
 

 

 University of Groningen

Changes in propulsion technique and shoulder complex loading following low-intensity
wheelchair practice in novices
Leving, Marika T; Vegter, Riemer J K; de Vries, Wiebe H K; de Groot, Sonja; van der Woude,
Lucas H V
Published in:
PLoS ONE

DOI:
10.1371/journal.pone.0207291

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Leving, M. T., Vegter, R. J. K., de Vries, W. H. K., de Groot, S., & van der Woude, L. H. V. (2018). Changes
in propulsion technique and shoulder complex loading following low-intensity wheelchair practice in
novices. PLoS ONE, 13(11), [0207291]. https://doi.org/10.1371/journal.pone.0207291

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 21-05-2019

https://doi.org/10.1371/journal.pone.0207291
https://www.rug.nl/research/portal/en/publications/changes-in-propulsion-technique-and-shoulder-complex-loading-following-lowintensity-wheelchair-practice-in-novices(747a47d4-2fa9-4750-b22a-593d0023dbe9).html


RESEARCH ARTICLE

Changes in propulsion technique and

shoulder complex loading following low-

intensity wheelchair practice in novices

Marika T. LevingID
1*, Riemer J. K. VegterID

1, Wiebe H. K. de VriesID
2, Sonja de Groot1,3,

Lucas H. V. van der Woude1,4

1 Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen,

Groningen, The Netherlands, 2 Swiss Paraplegic Research, Nottwil, Switzerland, 3 Amsterdam

Rehabilitation Research Center | Reade, Amsterdam, The Netherlands, 4 Center for Rehabilitation,

University of Groningen, University Medical Center Groningen, Groningen, The Netherlands

* m.t.leving@umcg.nl

Abstract

Background

Up to 80% of wheelchair users are affected by shoulder pain. The Clinical Practice Guide-

lines for preservation of upper limb function following spinal cord injury suggest that using a

proper wheelchair propulsion technique could minimize the shoulder injury risk. Yet, the

exact relationship between the wheelchair propulsion technique and shoulder load is not

well understood.

Objective

This study aimed to examine the changes in shoulder loading accompanying the typical

changes in propulsion technique following 80 min of low-intensity wheelchair practice distrib-

uted over 3 weeks.

Methods

Seven able-bodied participants performed the pre- and the post-test and 56 min of visual

feedback-based low-intensity wheelchair propulsion practice. Kinematics and kinetics of

propulsion technique were recorded during the pre- and the post-test. A musculoskeletal

model was used to calculate muscle force and glenohumeral reaction force.

Results

Participants decreased push frequency (51!36 pushes/min, p = 0.04) and increased con-

tact angle (68!94˚, p = 0.02) between the pre- and the post-test. The excursion of the

upper arm increased, approaching significance (297!342 mm, p = 0.06). Range of motion

of the hand, trunk and shoulder remained unchanged. The mean glenohumeral reaction

force per cycle decreased by 13%, approaching significance (268!232 N, p = 0.06).
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Conclusions

Despite homogenous changes in propulsion technique, the kinematic solution to the task

varied among the participants. Participants exhibited two glenohumeral reaction force distri-

bution patterns: 1) Two individuals developed high force at the onset of the push, leading to

increased peak and mean glenohumeral forces 2) Five individuals distributed the force

more evenly over the cycle, lowering both peak and mean glenohumeral forces.

Introduction

People who lose lower-limb function need to rely on their arms to maintain mobility and learn

to propel a wheelchair in the early stages of rehabilitation. The anatomy of the upper-extremi-

ties, specifically the relatively small muscle mass and high glenohumeral joint mobility, makes

the shoulder complex vulnerable to overuse injuries. Because of the low physical capacity of

persons at the beginning of rehabilitation and the highly straining character of wheelchair pro-

pulsion, shoulder pain frequently develops at this stage [1]. Among the individuals who devel-

oped shoulder complaints during early rehabilitation, only 20% will show any improvement

over time [2].

The Clinical Practice Guidelines for preservation of upper limb function following spinal

cord injury describe various ways to minimize the shoulder injury risk, such as: proper wheel-

chair configuration or assistance during transfers but also using a proper wheelchair propul-

sion technique [3]. Shoulder load and propulsion technique are thought to be linked as

wheelchair propulsion is a highly repetitive task, where the same motion is performed approx.

2700 times per day [1,4]. This is especially evident in novice wheelchair users as their propul-

sion is characterized by a very high frequency, high peak forces and small contact angle of the

hand on the handrim [5–7]. In contrast, the advice of The Clinical Practice Guidelines is to

minimize the peak forces and push frequency during propulsion and maximize the contact

angle of the hand with the handrim.

