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SUMMARY  

 

 The advent of intelligent vehicles with driving automation systems are 

changing the driver-vehicle relationship that is more than 100 years old. Vehicles that 

can operate in different levels of driving automation are increasingly being developed 

and tested in many countries including Japan. The SAE International has introduced six 

levels of driving automation that distinctively define the boundaries of driving 

automation, where level 0 means no automation and level 5 being fully autonomous in 

all situations. A vehicle capable of level 5 automation, with no human intervention is 

still far away. In the intermediate levels, the automated driving (AD) system will 

occasionally require the driver to take part in the dynamic driving task. Recent research 

focus on takeover scenarios where the AD system requests the human driver to take 

over control when it reaches a system boundary.  

 Although vehicles up to level 2 autonomy are currently commercialized, 

achieving level 5 autonomy (in which the vehicle is capable of driving on any type of 

road at any time of day and in any weather condition) is still a massive technological 

challenge. Except in level 5, all other levels require the presence of some sort of a 

vehicle control interface for the human driver/operator to take back control of the DDT 

either fully or partially at system boundaries, or when the driver desires to take control. 

Such situations include driver taking back control at the end of AD system operational 

design domain (ODD), roadwork, manual traffic diversions, severe weather conditions, 

and when system failure happens. Since in level 3 and 4, drivers do not need to 

constantly monitor the driving environment, taking back control within several seconds 

(7-10 s) could be safety critical. Being out of the control loop reduce situation 

awareness and can result in decreased performance and reduced safety. Moreover, 

increasing driving automation will transform the role of driver into an observer or a 

mere passenger, and that will result in lack of driving pleasure and reduced flexibility in 

controlling.  To summarize, I identified two problems with the intermediate levels of 

driving automation: reduced performance and decreased safety due to low SA (out of 

the loop problem in takeover situations - only level 3), lack of driving pleasure and 

reduced flexibility in controlling (level 3 and above). 

 As a solution to both the above problems, I propose a collaborative driving 

method between human driver and AD system based on tactical level controlling of 



 

DDT. I developed a prototype of a novel multimodal human-machine interface (HMI) 

system to realize collaborative driving in highly automated vehicles. In this study by 

proposing a collaborative control method using a novel bi-directional human-machine 

interface system. In our collaborative control approach, the human driver and AD 

system (agents) act as a team in conducting tactical-level driving tasks (e.g. lane 

changing, overtaking, turning, parking, etc.). 

 A collaborative control interface system will provide the medium for seamless 

interaction between the two agents at any time during a trip. From human factors point 

of view, collaborative control has many advantages. From a technical point of view, 

such control method could overcome the system limitations in perception and motion 

planning by integrating human driver in the loop. In this study, I developed a 

multimodal HMI system consisting of a touchscreen, haptic, and hand-gesture based 

interfaces. Multimodal interfaces (MMIs) have advantages such as improved 

recognition, faster interaction, and situation-adaptability, over unimodal interfaces. 

Purpose of HMI: facilitate intent communication between driver and AD system in real-

time, support shared situation awareness, enhance bi-lateral understanding of intents 

and actions AD system and driver. Each interface, coupled with the AD system 

facilitate context-adaptive interaction by providing dynamic visual, audio, force and 

tactile feedback to the driver, thus realize effective bi-directional interaction, as opposed 

to uni-directional interfaces used in related works for takeover scenarios.  
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1 INTRODUCTION 

This chapter begins with an introduction to automated vehicles and the 

technologies behind them. By illustrating how the driver-vehicle 

relationship evolved through the history of automobile, here I state the 

importance as well as the challenges in designing a new driver-vehicle 

interaction for highly automated vehicles. This chapter formulates the 

main research questions addressed in this dissertation: (1) lack of driving 

pleasure and reduced flexibility in controlling in AD mode, and (2) 

decrement of driver performance and safety due to low SA in takeover 

situations. The chapter concludes describing the organization of the rest 

of the thesis. 

1.1 Automated Vehicles  

 Vehicles equipped with automated driving (AD) systems are radically 

changing the fundamentals of the conventional driver-vehicle relationship. With 

increasing automated features available in passenger vehicles such as highway 

autopilot, automated valet parking, automated lane change, pedestrian recognition, the 

tasks and roles of the driver are also getting reshaped and redefined [1], [2]. Many 

leading automotive companies have announced mass production of autonomous 

passenger vehicles by year 2020 and have demonstrated several prototype vehicles as 

well as shown in Fig. 1.1. In 2014, technology company – Google (Waymo, since 2016) 

demonstrated their prototype of an autonomous vehicle that has no conventional vehicle 

controllers such as the steering wheel, accelerator and brake pedals [3]. The role of a 



Error! No text of specified style in document. 

2   

human in a vehicle with highly automated features could change from being the driver 

to a user or just a passenger during a single trip. 

 Vehicles enabled with automated driving can bring many advantages to 

societies and economies. Among them, improved safety is a key benefit. It has been 

found that human error is the cause for 90% of the road traffic accidents that result in 

1.3 million fatalities and 50 million injuries annually, worldwide [4], [5]. Speeding, 

driving under influence, and distracted driving are major risk factors contributing to 

human error. Automated driving can save lives by eliminating or attenuating human 

error. In addition, AD will increase productivity, and lower workload by allowing 

drivers to engage in activities other than driving. Moreover, AD will increase mobility 

and access (of elderly or disabled) while improving comfort, energy and time efficiency, 

and traffic flow. 

 Although automated driving brings along many benefits, it can also come with 

drawbacks, mostly related to the interaction with humans. Recent prototypes of 

automated vehicles often have no driver control interfaces, as shown in Fig. 1.1. Some 

of the prototypes like Nissan IDS concept have transforming vehicle controllers that 

retract into the dashboard while in autonomous mode [6]. In a recent study involving 

1,000 new car buyers in the U.S. revealed that lack of driver control in automated 

Figure 1.1 Recent prototypes of automated vehicles 

Mercedes-Benz f015 Toyota Concept-i 

Nissan IDS concept General Motors Cruise AV 
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vehicles was a major concern among 72% of the respondents [7]. Lack of driver control 

in turn, results in lack of driving pleasure. Moreover, a simulator-based study 

comparing individual driving experience in automated vehicles and manual human-

driven vehicles showed that drivers preferred to have authority to control lateral and 

longitudinal motions of automated vehicles. Further, lack of driver control reduces the 

adaptability of automated vehicles in highly dynamic traffic environments. In addition, 

when automated vehicles encounter system limitations, they require some human input 

to successfully deal with such situations. Increasing degree of automation is found to 

reduce operator performance due to out-of-the-loop control. Since the drivers do not 

need to continuously monitor the road environment in highly automated vehicles, they 

may lack situation awareness. This can be safety-critical, especially in case of control 

transition from AD system to human driver. Thus, out of the loop performance is also a 

key drawback in automated vehicles. 

 To understand how the driver-vehicle relationship would change with 

increasing driving automation, it is important to understand the different levels of 

automation related to on-road motor vehicles.  

1.2 Levels of driving automation 

 The society of automotive engineers (SAE) has published a taxonomy and 

definitions for terms related to driving automation systems for on-road motor vehicles 

(J3016) [8]. It provides detailed definition for six levels of driving automation by 

illustrating the specific roles of primary actors of driving task (i.e. human driver, and 

driving automation system) in each level.  

Table 1.1 User roles in an automated vehicle (SAE J3016) 
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 The dynamic driving task (DDT) refers to all the real-time operational and 

tactical functions required to operate a vehicle. DDT includes the subtasks of lateral 

vehicle motion control via steering, longitudinal vehicle motion control via acceleration 

and deceleration, monitoring the driving environment by object and event detection and 

response (OEDR), and maneuverer planning, etc. The specific conditions under which a 

given driving automation system is designed to operate is defined as operational design 

domain (ODD). An ODD maybe limited to a specific geographic, roadway, 

environmental, traffic, speed and temporal limitations.  

 SAE’s levels of driving automation can be divided into two: lv. 0 -2 (eyes-on) 

where (human) driver performs part or all of the DDT, and lv. 3 – 5 (eyes/mind-off) 

where the automated driving system performs the entire DDT. Below, I present a brief 

description of each level of automation. 

 Level 0, where no driving automation is available, the driver performs the 

entire DDT including OEDR and DDT fallback. This level maybe considered as pure 

manual driving. In level 1, the driving automation system performs either the lateral or 

the longitudinal vehicle control subtask of the DDT while the driver performs the 

remainder of DDT. This level is known as driver assistance, and a system such as either 

adaptive cruise control (ACC) or lane keep assist (LKA) may perform part of the DDT. 

Level 2, also known as partial automation lets the system take control of both the lateral 

and longitudinal motion control subtasks of the DDT. However, the driver still needs to 

conduct OEDR and DDT fallback. It is important to note that driver needs to constantly 

monitor the road environment and be ready to take control (DDT fallback) in a system 

limitation or ODD limitation, without any advance warning (Eyes on). 

 From level 3 and up, the system fundamentally conducts the entire DDT and 

OEDR, and driver does not require to monitor the road environment. In level 3, known 

as conditional automation specifically, the driver needs to respond and conduct the DDT 

fallback given a request to intervene. Known as high driving automation, level 4 

conducts the entire DDT, OEDR, as well as fallback of the DDT without any 

expectation that a user will respond to a request to intervene. Level 4 vehicles can 

achieve minimal risk condition even if the driver is not available to respond. Level 5, 

known as full driving automation is capable of conducting the entire DDT, OEDR and 

fallback of DDT unconditionally. The key difference in level 5 compared to level 4 is 

that in level 5, there is no limitation to the ODD, thus they can operate without any 

human input given any geographical or weather condition. 
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The role of the user transforms with the increasing automation levels. In levels 0 

to 2, the role is conventional ‘driver’. In level 3, the driver becomes DDT fallback-ready 

user. In level 4 and 5, the driver/user becomes a mere passenger. A vehicle equipped 

with a level 4 or 5 automated driving system, may also include the functionality to 

control it in lower levels of automation. In such vehicles, and also in level 4 vehicles 

moving from one ODD to another, we could see the transformation of the roles of user 

from active driver to passive passenger and vice versa, in a given trip. 

 It can be assumed that it would take decades of research and development to 

realize level 5 full-autonomy, given the current state of the art. However, with the 

existing technology, it is possible to achieve conditional autonomy with the human 

driver in the control loop. Therefore, automation levels that rely on human input at 

some point, can be categorized as human-centered autonomy levels. The human input 

may come from the user/driver in the vehicle or from a remote operator via 

teleoperation. Vehicles operating in these intermediate autonomy levels may be seen as 

human co-existing ‘personal robots’ that collaborate with humans to achieve a common 

goal. To bring the advantages of automated driving to our society as early as possible, 

human-centered autonomy levels can play a vital role, and therefore, it is important to 

address the human factors issues related to those levels. 

Figure 1.2 SAE levels of driving automation 
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 In the next section, I introduce the key components of an automated driving 

system.  

1.3 Key elements of automated vehicles 

 An automated driving system fundamentally requires to recognize and 

understand its environment, make judgments on control actions, and operate the lateral 

and longitudinal controls of the vehicle. In addition, if it is operating in human-centered 

autonomy levels, it requires to cooperate with human operators. This section presents 

the key components of automated vehicles to achieve the above requirements.  

1.3.1 Perception and localization 

 Various sensor types are used in automated vehicles for perception and 

localization. Radar is one of the most used automotive sensor for object detection and 

tracking. It is a cheap sensor and works well even in extreme weather conditions. The 

downside of radar is its low resolution compared to LIDARs. With extremely accurate 

depth information and much higher resolution than radars, LIDAR provide 360 degrees 

of visibility. However, they are usually expensive than radars. On the other hand, 

cameras provide longer range, very high resolution and much more information, being 

relatively cheaper. Recent advancements in deep learning, and growth of annotated 

driving data have contributed in the wide use of cameras in AD systems. However, 

Figure 1.3 HMI - a novel research area in automated vehicles 
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cameras are usually bad at depths estimation and do not perform well in extreme 

weather conditions, and susceptible to ambient light conditions. Sensor fusion helps in 

overcoming drawbacks in each sensor type and improving overall environmental 

perception. Combined with GPS, high definition maps and fused sensor information, an 

AD system can localize itself with sufficient accuracy.  

1.3.2 Judgment, scene understanding 

 Accurate detection of objects is necessary for safe operation of automated 

vehicles. Especially, when operating in urban environments, scene understanding is 

much more challenging compared to highways. Past approaches in object detection 

involved cascades classifiers with Haar-like features [9]. Recent advancements in deep 

learning [10] helps in accurate and robust detection, recognition, and classification of 

objects. Semantic segmentation, where each pixel is assigned to an object-class has also 

received much attention recently [11], [12].  

1.3.3 Path planning 

 Autonomous path planning has received much attention in the research 

community and has advanced with growing driving data and improved algorithms. 

Previous approaches include optimization-based control. Deep reinforcement learning is 

widely used in path planning recently. It gives the ability to deal with uncertainty, 

sensor calibration problems, or lack of prior map information [13], [14] [15].  

 At present, both policy-based and learning-based approaches are used in path 

planning. Both approaches have pros and cons, but the black-box nature of deep 

learning-based approach is a major disadvantage for its acceptance by regulators (i.e. 

governments). 

Figure 1.4 Sensory modules on Nissan ProPILOT AD system 
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1.3.4 Human-machine interface 

 The human-machine interface (HMI) is also an integral component of an AD 

system. It can be divided into two: internal HMI and external HMI. Internal HMI 

communicates with the driver/user and passengers of an automated vehicle. Through an 

effective HMI, the AD system and driver can communicate the intents of each other. 

The external HMI communicates with other road users such as pedestrians, cyclists and 

other vehicles. The people who interact with automated vehicles may come from all 

walks of life. Therefore, the AD HMI must play an important role to increase the 

acceptance of automated vehicles into the society. More details on the requirements of 

an HMI for automated vehicles is presented in Chapter 2. 

 Detecting and predicting the state of the driver is an important research area in 

the domain of automated vehicles. Driver emotions, cognitive workload, drowsiness, 

and situation awareness are key components of driver state [16]–[24]. I present a 

discussion on driver state estimation in Appendix A1. 

 The current state of development of automated vehicle technologies suggest 

that still there are considerable limitations in sensing, scene understanding and artificial 

intelligence. Thus, one can reasonably assume that level 5 autonomy is still very far 

away in the future. However, by adopting human-centred autonomy levels and keeping 

the human in the control loop can bring the advantages of automated vehicles as early as 

possible. 

1.4 Driver-vehicle interaction 

 Since the early stages in the evolution of automobile, driver-vehicle interaction 

has been an important topic. In conventional human-driven vehicles, it is mainly about 

controlling the direction and speed of the vehicle by the driver. The steering wheel and 

pedals have been essential components of human-machine interface throughout the 

history of modern automobile. It is important for the drivers to know about the state of 

the vehicle including but not limited to travelling speed, fuel level, engine temperature, 

and engine rpm. Signal lights, head lights, brake lights, wipers, honk etc. are also 

necessary parts of the human-machine interface, and many knobs, buttons and 

controllers are used in vehicles to operate each of those systems [25]–[27].  

 Rapid growth of driver information systems has resulted in increased utilisation 

of embedded computers and telematics systems inside vehicles. Adaptive digital meters, 
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satellite navigation systems, audio/visual players connected to internet, and smartphone 

connectivity etc. are being increasingly available in modern vehicles. Infotainment 

systems that are a combination of information and entertainment systems are taking up a 

central role in driver-vehicle interaction in modern vehicles. These in-vehicle systems 

are being developed to; 

1. Enhance road safety 

2. Make transportation more efficient by saving time and fuel 

3. Make driving more pleasurable 

4. Make drivers and passengers more productive 

 In the recent years ‘connected cars’ offer their owners to control certain 

functions remotely via internet. Through a mobile application, users can unlock/lock 

their cars, turn on the air conditioner, and even can turn on the engine remotely.  

 As vehicles become more and more automated, and capable of operating in 

varying degrees of automation, many aspects of the interaction between the driver and 

vehicle also undergo drastic changes. Figure 1.3 shows driver-vehicle interfaces in some 

autonomous vehicle prototypes. Efforts have been made to create new devices and 

methods in the form of concept to control vehicles as shown 1.5.  

 Since the conventional steering wheel and pedals would become obsolete 

above level 3, it is important to investigate on novel methods that can be used to replace 

those conventional interfaces. Automated vehicles (and concepts) from Waymo and GM 

have no conventional steering wheel or pedals. On the other hand, several other 

concepts from Nissan, etc. have transforming steering wheels that goes inside the 

dashboard when in AD mode, to allow more space inside the cabin. Moreover, 

automakers have shown concepts like Mercedes F016 that has rotatable front seats 

allowing to create a lounge-like environment inside the cabin while in AD mode. 

 Advances in hardware and software enable technology to build ever more 

advanced and complex systems. However, we must not forget that it is vital to make 

these systems easy to understand and operate for their human users. 
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With contrasting concepts like above, essentially, questions like “what kind of vehicles 

would we drive in future?”, and “how to drive such kind of vehicles?” would inevitably 

arise.  

1.5 Research Questions 

 One of my previous studies comparing individual driving experience in human-

driven and autonomous (lv. 4) vehicles have shown that removing drivers from the 

control loop in AD mode will result in lack of driving pleasure and reduced flexibility in 

controlling [28]. It revealed that experienced drivers preferred to drive manually in 

roads with less traffic. A key recommendation of that study was future automated 

personal vehicles should have a means of switching between AD mode and manual 

driving, and an effective interface system should assist the control transition. Moreover, 

a recent study showed that 72% of the new car buyers are concerned about lack of 

driver control in automated vehicles [7]. Driving pleasure and controllability are 

inherent characteristics of manual driving, thus, losing them would be a downside in 

conventional AD systems. It would, in turn, affect the social acceptance of automated 

vehicles.  

