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Chapter 1 - General introduction

Introduction thesis

Radiotherapy plays a pivotal role in the treatment of patients with head and neck 
Cancer (HNC), either as single modality or in combination with systemic treatment 
and/or surgery [1]. The majority of HNC concerns squamous cell carcinoma and 
arises from regions in or adjacent to the upper digestive tract. Survival rates have 
improved in the last decades due to improvement of treatment strategies [2–9]. 
The introduction of radiotherapy treatment techniques like Intensity Modulated 
Radiotherapy (IMRT) and Volumetric Modulated Arc Therapy (VMAT) have resulted 
in more conformal dose distributions and have been successfully combined 
with systemic agents, including concurrent chemotherapy and cetuximab [2–4]. 
Moreover, survival rates have improved due to increasing incidences of human 
papilloma virus (HPV) related HNC, since patients with HPV-positive tumours 
show a remarkably better overall survival compared to those with a non-HPV 
related tumours [7–9].
The increased life expectancy of HNC survivors has led to a rising demand for 
adequate prediction, prevention and understanding of the development of 
treatment-induced side effects. In addition, more advanced treatment options 
are becoming available that have great potential to spare normal tissues, 
such as proton therapy [10,11] and Magnetic Resonance Imaging (MRI) guided 
radiation [12]. However, these advanced treatment techniques are currently 
limited available and their benefit varies between patients. In the Netherlands, 
the model-based approach has been introduced as an evidence-based method 
to select patients for the most optimal treatment based on differences in the 
expected toxicity profiles between treatment modalities [10], illustrating how 
toxicity prediction can contribute to more individualized treatment strategies.
Following radiotherapy, the most frequently reported side effects are xerostomia, 
which is the syndrome of dry mouth, and sticky saliva, due to changes of saliva 
composition, and swallowing dysfunction (dysphagia) [1,13,14]. These toxicities 
normally become clinically apparent during radiotherapy (35 radiation fractions 
in 6 or 7 weeks) [13]. These side effects may persist for weeks or months after 
treatment, while in some patients no recovery is observed leading to burdensome 
complaints for the rest of their lives. [15]. Figure 1 depicts the incidences of 
patient-reported moderate-to-severe xerostomia during and after completion 
of treatment from a combined cohort of patients included in this thesis, and are 
obtained from our department’s Standard Follow-up Program. Especially, these 
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late side effects are very disabling for patients, and have a major impact on the 
quality of life of HNC patients [14].
This thesis focusses on late side effects related to salivary gland dysfunction, 
xerostomia and sticky saliva. These side effects may also lead to altered taste, 
dental infection, swallowing, and speech problems [15]. Multiple studies have 
shown that the radiation dose administered to the parotid glands, which are 
the major salivary glands (figure 2), is associated with the development of late 
xerostomia [16–21], while submandibular gland doses were found to be related 
to the development of sticky saliva after treatment [16,17].

Figure 1 Example of toxicity development. Moderate-to-severe xerostomia incidences before, 
weekly during and 6 weeks, 6, 12, 16 and 24 months after radiotherapy of a sample size of 396 
HNC patients from a combined cohort of patients included in this thesis.

To predict side effects, Normal Tissue Complication Probability (NTCP) models 
are used. NTCP-models are prediction models that describe the relationship 
between 3D-dose distributions and the risk on radiation-induced side effect. 
Several studies have presented univariable NTCP models based on mean dose 
to the parotid glands that predict the reduction of salivary flow rates below 25% 
[19–21]. Houwelink et al. compared several model types (e.g. Lyman-Kutcher-
Burman, mean dose exponential and dose-threshold model) and showed that the 
logistic regression model based on mean dose to both parotid glands performed 
best predicting salivary flow reduction [18]. Reduced salivary flow, however does 
not necessarily translate in altered patient-reported outcomes (PRO) [22]. Beetz 
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et al. were the first to develop a multivariable NTCP model predicting late patient-
rated xerostomia after radiotherapy [17]. The predictors were mean dose to the 
contralateral parotid gland and baseline xerostomia scores. In addition, sticky 
saliva prediction was based on mean dose to the submandibular and sublingual 
glands and soft palate [17].
However, substantial unexplained variability in predicting xerostomia and 
sticky saliva remains for these conventional NTCP models that are based on 
dose–volume parameters and baseline toxicity scores. In other words, patients 
receiving similar radiation doses and with similar baseline complaints can 
react very differently to treatment. Optimisation of the performance of NTCP 
models is a necessary next step to further support more personalised treatment 
approaches.