We know from a number of studies that as natural motor learning progresses wheelchair

users naturally improve their technique i.e. lower the push frequency and increase the contact

angle [5,6,8–11]. Even though the Clinical Practice Guideline states that this should be a more

optimal technique, experimental evidence supporting this advice is missing. It is unclear how

the changes in propulsion technique taking place during practice relate to the mean and peak

loads on the shoulder. That is because the propulsion technique as defined in this study,

includes spatio-temporal variables which are calculated based on the kinetic data measured on

the level of the forces applied to the handrim by the user. To gain understanding of what the

association between the propulsion technique and the local strain on the shoulder complex is,

a combination of modeling, kinematics and kinetics needs to be implemented.

To do that, we will use data from a previously published study, which found typical

improvements in propulsion technique following low-intensity wheelchair practice, specifi-

cally a large increase in contact angle and decrease in push frequency [6]. The goal of the cur-

rent study will be to investigate the association between the typical changes in propulsion

technique and the shoulder load. The effect of intervention will be omitted as it was already

described [6]. The focus will be laid on the description of the co-emergence of the typical

improvements in propulsion technique observed during a learning process and changes in the

local load on the shoulder. So far, this has only been investigated in the very initial stages of

practice. Vegter et al. [5] found a reduced push frequency and larger contact angle following a

Wheelchair propulsion technique and shoulder load
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12 min practice period. Interestingly, the improvements in the propulsion technique were con-

comitant with higher shoulder load expressed as an increase in relative muscle forces, espe-

cially within the rotator cuff muscles and higher peak and mean glenohumeral reaction forces

[5]. The effects of practice on the local strain on the shoulder exceeding a 12-min period are

unknown.

The goal of this study is to describe the changes in shoulder load and kinematic characteris-

tics of movement taking place after the 80-min low-intensity wheelchair practice. To be able to

exclude the effect of experience and secondary conditions on the outcomes, a group of able-

bodied participants with no wheelchair experience was selected for this study. We hypothesize

that a decrease in push frequency and increase in contact angle will contribute to a decrease in

mean glenohumeral reaction force and individual muscle forces. Identifying properties of the

propulsion technique that are beneficial for the shoulders could be used in the future to pro-

pose evidence-based interventions to target early prevention of shoulder pain in manual

wheelchair users.

Materials and methods

Participants and ethics statement

A convenience sample consisting of seven able-bodied men (Age median = 23 years, inter-

quartile range (IQR) = 5 years; Body mass median = 76 kg, IQR = 19 kg) participated in the

study. This is a subsample of 17 participants who were included in the previous study [6].

Inclusion of only 7 participants from the original sample is a consequence of the technical dif-

ficulties during the very complex data collection process. All participants provided written

informed consent following detailed information about the character of the study. The proto-

col of the study was approved by the Local Ethics Committee, of the Center for Human Move-

ment Sciences, University Medical Center Groningen, University of Groningen, The

Netherlands. Individuals were eligible for inclusion if they had no previous experience with

wheelchair propulsion and no severe musculoskeletal complaints, especially within the upper

extremities and the trunk.

Study design

All participants received 80-min of handrim wheelchair practice at a submaximal inten-

sity distributed across 3 weeks (Fig 1). The 80-min experiment consisted of a pre- and

post-test (3x4 min exercise blocks each with 2 min break between the blocks) and 7 prac-

tice sessions (2x4 min exercise blocks each with 2 min break between the blocks) between

the pre- and the post-test. During the pre- and the post-test participants received no feed-

back or instruction. During the 7 practice sessions participants received real-time visual

feedback on their propulsion technique. At each session, a different propulsion technique

variable was presented. Each variable was presented only once, meaning that there were 7

unique propulsion technique variables: push frequency, braking moment, contact angle,

peak force, push distance, smoothness and fraction effective force (Table 1). Participants

were instructed to be as variable as possible (applying stroke to stroke variation in a given

propulsion technique variable e.g. alternating short and long pushes or applying variable

peak forces) in the first 4 min block of practice and to optimize the variable in the pre-

scribed direction in the second 4 min block. The name and the description of the prac-

ticed variable were not provided to encourage motor exploration. Therefore the name of

the variable on the screen was covered. The last minute from the pre- and last minute

from the post-test were compared to determine the change in propulsion technique and

shoulder load following low-intensity practice. The last minute from the pre-test was

Wheelchair propulsion technique and shoulder load
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chosen because changes in the propulsion technique and shoulder load for the first 12

minutes of practice in able-bodied individuals have been documented in a previous study

[5].

Fig 1. All participants (N = 7) performed the pre- and the post-test and seven practice sessions in between. The pre-test and the post-test consisted of 3 blocks (4

min each) of propulsion during which participants received no feedback and the practice sessions consisted of 2 blocks (4 min each) during which real-time visual

feedback on a specific propulsion technique variable was given.

https://doi.org/10.1371/journal.pone.0207291.g001

Table 1. Propulsion technique variables.