 On the other hand, intermediate levels of automation require a vehicle control 

interface for the human driver/operator to take back control of the DDT either fully or 

partially at system boundaries [29]–[31]. Such situations include scheduled takeovers 

Figure 1.5 Some of the revolutionary driver-vehicle interfaces 
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i.e., driver taking back control at the end of AD system operational design domain, or 

unscheduled takeovers such as roadwork, manual traffic diversions, severe weather 

conditions, and system failure. In addition, drivers may want to switch to manual 

driving from AD whenever they desire. Since in level 3 and 4, drivers do not need to 

constantly monitor the driving environment, taking back control within several seconds 

could be safety critical. Previous research has shown that being out of the control loop 

reduce operator situation awareness (SA) and result in decreased performance and 

reduced safety [32]–[35]. To summarize, I identified two research questions with the 

intermediate levels of driving automation:  

(1) Lack of driving pleasure and reduced flexibility in controlling in AD mode, and  

(2) Decrement of driver performance and safety due to low SA in takeover situations. 

 This research addressed the above research questions and proposed a 

collaborative control method along with a multimodal human-machine interface system 

to control highly automated vehicles.  

1.6 Collaborative Control 

 As a solution to both the above research questions, I propose a collaborative 

control method between human driver and AD system based on tactical level 

controlling of DDT.  

 Driving tasks can be categorized under three levels of driver control; strategical, 

tactical, and operational (described in detail in Chapter 2). This hierarchy is adapted to 

differentiate the levels of driving automation for the present study. In strategical level 

(lv. 4, 5), the driver inputs long-term commands such as the destination and route, and 

the vehicle conducts entire DDT. In tactical level driver can input medium-term control 

commands such as overtaking, lane-changing, speed controlling, merging, turning, and 

parking. In this level, the vehicle conducts the DDT with in accordance with driver 

intention. In operational level (lv. 0, 1), driver controls the steering angle and speed in 

real-time. By adopting tactical level input (TLI) method for controlling in AD can 

provide the driver with flexibility and driving pleasure associated with manual driving, 

while ensuring safety and comfort of automated driving. 

 Collaborative control enables the human driver and AD system to work 

together to achieve a common goal. Human drivers and automation systems have their 

own strengths and weaknesses. For instance, humans are strong in judgment, adaptation, 
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inference, intuition and morality. However, they have weaknesses such as long response 

time, narrow information bandwidth, endurance, and inconsistency. On the other hand, 

automated driving systems have strengths such as faster reaction, persistency, 

consistency, and predictiveness. Among their weaknesses are low adaptability, limited 

ODD, susceptibility to system failure, and limitations in judgment and inference. Thus, 

through collaborative control, human driver and AD system can perform better together, 

than acting alone. Collaborative control will bring the following important benefits: 

1. Extend the operation limits of automated driving system and human driver 

2. Provide an effective mechanism for control flexibility and situation adaptation 

3. Enable natural, effective, and seamless driver-vehicle interaction 

4. Promote driving pleasure even in AD mode 

1.7 Thesis Organization 

 This thesis proposes a collaborative control method for human-centered 

automated vehicles. In the following chapters, I present the underlying theory and 

framework of collaborative control based on tactical-level input. I describe the 

requirements for a collaborative control method and a novel multimodal human-

machine interface for automated vehicles. I conducted several experiments using a 

driving simulator to validate the effectiveness of the proposed control method and the 

interface system. Through experimental results I prove that collaborative control based 

on tactical-level input is widely accepted by the drivers. Moreover the multimodal 

interface proved to be an effective HMI for collaborative control. The thesis is 

structured as follows. 

 In chapter 2, I present the requirement and theoretical framework for 

collaborative control.  I discuss the related works in horse-metaphor, direct control and 

supervisory control. Then I introduce tactical-level input for automated vehicles as a 

method of collaborative control. Finally, this chapter highlights the requirement for a 

human-machine interface to facilitate collaborative control and suggest design 

guidelines. 

 To demonstrate the proposed control method and evaluate the human-machine 

system, a driving simulator capable of simulating automated driving, and connecting 

arbitrary interfaces is necessary. Chapter 3 describes the development of a virtual reality 

driving simulator that provide the experimental platform for the main work of this thesis. 
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 Chapter 4 presents the development of the situation adaptive multimodal HMI 

system. The HMI system consists of touchscreen, hand-gesture, and haptic interfaces. 

This chapter provides design requirements for each modality and the overall HMI 

system by referring to the theoretical framework of collaborative control method. 

Chapter 5 presents the experimental evaluation of the HMI system as well as the control 

method and documents the results of a driving experiment involving 20 drivers. 

 In chapter 6, I discuss the human-factors issues related to control transitions of 

automated vehicles. I evaluated how collaborative control method with the multimodal 

HMI work in practice for unscheduled takeover scenarios in automated vehicles. This 

chapter documents the experimental design and results of the simulator-based 

experiment. In chapter 7, I discuss the strengths and weaknesses of the collaborative 

control method and HMI system, summarize the contributions of my research and 

identify directions for future research.  

 Following the main text, appendix A describes a driver state estimation and 

prediction system for automated vehicle applications, along with an experimental 

evaluation.  

1.8 Summary 

  This chapter provided an introduction to automated vehicles by presenting the 

key elements of a driving automations system, and state of the art. By briefly discussing 

the evolution of driver-vehicle interaction and presenting recent trends in development, 

this chapter provided insights into the future of human-machine interface/interaction in 

automated vehicles. It described the levels of driving automation in detail and 

highlighted the importance of human-in-the-loop control for highly automated vehicles. 

Finally, this chapter formulated the research questions addressed in this research and 

described the organization of the thesis. 
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2 TACTICAL LEVEL INPUT FOR 

COLLABORATIVE CONTROL 

This chapter first explores the conventional control methods in human-automation 

systems. Then it describes the three levels of driving task: strategical, tactical, and 

operational. Adapting the classic three-levels of vehicle control to automated vehicle 

domain, this chapter proposes collaborative control based on tactical level input (TLI) 

for highly automated vehicles. I then discuss related systems and control models used in 

automation domain including h-metaphor, shared control and compare them to 

collaborative control method. This chapter concludes with a set of guidelines for 

designing human-machine interfaces for collaborative control.  

2.1 Three Levels of Driving Task 

 Automated vehicles are drastically changing the conventional relationship 

between the driver and vehicle. Such vehicles are transforming the role of the user from 

and active driver to a passive passenger with increasing levels of automation. To answer 

questions like “how to drive future automated vehicles?”, first, it is important to 

understand the essential components of the overall act of driving.  

 The task of driving can be divided into three levels of control hierarchy; 

strategical, tactical, and operational [36]. At the strategical level, a driver plans a route 

and determines goals, at the tactical level, the driver selects appropriate maneuvers to 

achieve short-term objectives, and at the operational level, the driver translates these 

maneuvers into control operations in real-time.  
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 Adequately performing driving tasks in each level enables the vehicle to reach 

a destination safely and efficiently. In conventional human-driven vehicles, a driver 

conveys the control intention via steering wheel and pedals, and this is regarded as 

operational-level input method. With increasing levels of automation, the principal 

agent which performs driving tasks would shift from driver to AD system. In an ideal 

AD system operating in level 5, input required from human driver would be only in 

strategical level, i.e., input of a destination. However, as explained in Chapter 1, 

reduced driver control in automated vehicles result in lack of driving pleasure and can 

lower user acceptance. Moreover, limitations in automation capabilities could hinder the 

social acceptance due to overreliance of automated systems. Consequently, by 

increasingly allowing the human driver to make inputs other than in strategical level, 

could result in high driver acceptance, and early adoption of automated vehicles to our 

societies.   

  The general idea of a three-level input method is summarized in Fig. 2.1. 

Below I will describe the control hierarchy of driving task in more detail by considering 

strategical level, operational level, and tactical level. 

2.1.1 Strategical Level  

 A driver may only input the destination, traveling time, what routes to take, and 

driving mode (e.g., eco, sport, etc), if AD system could perform the rest of the driving 

task, i.e., both operational- and tactical-level tasks. In an automated vehicle, such inputs 

may be made through touchscreens or voice-based HMIs. I call this ‘strategical-level 

input (SLI) method’, which can span from minutes to days. A vehicle that need only 

strategical-level input from the human driver would generally require an AD system that 

can operate in levels 4 and 5. Strategical-level input has advantages, such as comfort 

(easiness) and safety, but SLI only will not be sufficient in unexpected situations, e.g., 

route changes, sudden roadwork, and in extreme weather conditions in level 4 AD 

systems. In addition, allowing drivers to make strategical level input only, would 

decrease driving pleasure due to reduced driver interaction with vehicle. 

 

2.1.2 Operational Level  
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 After driver made a general trip plan and decided a destination, appropriate 

route (waypoints) and travel time, he or she conduct the dynamic driving task by 

controlling lateral (steering) and longitudinal (acceleration and braking) parameters in 

real-time. This type of control is realized by using steering wheel and pedals in 

conventional human-driven vehicles. This is known as ‘operational-level input (OLI)’, 

which usually spans from 0.5 to 5 seconds. Depending on the design of AD system, and 

if the vehicle has conventional controllers (i.e. steering wheel and pedals) it may allow 

drivers to use OLI in levels 3 and below. OLI has advantages, such as flexibility of 

controlling and driving pleasure. However, depending on individual driver 

characteristics and their workload sensitivity, it may be difficult to accurately and 

immediately perceive driving environment and adjust many parameters in a short time 

window in different traffic situations, e.g., a dense-traffic intersection. Thus, I suggest 

personal vehicles capable of AD should have a way of switching between manual 

driving and automated driving when the driver desires to.  

2.1.3 Tactical Level  

Figure 2.1 Schematic view of driving task (SAE J3016) 
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In Michon’s hierarchy of driving task, tactical level lies in between strategical 

and operational levels. In order to realize high-level trip goals that are set in strategical 

level (i.e., arriving at a set destination following a desired route within a desired time), a 

vehicle may need to make different maneuvers in dynamic traffic environments. Such 

maneuvers may include overtaking, lane-changing, turning, accelerating/decelerating, 

merging into highway and parking etc. Given that operational level driving tasks being 

conducted by the AD system, driver may input tactical level commands if necessary or 

when desired. I call this ‘tactical-level input (TLI) method’. Tactical level maneuvers 

can span generally from 5 to 60 seconds. TLI would require an AD system capable of 

operating in levels 2 and above. TLI is in the intermediate level, which relatively makes 

operational level input more abstract and strategical level input more detailed compared 

to TLI. Thus, TLI would potentially compensate for the drawbacks of these two 

methods. TLI can allow the driver to input vehicle motions to be executed in reserve, as 

short-term future states, adjusting the input range spatially and temporally as desired. 

This enables the reduction in the number of inputs compared to OLI and more flexible 

and situation-adaptive input in contrast to SLI. This characteristic, most importantly, 

enables TLI to integrate features of both OLI and SLI. To sum up, tactical level input in 

an automated vehicle can allow a driver to command a set of lateral and longitudinal 

controls, e.g., lane changing and parking, while the AD system conducts the more 

cumbersome and real-time operational level control. 

Figure 2.2 Overview of hierarchical driving task 
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2.2 Advantages and Significance of TLI Method 

 As stated above, TLI method, which allows the driver to control lateral and 

longitudinal motions of the automated vehicle in a short spatiotemporal range while the 

AD system conducts the DDT ensuring safety, would be important for automated 

vehicles operating in levels 2 and above. The potential advantages and significance of 

TLI over OLI and SLI are listed in Table 2.1.  

 In TLI, information on the environment could be perceived in real time by both 

the driver and AD system, and could be used to make control decisions to input the 

future state or maneuvers of the vehicle. For example, if the driver/user of an automated 

vehicle operating in AD mode would want to change the travelling speed, or travelling 

lane he or she can use TLI to communicate intent to the AD system. Then, if the user 

input is valid and legal to execute, the AD system conducts the operational level driving 

tasks to achieve the tactical level control command. If the user input is invalid or illegal 

due to traffic constraints and rules, AD system gives feedback to the user. Since the AD 

system is responsible in conducting the operational level control, safety of automated 

driving is ensured. Without TLI, if drivers desire to control the maneuvers of the 

vehicle, they would have to use OLI, which is conducting the dynamic driving task 

manually (with some driver assist), usually associated with higher driver workload. 

Therefore, the proposed TLI could reduce driver workload associated with controlling 

the vehicle in OLI, while giving them the option, freedom, and flexibility to control the 

maneuvers of the automated vehicle. 

Table 2.1 Advantages and significance of TLI 
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 Enabling tactical-level input in automated vehicles would increase their 

flexibility to adapt to various situations in the dynamic traffic environment. For 

instance, unscheduled roadwork or accidents in urban environments may involve 

manual traffic diversions, and persons using hand gestures to control traffic. Current 

AD systems are not capable of performing well in such complex and unstructured 

situations, and would require human intervention. In such situations, using TLI could be 

conveniently used rather than taking back control in OLI, which might be unsafe due to 

reduced situation awareness of drivers. Moreover, in case of a sudden change of 

destination, or if user/driver desired to make a brief stop at point of interest (i.e., a 

convenient store, ATM, restaurant, shopping mall, sightseeing spot, etc.) TLI could be 

effectively and easily used to control vehicle maneuvers such as turning, lane-changing, 

stopping, and parking. 

 Users of automated vehicles are diverse. People who are physically 

handicapped, and are unable to use conventional vehicle controllers (i.e. steering wheel, 

pedals) would benefit greatly from AD. However, in situations, including the ones 

described above, TLI with a suitable human-machine interface could be utilized to 

improve the mobility experience and requirements of such users. Therefore, TLI has a 

huge potential in helping in extending the advantages of automated driving to a diverse 

range of users. 

 To sum up, TLI creates a new interaction space between automated vehicle and 

its user/driver. While ensuring the safety and convenience of automated driving, it 

brings the flexibility and adaptability of manual driving. Although there exist human-

machine interfaces to input strategical-level and operational-level commands in existing 

systems, there is a need for a novel interface for tactical level input. In the next section I 

discuss the requirements of an HMI system for TLI.  

2.2.1 Requirements of an HMI for TLI 

 A human machine interface should be designed according to the driver-vehicle 

interaction to be realized. I thus analyze HMIs for OLI, TLI, and SLI, respectively, as 

shown in Fig. 2.4. Operational level control, which involves continuous lateral and 

longitudinal inputs in real-time, is realized by using steering wheel and pedals. On the 

other hand, strategical level control, which includes destination and travel-time related 

inputs, is expected to realize by using HMIs such as voice or touchscreen interfaces. 

Tactical level input includes a set of lateral and longitudinal commands that require a 
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novel HMI system for its effective use. The AD system of Tesla Motor called 

AutoPilot, uses the turn signal switch as an HMI to input lane-change command. 

However, the TLI method proposed in my dissertation needs to enable many input types 

while adapting to different situations, such as turning at the second intersection, as well 

as parking. Consequently, such conventional (existing) HMIs will not be sufficient to 

realize the full benefits of TLI.  

  To use TLI in certain takeover situations effectively, an HMI system 

should fulfill information needs of the driver to enhance situation awareness. The status 

of the AD system (e.g. availability of TLI, request to intervene, etc.), information about 

its environment are important for the driver to make an informed control input. Looking 

from a human-robot interaction (HRI) perspective, [37] provides a set of guidelines to 

improve situation awareness in human-robot systems. In designing the HMI and HRI in 

our study, therefore, we adopted the following guidelines; providing a map to show 

robot’s path, providing fused sensor information to lower the cognitive workload, and 

providing spatial information to make operator aware of robot’s immediate 

surroundings. 
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 To realize these requirements, first, I defined a set of input functions that can 

be mapped to a finite set of vehicle maneuvers. Then, a set of guidelines for designing 

human-machine/robot interaction was listed. Fundamentally, the interface system 

should convey information of inputs from the driver to the AD system, and system 

responses, e.g., approval or denial of driver input, and/or suggestion from the AD 

system to the driver in an effective and efficient manner. 

Figure 2.3 Requirements of HMIs in different levels of automation 
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 Relationship between driver and vehicle in highly-automated vehicle would 

imply the necessity of reconsidering the existing human-machine interactions and 

interfaces. The characteristics of required task for the drivers in levels 2 and above, such 

as performing DDT and DDT fallback, indicate that a HMI that allows the driver to 

easily understand a driving situation and immediately command a control input 

consisting of a series of lateral and longitudinal motion, i.e., tactical-level command as 

shown in Fig 2.3 would be essential. However, the functionality of conventional HMIs 

such as steering wheel and pedals would not be suitable (optimized) for tactical-level 

command inputs because they have been originally derived based on driving tasks in 

levels 0 and 1, i.e., operational-level command inputs. For instance, a tactical-level 

command such as ‘turn right at the next intersection’, or a strategical level command 

such as ‘selecting a destination from a map’ cannot be input by using a conventional 

steering wheel and pedals, as they are designed to control a vehicle in real-time. Thus, a 

novel DVI that facilitates effective driver-vehicle interaction in levels 2–4, that is, 

tactical- and strategical-level input methods, will be necessary. AD systems increase the 

safety and comfort, but they somewhat limit the flexibility of controlling, and driving 

pleasure due to the reduction of the amount of interaction between the vehicle and 

driver. From the above viewpoint as well, it is important to define a new method of 

interaction to have a balance among the above parameters by introducing new human-

Figure 2.4 Human-horse system (Miller, 1975) 
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machine interface that will help the seamless transition of driver’s roles according to 

LoA. 

