23
(FGF23)-Klotho-vitamin D axis [2]. The anti-aging α-Klotho
protein was discovered in 1997 following manipulation of its
gene [3]. α-Klotho is predominantly synthesized in the distal
tubular epithelial cells of the kidneys and in lower levels in
the proximal tubule [4]. The extracellular domain is cleaved
and released into extracellular fluid, including blood, cere-
brospinal fluid and urine [3]. As CKD progresses, α-Klotho
concentrations decrease [5]. Lower α-Klotho concentrations
are associated with progressive CKD [5], higher prevalence
of cardiovascular disease [6], arterial stiffness [7] and vascular
calcification [8]. Animal studies showed that restoration of
α-Klotho reduces oxidative stress, attenuates hypertension,
ameliorates cardiac hypertrophy and prevents endothelial
dysfunction [9–12]. Therefore, increasing α-Klotho concen-
trations may be a legitimate goal in CKD patients in order to
slow down or even reverse these processes. However, clinical
long-term exogenous supplementation of the relatively large
α-Klotho-protein (130 kDa) might be an option for the far
future in human and therefore upregulation of the endogen-
ous production of α-Klotho might be more feasible, at least
in the predialysis phase, as the kidney is the primary produc-
tion site of α-Klotho. Several recent studies assessed different
experimental options to up-regulate endogenous α-Klotho
[13–21]. In humans, the use of angiotensin-receptor blockers
(ARBs) and vitamin D were shown to increase α -Klotho
concentrations to some extend [21, 22]. However, despite
the widespread use of vitamin D en ARBs in patients with
CKD, the frequency of CV events and mortality in patients
with CKD remains high. Recent data showed a complex rela-
tionship between growth hormone (GH) and α-Klotho con-
centrations [23]. Whether IGF-1 or GH directly affects
α-Klotho concentrations is still unknown, although small
pilot studies showed that GH replacement therapy in both
children and adults with GH deficiency increased α-Klotho
concentrations [24, 25]. However, the effect of administration
of exogenous GH on the α-Klotho concentration in subjects
with CKD and healthy controls is unknown.
In the present study, the effect of subcutaneous GH

therapy on α-Klotho concentrations in subjects with or
without mild CKD is investigated in a prospective,
single-center open-label case-control pilot study.

Methods
Participants and intervention
In total, 18 subjects (12 men and 6 women) with or without
CKD stage 3 (creatinine clearance of 30–60 mL/min/1.73m2

according to the Chronic Kidney Disease Epidemiology
Collaboration (CKD-EPI)) were included in the period of

January 2015 until March 2016 from the outpatient clinic of
nephrology in the VU medical center. Subjects were matched
for age and sex, to allow an adequate comparison between
those with and without CKD. Exclusion criteria were the use
of immunosuppressive agents, GH suppletion, oestrogens,
corticosteroids, androgens, or anabolic steroids. Further-
more, subjects with any pituitary disease, history of malig-
nancy, respiratory disorder or obstructive sleep apnoea
syndrome, known thyroidal disease, active vasculitis, heart
failure, severe hepatic disease, chronic systemic infections,
uncontrolled hypertension, diabetes mellitus, malnutrition,
autosomal dominant polycystic kidney disease, single kidney
or a BMI > 30 kg/m2 were also excluded. All included sub-
jects received subcutaneous GH injections (Genotropin®, 20
mcg/kg/day) for 7 consecutive days. The primary end point
was the change in α-Klotho concentrations after 7 days of
GH-administration. Secondary endpoint was the potential
difference in change of α-Klotho concentration between pa-
tients with CKD and healthy subjects.

Assays
Non-fasting blood samples and first morning spot urine were
drawn at baseline, after 7 days of treatment and 1 week after
the treatment stopped. Collected material was stored at −
80 °C until use. No additional freeze-thaw cycles were
needed. IGF-1 was measured in serum samples using an
immunochemiluminescent assay (Liaison, DiaSorin®). Con-
centrations of creatinine, phosphate, C-reactive protein, glu-
cose, albumin and calcium were measured in heparin
samples (Cobas, Roche Diagnostics). Urine creatinine, cal-
cium, phosphate and albumin were measured in first morn-
ing spot urine samples (Cobas, Roche Diagnostics).
Fractional excretion of phosphate was calculated using spot
urine samples. α-Klotho was measured in − 80 °C stored
heparin samples using a α-Klotho immunoassay (IBL inter-
national GmbH, Hamburg, Germany) with an intra-assay
variation of < 5% and an inter assay variation < 7.5% [26].
C-terminal FGF23 was measured in EDTA-plasma using
ELISA (Immutopics) [27] with an intra-assay variation of <
5% and an inter assay variation < 10%. Tubular maximal re-
absorption of phosphate normalized to GFR (TmP/GFR)
was used as an index of the renal threshold for phosphate
excretion, calculated from values in serum and spot urine ac-
cording to the nomogram by Walton and Bijvoet [28].