Propulsion variable

(unit)

Description Equation

Push frequency

(push/min)

The number of pushes performed during one minute Npushes/Δt

Braking moment

(Nm)

The braking moment applied to the handrim with each push. The sum of braking moment

exerted on the handrim during coupling and decoupling of the hand

Send(i):start(i+1) (Tz � ΔØ)

Contact Angle (˚) The angle measured along the handrim, where subject’s hand maintained contact with the

handrim during each push

Øend(i)-Østart(i)

Smoothness The ratio of mean to peak force per push Mean(start:end) (Fx2+ Fy2+ Fz2)0,5/Max(start:end)

(Fx2+ Fy2+ Fz2)0,5

FEF (%) The ratio of effective to total force that was applied to the handrim during one push Mean(start:end)(((Tz/r)/((Fx2+ Fy2+ Fz2)0,5))�

100%

Push distance (m) The distance covered with each push Mean(start:end)V�Δt

Peak force (N) 3d peak force applied to the handrim during one push Max(start:end) (Fx2+ Fy2+ Fz2)0,5

Positive work per

push (J)

The power integrated over the Contact angle of the push. ∑start : end(Tz � ΔØ)

GH start position

(mm)

Horizontal position of the glenohumeral joint (GHx) at the start of the push with respect to the

wheel-axle (WAx)

GHxstart(i) - WAxstart(i)

AL displacement

(mm)

The position difference between AL at the start and end of the push phase. AL represents M5,

EM, GH, IJ

ALend(i) - ALstart(i)

First seven variables were used in a form of visual feedback during the practice sessions. Frequency, contact angle, peak force, positive work per push and displacement

of anatomical landmarks were used as outcome variables to compare the change in shoulder load between the pre- and the post-test. All variables except cadence were

calculated as an average value of all pushes performed during the last minute of the last practice block. Equations from Vegter et al.[9]; table from Leving et al.[6]

Abbreviations: t, time(s); start(i), start of the current push (sample); end(i), end of the current push (sample); Tz, torque around wheel axle (Nm); Ø, angle (rad); Fx, Fy

and Fz, force components (N); r, wheel radius (m); V, velocity (m/s); AL, Anatomical Landmark; M5, Fifth metacarpal; EM, Medial epicondyle of humerus; GH,

Glenohumeral joint; IJ, Suprasternal notch

https://doi.org/10.1371/journal.pone.0207291.t001
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Experimental setup

The 80 min experiment was performed by each participant in the same experimental handrim

wheelchair with 24 inch wheels, 5˚ camber, seat height of 0.54 m and seat width of 0.45 m

(Double Performance BV, Gouda,The Netherlands) placed on a level motor-driven treadmill

(length x width = 2.4 m x 1.2 m; Forcelink b.v, Culemborg The Netherlands) (Fig 2). Tire pres-

sure of the rear wheels was set at 600 kPa during all practice and test sessions. Treadmill veloc-

ity of 1.11 m/s and power output of 0.24 W/kg body mass were maintained throughout the

experiment. Required power output was imposed using a pulley system. The mass of the pulley

was determined individually for each participant based on the results of the wheelchair drag

test which took place prior to the experiment [12,13].

Propulsion technique and kinematics of wheelchair propulsion

Kinetics and kinematics of wheelchair propulsion were recorded continuously during the pre-

and the post-test. The data of the last minute of the pre-test was compared with the data of the

last minute of the post-test to examine the changes in shoulder loading following the low-

intensity wheelchair propulsion practice.

Propulsion technique. Software of the instrumented 24˝ Optipush wheel (MAX Mobility,

LLC, Antioch, TN, USA), which measures 3D forces and torques applied to the handrim, was

used to gather data from the right wheel and to provide the real-time visual feedback. The mea-

surement frequency of Optipush wheel was set at 200 Hz. The output from the measurement

wheels was analyzed using custom-written Matlab algorithms [9] (Table 1).

Fig 2. Experimental setup. Participants propelled a wheelchair on a motor-driven treadmill during all testing and practice sessions at a constant velocity of 1.11 m/s

and relative power output of 0.24 W/kg. Power output was imposed using a pulley system. Kinetics and kinematics of propulsion were recorded during the pre- and the

post-test. Modified figure from Vegter et al [5].

https://doi.org/10.1371/journal.pone.0207291.g002
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Kinematics. Kinematic data were collected using an optoelectronic camera system (Opto-

trak, Northern Digital, Waterloo, Canada) at 100Hz with technical cluster markers attached to

the right side of the participant’s body and to the rigid frame of the wheelchair (Fig 3). The

location of anatomical landmarks was determined in relation to their technical clusters. Based

on this calibration procedure, the positions of the anatomical landmarks were reconstructed

for each participant (Fig 3) and used to create the joint coordinate systems of the shoulder,

elbow and wrist [14]. The location of the rotation center of the glenohumeral joint was calcu-

lated using the regression method proposed by Meskers et al. [15].