 This is a very challenging task because HMIs for vehicle control have not 

undergone any momentous change since the invention of the modern automobile, and 

the existing conventional HMIs are deeply linked to the conventional driver-vehicle 

interaction. Some researchers have developed HMIs such as a haptic steering wheel and 

pedals, a cooperative shared control, a haptic switch display, a vibrotactile seat-display 

and information support system, and moreover, they have proposed a conceptual HMI 

design for level 4, such as a brain-machine interface. However, they have not focused 

on ‘controlling’ automated vehicles by tactical-level input method. 

2.3 Related works 

 Interaction between automation and humans have been widely studied in 

aviation, marine, robot teleoperation, and related domains. However, there is only a 

limited number of studies in the automated vehicles domain. Among them, horse-

metaphor, shared control, and collaborative control are key interaction system models. 

This section describes each of the above models and compares them with collaborative 

control. 

2.3.1 Horse metaphor 

 The horse-metaphor, or h-metaphor is the concept of horseback riding that can 

be applied to the driver-vehicle interaction in automated vehicles [38]. This concept can 

be simplified as follows. Horses have intelligence to sense and avoid obstacles and path 

planning. Similarly, autonomous vehicle will drive safely avoiding obstacles. Horse 

provide multimodal feedback through visual, auditory, and haptic channels, and it helps 

the rider to be aware of the state of the horse, or simply what it is doing. In automated 

vehicles, through multimodal feedback (mainly haptic), driver can know the state of the 

vehicle. Horse might be aware of the rider state and engagement and may act 

accordingly. Similarly, automated vehicles could sense driver state and engagement and 

adjust its behavior. In overall, adopting the h-metaphor concept in designing the human-

machine interaction will promote safer and natural interaction in human-centered 

automated vehicles. 

 It is important to note that like a horse, the AD system acts as a safety net and 

always supports the driver to avoid crashes. This concept enables seamlessly variable 
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levels of automation. To realize this concept, an intelligent, adaptive human machine 

interface with multimodal feedback that resembles the intelligence and visual-audio-

haptic feedback of the horse, is required. Moreover, this concept promotes development 

of driver-vehicle relationship through cooperation.  

2.3.2 Direct control 

 As a classic system model to operate mobile robots, direct control has been in 

wide use in the domain of robotics. In direct control, the human operator perceives the 

environment through his own senses and/or the human machine interface, makes control 

decisions, and executes maneuvers. Thus, the primary responsibility of perception, 

planning, and action is with the human (Fig. 2.5). The vehicle/robot system may assist 

the human in perception and actuation. Although this system model has an advantage of 

using human intelligence in making control decisions, it can bring along major 

drawbacks. Mainly, the system performance has a direct relationship with human 

operator’s capabilities. System performance is directly affected by operator workload, 

skills, knowledge, and sensory-motor limits. This is similar to operational-level control 

of vehicles. 

Figure 2.5 Direct control system model 
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2.3.3 Supervisory control 

 The interaction between human operator and automation system, in supervisory 

control, can be thought of as supervisor-subordinate like interaction [39]. In mobile 

robot teleoperation [40]–[42], supervisory control involves an operator dividing a task 

or a problem into a several sub-tasks in sequence. Then, the robot system is expected to 

execute the sequence of subtasks ‘autonomously’, or on its own. Of course, the extent of 

the control task executed by the robot depends on its level of autonomy. 

Conventionally, once the human operator has given control to the robot system (i.e. 

subordinate), he or she monitors the task execution through an HMI, paying the role of a 

‘supervisor’. There are two main branches of supervisory control: traded control, and 

shared control. 

 In traded control, human irregularly control the robot system, similar to direct 

control by being in the control loop. In shared control, both the automated system and 

human operator achieve a single operational task through a single operation input. 

Shared control allows the human to control some variables while, in the same time, 

leaving the controlling of other variables to the robot system. Shared control has been 

studied in control authority transfers in automated vehicles. 

Figure 2.6 Supervisory control system model 
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 In order to a shared control model to be effective, clear division of tasks is 

vital. It may need clear set of rules or instructions of who does what, and when. 

Therefore, supervisory control inherently requires substantial training for human 

operators. Moreover, when the robot systems are operating in dynamic and unstructured 

environments, the uncertainties that are essentially part of such environments are a huge 

challenge for a structured/rule-based supervisory control system.  

2.3.4 Autonomous control 

 An autonomous robot system can be defined as a system capable of performing 

tasks or actions independent of an external control. In autonomous control, generally, a 

human operator gives a high-level, abstract input, (e.g., destination, goal) to the robot, 

and the autonomous system will perform perception and planning to act on the dynamic 

environment to achieve the set goal(s) independently. Overall system performance is 

thus, is constrained by the appropriateness of robot’s level of automation in the 

environment where the robot is embedded in.  

 In order to realize safe, effective, and robust autonomous control, a robot 

system needs sufficiently advanced computational resources, both in terms of hardware 

and software. As stated earlier, there are major technological challenge to overcome in 

realizing fully autonomous control like SAE level 5. Moreover, even if a robot system is 

capable of autonomous control in a controlled environment, human factors problems 

Figure 2.7 Autonomous control system model 
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such as lack of situation awareness, and deficient out-of-the-loop performance would 

still exist.  

2.3.5 Limitations in conventional models 

 Conventional system models described above have been used successfully in 

many different robotics/automation applications. However, since they inherently 

assume a supervisor-subordinate relationship between human and the robot, there are 

many limitations arising from that. Below I highlight such limitations from the 

perspective of driver-vehicle interaction in automated vehicles. 

 In direct control, the driving task can be performed only if the human driver is 

in the control loop. Therefore, the overall performance is constrained by driver-

subjective parameters such as workload, skills, and experience. 

 In supervisory/shared control, a clear distinction between the roles of human 

driver and automated system is necessary. As a result, significant training may be 

required for a human driver to understand the control boundaries and duties of each 

agent in a variety of situations.  

 The users of automobiles are diverse; thus, their skill levels, sensory-motor 

capabilities, and experience vary significantly. Since the levels of skills required for 

Figure 2.8 Overview of collaborative control in automated vehicles 
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direct control and shared control are high, accommodating a wide range of users 

become a major challenge. Besides, the conventional control models do not address the 

need of dynamically adjusting the level of autonomy to reflect driver/operator needs or 

to compensate for operator weaknesses. 

2.4 Significance of Collaborative control 

 In collaborative control, the automated system and human operator acts 

together to achieve more than a single operational task. In contrast to shared control, 

human-system cooperation in collaborative control spans through a broader spectrum. A 

tactical-level input based collaborative control can address the limitations in both AD 

system and human driver through collaboration. In systems where only fully-automated 

driving and manual driving (direct control) options are available, if the AD system 

encounter difficulties, it will ask the driver to take control manually, or else come to a 

stop, or worse case, it would continue performing sub-standardly. However, through 

collaborative control with TLI, perception, cognition, and operation aspects can be 

seamlessly shared between driver and AD system, thus both agents can compensate for 

inadequacies of each other.  

 Moreover, collaborative control with TLI creates a new interaction space 

between driver and vehicle that did not exist until this study. In contrast to supervisor-

subordinate control or direct control, TLI enhances the driver-vehicle interaction by 

making both agents teammates.  Control decision or performance is collaboratively 

made by considering the intention of both agents. TLI would thus give the driver the 

flexibility to control the vehicle compared with fully-automated SLI, while ensuring 

utmost safety by constant monitoring and intervention by the system compared to OLI. 

Although AD systems capable of conducting tactical-level driving tasks have been 

developed, there was not enough focus on practical approach for designing human-

machine interfaces and interaction for highly automated vehicles to realize the benefits 

of collaborative control. Note that although many studies on human-automation 

interaction in various kinds of human-machine systems have been conducted such as 

multiple unmanned aerial vehicles, mobile robot teleoperation, there are few studies on 

TLI method, as well as in the automated vehicles domain. Consequently, considering 

the research gap stated above, this thesis explores the new type of interaction between 

humans and automated vehicles created through collaborative control and tactical level 

input, and facilitated by a situation-adaptive HMI system. 
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 Need of a common “language” for the new type of interaction between humans and 

automated vehicles. 

2.5 Summary 

 Increasing levels of automation in vehicles changes the traditional relationship 

between the driver and vehicle. By presenting the fundamentals of the hierarchy of 

driving task, this chapter introduced the novel use of tactical-level input in automated 

vehicles. Comparing with conventional human-automation control system models such 

as direct control, supervisory control, and autonomous control, the advantages and 

significance of a collaborative control method based on tactical level control was 

presented. This chapter also addressed the design requirements of an appropriate 

human-machine interface system to realize collaborative control through tactical level 

input, and serves as a guideline for designing interfaces and interactions for human-

centered automated vehicles. From the next chapter onward, I present and describe the 

Figure 2.9 Significance of collaborative control 
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various steps in system design. In the following chapter, I discuss the development of 

virtual reality driving simulator that serves as the central platform in designing, 

prototyping, and evaluating the human-machine interfaces as well as interactions. 
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3 DEVELOPMENT OF A 

DRIVING SIMULATOR 

Driving simulators offer the flexibility to create and test many different traffic scenarios 

safely, efficiently, and economically as opposed to conducting experiments in real 

world. To serve as an experimental platform for my study, I built a driving simulator 

using Unity Engine, consisting of a 2 km long driving route, a training track, as well as 

many traffic scenarios including highway, urban, sub-urban, and parking areas. This 

chapter describes the development of the driving simulator, its autonomous vehicle 

model, as well as the events and driving scenarios. It also presents the results of an 

experiment I conducted to validate the simulator. In this experiment, I evaluated the 

preference for autonomous driving between novice and experience drivers using the 

simulator. 

3.1 Introduction 

 When it comes to evaluating driver experience in automobiles, it is better to 

conduct real-world experiments using instrumented vehicles on actual roads or test 

tracks. However, conducting such experiments poses many challenges, including 

liability issues, consistency and reproducibility of experimental conditions, safety of 

drivers, other road users and experimenters, and the considerable time it takes to plan 

and conduct the experiments [43]. In contrast, driving simulators offer repeatability, 

consistency, safety, and excellent flexibility in terms of authoring scenarios and creating 

extreme events in a controlled environment. These scenes and events can then be 
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repeated identically for each participant, which is nearly impossible to do in real-world 

situations. 

 Owing to their advantages and significance, virtual reality simulators have been 

applied in the field of disaster response work involving construction machines [42], [44]. 

In addition, it is cost-effective and time-efficient to conduct driving experiments using a 

simulator. Driving simulators with motion platforms and real vehicle cabins as well as 

360-degree view are recommended for human-in-the-loop experiments. However, such 

driving simulators can be expensive to own and operate. Therefore, I used free and 

opensource software packages and off-the-shelf hardware components to create a 

driving simulator that has sufficient functionality to conduct human-in-the-loop 

experiments and evaluate driving experience and arbitrary HMIs, as shown in Fig. 3.1. 

Figure 3.1 Simulator features 
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  The purpose the simulator is to replicate autonomous driving and manual 

driving in a simulated environment for evaluating user experience. This chapter 

describes a preliminary experiment, using both novice and experienced drivers in 

autonomous and conventional driving situations, that was conducted to evaluate the 

effectiveness of the simulator for user experience studies. 

3.2 Development of Simulator 

 In this section, I describe the requirements and specifications of a driving 

simulator to evaluate driving experience in autonomous and conventional driving, and I 

describe the development of the simulator. The simulator specifications are listed in 

Table 3.1. 

3.2.1 Requirements of the simulator 

 In the recent years, driving simulators have been developed and used for 

various purposes. Their applications include: performing research on traffic safety, 

examining the efficacy of driver training programs, evaluating risks and benefits of in-

vehicle information systems (IVIS), testing and training in advanced driver assistance 

systems (ADAS), investigating the impact of alternative traffic control devices, 

identifying the acute and chronic effects of medications, checking the fitness to drive of 

patients with visual, cognitive and motor impairments, and to simulate full vehicle 

dynamics [43]. Most of the existing driving simulators have been developed focusing on 

precisely simulating conventional driving (manual driving) and the evaluation of driver 

assistance technologies, thus, they do not meet the purpose of my study.  

Table 3.1 Simulator specification 
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 Below, I describe in detail the features and functions that required to be 

implemented in a driving simulator to meet the aims of this study. These features and 

functions make this simulator a unique and an effective platform for evaluating driving 

experience in varying levels of automation, including conventional manual driving, 

partial and highly automated driving, and fully automated driving. 

3.2.1.1 Reproduction of autonomous and dynamic behavior 

 First, it is required to create a vehicle model that is capable of automated 

driving up to level 5, having the essential capabilities of dynamic path planning and 

dynamic obstacle avoidance. Moreover, features such as traffic light and traffic sign 

detection, pedestrian detection are important to include in the vehicle model. On the 

other hand, the simulator backend should have features such as high-frequency, low 

signal-to-noise ratio data acquisition in real-time, triggered control points in virtual 

environment, weather effects, as well as dynamic visual and audio responses, such as in 

acceleration, braking and even collision. 

3.2.1.2 Creation of arbitrary scenarios and events  

Figure 3.2 Virtual environment 
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It is necessary for the simulator to have functionality to allocate various object types 

including, but not limited to other vehicles, pedestrians, cyclists, intersections, railroad 

crossings, and traffic lights in its virtual environment. Moreover, it is necessary to 

create real-world traffic scenarios and events that could reproduce the naturalistic 

driving experience as much as possible. 

Figure 3.3 Driver's view 
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3.2.1.3 Connection to arbitrary control interface  

 To realize the main goals of my study, the driving simulator need to be able to 

connect to different human-machine interfaces. Therefore, in addition to conventional 

vehicle controllers, e.g., the steering wheel, accelerator, and brake pedal, the simulator 

should have the functionality to easily connect and accommodate many HMI 

prototypes, via USB or CAN bus. 

3.2.2 Virtual environment 

Figure 3.4 Driving route with four regions 

Figure 3.5 Scripted events and scenarios 
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 To create the virtual driving environment of the simulator, I used the free 

content-creation engine, Unity [45]. It is popular for creating interactive three-

dimensional (3D) content, such as games and animations for PC, mobile as well as web 

platforms. Compared to using conventional graphics environments/libraries such as 

OpenGL [46], using Unity’s rich Application Program Interface (API) and its Assets 

Store significantly reduces development time. Moreover, many high-level tutorials are 

widely available for beginners as well as for advanced users. Scripting languages such 

as C# and JavaScript is used for create interactions, and Unity supports a wide range of 

application programming interfaces (APIs). 

3.2.2.1 Creation of vehicles, roads, and other objects 

 For creating the virtual environment with many different traffic scenarios and 

events, I used free 3-D models available in the Unity Assets Store. These models 

include road modules, road signs, traffic lights, vehicles, people, trees, and buildings, as 

shown in Fig. 3.2. The ego-vehicle, which the drivers or automation system would 

control, was designed with a 5-speed automatic transmission system and a 2-litre 

gasoline engine. The suspension damping values, center of gravity, and turning radius 

were set to the standard values of a midsized sedan. The engine sound and other 

Table 3.2 Properties of regions 

Table 3.3 Triggered events 
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ambient noises from the virtual environment were also simulated, and played through a 

2.1 channel speaker system. 

3.2.2.2 Reproduction of autonomous and dynamic behavior 

 When operating in AD mode, it is necessary to control the dynamic behavior of 

the ego-vehicle, other road users including vehicles, pedestrians, cyclists and also traffic 

control signals. The behavior and dynamics of above objects was controlled using 

scripts written in C# and JavaScript. Controlling traffic at intersections, and to 

implement various events, trigger points were implemented in strategic locations in the 

virtual environments using invisible box-colliders. A separate script called sensor-script 

replicates the behavior of Light Detection and Radar (LiDAR), radar, and image sensors 

to measure the distance between the subject vehicle and surrounding vehicles, road 

users, and obstacles. I used Unity’s Raycast function in the sensor-script to get 

information about the types of obstacles around the vehicle. In addition, to implement 

fully autonomous driving behavior, I used Unity’s navigation mesh data structure 

(NavMesh) with dynamic obstacle avoidance. I describe this in more detail in section 

3.2.3. 

3.2.2.3 Scenario authoring 

 I designed various driving routes and scenarios by combining the 3D models of 

road sections, traffic lights, vehicles, and people. As the experiment route (course), I 

created a driving route that was 2 km long and included an expressway, urban area, 

suburban and residential area, and parking lot. In addition, I designed several events that 

drivers experience in real-life driving. I describe these scenarios and events in detail in 

section 3.3. These different driving environments would replicate real-world driving 

situations and would result in creating a more realistic driving experience. 

3.2.2.4 Reproduction of driver field of view 

 Three 4-K resolution monitors are used to display the virtual environment from 

the driver’s point of view, including the views from the left and right windows. The 

views from the rear view and side view mirrors were also shown (Fig. 3.3). In addition, 

essential driver feedback components such as speedometer, turn signal indicators, were 

included along with a warning indicator that flashed when drivers exceeded the speed 

limit. 
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3.2.2.5 Simulator PC and data acquisition 

 For the simulation, I used a desktop computer with Windows 8.1, an Intel Core 

i7 processor, 16 GB RAM, and an Intel HD Graphics card. For data acquisition, vehicle 

telemetry including GPS coordinates, speed, and input from vehicle controllers (i.e., 

steering angle, brake, and accelerator pedal position or touch input coordinates that 

represent the driving behavior of each participant) can be recorded at a 100 Hz. 

