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The Pentagonal-Pyramidal Hexamethylbenzene Dication:
Many Shades of Coordination Chemistry at Carbon

Johannes E. M. N. Klein,*[a] Remco W. A. Havenith,*[b, c] and Gerald Knizia*[d]

Abstract: A recent report on the crystal structure of the pen-
tagonal-pyramidal hexamethylbenzene dication C6(CH3)6

2 +

by Malischewski and Seppelt [Angew. Chem. Int. Ed. 2017, 56,

368] confirmed the structural proposal made in the first
report of this compound in 1973 by Hogeveen and Kwant

[Tetrahedron Lett. 1973, 14, 1665]. The widespread attention
that this compound quickly gained led us to reinvestigate its

electronic structure. On the basis of intrinsic bond orbital

analysis, effective oxidation state analysis, ring current analy-

sis, and comparison with well-established coordination com-

plexes, it is demonstrated that the central carbon atom be-
haves like a transition metal. The central (apical) carbon
atom, although best described as a highly Lewis-acidic
carbon atom coordinated with an anionic cyclopentadienyl

ligand, is also capable of acting as an electron-pair donor to
a formal CH3

+ group. The different roles of coordination

chemistry are discussed.

Introduction

Malischewski and Seppelt recently reported the crystal struc-
ture of the pentagonal-pyramidal hexamethylbenzene dication

C6(CH3)6
2+ (I) (Figure 1).[1] This is unequivocal evidence for the

structural assignment of this compound made in 1973 by Ho-

geveen and Kwant on the basis of spectroscopic studies.[2]

As an immediate response to the structural confirmation of
I, scientific news outlets commented on this report[3] with

catchy titles such as “Six bonds to carbon: Confirmed”,[3a] and

related claims that the established carbon bonding modes had

been severely challenged, if not disproven. Although the Lewis

structure depiction, as well as the depiction of the X-ray struc-
ture, might suggest an unusual bonding scenario, we note
that the original work by Malischewski and Seppelt[1] did not
claim any unusual bonding, that is, exceeding the common

four-bond limit for carbon. In fact, the authors suggested that
the octet rule still stands, and that the bonding in I could be

described as an interaction between a cyclopentadienyl cation
and CH3C+ .[1]

This description was already provided in the original spec-

troscopic study[2] proposing I, and in early computational anal-
yses.[4] Intrigued by this compound, we decided to investigate

its electronic structure. We here confirm that the compound
can be understood with established bonding concepts from

coordination chemistry, and that the usual four-bond limit ex-

pected for carbon is not exceeded. However, contrary to the
proposal of the original studies, we find that the compound is

best described as a coordination complex with an anionic cy-
clopentadienyl ligand, a notion that was already hinted at in

an early computational study of the related pentagonal-pyra-
midal compound (CH)6

2 + .[4b]

Figure 1. Structural depiction of the pentagonal-pyramidal hexamethylben-
zene dication C6(CH3)6

2 + (left) and its crystal structure (right), as determined
by Malischewski and Seppelt (CCDC-1496 330).[1]
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Results and Discussion

We began our exploration by optimizing the structure of I at

the TPSS[5]-D3(BJ)[6]/def2-TZVP[7] level of theory. This resulted in
geometric parameters that agreed well with those determined

experimentally (for full computational details see Supporting
Information). On the basis of the obtained Kohn–Sham DFT

wave function, we performed an intrinsic bond orbital (IBO)[8]

analysis of the electronic structure of I. We confirmed the ab-
sence of static correlation effects by using Grimme’s test, to as-
certain that our DFT treatment is appropriate (see Supporting
Information for results).[9] Under this condition, the IBOs, which
pose a mathematically exact molecular orbital representation
of the DFT wave function, provide a definitive and intuitively

accessible description of the bonding: normally each IBO can
be interpreted as an electron pair in a Lewis structure.[10]

For the C6(CH3)6
2 + molecule I, we find four IBOs engaged in

bonding with the apical carbon atom (Figure 2, top), indicating
a total of four bonding interactions rather than six. Three of

these can be identified as p-bonding orbitals originating from
the five-membered ring, and one represents a s-bond from

the directly bound CH3 group. The s-bond from the directly

bound CH3 group reflects typical C@C bonding in hydrocar-
bons, albeit with strong polarization toward the apical carbon

atom; this aspect will be discussed further below. In addition,
each of the three p-bond orbitals, which represent the bond-

ing interaction between the apical carbon and the ring, is
heavily polarized toward the apical carbon atom.