Delft shoulder and elbow model

To evaluate the load on the shoulder complex during wheelchair propulsion, inverse dynamics

can be used as input for a musculoskeletal model to estimate joint reaction forces and individ-

ual muscle force. The model used in this study was the Delft Shoulder and Elbow Model

(DSEM). The DSEM is a finite-element 3D inverse-dynamics model consisting of 22 muscles

(31 muscle parts), divided into 155 muscle elements [16]. It includes all bones and joints of the

shoulder and has 17 degrees of freedom of which six for the thorax are the moving base. Bones

are modelled as rigid bodies, muscles as active trusses and ligaments as passive trusses. Infor-

mation concerning muscle architecture parameters was obtained from cadaver studies and

was therefore not individualized for each participant [17,18]. This model was used previously

to estimate the shoulder load during handrim wheelchair propulsion [5,19–21]. Kinematic

input for the model consisted of the orientations of the humerus, scapula, thorax, forearm and

hand and the position of the jugular notch (incisura jugularis). Kinetic input consisted of the

3D external forces applied by the hand of the user to the handrim. Based on the recorded

Fig 3. Typical placement of the technical markers (left panel), reconstruction of the anatomical landmarks (middle) and movement trajectories of the scapula, trunk,

clavicle, EM and M5 anatomical landmarks combined with the external force vector exerted during one exemplary propulsive cycle (right panel). Abbreviations: M5,

Fifth metacarpal; EM, Medial epicondyle of humerus; GH, Glenohumeral joint; IJ, Suprasternal notch; C, Clavicle; S, Scapula; U, Upper arm; T, Trunk; L, Lower arm; H,

Hand; SC, sternoclavicular joint; AC, acromioclavicular joint; TS, trigonum spinae scapulae; AI, Angulus Inferior Scapulae; EL, Lateralepicondyle of humerus; C7,

Processus spinosus of 7th cervical vertebra, T8, Processus spinosus of 8th thoracic vertebra; PX, Processus xiphoideus; RS, Radial styloid; US, Ulnar styloid; M2, Second

metacarpal.

https://doi.org/10.1371/journal.pone.0207291.g003
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motions and external loads, the muscle and joint contact forces are calculated as model outputs

through an inverse-dynamics analysis (Table 2). DSEM allows two optimization methods:

static and dynamic optimization [22]. In this study, dynamic optimization was used since it

takes the dynamics of segments and muscles in account. An energy-related cost function, with

the objective to minimize the summed energy consumption, was used to estimate the individ-

ual muscle forces:
Pn

i¼1
_Emi ¼

Pn
i¼1

_Efi þ
_Eai [23]. In this function the muscle energy con-

sumption (Em), is based on the two major energy-consuming processes in the muscle:

detachment of cross bridges (Ef) and re-uptake of calcium (Ea). The relative muscle forces

were calculated to be able to compare the contributions between muscles taking their physio-

logical cross-sectional area into account. Relative muscle forces were calculated as a percentage

of the maximum force based on a force per physiological cross-sectional area of 100 N/cm2

[17]. Five consecutive pushes of the final minute of the pre- and the post-test were inserted in

the model. The selected pushes were assumed to be representative of the pushes within the

given minute. Therefore, they were chosen based on their mean power output per push, which

could not differ more than 10% from the mean power output calculated for all pushes within

the last minute of propulsion. The outcome measures are calculated either per push or per

cycle. Propulsive cycle is defined in accordance with previous literature and consists of the

push and the recovery phase [24]. The push begins with the initial hand contact and ends with

the release of the hand from the handrim. The recovery phase is the period between the two

consecutive pushes.

Statistical analysis

Based on the number of participants N = 7, non-parametric testing was chosen. Unless

reported otherwise a median and interquartile (IQR) range are reported to describe the out-

comes. To evaluate the change in kinetics, kinematics and shoulder load between the last block

of the pre-test and the last block of the post-test the Wilcoxon Signed Rank test was used.

Table 2. DSEM outcome variables.

Variable (unit) Description

GH mean Net Moment/Push

(Nm)

The mean external net moment of the reaction force around the glenohumeral

joint

GH peak Net Moment/Push (Nm) The peak external net moment of the reaction force around the glenohumeral

joint

HU mean Net Moment/Push

(Nm)

The mean external net moment of the reaction force around the Humeroulnar

joint

HU peak Net Moment/Push (Nm) The peak external net moment of the reaction force around the Humeroulnar

joint

Muscle Power total mean/Push

(W)a
The mean sum of all muscle powers during the push

Muscle Power total peak/Push (W) The peak sum of all muscle powers during the push

Muscle Power total mean/Cycle

(W)

The mean muscle power performed per cycle

GH Reaction force mean/Push (N) The mean glenohumeral reaction force per push

GH Reaction force peak/Push (N) The peak glenohumeral reaction force per push

GH Reaction force mean/Cycle

(N)

The mean glenohumeral reaction force per cycle

Table from Vegter et al.[5]
a Muscle power is calculated per a contractile element by multiplying the estimated force of each element with its

shortening velocity.

https://doi.org/10.1371/journal.pone.0207291.t002
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Significance level of p<0.05 was used. The variables compared with the Wilcoxon Signed

Rank test were: propulsion technique variables (frequency, contact angle, peak force and net

work per push), 3D displacement of anatomical landmarks, mean and peak net moments per

push around the glenohumeral and humeroulnar joints and mean and peak muscle powers

and glenohumeral joint reaction forces. The effect size of the Wilcoxon Signed Rank test was

calculated using the following formula r ¼ Zffiffiffi
N
p , where Z is the test statistic and N, the total

number of observations [25]. Effect sizes>0.1 are considered small, >0.3 moderate and>0.5

are considered large [26].