3.2.3 Autonomous vehicle model 

 In this section I describe the autonomous vehicle model and its design 

parameters. 

3.2.3.1 Navigation  

 I used Unity’s built-in navigation system for autonomous path planning 

through the virtual environment. It works as follows: first, Unity creates a data structure 

called the navigation mesh using the road network in the virtual environment. The 

navigation mesh describes the drivable road surfaces. This data structure consists of 

road components represented by convex polygons. After creating the data structure, 

each polygon is connected to a new surface laid on top of the existing road geometry. In 

this method, the A-star (A*) search algorithm [47] is used to find a path from the 

starting point to the goal. Then, a sequence of polygons describing the path is created 

and the automated vehicle agent steers from one polygon to the next in the sequence to 

reach the goal. While the automated vehicle is moving, the dynamic obstacles, such as 

other vehicles and passengers, are detected and identified, and it is capable of 

navigating without colliding with them. The sequence of polygons from the start to the 

goal is locally adjusted and updated while the agent is moving. Unity uses reciprocal 

velocity obstacles to predict and prevent collisions. 

3.2.3.2 Acceleration/deceleration profile 

 To maintain a safe distance with the lead vehicle I created a headway variable 

for the automated vehicle. This distance was decided based on the speed limit of the 

road and the maximum braking deceleration and brake force of the vehicle. The 

headways for each area were chosen considering the level of protection needed and the 

effects on ambient traffic. I used Unity’s ray casting to continuously monitor the 

distance to the lead vehicle as well as to other surrounding vehicles. Ray casting 

measures the distance to objects surrounding (360 degrees) the autonomous vehicle at 
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100 Hz and sends this data for the calculation of the speed. The vehicle autonomously 

controls acceleration to maintain a desired headway using Unity’s Raycast module. 

3.2.3.3 Steering control 

 In the autonomous vehicle model, I implemented virtual path segments 

consisting of reference points. For example, there is a predefined curved path that the 

vehicle moves along when it changes lanes, turns at an intersection, or passes a slower 

vehicle (avoiding static/dynamic obstacles). I created these paths to make the movement 

of the autonomous vehicle look more fluid. 

3.3 Driving route and experimental conditions 

 In this section, I explain the driving route, which consisted of several scenarios 

and triggered events, in the virtual environment. I also describe the experimental 

conditions, including the procedure followed and information regarding participants. 

3.3.1 Scripted events and scenarios 

 To analyze individual driving experiences, the virtual environment should 

consist of several scripted scenarios and events to replicate the varied conditions and 

situations that drivers encounter in the real world. In order to compare the driving 

experience among drivers, it is critical that the essential aspects of conditions be 

reproduced from trial to trial. I thus created a 2 km long driving route which included 

the following four regions of interest, as shown in Fig. 3.4. The four sections were an 

expressway, an urban area, a suburban and residential area, and a parking lot. There are 

also several triggered events implemented in each area. The properties (the speed limit, 

number of lanes, and length) of each region are listed in Table 3.2, and the triggered 

events are listed in Table 3.3. 

3.3.1.1 Expressway area 

 In the expressway section with 3 lanes for each direction, the traffic scenarios 

required the drivers to merge into traffic, change lanes, and take an exit. As the event, 

one lane was closed due to roadwork, as shown in Fig. 3.5 (a). The vehicles moving in 

this lane were required to merge into the lane to the right.  

3.3.1.2 Urban area 

 This area had signalized intersections, pedestrian crossings, railroad crossings, 

and traffic congestion that caused the driver to brake and/or stop the car frequently. As 



Chapter 3: Development of a Driving Simulator 

   41 

the event for this area, the lead vehicle braked suddenly, and the driver was required to 

overtake it (Fig. 3.5 (b)).  

3.3.1.3 Suburban and residential area 

 This area had less traffic, but it had un-signalized intersections with low 

visibility, so the driver had to be more cautious. As the event, a car had pulled over due 

to a mechanical problem, and it was blocking half of the lane, as shown in Fig. 3.5 (c). 

Moreover, there was a person standing by the stopped car. The driver was required to 

wait for oncoming traffic to pass before going around the parked vehicle. In addition, 

there was a sudden detour in this area (Fig. 3.5 (d)). Drivers had to take a bypass road as 

indicated by road signs. Furthermore, there is sudden incursion of a pedestrian into the 

path of the subject vehicle (Fig. 3.5 (e)). The driver had to immediately apply brakes to 

avoid hitting the pedestrian.  

3.3.1.4 Parking area 

 The outdoor/open parking area consisted of parked vehicles and people 

walking around. There was a dedicated parking spot for the subject vehicle (Fig. 3.5 

(f)). As the event, there was a person using a mobile phone standing close to the 

dedicated parking spot, requiring the driver to be much more cautious to avoid collision. 

3.3.2 Preliminary experiment to evaluate simulator 

 As a preliminary evaluation of the developed driving simulator, I conducted a 

simple experiment to evaluate driving experience between novice and experienced 

drivers. Figure 3.6 (a) shows the speed variation of the two groups throughout the 

expressway section, and Fig. 3.6 (b) shows the steering angle variation of drivers in 

both groups in the suburban area. Figure 3.6 (a) shows that in general, variation of 

speed among novice drivers is high and unstable, whereas the experienced drivers 

maintained more stable speed. Figure 3.6 (b) shows that the steering control of both 

groups were similar. From these results, it could be said that novice drivers will have to 

improve their speed control skills. Using these data, one can get an idea of the 

differences in the driving skills of individuals. Such experiments using simulator could 

be conducted for driving skill evaluation and driver training as well. 

3.3.3 Experimental design 

 This section describe the experimental conditions and procedure of the 

experiment conducted to assess the feasibility and effectiveness of the developed 
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simulator. The objective was to evaluate driver experience in both automated driving 

and manual driving using the simulator. 

3.3.3.1 Procedure 

 First, I briefed the participants on how to use the driving simulator in 

automated and manual driving modes using the corresponding interfaces. I explained 

how the behavior of automated driving system including path planning and decision 

making, such as how it would avoid collisions and navigate toward destination. Then I 

asked them to drive on the dedicated training track I created so that they could practice 

to control their speed, turn, brake, and observe traffic laws in the simulator. They 

practiced using both the conventional and automated driving methods. The training 

track consisted of straight roads, curves, and intersections. I then explained the actual 

driving route and objective, which was to get to the destination as quickly as possible 

while obeying traffic laws and road safety. For the first two trials (first set), the 

participants drove in manual mode, using the steering wheel and pedals. Then, they 

used automated driving to get from start to goal, along the same route as in the first trial. 

After they had a 15-minute break, I asked them to repeat the course (second set). The 

events mentioned in Section 3.1, were triggered during the second set of trials. 

However, I did not mention those events to the participants beforehand. 

3.3.3.2 Participants 

 Twelve healthy people (11 males, 1 female), in the age range of 21 to 24 years 

(mean: 22.6, standard deviation: 0.86) participated in the experiments. Six of them had 

less than 2 years of driving experience. They were assigned to the novices group and the 

other six participants, who had 2 to 8 years of experience were assigned to the 

experienced group. In this context, I use the words ”experienced” and ”novice” only to 

refer to the two groups involved in this study. 

3.3.3.3 Evaluation 

 I recorded the task completion time for each participant for every trial as a 

efficiency (time) index. As a safety index, I recorded the number of collisions (note that 

no collisions occurred during autonomous driving, as the car autonomously avoided any 

potential collision). In addition, using a wrist-based optical heart rate monitor, I 

measured the average heart rate for every trial as a physiological index. Finally, I asked 

the participants to assess their subjective workload using the NASA Task Load Index 
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(NASA-TLX) [48]. Moreover I designed a questionnaire to investigate their preferred 

driving method and reasons for preference as subjective usability indices. 

3.4 Results 

3.4.1 Quantitative results 

 Figures 3.7 (a) and (b) show the average completion time and average heart 

rate recorded for both novices and experienced drivers, respectively. When in 

automated driving mode, there was a reduction of approximately 18.3% in completion 

time. Average heart rate was also lower for both groups when in automated driving 

mode. Furthermore, the average number of collisions recorded for experienced and 

novice drivers were 1.67 and 3.67, respectively.  The simulator registered a collision 

and incremented the collision counter, which served as a safety index, whenever the 

boundary of the subject vehicle overlapped with that of another vehicle, object, or 

person. 
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 Figures 3.8 (a) and (b) show the subjective workload scores obtained using 

NASA-TLX (raw). This shows that in automated driving, both groups experienced a 

reduction in perceived workload for every parameter of NASA-TLX. The overall 

workload score for automated driving showed a significant reduction in both groups. It 

was 41.3% lower than for manual driving among novices, 49.1% lower for experienced 

drivers. Thus, it can be inferred from these results that automated driving is better than 

conventional driving in terms of time efficiency, safety, and subjective workload. 

3.5 Discussion 

Figure 3.6 Vehicle telemetry data recorded by simulator 
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 The results show us that experienced drivers considered driving pleasure and 

flexibility in controlling the vehicle in conventional driving, while novices were 

concerned about the ease and safety of autonomous driving. It can be inferred that 

driver’s confidence and experience influenced their preference for a particular method 

of driving in general. These results indicate that autonomous vehicles should be capable 

of varying the degree of automation according to the individual driver’s experience and 

preference. The results also showed that the driving simulator has sufficient 

functionality to evaluate driver experience in both manual and automated driving. This 

Figure 3.7 Subjective workload scores 

Figure 3.8 Completion time and average heart rate 
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experiment further helped in validating the data collection methods and user experience 

evaluation I adopted in the driving simulator experiments. Thus, the simulator is 

capable of conducting quality driving experiments. 

3.6 Summary 

 In this chapter, I presented the requirements and development of a virtual 

reality driving simulator. Here I addressed the design requirements such as reproduction 

of autonomous and dynamic behavior, creation of arbitrary scenarios and events, and 

connection of different HMIs for driver experience evaluation. The virtual environment 

consists of four scripted scenarios and six triggered events to clarify the differences 

between autonomous and conventional driving modes. To evaluate the effectiveness of 

the driving simulator, I conducted a preliminary experiment to evaluate driving 

experience between manual driving and automated driving. Twelve participants (six 

experienced drivers and six novices) participated in the experiments by driving in both 

driving modes under different road and traffic conditions. Results confirmed the 

usability of the driving simulator as well as the effectiveness of data acquisition 

methods. In the following chapter, I describe the development of the multimodal HMI 

system for collaborative control.  
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4 A MULTIMODAL HMI FOR 

COLLABORATIVE CONTROL 

 In this chapter, I present the development of multimodal human-machine 

interface system for the proposed collaborative control method. A multimodal interface 

system has many advantages over its unimodal components. Among them are improved 

recognition, faster interaction, and situation-adaptability. The multimodal interface 

integrates the touchscreen, hand-gesture, and haptic modalities with the following 

objectives: enabling intent communication between driver and AD system in real-time, 

supporting shared situation awareness, and enhancing bi-lateral understanding of intents 

and actions AD system and driver. Each interface, coupled with the AD system 

facilitate context-adaptive interaction by providing dynamic visual, audio, force and 

tactile feedback to the driver, thus realize effective bi-directional interaction, as opposed 

to uni-directional interfaces. This chapter describes in detail the design of the 

multimodal HMI system. 

 

4.1 Introduction 

 In the previous chapter, I presented the driving experiments conducted to 

evaluate and compare the individual driving experience in vehicles with full driving 

automation (SAE Level 5) and with no driving automation (Level 0). A qualitative 

evaluation revealed that drivers prefer to have tactical-level control over lateral and 

longitudinal motions while driving in level 5 [28], [49]. In chapter 2, I proposed novel 
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level of driver-vehicle interaction for highly automated vehicles based on tactical level, 

in which drivers can input lateral control commands such as lane change, overtake, and 

longitudinal control commands such as acceleration and braking, and location specific 

commands such as parking. This chapter describes the development of a multimodal 

interface system to facilitate collaborative control using tactical-level input. 

 Multimodal interface (MMI) systems are capable of processing two or more 

combined user input modes, (i.e., touch, speech, gestures, and body movements) in a 

coordinated manner with multimedia output [50]. Such systems bring along many 

benefits into human-machine systems such as improved recognition and understanding, 

faster and intuitive interaction, and ability to adapt to different environment and users. 

When it comes automobiles, since they travel through highly dynamic environments, 

and their user groups are diverse, use of a multimodal interface system for vehicle 

controlling will bring significant benefits to drivers. A MMI will allow drivers to 

accomplish vehicle control tasks using a modality most appropriate to the driving 

situation, or a modality they are comfortable with or prefer. In the literature, there are 

many studies in the automotive domain investigating user interfaces with multimodal 

feedback [51], [52], but comparatively lesser number of studies on multimodal inputs 

[53]. Most of related studies focused on reducing driver distraction when performing 

secondary and tertiary tasks while engaged in manual driving in levels 0, or 1. There is 

also a lack of studies investigating the use of human-machine interfaces with 

multimodal input and feedback for tactical-level controlling of vehicles operating in 

levels 2 and above. Therefore, as a solution, I developed an HMI with multimodal input 

and feedback for highly automated vehicles with the objectives of: (1) facilitate highly 

efficient interaction (shorter input time, lower input error), and to (2) reduce driver 

workload. 

4.2 Related Works on Multimodal Automotive Interfaces 

 When designing a multimodal system, it is essential to integrate 

complementary modalities that create a synergistic interaction where strengths of each 

modality are maximized to overcome weaknesses in others [54]. In this study, therefore, 

I integrated three modalities: a touchscreen with visual and auditory feedback, a hand-

gesture interface with visual feedback, and a haptic interface with tactile and force 

feedback. 
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 Known as a type of direct input devices, touchscreens are found to be better 

suitable for discrete, pointing, and ballistic types of tasks [55]. They perform better than 

rotary controllers in controlling in-vehicle functions [56]. Amount of information they 

can convey within a given time is generally higher than other modalities such as voice 

and gesture. Ability to adaptively change the information displayed, intuitive input by 

having clearly defined buttons and touch-areas, quick and direct methods to input 

commands (e.g. selecting a destination from a map), ability to easily upgrade with 

software updates are among key advantages of touchscreens. However, high visual 

attention, poor readability in direct sunlight, and lack of physical feedback are major 

drawbacks in touchscreen interfaces. 

 Hand gestures are a part of natural interaction among humans. A hand-gesture 

based interface, thus, would make the driver-vehicle interaction effortless and more 

intuitive compared to physical interfaces. Research on gestural interfaces in automotive 

applications have widely been aimed at improving safety by reducing driver’s visual 

and cognitive demands associated with conducting secondary and tertiary tasks while 

engaged in driving (Levels 0, and 1), and most studies are based on non-intrusive, one-

handed gestures [57], [58]. Since hand gestures can be made without visual engagement 

as opposed to touchscreens, and can convey information immediately in contrast with 

speech interfaces, they have numerous possible applications in vehicles. However, lack 

of direct physical feedback, and relatively high recognition errors are known 

disadvantages of gesture-based interfaces. 

 Haptic interfaces, on the other hand, can provide the user with active as well as 

passive feedback on input acknowledgement, and system status. Such interfaces can 

facilitate and enhance bidirectional interaction between the driver and automated 

vehicle, which is an important factor that contributes in increasing driver perception, 

situational awareness, and therefore, performance. By utilizing human haptic system, 

driver cognitive load could also be reduced, by supplementing other sensory channels 

such as visual and auditory [59]. Furthermore, haptic feedback is a better solution for 

environments that are noisy and distracting, compared to auditory or visual feedback. 

Several automotive manufacturers have demonstrated vehicles that have joy-stick-type 

haptic HMIs instead of conventional steering wheel and pedals [60], [61]. In addition, 

many studies investigated the use of tactile feedback for advanced driver assistance 

systems (ADAS), and in-vehicle infotainment systems (IVIS) [62]–[64]. However, use 
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of haptic interfaces in controlling highly automated vehicles has not been investigated 

well enough. This thesis aims to contribute in filling this void. 

 In the following section, I present the details of the design and development of 

each interface type. 

4.3 Development of Touchscreen HMI 

 I developed a touchscreen-based HMI for tactical-level input considering the 

requirements stated in the previous section. Here I provide the rationale of the design. 

4.3.1  Requirements and related parameters 

 One major reason to use a touchscreen interface in this study is because it can 

not only receive input from driver but also convey much more information from AD 

system. Moreover, driver can comprehend that information in a very short time (at a 

glance), compared to voice or gesture interfaces. In addition, humans are generally 

familiar with using touchscreen interfaces in smartphones, tablet computers, and car 

navigation systems. As a consequence, one can expect that the acceptability of a 

touchscreen interface for tactical-level input would be high. The important point when 

using a touchscreen in vehicles is to allow the driver to precisely touch a location with 

reliability. I carefully designed the interface and interaction so as to ensure the above 

properties. However, it is important note that the acceleration (along 3-axes) and 

vibrations make precise touches more difficult, and moreover, these may result in input 

misrecognition and incorrect inputs.  

4.3.2 Robust bidirectional interaction 

 In order to collaboratively perform DDTs, the human-machine interface should 

enable bi-direction interaction. The HMI thus provides the driver with feedback on the 

input commands, information of the driving environment, and suggestions from the 

system, by using visual and auditory prompts. Moreover, the touchscreen interface 

displays an overview map, with adjustable field of view depending on the situation, in 

order to comfortably input tactical-level control commands. The HMI should also have 

an input-correction function for robust inputs. Furthermore, the location of HMI inside 

the cockpit should be decided considering human factors, e.g., angle of vision, 

reachable region, and difficulty in accurate positioning of the fingertip, when the vehicle 

is moving. 
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4.3.3 Touchscreen-based driver-vehicle interface functionality 

 I implemented the touchscreen interface in a Microsoft Surface Pro 3 (Fig. 4.1). 