Statistical analysis
Baseline characteristics are shown as mean (standard devi-
ation), median (interquartile range (IQR)) or number (per-
centage), when appropriate. Normally distributed numerical
variables were compared using an unpaired T-test, non-
parametric data with a Mann-Whitney U test and categorical
variables by a Chi-square test. Longitudinal data were ana-
lysed with linear mixed models (LMM) with a random inter-
cept, a random slope or both, based on the lowest Aikaike’s
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Information Criterion. For all analyses, an autoregressive
covariance matrix was used. All model assumptions were
checked and not violated. To test whether the effect of
growth hormone administration on α-Klotho was different
for CKD patients or healthy controls, a LMM was fitted
with an interaction term between time and group. A
p-value < 0.05 was considered statistically significant. All
analyses were performed using IBM SPSS Statistics software
version 20 (IBM Inc., IL, USA) (Additional file 1).

Results
Characteristics study population
All subjects, except one tolerated the administration of GH
well. One male subject in the CKD subgroup discontinued
the study due to complaints of headache. Furthermore, 1
male subject in the healthy control subgroup was with-
drawn due to a serious adverse event (SAE) during the
study. This SAE, a hospital admission for pain and acute
kidney injury due to an obstructive kidney stone, was not
related to study procedures. Thus, data on 16 subjects were
analysed, 8 patients in the CKD-group and 8 in the healthy
control group. This study adheres to the CONSORT guide-
lines (Fig. 1). Mean age of the participants was 46 years old
(ranging from 25 to 59 years old). Mean eGFR in the
CKD-subgroup was 57 ± 17 mL/min/1.73 m2). As can be
seen in Table 1, baseline characteristics are comparable

between the two groups, except for eGFR by definition of
the groups.

IGF-1 concentrations
After 7 days of GH suppletion therapy (GHST), IGF-1
concentrations, as indicator of GH therapy bioactivity,
increased from 26.8 ± 5.0 nmol/L to 61.7 ± 17.7 nmol/L
(P < 0.05). Mean IGF-1 concentrations increased from
26.3 ± 2.8 nmol/L to 59.8 ± 20.5 nmol/L (P < 0.05) and
from 27.3 ± 6.8 nmol/L to 63.6 ± 15.6 nmol/L (P < 0.05)
in the CKD-group and healthy controls respectively. The
increase in IGF-1 concentrations was not different over
time between the CKD subgroup and the healthy con-
trols, (P for interaction = 0.71, Table 2).

Effect of subcutaneous growth hormone therapy on
circulating α-klotho concentrations
At baseline, α-Klotho concentrations were not statisti-
cally significant different between CKD-patients and
healthy controls (Table 1, p = 0.38). Median α-Klotho
concentrations increased from 554 (IQR 405–659) to
645 (IQR 516–754) pg/mL (P = 0.05). As can be seen by
Fig. 2a, the variability in response is rather high.
α-Klotho concentrations increased from 554 (IQR 388–
659) to 591 (IQR 358–742) pg/mL (P = 0.19) and from
547 (IQR 421–711) pg/mL to 654 (IQR 538–754) pg/mL

Fig. 1 CONSORT Flow Diagram
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(P = 0.13) in the CKD and the healthy subgroup respect-
ively. The difference in change of α-Klotho concentra-
tion was not statistically significant between the two
subgroups (p for interaction = 0.71). All α-Klotho con-
centrations returned to baseline levels within one week
after the treatment being stopped (Fig. 2a).

Figure 2: The effect of endogenous growth hormone
therapy on serum α-klotho and cFGF23 concentrations
Serum cFGF23, serum phosphate, urinary phosphate
excretion, TmP/GFR and PTH
Median of cFGF23 changed from 96.5 RU/mL (IQR:
80.3–120.5) to 126.0 RU/mL (IQR: 105.5–138.8; p < 0.05,
Fig. 2b). In the CKD subgroup, median cFGF23 changed
from 99.5 RU/mL (IQR: 77.3–127.3) to 132.5 (IQR:
112.0–138.8) (P < 0.05) and in healthy controls from 92.0
RU/mL (IQR: 80.3–105.3) to 114.0 RU/mL (IQR: 101.8–
137.8) (P < 0.05). The rate of change in cFGF23 concen-
trations was not different between the two subgroups (P
for interaction = 0.74, Table 2).
Serum phosphate concentrations, urinary phosphate

excretion, the TmP/GFR and PTH did not change sig-
nificantly in the entire cohort or both individual groups
(Table 2).