Results

All participants (N = 7) completed all practice and test sessions. The relative power output did

not change significantly between the pre- and the post-test (0.249 W/kg! 0.234 W/kg,

p = 0.18). Results of all statistical analyses are presented in Table 3.

Effect of practice on propulsion technique and kinematics of propulsion

The change in kinetic and kinematic aspects of movement during one typical push for the pre-

and the post-test for each participant is illustrated in Fig 4.

Table 3. Outcomes (Median (IQR)) for all participants (N = 7) for the last minute of the third practice block of the pre- and the post-test and outcomes of statisti-

cal analyses (Wilcoxon Signed Rank Test: p<0.05) including the effect size.

Median (Interquartile Range)

Kinetics PRE POST p value Relative change Effect size

Relative Power Output (W/kg) 0.249 (0.01) 0.234 (0.03) 0.18 6% -0.36

Frequency (push/min) 51 (27) 36 (22) 0.04 29% -0.54

Contact Angle (˚) 68 (14) 94 (24) 0.02 38% -0.63

Positive work per push (J) 12 (4) 14 (5) 0.06 17% -0.50

Peak Force (N) 73 (19) 82 (20) 0.40 12% -0.23

Kinematics

M5 displacement (mm)a 347 (134) 350 (80) 0.24 1% -0.32

EM displacement (mm)a 297 (64) 342 (56) 0.06 15% -0.50

GH displacement (mm)a 37 (24) 27 (66) 0.40 27% -0.23

IJ displacement (mm)a 27 (20) 31 (30) 1.00 15% 0

GH start position (mm) -62 (51) -46 (100) 0.74 26% -0.09

Net moments per push

GH mean Net Moment (Nm) 14 (5) 16 (4) 0.40 14% -0.23

GH peak Net Moment (Nm) 31 (13) 33 (6) 0.61 6% -0.14

HU mean Net Moment (Nm) 4 (4) 1 (5) 0.13 75% -0.41

HU peak Net Moment (Nm) 16 (8) 15 (2) 0.61 6% -0.14

Model results

Muscle power total mean per push (W) 62 (15) 56 (44) 0.87 10% -0.05

Muscle power total peak per push (W) 138 (140) 107 (158) 0.74 22% -0.09

Muscle power total mean per cycle (W) 37 (6) 28 (9) 0.18 24% -0.36

GH Reaction force mean per push (N) 392 (208) 448 (175) 1.00 14% 0

GH Reaction force peak per push (N) 889 (353) 920 (323) 0.87 3% -0.05

GH Reaction force mean per cycle (N) 268 (105) 232 (49) 0.06 13% -0.50

a 3D displacement of anatomical landmarks during push phase

Abbreviations: M5, Fifth metacarpal; EM, Medial epicondyle of humerus; GH, Glenohumeral joint; IJ, Suprasternal notch; HU, Humeroulnar joint

https://doi.org/10.1371/journal.pone.0207291.t003
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Propulsion technique

Push frequency decreased significantly between the pre- and the post-test (51 push/min! 36

push/min, p = 0.04), while the contact angle increased (68.9˚! 94.5˚, p = 0.02). Positive work

approached significance (p = 0.06) and peak force per push (0.40) did not change significantly

between the pre- and the post-test. The effect size was large for frequency and contact angle

and moderate for positive work per push and peak force.

Kinematics

To describe the change in kinematic aspects of movement, the displacement of anatomical

landmarks was used. On the level of the group the displacement of the fifth metacarpal (M5),

medial epicondyle of humerus (EM), glenohumeral joint (GH), suprasternal notch (IJ) did not

change significantly between the pre- and the post-test. The excursion of the upper arm

increased in 6 out of 7 participants (humeral medial epicondyle displacement, 297 mm! 342

mm, p = 0.06), approaching significance, while excursion of the hand, trunk and shoulder did

not change between the pre- and the post-test.

Fig 4. Typical example of one propulsive cycle for each participant (P1-P7) for the pre- (top) and the post-test (bottom section). The kinematic and kinetic input

(reaction force vector) for the model in relation to the trajectories of the shoulder, elbow and hand over the push and recovery phase (cycle) for the pre- (grey) and the

post-test (yellow) (row 1 and 3). Glenohumeral reaction force for the presented push for the pre- and the post-test (row 2). The illustrations of participants were sorted

in ascending order based on the hand excursion at the post-test.

https://doi.org/10.1371/journal.pone.0207291.g004
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Effect of practice on shoulder complex loading

The mean and peak net moments of the external force around the glenohumeral and humer-

oulnar joints did not change significantly between the pre- and the post-test (Table 3). The

mean glenohumeral reaction force per cycle decreased between the pre- and the post-test in 5

out of 7 participants, approaching significance in the whole group (269 N! 233 N, p = 0.06).