The interactive graphical user interface was developed using Unity engine. The driving 

simulator connects with the touchscreen using wireless communication to update the 

vehicle position and overview map in real-time. Considering human’s angle of vision 

and reachable region of fingertip, the touchscreen is located in front of the driver to 

allow the driver to watch both the simulator screen and touchscreen at the same field of 

view.  

 The top half of the screen displays a two-dimensional overview map of the 

vehicle and its surroundings while the overview map shows the surroundings of the 

vehicle including other vehicles and road layout. This information displayed on the 

screen in order to increase the driver's situation awareness. Drivers can move the map 

by panning, and zoom-in/out by pinching. The bottom half displays the lateral and 

longitudinal control buttons, as well as vehicle status. It consists of directional control 

buttons, speed control slider, and a confirmation button. 

 Driver can use the directional control buttons to input a turn, lane change, or an 

overtake command (Fig. 4.1). These buttons adaptively change their status between 

active (enable) and inactive (disable) depending on the options available to the driver. 

 

Fig. 3 Touchscreen interface 
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Figure 4.1 Touchscreen interface 
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For example, in a certain part of the expressway, lane changing is prohibited. In this 

area, the lateral control buttons get disabled (Fig. 4.1 (b)). This will passively inform the 

driver of the road rules, and prevent the driver giving a wrong/illegal input. Drivers can 

change the travelling speed using the control slider. When the vehicle approaches the 

parking lot, the overview map displays the layout of the parking lot (Fig. 4.1 (d)) and 

drivers can tap an available spot and then tap the confirm button to park the vehicle. 

This interface provides visual and auditory feedback on acceptance or rejection of driver 

input. 

4.4 Development of hand-gesture HMI 

 Gestural interfaces are currently being developed for automotive applications 

focusing on reducing driver distraction. These interfaces place great emphasis on 

improving safety by reducing driver’s visual and cognitive demands associated with 

conducting secondary driving tasks like operating the audio system, climate control 

system [57]. However, there is a lack of studies on using hand gesture interfaces for 

controlling vehicle maneuvers. Driving a vehicle manually, using hand gestures would 

be highly inconvenient, because of the many parameters (e.g., steering angle, speed) 

that need to be controlled in real-time. Therefore, one of the objectives of this study is 

to find out whether hand gestures can reasonably be used in an autonomous vehicle to 

conduct primary driving tasks, in tactical-level. 

4.4.1 Gesture recognition technology 

 

Property Value 

Detection 

range 

0.23 m3, 25-600 mm above the 

sensor on +Y-direction 

Sampling 

Frequency 
200 Hz (max) 

Accuracy 0.01 mm 

Dimensions 13 mm x 30 mm x 76 mm 

Connectivity USB 2.0, 3.0 

 

Table 4.1 Technical specification of Leap Motion 
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 For hand-gesture recognition, I used the Leap Motion Controller as a platform. 

Leap Motion Controller, as shown in fig. 4.3 and fig. 4.4, can determine the position of 

hands in three-dimensional (3D) space in real-time. It consists of two wide-angle 

infrared (IR) cameras and three IR LEDs [65]. It uses stereo vision principle for optical 

tracking. It generates a grayscale stereo image by tracking the IR light emitted by LEDs. 

However, there is not much information published on the emitting patterns or 

Figure 4.2 Hand-gesture interface overview 

Figure 4.3 Information flow 
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interferometry techniques it uses to generate this image. It can track hands within a 3D 

interaction space above the device. This space is in the shape of an inverted pyramid 

and it spans from 25 mm above the device to 600 mm in positive Y-direction. Technical 

specification of the controller is listed in Table 4.1. The sensory data (raw data), in the 

form of a grayscale stereo image, is streamed via USB to the computer after performing 

resolution adjustments locally, inside the controller. Leap Motion Service (software) 

that runs on the computer uses proprietary algorithms to process the streamed stereo 

images to reconstruct a 3D representation of the environment that it sees inside its 

interaction space. The resulting data is updated in an object-oriented application 

programming interface (API), as a series of frames consisting of all tracking 

information including positions, and velocities of the tracked hands. 

 I chose Leap Motion as the gesture recognition platform for the following 

reasons. It is unobtrusive in size with its small form factor, very portable and light 

weight, consumes less power, and cheaper compared to Microsoft Kinect [66] (another 

popular vision based motion recognition platform). It is also easy to use and non-

intrusive (as a non-contact platform) compared with other devices that require the users 

to wear either gloves [67] or armbands [68] in order to input gestural commands. 

However, when the palm is tilted significantly with respect to X-Z plane, Leap Motion 

Controller fails to track a hand accurately [69]. To deal with this limitation, I defined 

our swipe gestures so that users will have to use a flat hand with their palm parallel to 

X-Z axis. 

4.4.2 Integration with driving simulator 

 A dynamically loaded library (DLL) connects to Leap Motion service to 

provide tracking data in real time to the driving simulator. I created C# scripts in Unity 

to access the tracking data from Leap Motion API and to map and execute the primary 

driving tasks in the simulator (Fig. 4.3). However, Unity’s native coordinate system is 

different from that of Leap Motion’s. Therefore, it is required to use the Leap Unity 

extension script to convert the scale and coordinate system as well as to convert vectors 

and matrices from Leap API classes to Unity API classes. 
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4.4.3 Gesture interaction space 

 I placed the hand gesture sensor behind the steering wheel as shown in Fig. 4.3. 

Among the reasons for this placement were to avoid any unintended input resulting 

from hand movements of the driver or passengers, and to facilitate the use of either hand 

the driver is comfortable with. Human factors play an important role in determining the 

usability of an interface. The gesture interaction space lies within the standard range for 

operating hand controls of motor vehicles as outlined in Japanese safety regulations 

(article 10) and ISO 3958. 

4.4.4 Control functions 

Figure 4.4 Relationship between control functions and gestures 
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For this experiment, I defined the following abstract control functions to be used in 

controlling a vehicle in collaboratively, with the objective of enhancing driver 

experience. 

• Lateral control: turning, overtaking, merging, and lane changing. 

• Longitudinal control: speed controlling 

• Parking: selecting a parking spot, orientation of vehicle. 

 I defined the input functions for this interface so that drivers have the freedom 

to input the above commands using hand gestures. The autonomous vehicle control 

algorithms check the validity of input command based on the situation and traffic rules, 

and then maps the gesture input to the appropriate control function. 

4.4.5 Gesture classification 

 I first defined a set of vehicle movements to improve the driving experience in 

an autonomous vehicle, as stated earlier, and related them to the set of hand gestures 

(G1 – G7). Figure 4.4 shows the grayscale image data of each gesture at four time steps 

((i) to (iv)), captured by Leap Motion’s IR cameras. Out of the seven gestures, five are 

carried out using a flat hand parallel to X-Z plane (swipe gestures) and two are carried 

out using a pointing finger (circle gestures). Figure 4.5 shows the different hand 

Figure 4.5 Hand-gesture types 
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movements required to make the gestures. The swipe gesture is defined as a straight line 

movement of the hand with fingers extended, and a circle gesture is defined as the 

circular motion of a fingertip. In natural human-human nonverbal interaction, people 

use hand gestures to indicate directional movements, and increase/decrease of a 

quantity. Therefore, to make the driver-vehicle interaction intuitive, swipes that are 

parallel to horizontal plane (XZ) were related to lateral controls while those are 

perpendicular to X-Z plane were associated with longitudinal control commands. It is 

also important for the gestures to be distinct from each other to avoid ambiguity and 

misrecognition.  In order to differentiate horizontal (G1, G2) swipes from vertical (G3, 

G4) swipes, I compared the absolute values of the direction vector for each swipe input. 

To differentiate clockwise circle gestures from counterclockwise circle gestures, I 

compared the angle between the fingertip and the normal vector of the circle input. If 

this angle was less than 90 degrees, the gesture was defined to be in clockwise direction. 

In order to minimize hand fatigue, I used following recommended values for parameters 

to validate a gesture: minimum swipe length – 150 mm; minimum swipe speed – 1000 

mm/s; minimum circle radius – 5 mm; and minimum arc length 1.5×π radians. 

4.4.6 Visual feedback 

Figure 4.6 Gesture classification framework 
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 Compared to physical/tactile interfaces, gestural interfaces lack the ability to provide 

direct physical feedback to the user. Controlling a vehicle’s movements is a critical task 

and it is important to give feedback to the driver on the success or failure of recognizing 

gestural input. Therefore, to enhance the driver experience, I created an augmented-

reality (AR) system in the driving simulator, that gives the driver visual feedback if a 

command is recognized and accepted. For lateral input commands, I displayed an AR 

arrow on the simulator screen, that appeared to be projected on to the road ahead (for 

changing lanes, merging), or above the road (for turning), showing the intended motion 

of the vehicle, as shown in Fig. 4.10 (a). For parking, I displayed an AR rectangle 

surrounding the parking spot, as shown in Fig. 4.10 (b). This AR system can be 

Figure 4.8 HMI setup in the simulator 

Figure 4.7 Haptic interface - system overview 
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implemented in an actual vehicle by using heads-up-displays, and transparent displays 

with OLEDs. 

4.5 Haptic Interface 

  Haptic interfaces are capable of providing the driver with active as well as 

passive feedback on input acknowledgement, and vehicle/system status. Drivers are 

familiar with using tangible, physical interfaces inside vehicles, such as the steering 

wheel, pedals, and shift lever. Such interfaces can enhance the bidirectional interaction 

between the driver and vehicle, which is an important factor that contributes in 

increasing driver perception and performance. By using haptic systems, driver’s 

cognitive load could also be reduced, by supplementing other sensory channels such as 

visual and auditory [70]. In addition, haptic feedback is a better solution for 

environments that are noisy and distracting, compared to voice feedback. Several 

automotive manufacturers have demonstrated vehicles that have joystick-type haptic 

DVIs instead of conventional steering wheel and pedals [60], [61]. Also there are 

Fig. 1 Haptic and gestural driver-vehicle interfaces 
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(b) Haptic controller 
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Figure 4.9 Haptic interface- design overview 

Figure 4.10 Driver support - augmented reality visual feedback 
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vehicles equipped with such interfaces designed for the use of drivers with various 

physical disabilities [71]. In addition, many studies investigated the use of tactile 

feedback for advanced driver assistance systems, and in-vehicle infotainment systems 

[62], [70], [72]. 

4.5.1 Design Considerations 

 In this section, I describe the design considerations and components of the 

haptic interface. 

4.5.1.1 Mechanical configuration 

 The haptic control interface, as shown in Fig. 4.9, consists of a handle mounted 

on the top of a shaft and a base that contains the joystick mechanism, actuators, 

transducers, and microcontrollers. The handle was designed to have a smooth curvy 

surface, so that when operating for long hours, the fatigue of hand would be minimum. I 

made the handle using a 3D printer. The handle has a push button and a rotary knob to 

invoke different functions, combined with the movement of the handle, and two 

vibration motors of eccentric rotating mass (ERM) type, to provide vibrotactile 

feedback. I used the base part of displacement type joystick as the platform for our 

control interface, which has two degrees of freedom; sideways (X-axis) and back-and-

forth (Y-axis). 

4.5.1.2 Situation awareness assistance 
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  The drivers in autonomous vehicles need not to pay constant attention to the 

road environment while driven in fully-autonomous mode. Thus, when they want to 

take control of the vehicle, it is important to increase the situation awareness for 

ensuring safety. Haptic feedback can efficiently make the driver aware of the 

surrounding vehicles, applicable traffic rules, as well as the status of the vehicle. This 

control interface provides haptic feedback in the forms of kinesthetic: by controlling 

torques on relevant axis motors, and tactile: by inducing vibrations on the handle using 

the two vibration motors (Fig 4.9). 

4.5.1.3 Control System 

 I used an Arduino microcontroller board (ATmega32u4) to control motor and 

communicate with the driving simulator (Fig. 4.7). Arduino motor shield controlled the 

axis motors and Toshiba’s TA7291P IC controlled the vibration motors. The DVI 

communicates with the simulator PC using serial communication via USB, to validate 

the user input and execute vehicle control functions in the driving simulator, as shown 

in Fig. 4.7. 

4.5.2 Classification of input commands 

 Figure 4.12 shows the required movements of the handle in order to input each 

control command. The handle stays at the neutral position when not operated, as shown  

Figure 4.11 Tactical-level control functions 
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in Fig. 4.12 (a). To input a lateral control command, the driver moves the handle to left 

or right direction (Fig. 4.12 (b1, b2)). The simulator will then map the input to a vehicle 

control function based on the situation, i.e., lane changing, merging, or turning. The 

vehicle’s speed can be controlled within the legal speed limits by moving the handle 

forward (to accelerate) as shown in Fig. 4.12 (d1), or backward (to decelerate) (Fig. 4.12 

(d2)). For overtaking a vehicle, driver is required to press the button while moving the 

handle forward (Fig. 4.12 (d3)). If the handle is moved backward while pressing the 

button, as shown in Fig. 4.12 (e), the vehicle will cancel the execution of last input 

command. In addition, driver can use the rotary dial to change the vehicle orientation 

when parking. 

4.5.3 Kinesthetic and tactile feedback 

The haptic DVI is capable of providing two types of feedbacks; kinesthetic (force) and 

tactile (vibration). Force-feedback is given in instances like when the driver tries to 

input a command that violates the traffic rules (e.g., speeding up beyond the speed limit 

or turning in to a one-way road) or imposes a threat to road safety (e.g., changing lanes 

or overtaking in dangerous situations). When such situations are detected by the vehicle, 

the haptic controller opposes the motion from the driver. The microcontroller will use 

Figure 4.12 Haptic interface - input functions and feedback 
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pulse-width modulation (PWM) to control the axis motors to apply a force on the shaft 

(Fig. 4.12 (c1)). If the driver continues to input (forcefully) ignoring the force-feedback, 

the vibration motors are activated and the handle will vibrate in a strong and steady 

manner until the driver corrects or cancels the input command (Fig. 4.12 (c2)). 

4.6 Summary 

 In this chapter, I introduced the component interfaces of the multimodal HMI 

system for collaborative control; touchscreen, hand-gesture, and haptic. Presenting the 

design requirements for each interface type, I described the development of the 

interfaces. Set of input functions were defined for each interface and associated them 

with vehicle control functions in tactical-level. In order to evaluate the effectiveness of 

the multimodal interface system and the usability of each interface modality, 

experimental evaluation is necessary. The evaluation of multimodal HMI system will be 

presented in chapter 5.  
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5 HMI ASSESSMENT 

 

 

 

 To determine the effectiveness of any human-machine interface system, 

carefully designed user experience evaluations are necessary. This chapter presents a 

detailed experimental evaluation of the multimodal HMI system using the driving 

simulator. Twenty participants involved with the driving experiments. Their driving 

experience was compared when using the multimodal HMI and each unimodal 

components. Data related to HMI operation including input error, choice of modality, 

reaction times, and vehicle telemetry were recorded. Moreover, a subjective evaluation 

was done using a questionnaire and NASA task-load index. The results highlighted the 

effectiveness of the multimodal interface in terms of perceived workload, efficiency, 

error avoidance, and situation adaptability. 

5.1 Experimental Design 
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This section explains the experimental design and describes the driving route used for 

experiments which was created in a virtual environment consisting of several scenarios 

and events.  

5.1.1 Scenarios and events 

 To evaluate the proposed HMI system, the virtual environment of the driving 

simulator requires to simulate different scenarios and events to represent many traffic 

situations that drivers encounter in the real world. Thus, I created driving route having a 

length of 2 km, including areas such as: expressway area (𝑅1), urban area (𝑅2), rural 

and residential area (𝑅3), and parking (𝑅4). In addition, I designed and triggered several 

events (𝐸) that drivers experience in each area. Below I describe the characteristics of 

traffic scenarios and events implemented in each area. 

Figure 5.1 Multimodal interface system 

Table 5.1 Input-output relationship 
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5.1.1.1 Expressway area 

 In this area, which had three lanes in each direction, the driver had to merge 

into traffic, change lanes, and take an exit. As the event, one lane was closed due to 

roadwork, and vehicles moving in that lane were required to merge into the lane to the 

right. 

5.1.1.2 Urban area 

 This area had intersections controlled by traffic lights, pedestrian crossings, 

railroad crossings, and traffic congestion that caused the driver to brake and/or stop the 

car frequently. As the event for this area, the lead vehicle braked suddenly, and the 

driver had to overtake it. 

5.1.1.3 Sub-urban area 

 This area had less traffic, but it had intersections with no traffic signals and low 

visibility, so the driver had to be more cautious. As the event, a vehicle had pulled over 

due to a mechanical problem, and it was blocking half of the lane. The driver had to 

wait for oncoming traffic to pass before going around the parked vehicle. There was a 

sudden detour in the rural area. Drivers had to take a bypass road as indicated by road 

signs. I also triggered an unexpected incursion of a pedestrian into the path of the 

subject vehicle. The driver had to brake immediately to avoid hitting the pedestrian. 

Figure 5.2 Tactical level input functions 
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5.1.1.4 Parking area 

 The parking lot consisted of parked vehicles and people. There was a dedicated 

parking spot for the subject vehicle. As the event, there was a person standing close to 

the dedicated parking spot, requiring the driver to be much more cautious to avoid 

hitting her. 