Discussion
The main finding of our study is that GH therapy in-
creases serum α-Klotho concentrations in subjects with
normal kidney function or stage 3 CKD. α-Klotho con-
centrations increased in both subgroups, although within
subgroups the increase did not reach statistical signifi-
cance, most likely due to small subgroup size.

These results are in line with previous studies showing
that GH therapy increases α-Klotho concentrations in
GH deficient, paediatric and adult patients [24, 25]. Al-
though the increment of α-Klotho concentrations was
more prominent in the small study group of Locher et
al.. However, they included GH-deficient subjects
whereas in the present study GH-sufficient subjects were
included. It is conceivable that an additional increment
of α-Klotho concentrations is more difficult to achieve if
IGF-1 concentrations are already sufficient.
Previous studies have convincingly shown that

α-Klotho concentrations decrease as kidney function de-
clines [29]. However, both α-Klotho and FGF23 concen-
trations in our patients of the CKD subgroup, which are
classified as mild-moderate CKD according to the
CKD-EPI were not significantly different from the
healthy controls at baseline. This underlines the litera-
ture that shows that eGFR loss and decrease of serum
α-Klotho concentrations do not parallel [30], and may
depend on the ELISA used [26]. Moreover, there is over-
sampling in the CKD-subgroup close to stage 2 CKD,
where soluble α-Klotho concentrations may be main-
tained in the normal range. Importantly, our study was
underpowered to make firm statements about differ-
ences between the two subgroups.
Our findings show that α-Klotho concentrations are

modifiable using administration of exogenous GH in a
clinical cohort of subjects with mild CKD and healthy
subjects. This increase may be of clinical relevance for
patients with CKD in terms of CKD progression and
cardiovascular risk as animal studies show that even
small increases in α-Klotho concentrations are protective

Table 1 Baseline characteristics of the participantsa

CKD stage III (n = 8) Healthy controls (n = 8) p for difference

Age (years) 46.9 ± 12.9 44.5 ± 11.4 0.70

Male, no. (%) 5 (62.5) 5 (62.5) 1.00

BMI (kg/m2) 23.5 ± 2.8 25.3 ± 2.9 0.23

Smokers, no. (%) 1 (12.5) 0 (0) 0.30

SBP (mmHg) 134 ± 13 133 ± 10 0.87

DBP (mmHg) 82 ± 11 78 ± 6 0.33

eGFR# (ml/min/1.73 m2) 57 ± 17 100 ± 8 < 0.01

IGF-1 (nmol/L) 26.3 ± 2.8 27.3 ± 6.8 0.71

Serum phosphate (mmol/L) 0.89 ± 0.16 1.01 ± 0.16 0.16

PTH (pmol/L) 7.3 ± 3.1 4.7 ± 1.2 0.05

25(OH)D3 (nmol/L) 70 ± 20 76 ± 30 0.69

cFGF23 (RU/mL) (median + IQR) 100 (77–127) 92 (80–105) 0.57

CRP < 10 (mg/L) 8 (100%) 8 (100%) n/a

Albumin (g/L) 38.3 ± 2.1 38.0 ± 2.3 0.82

α-Klotho (pg/mL) (median + IQR) 554 (388–659) 547 (421–711) 0.57
aValues are expressed as mean ± SD, unless specified otherwise. IQR interquartile range
bEstimated GFR expressed using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation
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for remnant kidney function and attenuates cardiovascu-
lar intermediate endpoints [13, 31–33]. Obviously, this
concept requires clinical studies to be confirmed.
Despite the reduced bioactivity of GH and IGF-1 ob-

served in CKD, there is a valid rationale for the use of GH
in this setting. Indeed, treatment with GH results in a de-
crease of serum IGFBP-1 concentrations and a marked in-
crease in serum insulin, IGF-1, IGFBP-3 and IGFBP-5
concentrations, which subsequently leads to a marked in-
crease in IGF-1 bioactivity [34, 35]. In a previous study ex-
ogenous GH therapy had no effect on all-cause mortality
and cardiovascular morbidity and mortality in haemodi-
alysis patients [36]. Although at that time its possible ef-
fect on α-Klotho was unknown. It is unlikely that major
increments of α-Klotho did occur in these patients with
end-stage kidney disease as the kidneys are the principal
source of α-Klotho [37]. Moreover, the study was termi-
nated early, none of the subjects completed the study and
follow-up was short. On the contrary, some small
short-term studies tested the effect of GH therapy in earl-
ier stages of CKD and noted that GH therapy significantly
improved LDL-cholesterol, phosphate and capillary blood
flow, however no significant effect was demonstrated on
intermediate endpoints, namely total peripheral vascular
resistance and cardiac output [38, 39]. It would be very in-
teresting to apply GH suppletion in well-powered studies
including patients with CKD stage 4 and 5, not on dialysis,
as well.
The absolute increase in α-Klotho concentrations in our