Effect size of the decrease in the mean GH reaction force per cycle was large, r = 0.5. Mean and

peak glenohumeral reaction force per push did not change significantly and exhibited low

effect sizes. Mean muscle power per cycle decreased in 6 out of 7 participants but the group

means were not significantly different (37 W! 28 W, p = 0.18). Effect size of change in mean

muscle power per cycle was moderate r = 0.36. Change in peak and mean muscle power per

push was not significant and had a low effect size.

Effect of practice on individual muscle force

The contribution of individual muscles relative to their theoretical maximal force (Fig 5), as

opposed to the absolute muscle force, takes the differences in size between the muscles into

account. The higher the relative muscle force, the bigger the chance of injury as higher num-

bers mean that a muscle approaches its maximum force generating capacity. The highest mean

relative forces during the push phase at the pre- and the post-test were found in triceps (24.1%

! 18.6%), followed by one of the rotator cuff muscles: supraspinatus (18.6%! 17.1%). Also

biceps (13.0%! 14.9%) and pectoralis major (11.3%! 12.3%) developed quite high relative

muscle forces. The same muscles also needed to endure the highest peak relative forces in the

Fig 5. Relative peak and mean forces (N = 7) of individual muscles during the push phase for the pre- and the post-test. The proportional differences in the

physiological cross-sectional area between the muscles are shown (right). Bars represent the median and the error bars represent the IQR. Only the muscles that had

mean muscle forces during the push phase larger than 25 N are illustrated. The muscles are arranged in a descending order of physiological cross-sectional area.

https://doi.org/10.1371/journal.pone.0207291.g005
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push phase. Yet, none of the changes in relative muscle force between the pre- and the post-

test were significant.

Triceps delivered the highest mean negative power contribution (-9.8 W! -6.9 W) and

biceps delivered the highest mean positive contribution (7.1 W! 4.2 W) during the push

phase at both testing occasions (Fig 6). Although the mean power during the push did not

change significantly over time, there is a decreasing trend visible for all muscles except the

supraspinatus, subscapularis and deltoideus in the push phase and supraspinatus in the recov-

ery phase.

Discussion

The goal of this study was to examine the changes in upper-limb dynamics and shoulder com-

plex loading accompanying the typical changes in propulsion technique following 80 min of

low-intensity handrim wheelchair propulsion practice. This study is unique, as it looked at

changes in shoulder loading over three weeks in a group of inexperienced able-bodied individ-

uals. Finding comparable studies is therefore challenging. In order to allow the reader a proper

interpretation of the results, we put our findings in light of both able-bodied and actual wheel-

chair user literature, taking into consider the differences between study protocols and

participants.

Propulsion technique

The changes in the propulsion technique, based on the forces and moments applied to the han-

drim, found in the current study are very similar in direction and magnitude to the changes

reported by other low-intensity practice studies in able-bodied individuals [7,10,11,27]. For

Fig 6. DSEM estimates of individual muscle powers (N = 7; median and IQR) during the push (left) and recovery (right) phase for the pre- and the post-test.

Only the muscles that had mean muscle forces during the push phase larger than 25 N are illustrated. The muscles are arranged in a descending order based on their

physiological cross-sectional area.

https://doi.org/10.1371/journal.pone.0207291.g006
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instance the change in push frequency in the current study from 51 to 36 pushes/min matches

the direction and magnitude of change in the study of de Groot (61! 42 push/min) [27] or in

the study of Vegter (68! 49 push/min) [10]. Both studies included able-bodied individuals

who received a similar dose of practice as the current study. When considering the values of

push frequency and contact angle at the post-test, they closely resemble the values of those

parameters in experienced wheelchair users, e.g. contact angle of 94˚ in the current study vs

98˚ in the study with 59 experienced wheelchair users with paraplegia [24], or 97˚ in an experi-

ment including 21 experienced wheelchair users [28], frequency of 36 pushes/min here vs 43

pushes/min in a study which included 10 adolescent experienced wheelchair users with various

disabilities [29].

Kinematics

Despite the rather uniform changes in propulsion technique, participants developed various

kinematic solutions in response to an identical task (Fig 4). The only change that was consis-

tent across the participants was the increase in the excursion of the upper arm (Medial Epicon-

dyle). Involvement of the trunk during propulsion varied strongly among the participants. The

Suprasternal Notch displacement increased in 3 participants and did not change in the other 4.

Change in the excursion of the hand also varied in magnitude and direction among the partici-

pants with 5 participants increasing and 2 decreasing it (Fig 4). There was no apparent pattern

between the excursion of various landmarks and change in mean and peak GH forces. Mean-

ing that participants who managed to lower the shoulder load between the pre- and the post-

test developed rather varying kinematic solutions. Wheelchair propulsion is a redundant task,

which means that there are more motor components involved in the production of action than

are essentially required. In other words, the same forces can be applied to the handrim using

various upper-arm and trunk configurations. This may explain why the users developed vari-

ous kinematic patterns without compromising the equivalent outcome [30], the production of

a mean velocity and power output over time.