Figure 2 Anatomical representation of the parotid and submandibular gland.

In this thesis, we tested the hypothesis that the prediction of radiation-induced 
salivary gland toxicities can be improved by adding patient-specific information 
extracted from 3-dimensional images, such as Computed Tomography (CT), 
Positron Emission Tomography (PET) or Magnetic Resonance Imaging (MRI). 
These images are routinely acquired for delineation (i.e. tumour and organs at 
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risk segmentation) and treatment planning purposes (Figure 3), yet containing 
additional unused information of patient’s anatomy and physiology.
Radiomics refers to the process of converting medical images into high-
dimensional minable data [23]. Patient-specific tissue characteristics are 
quantified in so-called image biomarkers (IBMs) or features. They represent 
intensity, texture and geometric properties of tissue from a specific volume of 
interest. Aerts et al. showed that CT image biomarkers describing the density, 
heterogeneity and shape of the tumour, could predict overall survival of non-
small cell lung cancer patients and validated this in both an independent HNC and 
lung cancer patient cohort [24]. Subsequently, several studies have shown that 
tumour image biomarkers can contribute to the prediction of overall, disease-free 
and progression-free survival in HNC patients [24–28]. However, so far, the role 
of these image biomarkers extracted from normal tissues to predict radiation-
induced toxicities is less explored, while these are imperative in supporting 
treatment decisions [10].

Figure 3 Currently standard in radiotherapy, CT is used for the dose distribution calculation 
and for the delineation of the target regions and organs at risk. 18F-FDG PET and MR images are 
often registered to CT to provide addition information, such as metabolic activity and superior 
soft tissue contrast, for tumour delineation. Delineations of clinical target volumes (red) and 
the parotid glands (green) are depicted.
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Outline of the thesis

The aim of this thesis was to improve the prediction of radiation-induced salivary 
gland toxicities in HNC patients with normal tissues image biomarkers, by adding 
them to conventional NTCP models that are based on dose-volume parameters 
and baseline complaints only.

The first part of this thesis (chapter 2-4) focuses on improving the prediction of late 
toxicities with image biomarkers that are extracted from pre-treatment images. 
Optimized pre-treatment prediction is necessary to identify patients that are 
most at risk of developing persistent salivary dysfunction and thus may be good 
candidates for more advanced treatment techniques, such as proton therapy 
and MRI-guided radiation [11,12], which could further support more effective 
personalized treatment approaches.

The second part of this thesis (chapter 5-6) focusses on identifying parotid gland 
changes observed during and early after treatment, which were quantified in 
∆image biomarkers and associated with late xerostomia. Quantification of normal 
tissue changes in an early stage that are associated with permanent damage 
could identify patients that will not recover and could potentially guide treatment 
adaptation to prevent late toxicities as much as possible.
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Chapter 2 aims to improve the prediction of late xerostomia and sticky saliva 
by investigating image biomarkers of parotid and submandibular glands in pre-
treatment CT images. CT is the most apparent modality to investigate first, since 
CT images are always acquired for radiotherapy treatment planning and give a 
stable representation of the tissue density.

Chapter 3 investigates the improvement of toxicity prediction with the metabolic 
activity of the parotid gland by extracting image biomarkers from pre-treatment 
18F-FDG PET images. This image modality gives a spatial distribution of glucose 
(FDG) labelled with a radioactive marker (18F) in patients, which relates to the 
local metabolic activity in the tissue.