study population was modest. This is also exemplified by
the lack of robust effect on phosphate homeostatic parame-
ters, measured in our study, including serum phosphate
concentration and urinary excretion. The study design
however precludes concluding if this effect would have
been stronger with a longer duration or a higher dose of
administrated GH. Given the strong phenotypic similarity
between α-Klotho knockout models and CKD, and the
wide range of CKD-related pathologies that in experimental

studies can be attenuated by exogenous α-Klotho, add-
itional exploration is warranted of all options that upregu-
late endogenous α-Klotho, including GH therapy.
In agreement with other studies, our study showed

that cFGF23 increases after GH therapy [25, 40]. How-
ever, previous studies also reported an increase in serum
phosphate concentrations, which was not observed in
the present study. Therefore, the hypothesis from the
earlier studies that GH therapy induces FGF23 produc-
tion in response to increased serum phosphate concen-
trations is not confirmed in our study [25]. Besides a
stable serum phosphate concentration, phosphate excre-
tion did not change either, despite an increase in cFGF23
and a slight increase in α-Klotho level. The explanation
for a lack of effect on renal phosphate handling is not
obvious from our data, although one could speculate
that GH induced cleavage of tubular α-Klotho concen-
trations, leaving tubular cell deprived of α-Klotho, and
as such promoting FGF23 resistance. Data on the effect
of GH and IGF-1 on serum phosphate concentrations
are highly contradictory [41, 42]. Unfortunately, only
cFGF23 was measured in this study. However, the study
of Effthymiadou et al. in 23 children with a
GH-deficiency showed that both cFGF23 and iFGF23 in-
crease after GH administration [25].
Bianda et al. reported a significant increase of serum

1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) concentrations
after GH- or IGF-1 therapy [41]. Serum 1,25-(OH)2D3 is
known to upregulate FGF23 gene expression in bone and
consequent gives a rise in serum FGF23 concentrations [43–
47]. Therefore, the observed increase of serum cFGF23 con-
centrations might be explained by an assumed GH-induced
rise in serum 1,25-(OH)2D3 levels. Unfortunately, vitamin D
concentrations were measured only at baseline in this study.
Moreover, IGF-1 and GH treatment increase markers of
bone turnover like serum osteocalcin and carboxyterminal
propeptide of type 1 procollagen (PICP) as indicators of
osteoblast activity [41, 42]. Therefore, it is conceivable that

Fig. 2 Serum α-Klotho and cFGF23 concentrations of the subjects per visit
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GH has an indirect effect through IGF-1 on bone turn-
over and osteoblasts, one of the cell types, besides oste-
ocytes, that produce FGF23. It is unknown if the
potential beneficial effects of an increase of α-Klotho
concentrations can outweigh the assumed dismal ef-
fects of increased cFGF23 concentrations.
Besides the small sample size of this study, there are some

other limitations that need to be underlined. First, the
exclusion criteria for participants limit generalizability, in
particular for patients with more advanced CKD. Second,
the specificity of the IBL-assay used to measure α-Klotho
concentration is disputed [26, 48]. We did not use the
semi-quantitative precipitation-immunoblotting technique
as described by Barker et al., which probably has improved
specificity [29]. This method awaits external validation in a
different cohort and by different laboratories. Moreover, we
recently found that the ELISA used in our study performs
best among currently commercially available immunoassays
[26]. Unfortunately, we were not able to assess the influence
of GH therapy on membrane-bound α-Klotho due to the
absence of kidney biopsies in our study. Finally, a study of
longer duration is needed to determine the more long-term
effects of GH on α-Klotho concentrations in the CKD
population, and establish a dose-response effect. Our study
however was designed as a proof of concept to study the
modifiability of α-Klotho by GH.

Conclusions
In conclusion, exogenous GH therapy can induce a signifi-
cant increase in α-Klotho concentrations in subjects with
normal kidney function or stage 3 CKD. It is unknown if
this can also be accomplished in more advanced CKD.
Additional studies are necessary to study whether this in-
crease of α-Klotho concentrations improves intermediate
endpoints and subsequently patient-level outcome.

Additional file

Additional file 1: S1 Final fulle database K&G study. This database
contains the datasets used and/or analysed during the current study.
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