Effect of practice on shoulder complex loading

In contrast to the rather variable kinematic output, it seems that participants exhibited two gle-

nohumeral reaction force distribution patterns during the propulsive cycle. Two participants

(P3 and P6 in Fig 4) applied high force in a rapid and relatively short-lasting push, which led

to a high increase in the peak GH force during the push and, as a consequence, to an increase

in mean GH force per cycle. All other participants managed to maintain the treadmill velocity

by distributing the force more evenly over the propulsive cycle and in consequence decreasing

the peak GH forces. This, combined with lowering the push frequency, led to a decrease in

mean GH force during the propulsive cycle.

Next to the force distribution pattern, there may be another factor that caused an increase

in shoulder loading in P3 and P6. A Recent study by Requejo et al. [31] concluded that a more

anterior placement of the hand at release relates to a higher shoulder load. As visible in Fig 4,

at the post-test, P3, P6 and P7 had the most anterior placement of the hand when decoupling

from the handrim. From those three participants, P7 was the only one who lowered the shoul-

der load at the post-test. This could be related to the fact that P7 distributed the handrim forces

evenly throughout the push, avoiding high peak forces when the hand was in the vulnerable

anterior position. However we would like to emphasize that based on the findings of this and

previous experiment [31], we cannot explain what the exact factors are that cause the anterior

hand placement at release to be potentially more harming for the shoulder. We recommend to

investigate this issue in the future.
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The median peak GH forces of 920 N found at the post-test are comparable to those

reported in other wheelchair propulsion studies with experienced wheelchair users [1,5,32]

and able-bodied participants [5,33]. However it should be noted that P6 increased the peak

GH force at the post-test to over 2300 N per push, achieving a value, almost 1300 N (~60%)

higher than the second highest score recorded in the current study. This exceptionally high

value is comparable to peak forces measured during ramp propulsion (2555 N) [32]. Peak

force of P6 measured at the handrim was nearly 30% higher than the second highest peak force

recorded at the post-test. High peak force was necessary to maintain the belt velocity as P6

developed the lowest push frequency recorded at the post-test of 21 pushes per minute. The

peak forces in the majority of participants are lower than peak forces found during for example

weight-relief lifting in a wheelchair (~1500 N) [34,35]. However it should be considered that

wheelchair propulsion is a highly repetitive task, meaning that the cumulative tissue overload

can be much higher than for weight-relief lifting.

Maintaining a certain velocity and power output during wheelchair propulsion can be

achieved in a number of ways, keeping in mind that there is a relationship between the propul-

sion technique variables. As push frequency decreases during practice, the contact angle and

work per push need to increase to maintain a constant velocity. The advice of current clinical

practice guidelines [3] to use long strokes and low frequency during propulsion, is based on

the assumption that larger contact angle would lead to a decrease in the peak glenohumeral

reaction forces, as load is evenly distributed over a larger angle. However, there may be a

threshold beyond which excessive lowering in frequency, despite the high contact angle, is not

desired as it has to be compensated by an increase in peak forces, in order to maintain constant

velocity, like in the example of P6. This statement is supported by the study of Rankin [36],

which suggested that altering push frequency or contact angle to extreme values is less effective

in lowering overall muscle demand than moderate adjustments in technique. Similar state-

ments were made for other propulsion technique variables such as peak force [36] or fraction

effective force [37].

Although assumed critical, it is not clear whether the goal of wheelchair propulsion practice

should be lowering the mean or the peak GH loads. The controversy is caused by the lack of

consensus on what is more damaging to the tissue, less frequent high forces (with longer recov-

ery periods) or persistent high frequency lower forces. According to the studies on animal

models of muscle damage and studies documenting repetitive workplace injuries, even low-

load movement sustained for an extended period, has a great potential to cause overuse dam-

age to the muscle and ligament tissue [38]. The highest injury-inducing potential lies in the

high-repetition and high-load tasks but the exact relationship between the dose of mechanical

load and tissue response is unknown.

Effect of practice on individual muscle force

The highest mean relative forces and highest power production at the pre- and the post-test

were generated by a pair of antagonist muscles: the triceps and the bices muscle. Those two

muscles showed to generate power interchangeably during the majority of the push phase [39]

and remain among the largest contributors to the power generation throughout the propulsive

cycle independent of the simulated propulsion technique [36]. Large contribution of the tri-

ceps muscle is in accordance with the study of Vegter et al. [5] who also found that triceps was

the biggest power producer in the very initial stages of practice in wheelchair propulsion and

with a study of Slowik et al. [40] who found the triceps muscle among the primary contributors

to the propulsive cycle, independent of the hand pattern during the recovery phase. It is how-

ever striking that the magnitude of the peak relative force production of the triceps in the
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current study exceeded 50%, both at the pre- and the post-test, while in the study of Vegter

et al., it oscillated around 15%. Another study reported triceps force production of 25% [1].