Figure 2. Comparison of the bonding interaction between the central atom and the Cp* ring in C6(CH3)6
2+ (I) and [Cp*Ir(OH2)3]2 + (II). The latter is an undisput-

ed Cp*(@) coordination complex. Depicted are isosurfaces of IBOs at the TPSS-D3(BJ)/def2-TZVP level of theory, each enclosing 80 % of the orbital electron’s
density. Hydrogen atoms bound to carbon are omitted for clarity. Visualized using IboView.[10e, 11]
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Curiously, rather than indicating the previously evoked

Cp(++) moiety,[1, 2, 4] the three p-bond orbitals represent a bond-
ing interaction strongly reminiscent of the bonding in transi-

tion metal complexes bearing cyclopentadienyl [Cp(@)] li-
gands, or more specifically, that found if a Cp(@) ligand is coor-

dinated in h5 fashion and provides six electrons for coordina-

tion.[12] Analogously to the C6(CH3)6
2 + molecule I, pentamethyl-

cyclopentadienyl [Cp*(@)] has been used as a more electron-

donating variant of this ligand for various transition metal
complexes. So, should the apical carbon be described as a

Lewis-acidic transition metal, engaged in coordinative bonding
to an aromatic p-system?

For a direct comparison, we selected a series of well-defined

Cp*-containing transition metal complexes (II–VII) and two
main-group element compounds of similar composition (VIII
and IX), as listed in Figure 3. This set of complexes allows us to
directly compare the bonding between the Cp*(@) ligand and

the transition metal or main-group element to the bonding in
I.

In all cases, we find three p-bonding interactions between
the ring and the apical coordinating atom. For complex II, IBOs
are depicted in Figure 2 (bottom); the IBOs obtained for the

rest of the complexes are given in the Supporting Information
(Figure S2), as they proved to be very similar. As seen in

Figure 2, the p-bonding interaction of II shows a strong resem-
blance to the bonding observed in compound I. In addition to

the strong resemblance between the IBOs of the Cp* moieties
in all compounds, we also find good agreement between the
averaged C@C bond lengths in the five-membered ring. In

C6(CH3)6
2+ , the C@C bond lengths between the carbon atoms

of the Cp* ring are computed to be 1.451 a. This compares

well with the value of 1.442 a determined experimentally,[1]

and lies midway between the calculated C@C bond lengths of

the Cp*(@) complexes II to IX, ranging from 1.428 a (in VII) to

1.465 a (in III).
Apart from the crystal structure, Malischewski and Seppelt[1]

also reported calculations of the nucleus independent chemi-

cal shift (NCIS) of I, which indicate the presence of three-di-
mensional aromaticity. Our bonding picture of I provides a

straightforward explanation of this finding, as the p-system of
a Cp*(@) ring is aromatic according to the Heckel rules, and

the Lewis-acidity of the apical carbon atom in the + 2 oxida-
tion state draws this p-system out of the plane, making it

appear three-dimensional.

As we compared the bonding in I to the bonding in transi-
tion metal complexes featuring Cp*(@) ligands, we decided to

carry out ring current calculations for I and II at the DFT level
of theory (for additional details see Supporting Information).

As expected, we can clearly identify similar ring current pat-
terns for both the contribution of the p-like orbitals and the

total induced current density in both I and II (Figure 4). A typi-
cal diatropic ring current is discernible, characteristic of an aro-
matic compound, and notably, does not differ much between

a conventional coordination compound such as II and com-
pound I.

For completeness, we computed intrinsic atomic orbital
(IAO) partial charges of the complex fragments (see Supporting

Information for details). For the C6(CH3)6
2+ molecule I, the par-

tial charge for the Cp* fragment is + 1.563, which may seem
inconsistent with an anionic Cp* ligand. However, partial

charges are poor predictors of oxidation states.[13] As an illus-
tration, in the Ir complexes III, II, IV, and V, the Cp* fragment

partial charges vary as + 1.251, + 0.617, @0.173, @0.195, all for
formally anionic Cp*(@) ligands and identical Ir@Cp* binding.