5.1.2 Experimental procedure 

 Drivers first drove on a training course to get used to the simulator and the 

HMIs. I observed the training and guided the drivers until they gained enough 

competence in using each of the input devices. For the experiments, I asked them to 

control the autonomous vehicle in four trials, using each interface alone (unimodal) and 

using the multimodal HMI system. When using the MMI system, drivers could choose 

any modality to input tactical-level control commands. 

5.1.3 Participants and evaluation 

 Twenty participants (n=20; 13 males, 7 females, mean=26.5 years, SD=4.3, 

age range 21–36 years) involved in the experiments. Their years of driving experience 

ranged from 0 to 16, (mean=7.1, SD=4.9). All of them possessed a driving license, and 

30% of them had experience in a driving simulator. For objective evaluation, I 

measured the number of input errors, time taken to make an input, information carried 

by different input modes, and the use of each input modality based on situations and 

road segments. As for subjective evaluation, after completing each trial, I asked the 

participants to respond to the NASA-TLX which is a tool to assess subjective workload. 

I also gave them a questionnaire to evaluate subjective driving experience. 

5.2 Experimental results 

 In this section I present the quantitative and qualitative results obtained from 

driving simulator experiments. 
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5.2.1 Usage patterns and information 

 To determine the context of use of MMI system’s component modalities, I   

analysed the input patterns of each driver (Fig. 5.7). I found that when using the MMI 

system, 90% of drivers have used 2 or more input modalities, and 45% of drivers have 

used all three modalities to input tactical level control commands. This indicates that if 

available, drivers tend to use different input modalities in different traffic conditions.  

Figure 5.3 Usage of hand-gestures by each driver 

Figure 5.4 Average input error - gesture interface 
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 In order to realize a relationship between different tactical-level control 

functions (i.e., lane changing, turning, and parking) and driver’s choice of input     

modalities, I analyzed the input patterns further, as shown in Fig. 5.7. The use of 

touchscreen interface to input location-based commands (i.e., parking) is notable. 

Drivers used the touchscreen interface to input 77.5% of parking commands followed 

by gesture (12.5%) and haptic (10%) modalities (Fig. 5.7 (g)). Furthermore, 50% of 

merging commands were input using the touchscreen. On the other hand, for 

longitudinal control commands, the use of haptic modality is notable, as 86% of speed 

control commands were given through haptic inter-face, followed by gesture (12%) and 

touchscreen (2%) (Fig. 5.7 (f)). In addition, 60% of exit commands, 51% lane changing 

commands, and 50% of overtaking commands were given using haptic interface. For 

lateral control commands, again, haptic interface was the most used modality (48%), but 

I can see an increase of use in touch and gesture modalities to input lateral commands as 

opposed to longitudinal commands (Fig. 5.9). The use of touchscreen got remarkably 

increased to 33%, while hand gestures have also been used to input 18% of the lateral 

control commands. 

5.2.2 Mean input times 

Figure 5.5 Usage of input patterns - haptic interface 
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 Since some tactical-level control commands can be time-critical, it is important 

to determine which modalities have faster input times. I considered the time period from 

when the driver starts moving his/her hand to make an input to the point of time the 

system accept that input, as the in-put time. I measured the input times of drivers in   

each trial, and Fig. 5.8 (b) shows the mean input time for each interface. The lowest 

average input time, 0.96 s (standard deviation (SD)=0.64) was observed when drivers 

used the hap-tic interface alone, and it was significantly lower than that of the hand-

gesture interface (t-test: t (20)=2.03, p<0.05). However, when they used the MMI 

system, the average input time (mean (M)=1.23 s, SD=0.33) was lower than that of 

touchscreen (M=1.38 s, SD=0.49) and gesture (M=1.35 s, SD=0.72) alone. 

Figure 5.6 Input patterns 

Figure 5.7 Choice of input modality 
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5.2.3 Mean input error frequency 

 Error avoidance is an inherent characteristic of MMI systems. In each trial, an   

input error was recorded when a driver made an attempt, but failed to give an input that 

the system can recognize. When drivers used each unimodal interface alone, the hand-

gesture interface recorded a high input error frequency of 24.8%, as opposed to haptic 

(0.8%) and touchscreen (0.0%) interfaces (Fig. 5.8 (a)). The error frequency was 4.4% 

for the MMI system. All the input errors occurred in MMI were associated with the 

hand gesture interface. This result indicates that MMI system has collectively mitigated 

the input errors of its component modalities. 

5.2.4 Perceived workload 

Figure 5.8 Lateral and longitudinal control 

Figure 5.9 Input error and input time 
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 To evaluate the effectiveness of the MMI system I analyzed the perceived 

driver workload under the categories of mental, physical, temporal, performance, effort, 

and frustration using NASA-TLX. The overall workload is significantly lower in MMI 

(mean=28.67, SD 8.9) compared to touch (t=2.89, p<0.01), gesture (t=4.71, p<0.001), 

and haptic (t=3.98, p<0.001). As shown in Fig. 10, mental workload and frustration are 

also significantly lower in MMI compared to each unimodal interface system (mental–

touch: t=3.40, p<0.001, gesture: t=4.19, p<0.001, haptic: t=3.48, p<0.01. frustration–

touch: t=2.09, p<0.05, gesture: t=4.26, p<0.001, haptic: t=2.79, p<0.01). In addition, 

physical workload and effort are significantly lower in MMI compared with gesture and 

haptic interfaces (Fig. 5.10). 

5.3 Discussion 

 The evaluation of driver workload has a vital impact on the design of new HMI 

systems. Here, I have shown that perceived workload associated with the new MMI 

system is significantly lower than its component modalities (Fig. 10). Hence the MMI 

system is proved to be an effective inter-face that further minimizes the driver 

workload. Our MMI system has lower input times than two of its component modalities 

(Fig. 9 (b)). Even though the unimodal haptic interface has lower input time, there is a 

trade-off between efficiency and flexibility. The MMI system minimized the error rates 

associated with component modalities. Therefore, I have proved that MMI system has 

functional advantage over each unimodal system, in terms of efficiency and error 

avoidance. 

Figure 5.10 Perceived workload 
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 Furthermore, our MMI system provides drivers the ability and flexibility to 

adapt to different driving tasks and traffic scenarios. Usage patterns analysis showed 

that drivers adaptively chose different modalities based on the input type (i.e., location-

based, function-based, time-critical) as well as the context (i.e., driving environment, 

traffic conditions). I found that touchscreen interface is best suited for location-based 

inputs such as parking, as touchscreens are inherently suitable for discreet and pointing 

tasks. For speed controlling as well as time-critical inputs, the use of haptic interface is 

dominant. This is due to the direct physical feedback, lowest mean input time. However, 

for function-based commands that are not time-critical, all three modalities have been 

increasingly used (Figs. 7 (c)–(e)). This indicates the difference in preference for each 

modality among drivers. 

5.4 Summary 

 In this chapter, I presented the evaluation of a multimodal human-machine 

interface for tactical level controlling of intelligent vehicles. I integrated three 

modalities: touchscreen, hand gesture, and haptic and created tactical level vehicle 

control input functions to conduct lateral and longitudinal control tasks. Twenty drivers 

participated in a simulator-based experiment for evaluation. The results highlighted the 

effectiveness of the multimodal interface in terms of perceived workload, efficiency, 

error avoidance, and situation adaptability. 
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6 CONTROL TRANSITIONS IN 

AUTOMATED VEHICLES 

 Even though automated vehicle technologies have made significant progress in 

the last decade, the current systems are still far away from achieving full autonomy. 

Such AD systems require the human driver to make control decisions, or take back 

control from time to time. This chapter presents the state-of-the-art of control transitions 

from AD to human driver. It describes planned and unplanned control transitions 

including the driving scenarios that require the human driver to intervene. It also 

highlights the safety and performance challenges associated with the lack of situational 

awareness of the disengaged driver. This chapter propose the use of collaborative 

control in takeover scenarios to overcome driver performance limitations and improve 

overall traffic safety. 

6.1 Introduction 
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 Automated driving (AD) will make the future transportation safer, efficient, 

and more comfortable. SAE has defined 6 levels of automation. Level 0 is pure manual 

driving without lateral or longitudinal control automation. Whereas a vehicle operating 

in level 4 or 5 can drive itself from point A (start) to point B (destination) without any 

human intervention in between. Thus level 4 and 5 can be considered as full autonomy. 

On the other hand, level 1, 2, require human driver to monitor the environment and/or 

conduct the dynamic driving task, while level 3 require the human to intervene 

(takeover) in situations given a prior request, usually before 10 seconds. Consequently, 

Figure 6.1 Examples of unscheduled takeover situations 

Figure 6.2 Road worker using hand-gestures 
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levels 1, 2 and 3 can be considered as human-centered autonomy. I thus considered 

research questions of driver-vehicle interaction in human-centered automated vehicles 

from a human-robot interaction perspective.  

 Level 3 systems allow the driver to engage in non-driving related tasks 

(NDRTs) while   AD is engaged (no need to monitor), but he/she is still responsible to 

takeover in case of a system limitation. Takeover scenarios can be divided into two; 

scheduled, and unscheduled, based on the predictability of such situation. Scenarios that 

require driver intervention (takeover) due to the AD system knows in advance, thus 

have high predictability. On the other hand, system limitations detected by onboard 

sensors have low predictability [31]. Figure 6.1 and 6.2 shows some examples of 

unscheduled takeover scenarios. When level 3 vehicles travel in urban environments 

unscheduled roadwork situations with manual traffic control will pose a major challenge 

for them (fig. 6.1 (a), (b)). In such situations drivers have limited time period (usually 

10 seconds) to intervene. Unscheduled takeovers involve task-switching from NDRT to 

manual driving (fig. 6.3). Drivers engaged in NDRTs are often distracted and may have 

low or zero situation awareness. It requires considerable time to physically and 

cognitively engage in the driving task, and requires driver attentional resources. This 

could result in sudden increase of workload to meet demands of driving scenario, and 

Figure 6.3 Task switching in takeover 
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may decrease the quality of driver input. Thus, manual takeover in Level 3 involves a 

considerable risk. 

6.1.1 Unscheduled takeover  

 Unscheduled takeover scenarios in urban areas can often result from unplanned 

roadworks. They may involve secondary lane markings, signs, and especially, persons 

using hand gestures and signs to control traffic. Although AD system can detect 

obstacles, traffic signals, and recognize some hand gestures, it requires the human 

judgment to select one from a set of candidate trajectories, or to decide when to proceed 

forward when the system confidence level is low [73]. When a level 3 vehicle encounter 

such scenario, drivers can use tactical level control rather than using operational level 

control, as the AD system is capable of controlling the lateral and longitudinal motions. 

In this study, I show that tactical level input will enable safe, seamless and effective 

vehicle control and result in lower driver workload in unscheduled takeovers. I 

conducted driving experiments comparing takeovers in manual and TLI.  

 In a previous chapter, I proposed and evaluated a tactical-level input (TLI) 

method to control lateral and longitudinal motions of automated vehicles (level 4 and 

5). I further developed a multimodal HMI system for TLI.  

In order to use TLI in certain takeover situations effectively, the AD HMI should fulfill 

the information needs of the driver to increase the situation awareness. The status of the 

AD system (e.g. availability of TLI, takeover request, etc.), information about the AD 

car’s environment are important for the driver to make a control input/decision. Looking 

from a human-robot interaction (HRI) perspective, [37] provides a set of guidelines to 

improve situation awareness in human-robot systems. In designing the HMI and HRI in 

our study, thus, I adopted the following guidelines; providing a map to show robot’s  

Figure 6.4 Experiment scenario 
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path, providing fused sensor information to lower the cognitive workload, and providing 

spatial information to make operator aware of robot’s immediate surroundings. 

 The aim of this section is to evaluate tactical level input for unscheduled 

takeover situations in an urban environment. I utilize the HMI and control framework 

introduced in chapter 4 for TLI and integrated a new HMI consisting audio and ambient 

light interfaces (fig. 6.5) for conveying AD system intentions in control transitions for 

this study. I will present and discuss driver reaction times, physiological responses, and 

subjective workloads in manual and TLI takeovers. 

6.2 Tactical Level Input for takeover 

 Four types of transition of control categories can be identified in human- 

centred automated vehicles: driver-initiated driver control (DIDC), driver-initiated 

automation control (DIAC), automation-initiated driver control (AIDC), and 

automation-initiated automation control (AIAC) [29].  AIDC type of transfer can occur 

due to automation limitation, and requires the human driver to takeover lateral and/or 

longitudinal control either fully or partially, within a set transition time period. From an 

Figure 6.5 HMI system for automated driving 
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information processing perspective, the takeover process from AD to manual driving 

can be assumed to contain the following four phases: attention shift from a non-driving 

related task to the driving scenery, interpretation of the current driving situation, choice 

of action based on the existing situation awareness, and control actions carried out by 

the driver. Previous research in has shown that increasing degree of automation 

generally reduce situation awareness and mental workload [35], [74], [75]. Moreover, it 

has been found that with decrease of time to takeover the gazes in mirrors and shoulder 

checks decrease [76]. The lack of driver situation awareness in the takeover process thus 

creates safety issues. 

 Driving tasks can be categorized into three levels of driver control; strategical, 

tactical, and operational [36]. In strategical level, the driver determines the long-term 

planning such as the destination, route, travel time, driving mode.  In tactical level 

driver can input medium-term control commands such as overtaking, lane-changing, 

speed controlling, merging, turning, and parking. In operational level (manual driving), 

driver controls the steering angle and speed in real-time. In certain takeover situations 

arising from short-term system limitations, drivers may input tactical level commands 

rather than reverting to manual driving. Such TLI commands may include ‘go’, 

‘overtake’, ‘turn’, ‘lane-change’, and others. Using TLI for short-term takeovers will 

thus reduce/eliminate the traffic safety risks compared to manual takeover. 

6.3 Automated Driving HMI 

 This section describes the design characteristics/aspects of the HMI and 

multimodal feedback system. Essentially, the autonomous driving system needs to be 

capable of informing the human driver regarding current system status. Such 

information may include; current driving mode, availability/unavailability of automated 

driving, takeover requests, and system failure. I integrated a visual and audio HMIs to 

convey these information in our driving simulator.  

6.3.1 Visual HMI 



Error! No text of specified style in document. 

80   

 The LED HMI consists of 120 RGB LEDs controlled by an Arduino 

microcontroller (Fig. 6.5). I created a set of icons to indicate different system statuses as 

part of visual HMI. When an AD capable vehicle, currently driven by human driver 

enters a geographical area where AD is available, the LED will be illuminated in a 

pulsing pattern in blue for 3 seconds. In the same time a corresponding icon (Fig. 6.5 

(a)) will appear on touchscreen and stay on. If the driver turns on AD, the LED will 

illuminate in light blue (with reduced brightness) and stay on. The corresponding icon 

(Fig. 6.5 (b)) will appear and stay on. In a takeover situation, where tactical-level input 

is available, LEDs will start blinking in orange at 2 Hz. If only manual takeover is 

available, LED will blink in red in 3 Hz. With the difference in blinking frequency, 

drivers having color vision deficiency will also be able to distinguish the two 

notifications. Along with the LEDs, the corresponding icons (Fig. ## (c), (d)) will 

appear and blink on the touchscreen interface until driver makes a control input. When 

in manual driving, the LEDs will turn off, but the corresponding icon will be shown on 

the touchscreen.  

6.3.2 Audio HMI 

 Since drivers can engage in NDRTs while in AD mode, audio interfaces play 

an important role in notifying the drivers whose visual attention is away from the road 

and visual HMIs. The audio HMI in our simulator consists of three speakers (Fig. ##) 

mounted in front of the driver. It provides notification in takeover requests by playing 

distinctive beep sounds for takeover when TLI is available, and manual takeover is 

available.  

Figure 6.6 Experimental conditions 



Chapter 6: Control transitions in automated vehicles 

   81 

6.3.3 Steering-wheel HMI 

 I designated two push-buttons on the steering wheel to change the automation 

level. The AD button engages automated driving when available, and by pressing the 

MD button drivers can engage manual driving. 

6.4 Experimental Design 

 This section describes the simulated short-term system limitation scenario, data 

acquisition, participants, and experimental procedure. 

6.4.1 Takeover scenario 

 The takeover scenario implemented in the simulator is a roadwork situation in 

urban environment. Part of the lane is obstructed as shown on Fig. 6.4 and 6.6, and 

vehicles travelling on that lane require to move to the next lane (with traffic in opposite 

direction), and move back to the original lane after passing the work zone. 

6.4.2 Data acquisition 

 Vehicle telemetry data and HMI control data provide insight to driver behavior. 

We recorded vehicle telemetry including position, speed, lane position, steering angle, 

pedal position, and multimodal HMI input data from the simulator at 100 Hz. The 

human autonomic nervous system responses physiologically to mental stress by 

accelerating heart rate, and increasing electrodermal activity among others [77]. We 

obtained driver skin conductance at 4 Hz and mean heart rate at 1 Hz using E4 

wristband. 

6.4.3 Questionnaires 
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 I used NASA task load index to evaluate subjective workloads for each trial. 

After completing the experiment, participants responded to a questionnaire to evaluate 

the driving experience focusing on takeover situation. 

6.4.4 Participants 

 Eleven participants (6 males and 5 females, age M: 28.6 years, SD: 4.2) took 

part in this study. They had 0 to 16 years of driving experience (M: 5.3, SD: 5.5), and 6 

(54.5%) of them had previous experience in a driving simulator. All had normal or 

corrected-to-normal vision.  