The second biggest contributor was the biceps muscle exerting approximately 40% of the

attainable force at both testing occasions and largely contributing to the power production.

Contribution of the biceps is higher in the current study than in previous literature. Veeger

et al. [1] found peak relative force of biceps of just under 25% in experienced wheelchair users

and Vegter et al. a contribution of approx. 15% [5]. The notably high contributions of biceps

and triceps muscles in the present study may be related to the quite large differences in push

frequency between the studies. Vegter et al [5] (>55 push/min) and Veeger et al [1] (96

pushes/min) reported a higher frequency compared to our study (36 pushes/min). Both exper-

iments were performed at a very similar velocity and power output as the current study. As

our participants lowered the push frequency to 36 pushes/min, more muscle power had to be

exerted during the push to maintain the treadmill velocity. This explanation is supported by a

previous study which used forward dynamics simulation and found that simulating minimiz-

ing push frequency and maximizing contact angle both result in large increases in power pro-

duction of biceps and triceps muscles during the push phase [36].

The contributions of biceps and triceps are followed by large power and relative force pro-

duction of pectoralis major and the following rotator cuff muscles: supraspinatus, infraspina-

tus and subscapularis. High contribution of those muscles during the push phase is in

accordance with other studies with experienced wheelchair users [1,41] and able-bodied per-

sons [5,33]. Supraspinatus produced relative force of almost 40% at the post-test which is com-

parable to the values found in experienced wheelchair users [1]. High load on all rotator cuff

muscles, but especially supraspinatus is concerning. Supraspinatus muscle, because of its rela-

tively small size, and anatomical location, running through the narrow subacromial space, is

vulnerable to overload and impingement [42]. Finally, the contribution of the anterior part of

the deltoideus was very low in the able-bodied participants in the current study. This is agree-

ment with a previous study which used the same musculoskeletal model and a very comparable

participant group [5] but contradicts other studies which reported it to be a main contributor

[39,41].

Advantages and limitations

The primary advantage of this observational single group pre-post experiment is that the

changes in shoulder load were investigated over a longer practice period, excluding the very

initial stages that have been documented before [5]. Including able-bodied participants is a

useful method to preliminary examine the kinetic and dynamic changes occurring during the

learning process. Firstly, because the participant have no experience at the onset of the study.

Secondly, because confounders that are present in actual wheelchair users such as sitting bal-

ance, presence of pain or limited muscle function cannot influence the acquired results. How-

ever, to be able to fully understand the way propulsion technique relates to shoulder pain,

actual wheelchair users should be investigated in future studies. Although 7 participants is not

a very unusual number when compared with other modeling studies [1,5], we recommend to

include more participants in the future. Power analysis calculation (G�Power, α = 0.05;

Power = 0.80; [43]) indicated that 11 participants would be necessary to reach a significant

decrease in the mean glenohumeral reaction force per cycle. In order to make sure that the test

conditions were standardized for all participants, no individual fitting was provided within the

user-wheelchair interface. Although this could initially have some influence on the propulsion

technique, it should be considered that the wheelchair remained unchanged between the pre-

and the post-test. All observed changes were therefore a result of practice. Although within-
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subject comparisons remain valid, across-subject comparisons may be confounded by the

fixed dimensions of the experimental wheelchair in the context of individual anthropometric

differences. Lastly, DSEM is a non-personalized musculoskeletal model. This means that for

the well-trained individuals and athletes the relative loads could be lower as their muscles are

habituated to handle higher loads.

Future directions

Future studies should include actual wheelchair users, preferably with various levels of experi-

ence and various lesion levels, in order to further explore the relationship between wheelchair

propulsion technique and upper extremity concerns. Investigation should take place as early

as possible in the learning process since recent evidence suggests that shoulder pain develops

already in the early stages of rehabilitation [2]. Future research should attempt to determine

how the quantified changes in shoulder load influence the actual damage to the soft tissue.

Including a higher number of participants could allow forming clusters of individuals with

similar propulsion characteristics, which could explain various trajectories of overuse injury

development. Moreover, larger participant group could help to determine what the underlying

biological patterns are that drive the optimization in cyclic wheelchair exercise.

Conclusions

Changes in the propulsion technique found in this pre-post single group study are in agree-

ment with other low-intensity wheelchair practice studies and values at the post-test resemble

the values in actual wheelchair users. Despite developing a uniform propulsion technique, the

kinematic solution to the task varied in magnitude and direction between the participants. In

contrast to the rather variable kinematic output, participants exhibited two glenohumeral reac-

tion force distribution patterns during the propulsive cycle. Individuals, who developed high

force at the onset of the push, increased both peak and mean glenohumeral forces. Partici-

pants, who distributed the force more evenly over the propulsive cycle, lowered both peak and

mean glenohumeral force. This study provides preliminary insights on the possible relation

between the changes in wheelchair propulsion technique and shoulder load taking place after

low-intensity practice. This knowledge should be extended in the future by investigating actual

wheelchair users with various levels of experience.
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