Figure 3. Summary of all studied compounds. For a list of relevant experi-
mental references, see Supporting Information.

Figure 4. Plots of the contribution of the p-like orbitals to the current densi-
ty for I and II (I-p and II-p) and of the total induced current density (I-Total
and II-Total).
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Therefore, the partial charge cannot be taken as indicative of
the formal binding motive, as has been found in many other

previous cases.[13]

To further address the role of oxidation states and validate

our assignment as a Cp*(@) ligand coordinated to the apical
carbon in compound I, we employ the recently introduced ef-

fective oxidation state (EOS) formalism of Salvador and co-
workers,[14] which allows assignation of oxidation states on the
basis of first-principles wave functions in a well-defined

manner. This EOS analysis also confirms that the bonding in
compound I is best described as an anionic Cp* ligand coordi-
nated to carbon. As seen from Table 1, we find that the Cp*
fragment is formally anionic for all the complexes. For the tran-
sition metal complexes II–VII, the EOS analysis also correctly
identifies the established oxidation states of the transition

metal centers.

One interesting observation is made upon inspection of the

oxidation states of the apical carbon atom and the attached

methyl group in I. Here, we compute oxidation states of + 2
and + 1 for the apical carbon atom and the methyl group, re-

spectively.
Although this bonding picture deviates from the proposed

interaction between a cyclopentadienyl cation and CH3C+ , it
does agree with the bonding proposed for examples VIII and

IX. For VIII, Frenking and co-workers proposed that the boron
atom bound to the Cp* fragment possesses a lone pair that
coordinates to the BCl3 fragment.[15] Note that similarities be-

tween carbon and boron have been discussed in the literature
for compounds of this type.[16] Similarly, for IX, a Si-based lone

pair was demonstrated.[17] The monocationic all-carbon com-
pound analogue of IX was studied recently using computa-

tional methods by Pichierri,[18] and was found to exhibit similar

bonding properties, including the presence of a lone pair at
carbon. Protonation of the apical carbon, for a variant lacking

methyl substituents, leads to the pentagonal-pyramidal C6H6

dication, which has been studied both experimentally and

computationally.[19] Notably, the idea of an anionic Cp fragment
was put forward.[19c] In related blog posts by Rzepa,[20] a close

relative of I, in which the apical carbon is protonated and the
CH3 groups on the five-membered ring are retained, is studied.

Again, a lone pair susceptible to protonation is discussed, and
analyses include atoms in molecules (AIM)[21] and electron lo-

calization function (ELF)[22] investigations, leading to the sug-
gestion by Rzepa of a hexacoordinate apical carbon, which he

also describes as hexavalent, although he clearly states that
these bonding interactions are not to be interpreted as con-
ventional two-electron sharing bonds, an idea that is discussed

later in the context of helium bonds.[23] The analyses are also in
agreement with the notion that the octet rule is not violated.
For the pentagonal-pyramidal C6H6 dication and its relative,
the interpretation of a carbon-centered lone pair, which can be

subject to protonation, is in line with our observation that the
methyl group attached to the apical carbon atom is identified

as cationic in the EOS analysis. Furthermore, a description of

this type is in line with the polarization of the s-bond identi-
fied by the IBO analysis (Figure 2, top), with a partial charge

distribution of the associated IBO between the apical carbon
and the CH3 carbon of 1.139 and 0.860, respectively.

Considering the EOS analysis, the comparison to the proton-
ated congener [C6H6]2 + , and the observation of noticeable po-

larization, one could describe this s-bond as a coordinative

bond. Frenking and co-workers have studied dative bonding
for main-group elements,[24] including carbodicarbenes,[25] ex-

tensively. For carbodicarbenes they suggest that the C@C s-
bonds are best described as donor–acceptor/dative bonds.[25]

Although controversial, the use of arrows to indicate such C@C
bonds is recommended by Frenking and co-workers.[26] For a

direct comparison, we computed IBOs of the relevant s-bonds

for carbodicarbene X,[27] which are shown in Figure 5. As ex-
pected, we indeed find similar polarization of the C@C s-bonds

in compound X, for which the partial charges are 0.907 for the
carbone carbon atom and 1.073 for the carbon atom of the

NHC moiety. These partial charge distributions are the same
for both IBOs of X depicted in Figure 5. The values are very

close to those observed for I, and therefore, further support

our description as a coordinative bond, rather than a regular
C@C electron-sharing bond. We note that the C@CH3 bonds of

the Cp* moiety are also quite polarized towards the Cp ring,
and that the C@C bonds within the Cp ring are deformed (see

Figure S3, Supporting Information).