6.4.5 Procedure 

 After receiving informed consent, we explained the participants about the 

takeover process, and how to takeover using manual driving and using TLI. Participants 

practiced driving in the simulator until they were confident. The experiment consisted 

of three trials: manual driving from start to end (with no automation), takeover using 

TLI, and takeover using manual driving. The two trials involving takeover starts in AD 

mode, and drivers engage in NDRT. We used a 2-back cognitive task implemented in 

an Android tablet as the NDRT (Fig. 2), and participants engaged in the task until they 

receive a request to intervene. After the short-term takeover, we instructed them to 

switch back to AD and to revert to the NDRT. The trials were presented to participants 

in a pseudo random order, and the location of work zone was randomly set in each trial. 

After each trial they responded to task load questionnaire, and after completing all three 

trials, they responded to the driving experience questionnaire. Participants were 

compensated for their contribution. 

Figure 6.7 Driving simulator setup 
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6.5 Results and analysis 

 In this section I present the results of the driving experiment conducted to 

evaluate TLI for short-term takeover scenarios. Driver workload, response times, HMI 

operation data, vehicle telemetry data, and driver physiological data are presented and 

analysed. 

6.5.1 Driver reaction time 

 I defined the driver reaction time for manual takeover as the time between RTI 

and first steering control input (with a threshold of 5 degrees). For takeover using TLI, 

the reaction time is the time from RTI until driver input a TLI command using the 

multimodal HMI. Fig. 5 (a) and (b) show the individual reaction times and mean 

reaction time, respectively. Driver reaction time in TLI (M = 4.27, SD = 1.19) was 

significantly lower (p<0.05) than in manual takeover (M = 6.27, SD = 1.90). Thus, it 

shows that TLI enables efficient interaction. 

6.5.2 Physiological response 

 Note that we had to omit the data from participants 2, 3, and 10 from the 

analysis due to a technical issue. 

Figure 6.8 Experimental scenarios 
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6.5.2.1 Electrodermal activity  

We recorded skin conductance as a measure of driver electrodermal activity. Fig. 6 

shows the maximum values of skin conductance for all drivers in both TLI and manual 

takeover. Higher skin conductance corresponds to higher cognitive load. The average of 

the maximum skin conductance values in TLI (M = 0.5215, SD = 0.139) was lower than 

in manual takeover (M = 0.7082, SD = 0.3433). Fig. 8 shows the skin conductance 

variation of participant no. 7. 

6.5.2.2 Heart rate 

 Fig. 7 shows the maximum heart rate values for all drivers. It can be seen that 

TLI contributes to lower the maximum heart rate in some drivers. Heart rate is an 

indication of high workload (cognitive, physical), and our results indicate that TLI 

impose lower workload on some drivers. However, the average of the maximum heart 

rate values in TLI (M = 79.78, SD = 7.919) was similar to that in manual takeover (M = 

79.26, SD = 8.81). 

6.5.3 Driver workload 

 Drivers responded to NASA task load index after completing each trial. Fig. 9 

shows the average task load scores for each category: mental, physical, temporal, 

performance, effort, and frustration. TLI resulted in lower subjective workload than 

manual takeover in all the categories. Moreover, scores corresponding to physical and 

effort were significantly lower (p<0.05) in TLI (Physical: M = 17.72, SD = 19.79; 

Effort: M = 28.63, SD = 21.45) compared to manual takeover (Physical: M = 42.72, SD 

= 29.01; Effort: M = 58.63, SD = 24.80). This result indicates that by adopting a 

tactical-level input method, driver perceived workload attributed to control transitions 

can be reduced significantly. 

6.5.4 Driving experience questionnaire 
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 We asked the drivers if TLI is available, would they prefer to use TLI or 

manual driving to intervene in a short-term takeover situation. 90.9% of the drivers 

mentioned they would use TLI if available. Among the reasons were: TLI require less 

physical engagement and cognitive attention, convenient, efficient input method, and 

less effort needed. The reasons provided by drivers are also reflected in their subjective 

workload scores. 

Figure 6.9 Driver reaction times 

Figure 6.10 Maximum skin conductance 



Error! No text of specified style in document. 

86   

6.6  Discussion 

Figure 6.12 Skin conductance (Subject #7) 

Figure 6.11 Maximum heart rate 
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 In order to investigate the safety issues in manual takeover, we analyzed driver 

performance data. For comparison we used data from the trial of manual driving with no 

automation as baseline. Steering angle and speed variation provide information on 

smoothness of lateral and longitudinal vehicle control. Smoothness of vehicle control 

has found to be related with driver workload, and smoothness decreases when drivers 

tend to interject more error corrective maneuvers, as illustrated in Fig. 10. Steering 

angle and speed variation for subject 1 in both manual driving and takeover using 

Figure 6.13 Subjective task load score 

Figure 6.15 Maximum absolute error - steering angle 

Figure 6.14 Maximum absolute error - speed 



Error! No text of specified style in document. 

88   

manual driving are shown in Figs. 11 and 12. It can be seen in takeover situation using 

manual driving, lateral and longitudinal controlling is less smooth. By adopting the 

method of steering entropy presented in [78], we calculated the predicted steering angle, 

and speed by performing a second-order Taylor expansion. The predicted value is 

expected to obtain if the controlling is executed in a very smooth manner. We then 

calculated the prediction error as the difference between the predicted value and real 

value. Fig. 13 and 14 show the maximum absolute prediction error of steering angle and 

speed in both manual driving and takeover using manual driving. The average 
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prediction error for speed was significantly higher (p<0.05) when in takeover using 

manual driving (M = 2.324, SD = 1.04), compared to no automation (M = 1.00, SD =  

1.07), as shown in Fig. 15 (b). Fig. 16 shows that steering entropy increase in manual 

takeover. This indicates sudden increment of driver workload due to manual takeover. 

  

Figure 6.16 Steering angle and speed variation (Subject #1) 

Figure 6.17 Performance measures: steering angle and pedal position 
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6.7 Summary  

 Takeover using manual driving creates safety issues due to lack of situation awareness 

and sudden increase of workload of human drivers. As a solution, in this study we 

investigated application of tactical level input (TLI) as a driver intervention method in 

automated vehicles. We designed a short term system limitation scenario in a simulated 

urban environment and conducted driving experiments using 11 participants. Results 

show that driver reaction time and perceived workloads were significantly lower when 

using TLI. Drivers preferred the TLI method over manual takeover due to its efficiency 

of interaction, less effort needed, and convenience. On the other hand, erroneous driver 

behavior was observed in manual takeover. Driver performance significantly decreases 

in unscheduled takeover situations where drivers are distracted due to non-driving 

Figure 6.18 Average prediction error 

Figure 6.19 Steering entropy 
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related tasks. Future works include integrating driver monitoring to quantify driver 

situation awareness for effective and safe control transition. 
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7 CONCLUSION AND FUTURE 

WORKS 

 

 

Automated driving (AD) will make the future transportation safer, efficient, and more 

comfortable. Intelligent vehicles that can operate in different levels of driving 

automation are being increasingly developed and tested in many countries including 

Japan. The advent of such vehicles, however, is changing the driver-vehicle relationship 

that has been the norm throughout the last 100 years. The Society of Automotive 

Engineers (SAE) has documented six levels of driving automation distinctively defining 

the boundaries of automation, where level 0 means no automation and level 5 being 

fully autonomous in all situations. A vehicle capable of full autonomy with no human 

intervention (lv. 5) is still far away. In the intermediate levels, the automated driving 

(AD) system will be able to conduct the dynamic driving task (DDT) in its operational 

design domains (ODD) and will occasionally require the driver to take part in the 

dynamic driving task when it reaches system boundaries or limitations. Thus, the 

intermediate levels which essentially require a human-machine collaboration can be 

considered as human-centered autonomy levels. I contend that a collaborative, human-

in-the-loop approach will maximize the utility of automated driving. However, such 

kind of novel and complex human-machine interaction is creating new research 

questions and it highlights the need to expand boundaries of human-robot interaction 

research into the mobility domain. 
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 Increasing driving automation will transform the role of human from an active 

driver into a passive passenger. Recent prototypes of automated vehicles often have no 

driver controllers such as steering wheel or pedals. Previous studies have shown that 

removing drivers from the control loop will result in drawbacks, for instance, lack of 

driving pleasure and reduced flexibility in controlling. Driving pleasure and flexibility 

are inherently characteristics of manual driving, thus, losing them would be a downside 

in conventional AD systems. It would, in turn, affect the acceptance of automated 

vehicles. On the other hand, intermediate levels of automation require a vehicle control 

interface for the human driver/operator to take back control of the DDT either fully or 

partially at system boundaries. Such situations include scheduled takeovers i.e., driver 

taking back control at the end of AD system operational design domain, or unscheduled 

takeovers such as roadwork, manual traffic diversions, severe weather conditions, and 

system failure. Since in level 3 and 4, drivers do not need to constantly monitor the 

driving environment, taking back control within several seconds could be safety critical. 

Previous research has shown that being out of the control loop reduce operator situation 

awareness (SA) and result in decreased performance and reduced safety. To summarize, 

I identified two research questions with the intermediate levels of driving automation: 

(1) lack of driving pleasure and reduced flexibility in controlling in AD mode, and (2) 

decrement of driver performance and safety due to low SA in takeover situations. 

 As a solution to both the above research questions, I proposed a collaborative 

control method between human driver and AD system based on tactical level 

controlling of DDT. Driving tasks can be categorized under three levels of driver 

control; strategical, tactical, and operational. This hierarchy is adapted to differentiate 

the levels of driving automation for the present study. In strategical level (lv. 4, 5), the 

driver inputs long-term commands such as the destination and route, and the vehicle 

conducts entire DDT. In tactical level driver can input medium-term control commands 

such as overtaking, lane-changing, speed controlling, merging, turning, and parking. In 

this level, the vehicle conducts the DDT with in accordance with driver intention. In 

operational level (lv. 0, 1), driver controls the steering angle and speed in real-time. By 

adopting tactical level input (TLI) method for controlling in AD can provide the driver 

with flexibility and driving pleasure associated with manual driving, while ensuring 

safety and comfort of automated driving.  

 Since conventional human-machine interfaces (HMIs) such as steering wheel 

and pedals are not pragmatic to input tactical and strategical level control commands, it 
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is important to investigate other types of HMIs such as visual, haptic, gestural, voice, 

augmented reality (AR), and even direct-neural interfaces. Multimodal interface (MMI) 

systems have the ability to process two or more combined user input modes, (i.e., touch, 

speech, gestures, and body movements) in a coordinated manner with multimedia 

output. Such systems entail many advantages such as improved recognition and 

understanding, faster and intuitive interaction, and ability to adapt to different 

environment and users. Since vehicles traverse through highly dynamic environments, 

and their user groups are diverse, use of a multimodal interface system for tactical-level 

controlling will bring remarkable merits to drivers by allowing them to accomplish 

vehicle control tasks using the modality most appropriate to the driving situation, or a 

modality they are comfortable with. There have been many studies in the automotive 

domain investigating user interfaces with multimodal feedback, but relatively smaller 

number of studies on multimodal input. Most of such studies focus on reducing driver 

distraction when performing secondary and tertiary tasks while engaged in manual 

driving. There is a lack of studies investigating the use of HMIs with multimodal input 

and feedback for tactical-level controlling of vehicles in AD mode. Therefore, I 

developed a prototype HMI with multimodal input and feedback to realize collaborative 

control using tactical level input in highly automated vehicles. Key objectives of the 

multimodal HMI for tactical level input are to (1) facilitate highly efficient interaction 

(shorter input time, lower input error), and to (2) reduce driver workload. 

 The multimodal interface system for collaborative control provides the medium 

for seamless interaction between the two agents (driver and AD system) at any time 

during a drive. From a technical point of view, collaborative control could overcome the 

system limitations in perception and motion planning by integrating human driver in the 

loop. Purpose of HMI: facilitate intent communication between driver and AD system 

in real-time, support shared situation awareness, enhance bi-lateral understanding of 

intents and actions between AD system and driver. The proposed multimodal HMI 

system consists of a touchscreen, haptic, and hand-gesture based interfaces. Each 

interface, coupled with the AD system facilitate context-adaptive interaction by 

providing dynamic visual, audio, force and tactile feedback to the driver. The 

touchscreen interface, developed using Unity, displays a high-definition map with fused 

sensor information on the top left, showing the position and orientation of ego-vehicle 

and other surrounding traffic in real-time. On top right, from top to bottom, displays an 

icon corresponding to current driving mode, a sign indicating the next tactical-level 
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maneuver, and the current speed limit, respectively. Drivers can use the directional and 

speed control buttons on the lower half of the touchscreen to input tactical level 

commands. The haptic interface has two degrees of freedom, and drivers can input 

tactical level commands by moving the haptic device along lateral and longitudinal 

axes. It is capable of providing spatial information to the driver through tactile and 

force-feedback to improve situation awareness. Lastly, I adopted a hand-gesture 

interface to enable natural interaction using the Leap Motion sensor as the platform. 

This interface uses sound feedback and visual feedback to indicate acknowledgement or 

rejection of driver input, accordingly. The multimodal HMI system can adapt to 

different traffic situations by changing its feedback parameters.  

 In order to evaluate the proposed HMI system, I conducted driving experiments 

in a simulator with 20 participants. The driving route designed for this experiment is 2 

km long and consists of a section of an expressway (R1), urban area (R2), sub-urban 

area (R3), and a parking lot (R4). Each of the traffic regions has unique traffic 

conditions and triggered-events to recreate the situations that drivers encounter in real-

world. For experiment results, I obtained usage patterns, reaction times, gaze 

transitions, perceived workload and driver preference. The usage pattern analysis 

showed that drivers increasingly tend to use different input modalities for TLI. Further 

analysis showed that drivers used certain interface types for certain control inputs: i.e., 

haptic interface for longitudinal, and time-critical control commands, while touchscreen 

interface for location-based input commands such as parking. Moreover, multimodal 

interface minimized the overall input errors compared with unimodal components, and 

the driver perceived workload associated with multimodal interface was significantly 

lower. The results proved that multimodal interface has functional advantages and is an 

effective and efficient HMI for TLI in human-centered automated vehicles. In addition, 

results showed the need for tactical input method in automated vehicles, as 70% of 

drivers used the HMI to override automated driving during the experiments. TLI was 

preferred more in less traffic situations such as in expressway and in sub-urban area. 

Thus, the results substantiate the effectiveness of both tactical level input method and 

the multimodal interface system. 

 Reduced performance and decreased safety in takeover situations is another 

human-factor issue associated with automated vehicles. Unplanned takeover situations, 

in essential, will leave the human driver only few seconds to engage in the manual 

driving task both physically and cognitively. In such situations, the inadequate 
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situational awareness and sudden increase of driver workload could lead to accidents. I 

conducted another experiment to evaluate tactical-level input method for short-term 

takeover situations using the multimodal HMI system. TLI commands applicable for 

short-term takeover situations include turning, overtaking, and lane-changing. TLI 

along with an HMI capable of multimodal feedback can provide situation-adaptive 

spatial information which enhance the driver situational awareness in a short time. To 

evaluate the proposed system, we conducted driving experiments involving unscheduled 

takeover situations in urban environment using eleven participants in the driving 

simulator. I analyzed driver reaction times, physiological responses including heart rate, 

skin conductance and subjective workload as well as qualitative feedback. The results 

show that 90% of drivers tend to choose TLI for takeover. Moreover, TLI resulted in 

significantly lower driver workload, significantly lower reaction times, and improved 

driver response compared with manual takeover. 

 In conclusion, I developed and evaluated a multimodal human-machine 

interface for tactical level controlling of human-centered automated vehicles by 

integrating three modalities: touchscreen, hand gesture, and haptic. As a key 

contribution, this study introduced tactical level input functions to control lateral and 

longitudinal motion of automated vehicles. Two experiments were conducted; (1) to 

evaluate the usability of HMI system and TLI method, (2) to evaluate the application of 

TLI in short-term takeover situations. The results highlighted the effectiveness of the 

multimodal interface in terms of perceived workload, efficiency, error avoidance, and 

situation adaptability. Further, TLI proved to be an effective input method for certain 

takeover situations in human-centered automated vehicles. For short-term system 

limitation scenarios, 90% of drivers preferred to use TLI for intervention, rather than 

using manual takeover.  

 The collaborative control method and HMI can be further applied for tactical-

level teleoperation of driverless automated vehicles such as robot-taxis and delivery 

vehicles, especially when they come across system boundaries. Future works include 

integrating an intelligent driver monitoring system that will quantify driver situation 

awareness and dynamically adapt the HMI support and automated driving parameters to 

enhance seamless and safe interaction between humans and automated vehicles 
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APPENDIX 1: CLASSIFICATION OF DRIVER WORKLOAD 

USING RECURRENT NEURAL NETWORKS 

Human sensing enables intelligent vehicles to provide driver-adaptive support by 

classifying perceived workload into multiple levels. Objective of this study is to classify 

driver workload associated with traffic complexity into five levels. We conducted 

driving experiments in systematically varied traffic complexity levels in a simulator. 

We recorded driver physiological signals including electrocardiography, electrodermal 

activity, and electroencephalography. In addition, we integrated driver performance and 

subjective workload measures. Deep learning based models outperform statistical 

machine learning methods when dealing with dynamic time-series data with variable 

sequence lengths. We show that our long short-term memory based recurrent neural 

network model can classify driver perceived-workload into five classes with an 

accuracy of 74.5%. Since perceived workload differ between individual drivers for the 

same traffic situation, our results further highlight the significance of including driver 

characteristics such as driving style and workload sensitivity to achieve higher 

classification accuracy. 

