A Thesis for the Degree of Ph.D. in Engineering

Compartmentalized replication for directed evolution of DNA polymerase and transcriptional regulator

August 2018

Graduate School of Science and Technology

Keio University

Seaim Lwin Aye

Thesis Abstract

No.

				NO.
Registration	∎ "KOU"		Name	Seaim Lwin Aye
Number	No.	*Office use only		
Thesis Title				
Compartmenta	lized replica	tion for directed evolution	n of DNA pol	ymerase and transcriptional regulator
Thesis Summa	ary			
Compartmenta	lized replica	ation is a powerful metho	d for directe	ed evolution of proteins by using in vitro
compartmenta	lization (wat	er-in-oil emulsion) for gei	notype-phen	otype linkage and PCR amplification for
selection. This	method w	as first developed for d	lirected evol	ution of several DNA polymerases by
compartmentalized self-replication (CSR), and then applied to two other proteins T7 RNA polymerase				
and tRNA-synthetase by compartmentalized partnered replication (CPR). However, the utility of CSR				
and CPR is somewhat limited by low efficiency of emulsion PCR with the wild-type Taq DNA polymerase				
so far used.	To overcom	e this problem, in this	study, I fire	st performed engineering of <i>Tth</i> DNA
polymerase wi	th improved	efficiency by using CSF	R. Next I app	olied this improved DNA polymerase for
directed evolution of an arsenic-responsive transcriptional regulator by using CPR.				
(1) In vitro selection of modified DNA polymerase I from Thermus thermophilus (Tth pol) using CSR.				
Although PCR is an essential tool in the biological sciences, several limitations and problems remain,				
including long run times, low amounts of product, and false negative results due to inhibitors. In this				
study, I developed a Tth DNA polymerase mutant suited for CSR. First I modified the wild-type Tth pol by				
(i) deletion of the N-terminal 5' to 3' exonuclease domain (ii) fusion with the DNA-binding protein Sso7d				

(i) deletion of the N-terminal 5' to 3' exonuclease domain, (ii) fusion with the DNA-binding protein Sso7d, (iii) introduction of four known effective point mutations from other DNA polymerase mutants, and (iv) codon optimization to reduce the GC content. Consequently, I obtained a mutant that provides higher product yields than the conventional *Taq* pol without decreased fidelity.

(2) Development of a novel dual selection system based on CPR and sacB for directed evolution of arsenic-responsive transcriptional regulator.

Arsenic is a well-known toxin that holds a constant threat to a large population worldwide. My ultimate goal is to develop an arsenite-inducible biosensor with the best possible sensitivity and specificity. In order to evolve the *ars* operon of *E. coli*, I intend to apply CPR, in which the *ars* operon is coupled with expression of *Tth* pol mutant described above. First I illustrated the use of genetic switch in designing the arsenic responsive whole cell biosensor in *E. coli*. Next, I developed a dual selection system based on CPR and negative selection using sacB for directed evolution of arsenic regulator (repressor) gene in this genetic switch.