Figure 5. Comparison of the polarized s-bonds in I and X. IAO partial charg-
es of the depicted IBOs are given. Visualized using IboView.[10e, 11]

Table 1. Computed effective oxidation states (EOS) of complexes I–IX.

Complex EOS R [%][b]

[Cp*] [M] [L][a]

I C6(CH3)6
2 + @1 + 2 + 1 63.17 [61.77]

II [Cp*Ir(OH2)3]2 + @1 + 3 0 61.30 [53.24]
III [Cp*Ir]2 + @1 + 3 n.a. 57.63 [65.34]
IV [Cp*Ir(L1)]+ @1 + 3 @1 70.28 [62.75]
V [Cp*Ir(L2)] @1 + 3 @2 78.09 [70.15]
VI [Cp*Ru(PCH3)2Cl]+ @1 + 3 @1 77.77 [70.87]
VII [Cp*TiCl3] @1 + 4 @3 100.00 [91.90]
VIII [Cp*B@BCl3] @1 + 1 0 80.67 [61.51]
IX [Cp*Si]+ @1 + 2 n.a. 100.00 [99.99]

[a] Group oxidation state for all ligands (except Cp*) bound to the [M]
fragment. [b] Formal assignment reliability based on topological fuzzy
Voronoi cells (TFVC) and based on intrinsic atomic orbitals (IAO). The
latter values are given in brackets.
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Conclusion

Let us now reflect on our findings. On the basis of our calcula-
tions, we would describe the bonding in compound I as transi-

tion-metal-like with 1) coordination of an aromatic Cp*(@)
ligand to the apical carbon atom, in which the ligand’s p-

system is polarized toward the carbon owing to its high Lewis
acidity ; and 2) coordination from a lone pair located at the

apical carbon atom toward a cationic CH3 group. The apical

carbon atom therefore incorporates both possible modes of
coordination chemistry at carbon, that is, serving as an elec-
tron-pair donor and as an electron-pair acceptor, all within a
purely hydrocarbon framework.

We note here that for some mono- and dicationic organic
molecules, a connection between the bonding models for or-

ganic and organometallic compounds was indicated by Ho-

geveen and Kwant in 1975,[28] including compound I. This is
particularly well reflected in the use of a coordination number

for the apical carbon to account for the six bonding partners,
rather than discussing how many “real” bonds are present.

The observation of a C(II) center, which coordinates to a cat-
ionic methyl group, can be considered as similar to the bond-

ing in divalent C(0) compounds, which have been described as

coordination compounds exhibiting dative bonding.[25] Com-
pound I therefore further extends the increasing number of

compounds in which coordination chemistry at carbon has
been observed,[29] and reinforces the notion that main-group

elements can be teased into behaving like transition metals. Fi-
nally, we want to point out that compound I, which we have

discussed in the present article in light of the potential of

having six bonds, is markedly different from compounds such
as CH5

+ ,[30] C(CH3)5
+ ,[31] or [C(Au(PPh3))5]+ ,[32] which have been

referred to as hypercoordinated compounds.[33] For example,
the bonding in CH5

+ can be rationalized by invoking a three-

center two-electron bonding interaction. It is the directionality
of the bonding that differs between these hypercoordinated
compounds, compound I, and, for example, the divalent C(0)

compounds. In hypercoordinated compounds, the central
carbon atom is formally reduced, and may be understood as
an electron donor to its surrounding bonding partners. Consid-
ering the coordination compound [C(Au(PPh3))5]+ , it becomes
clear that the central carbon atom is donating to the Lewis-
acidic AuI moieties. In compound I, however, the opposite is

found with respect to the Cp* moiety. It is therefore the direc-
tionality of the bonding that sets these types of compounds
apart.
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[19] a) J. Jaš&k, D. Gerlich, J. Roithov#, J. Am. Chem. Soc. 2014, 136, 2960 –
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