Introduction 

Driving is a dynamic and complicated activity that impose varying amounts of demand 

on the driver. It involves monitoring the traffic environment, controlling vehicle speed, 

steering angle, while, in sometimes, operating in-vehicle information systems (IVIS) or 

engaging in a conversation simultaneously. Driver workload can be identified as the 

impact on the individual driver resulting from engaging in the driving task in a specific 

context (i.e., subtask, traffic). Although fully automated vehicles operating in SAE level 

5 [8] could eliminate human driver from the control loop, humans will still need to 

conduct driving tasks until full autonomy is realized. Highly automated intelligent 

vehicles (operating in levels 2, 3, and 4) with advanced driver monitoring systems that 

can detect and classify driver workload could provide workload-adaptive support to 

reduce/optimize driver workload. Such support may include engaging automated 

driving [79], adapting IVIS parameters, as well as communicating safety-critical 

information to the driver through human-machine interfaces (HMIs) [80]. Intelligent 

driver monitoring systems will thus make the roads safer, and driving more enjoyable.  

 With more and more people moving into urban areas, traffic complexity in 

cities and highways will tend to increase. Driver workload is found to be sensitive to 
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traffic complexity. In [81], authors reported that subjective driver workload rating has a 

linear upward trend with increasing traffic flow. Traffic situation data from onboard 

database was used in [82] for estimating current driver workload. There are studies on 

detecting only segments of high workload/stress associated with driving [83]–[85]. 

However, the number of studies on detecting multiple levels of driver workload is 

limited. It is important to note that advanced driver assistance systems (ADAS) could 

adapt their functions according to the level of driver workload. Most of the existing 

work have focused on detecting driver workload or distraction associated with 

secondary tasks [86]–[88]. There is a lack of studies focusing on quantifying driver 

workload attributed to systematically varied traffic complexity levels. 

 Data collection in real world naturalistic driving, also known as passive data 

collection, may lead to many problems when creating a computational model [89]. Due 

to the simultaneous changes in multiple factors, the observed changes in a dependent 

variable may not be caused by, but still correlated with independent variables. This will 

result in interactions that are difficult to classify into individual effects. On the other 

hand, designed experiments can overcome these problems. In a designed experiment, 

the experimental environment and independent variables are actively manipulated to 

improve the quality of information and to eliminate redundant data. In addition, data 

collection is usually done with great care and attention. Driving simulators provide the 

Figure 0.1 Experimental setup 
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safety, consistency, repeatability, and ease of a controlled environment. Therefore, in 

this study, we designed and conducted driving experiments in a simulator.  

 In order to determine the driver workload corresponding with different levels 

of traffic complexity, experimental scenarios need to be carefully designed to 

systematically vary the traffic complexity. In this study, we created a fundamental 

driving scenario in the simulator based on turning right at an intersection (left-hand 

traffic) with varying degrees of situational complexity. We recorded physiological, 

performance, and subjective measures to classify the driver workload in each situation. 

Nonparametric, nonlinear machine learning models use past data to learn stochastic 

dependency between past and the future of an observable variable. Artificial neural 

networks (ANNs) can outperform classical statistical methods, and can be successfully 

used for modeling and forecasting nonlinear time series data [90]. Conventional 

Recurrent Neural Networks (RNNs) fail to perform well with long-range time series 

data due to the vanishing and/or exploding gradient problems. The method we used is 

Long Short Term Memory (LSTM) based RNN that can overcome above problems 

[91]. We evaluated the models based on classification accuracy. 

Related works 

A. Physiological measures and workload 

 The human autonomic nervous (ANS) works with the central nervous system 

to maintain homeostatic conditions and regulates body functions. ANS consists of two 

divisions that provide physiological responses to stress, fear, relaxation, panic etc. They 

are: sympathetic division which responds to mental stress or physical danger, and the 

parasympathetic system that allows the body to function in a ‘rest and digest’ state. The 

ANS responses physiologically to mental stress by accelerating heart rate, dilating 

pupils, and increasing eccrine sweat gland activity among others [77]. Therefore, by 

measuring the changes in such physiological indicators, it is possible to quantify driver 

workload.  
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 1) Cardiovascular measures: Heart rate metrics are frequently used in 

evaluating operator workload in human-machine systems as they reflect the activities of 

ANS. Sensitivity of heart rate and heart rate variability (HRV) measures were examined 

in [92] to distinguish single task driving from periods of secondary workload. It has 

been found that stress measurements provided by low frequency (LF: 0.04–0.15 Hz) 

range of HRV correlate well with the mental workload component of NASA-TLX 

subjective workload assessment tool [93]. 

 2) Electro-Dermal activity (EDA): EDA is also a commonly used indicator for 

measuring ANS activity. EDA measures include skin conductance level (SCL) and skin 

conductance response (SCR). Their sensitivity to mental workload in driving has been 

studied in [83], [94], [95].  

 3) Pupil size and gaze information: Pupil diameter is used in driving studies as 

a reliable and sensible indicator of cognitive activity. It is found to have a positive 

correlation with mental workload. In addition to pupil size, horizontal eye movement is 

also considered as a good indicator of visual and mental workload [96]. 

B. Performance measures  

 

Level Description 

5 

(max) 

Workload extremely high: At or beyond the driver’s 

capacity for safe control of the vehicle. No capacity for 

any additional tasks 

4 

Workload high: little spare capacity. Level of effort 

allows little capacity for additional task without 

compromising the driving task 

3 

Workload moderate: enough spare capacity for some 

tasks that have been optimized for the driving situation. 

Unlimited additional tasks cannot be accommodated. 

2 
Workload low: sufficient spare capacity for attentional 

tasks that do not demand continual concentration 

1 

(min) 

Workload insignificant: zero or almost zero driving 

workload with enough spare capacity for all desirable 

additional tasks 

 

 

Table 0.1 Workload Levels 
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 Driving performance measures such as steering angle, pedal position, and lane 

position can provide means to quantify driver workload. Smoothness of steering control 

is found to have a direct link with perceived driver workload. In the steering entropy 

method described in [78], the authors showed that steering predictability decreases as 

drivers make more error-corrective maneuvers, and the frequency and magnitude of the 

steering corrections increase with the task difficulty. Figure 2 illustrates smooth 

operation and error-corrective operation of steering angle and pedal position. 

C. Subjective measures 

 A range of subjective assessment tools are available to evaluate perceived 

workloads in human-machine systems. The NASA task load index (TLX) is a widely 

used assessment tool consisting of six subscales: mental demand, physical demand, 

temporal demand, overall performance, frustration level, and effort. Another driver 

workload assessment tool used in the IVIS domain consists of five workload levels: 

workload insignificant, workload low, workload moderate, workload high, workload 

extremely high, as listed in Table 1. Subjects with similar personal characteristics are 

found to respond similarly to tasks with same demand. The Driving Style Questionnaire 

(DSQ) and Workload Sensitivity Questionnaire (WSQ) described in [97] have been 

used in studies to quantify driver personal characteristics. 

Methodology 

1. Driving simulator 

 In this study, we used a fixed-base driving simulator, as shown in Fig. 1, 

described in detail in [49]. Data that reflect the driving behavior and performance were 

recorded at a sampling rate of 100 Hz. Driver input data consist of steering angle, 

accelerator and brake pedal position, and turn signals state, while vehicle telemetry data 

comprise velocity, position and orientation in three-dimensions. Data from vehicle 

 

 Pedestrian density (ped./hour) 

120 240 360 

Oncoming traffic 

flow 

(vehicles/hour) 

 120 A B C 

 360 D E F 

 720 G H I 

 

 

Table 0.2 Experimental conditions 
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sensors include headway, surrounding obstacle count, types and distances, and lane 

position. 

2. Sensing equipment 

 We used physiological signal amplifier system PolymateV AP5148 to acquire 

EEG, ECG and EDA signals. It supports sampling rates up to 8 kHz. In order to acquire 

gaze information, we used Smart Eye Pro gaze tracking system with a 3-camera 

configuration. It uses pupil and iris reflection with a head model for eye tracking, and 

has maximum accuracy of 0.5 degrees. Sampling rate is 60 Hz and pupil diameter, eye 

opening, and gaze position were logged among other parameters. 

2. Data acquisition and feature extraction 

 In this section, we describe the acquisition and processing of physiological 

signals. We obtained electrocardiogram (ECG), Electro-Dermal Activity (EDA), 

electroencephalography (EEG), and gaze behavior as driver physiological data. These 

signals often contain artefacts and anomalies, and therefore, need to be pre-processed. 

We employ below signal processing methods to increase the overall signal-to-noise 

ratio with minimal signal degradation. 

 1) ECG signal: We use a low-pass Butterworth filter with cutoff frequency of 

30Hz for ECG signal. We then calculate frequency-domain and time-domain metrics 

from the filtered signal. To obtain low frequency (LF: 0.04–0.15 Hz) power and high 

frequency (HF: 0.15–0.40 Hz) power, we use fast Fourier transform (FFT), and then 

Figure 0.2 Driving scenario (left-hand traffic) 
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calculate the LF/HF ratio. To obtain the RR interval from the ECG signal, we use a 

peak detection algorithm and then measure the distance between prominent (R) peaks.  

 2) EDA signal: For EDA signal, we again use a Butterworth bandpass filter 

with lower cutoff frequency of 0.5 Hz and higher cutoff frequency of 30 Hz. Then we 

use an algorithm to detect and replace outliers in the filtered data using linear 

interpolation.  

 3) EEG signal: We use a Butterworth bandpass filter with low cutoff frequency 

of 0 Hz and higher cutoff frequency of 40 Hz for the EEG signal. We then use FFT to 

obtain the power spectrums corresponding to alpha (8–14 Hz), beta (14–38 Hz), theta 

(4–8 Hz) and delta (0.5–4 Hz).  

 We acquire pupil diameter (in mm), eye-opening (0–1), and gaze position (x, y) 

from the Smart Eye system. The data is already filtered by the system, therefore, did not 

require preprocessing. 

3. LSTM based recurrent neural network  

 Recurrent neural networks have recurrent connections between units that allow 

to exhibit dynamic temporal behavior, and to retain contextual information. However, in 

practice, conventional RNNs often fail to handle long-term dependencies due to 

vanishing gradient or exploding gradient problems. LSTM based RNNs can overcome 

these problems with their capability to retain long-term context. A common LSTM unit, 

also known as a gated memory cell, consists of an input gate, output gate, and a forget 

gate. The input gate controls the flow of new values into the cell while forget gate 

controls the extent to which a value remains in the cell. Finally the output gate 

determines the extent to which the value in the cell is used in the output of the LSTM 

cell. In this study we used a deep stacked unidirectional LSTM neural network 

architectures that specifically use contextual information of the past data. For all 

architectures we used one dropout layer after the input layer and one fully connected 

layer before the output layer. 

Experimental Design 

4. Driving scenarios 
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 In Japan, vehicular traffic moves on the left and turning right at a traffic 

controlled intersection involves following steps, as shown in Fig. 2. First, turn on the 

turn signal indicator, drive along the center line of the road and approach the 

intersection. Secondly, keep the vehicle straight, without turning the wheels, and wait to 

turn right. In the meantime, check for oncoming vehicles, and also the pedestrians, 

cyclists on the crossing. Thirdly, when there are no oncoming vehicles, proceed 

cautiously to turn right while paying attention to the opposite lane. Finally, approach the 

pedestrian crossing slowly, pay attention to pedestrians and cyclists coming from right 

as well, and proceed cautiously. In order to vary the traffic complexity in each scenario, 

we defined two variables: oncoming traffic volume, which is the no. of vehicles 

crossing the intersection in a unit time period, and pedestrian and cyclist density. The 

Figure 0.3 Normalized skin conductance level 

Figure 0.4 Normalized R-R interval 
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experiment consists of the nine (A-I) traffic situations shown in Table 2. We use a 

pseudo-random order in presenting the traffic situations for each participant. 

5. Participants 

 Fourteen participants (1 female, 13 males) involved in the experiments. Their 

mean age was 23.5 years and had average driving experience of 3.1 years. Eight of them 

had previous experience in a driving simulator, and all of them had normal or corrected 

to normal vision. All the participants received monetary compensation for their 

contribution.  

6. Procedure 

 The procedure for experiments is as follows. First, we explained the 

participants regarding the steps in making a right turn and asked them to practice 

driving and turning maneuvers in the simulator without other traffic nor pedestrians. 

Then we attached the sensors and asked them to drive along a straight road with 

minimal traffic and verified the signals acquisition. This was done also to obtain 

baseline values of their physiological signals and driving performance. After that, for 

the experiment, they drove along an urban route consisting of the traffic situations listed 

in Table 2. Soon after making each maneuver, participants input their perceived 

workload level on a 1 to 5 scale (see Table 1) using a touchscreen interface. After 

completing all the trials, participants responded to the questionnaires: DSQ and WSQ. 

Results and analysis 

In this section we present the results from feature extraction, and the classification 

accuracies of our LSTM based RNN models.  

Figure 0.3 Steering angle prediction error 
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7. Features 

Figure 0.6 Architecture of driver workload classification system 

Figure 0.7 Prediction accuracies when using personal characteristics 
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 Figures 4 to 6 show the normalized SCL, RRI, and prediction error of steering 

angle for one driver. Note that the sequence lengths are different for individual 

workload levels due to the difference in times taken by driver to complete the right turn 

task in each situation. In Fig. 4, we can see a clear difference in the SCL between higher 

workload levels (4 and 5) and lower levels. Increments in SCL suggest increased sweat 

gland activity resulting from the arousal of ANS due to high perceived workload. Figure 

5 shows higher variability in RRI when perceived workload is high, and vice versa. 

Acceleration of heart rate indicates the arousal of sympathetic nervous system due to 

high perceived workload. From Fig. 6 we can see the number of steering angle 

corrections (peaks), as well as their magnitude increased with the levels of perceived 

workload. This proves that the smoothness of control input decreases with increasing 

workload.  

8. Classification accuracy 

Figure 0.8 Prediction accuracies when not using personal characteristics 

Figure 0.9 Model comparison 
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 We used 5-fold cross validation approach for model assessment and conducted 

mini-batch training with batch size of 10. Learning rate was 0.001. We experimented 

with 50 different model architectures by using different number of LSTM layers and 

units. The top 5 architectures based on classification accuracy are shown in Table 3. A 

network with two LSTM layers and 100 units in each outperformed other architectures. 

Figure 7 shows the system architecture of the driver workload classification system. 

Confusion matrices showing classification accuracy percentages for each workload 

level are shown in Figs. 8 (a) and (b). We achieved overall accuracies of 79.8% and 

74.5% for training set and test set, respectively. 

9. Comparison 

 In order to show the importance of using driver characteristics such as driving 

style and workload sensitivity as input features, we compared the classification 

accuracies. When not using DSQ and WSQ scores, as shown in Figs. 9 (a) and (b), the 

training set accuracy decreased to 70.0% from 79.8%. The test set accuracy 

Figure 0.4 Reported workloads for three traffic complexity levels 

Table 0.3 Errors in reporting workload levels 
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significantly decreased to 59.2%, a 15.3 point reduction compared with the model 

contained personal characteristics. 

Discussion 

RNN based classification models allow to use dynamic time series data sequences of 

varying lengths, as opposed to statistical machine learning methods that require fixed 

sequence lengths. We adopted an LSTM-RNN architecture which outperformed simple 

RNN architectures, as shown in Fig. 10 (a), due to LSTM’s ability to retain long-term 

context. One limitation in our method is the approach of labelling. When reporting 

perceived workload levels, drivers may have made errors as we observed they change 

their initial response in some cases. It is possible that in some situations drivers may 

have experienced a higher workload level but reported a lower level, and vice versa, 

hence our training set labels contain human error. We assume this has significantly 

affected the estimation accuracy of our model. Figure 11 shows the distribution of 

probabilities for reported workload levels in three traffic complexity levels A, E, and I 

(out of the nine scenarios described in Table 2). Situation ‘A’ has the lowest traffic 

complexity and situation ‘I’ has the highest, while ‘E’ lies in between. However, from 

Table 4, it can be seen that for each traffic complexity level, the reported workload has 

an average standard deviation of 0.95. Thus, we understand the labelling has an error in 

the range of ±1. Our model’s accuracy increased drastically up to 96.5% when we adopt 

a tolerance of ±1 for the output workload level. 

 Perceived workload level for the same traffic complexity (which incur same 

demand on drivers) may differ between drivers due to individual characteristics related 

to driving. Our results further show the significance of including driver characteristics 

such as driving style and workload sensitivity to achieve a higher classification 

accuracy. Quantifying driver characteristics by using driving style questionnaire and 

workload sensitivity questionnaire helps to significantly increase the prediction 

accuracy for new drivers, as shown in Fig. 10 (b). 

Conclusion 

In this study we proposed a Long Short-Term Memory (LSTM) based recurrent neural 

network (RNN) architecture to classify driver perceived workload into 5 levels. Our 

model takes driver physiological signals including electroencephalography (EEG), 

electrocardiogram (ECG) and electrodermal activity (EDA), driver performance data 

including steering and pedal operation, and driver subjective data including driving 
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style and workload sensitivity as inputs. We conducted driving simulator based 

experiments to create a dataset. By including driver characteristics such as driving style 

and workload sensitivity, we achieved an overall classification accuracy of 74.5%. Due 

to personal characteristics, different drivers perceive different workload levels even in 

the same traffic situation. Therefore, our results show the importance of including 

individual driver characteristics in predicting perceived workload. Moreover, we 

understand the human error in reporting perceived workload levels (labelling) has a 

significant impact on the classification accuracy. By compensating for human error, our 

model achieved a remarkable accuracy of 96.5%. Future works include experimenting 

using bidirectional LSTM RNNs and RNNs with attention to further improve the 

classification accuracy. 
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