Chapter 4 tests the hypothesis resulting from chapter 2 and 3 that fat in 
the parotid gland is a xerostomia risk factor by investigating whether image 
biomarkers, extracted from pre-treatment T1-weighted MR images, are 
associated with the development of late xerostomia. Although MRI is a complex 
image modality, it is the most preferred modality to support the hypothesis due 
to its excellent soft tissue contrast.

Chapter 5 investigates the relation of parotid gland dose with parotid gland 
changes, quantified by ∆image biomarkers, before and 6 weeks after radiotherapy, 
together with the association of these ∆image biomarkers to late xerostomia.

Chapter 6 identifies predictive ∆image biomarkers during treatment that can be 
used to identify patients at risk for late xerostomia, early in-treatment.

The findings described in this thesis are summarized and discussed in Chapter 7.
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Abstract

Background and purpose
Current models for the prediction of late patient-rated moderate-to-severe 
xerostomia (XER12m) and sticky saliva (STIC12m) after radiotherapy are based 
on dose-volume parameters and baseline xerostomia (XERbase) or sticky saliva  
(STICbase) scores. The purpose is to improve prediction of XER12m and STIC12m with 
patient-specific characteristics, based on CT image biomarkers (IBMs).

Materials and Methods
Planning CT-scans and patient-rated outcome measures were prospectively 
collected for 249 head and neck cancer patients treated with definitive 
radiotherapy with or without systemic treatment. The potential IBMs represent 
geometric, CT intensity and textural characteristics of the parotid and 
submandibular glands. Lasso regularisation was used to create multivariable 
logistic regression models, which were internally validated by bootstrapping.

Results
The prediction of XER12m could be improved significantly by adding the IBM “Short 
Run Emphasis” (SRE), which quantifies heterogeneity of parotid tissue, to a model 
with mean contra-lateral parotid gland dose and XERbase. For STIC12m, the IBM 
maximum CT intensity of the submandibular gland was selected in addition to 
STICbase and mean dose to submandibular glands.

Conclusion
Prediction of XER12m and STIC12m was improved by including IBMs representing 
heterogeneity and density of the salivary glands, respectively. These IBMs could 
guide additional research to the patient-specific response of healthy tissue to 
radiation dose.
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Introduction

The survival of head and neck cancer (HNC) patients has improved remarkably 
in the last decade with the addition of systemic agents, including concurrent 
chemotherapy and cetuximab [1,2]. However, these treatment strategies have 
significantly increased acute and late toxicity [3]. Consequently, reducing 
treatment-induced side effects has become increasingly important. Despite 
the clinical introduction of more advanced radiation techniques, side effects 
related to hyposalivation, such as xerostomia and sticky saliva, are still frequently 
reported following radiotherapy (RT) for HNC. Accurate prediction of these side 
effects is important in order to individually tailor treatments to patients.
To predict moderate-to-severe xerostomia and sticky saliva, Normal Tissue 
Complication Probability (NTCP) models have been developed [4,5]. Current 
models are based on a combination of dose-volume parameters of salivary 
glands and baseline risk factors. However, these models cannot completely 
explain the variation in development of xerostomia between individuals. 
Therefore, identification of additional factors is needed to explain the patient-
specific response to dose, and subsequently to optimize NTCP models.
In current clinical practice, three-dimensional anatomic information is acquired 
with planning CT scans for all patients receiving RT. These scans are used to 
delineate the target and organs at risk, and to calculate the dose distribution 
of the planned treatment. These scans yield reproducible information about 
patient-specific anatomy and tissue composition, and could therefore contribute 
to the understanding and prediction of the development of side effects in HNC 
patients.
Information about the structure, shape and composition of organs at risk from 
the CT can be quantified with image features. Features that correlate with 
treatment outcome or complications can be used as so called image biomarkers 
(IBMs). Extracted from CT data of the parotid (PG) and submandibular glands (SG), 
the different image features represent their CT intensity as well as geometric and 
textural characteristics.
Aerts et al. [6] investigated the relationship between CT IBMs of head and 
neck tumours and survival. Furthermore, the relationship between geometric 
changes of organs at risk after RT, and radiation induced complications, has been 
described in several studies [7–10]. Scalco et al. [11] investigated change after RT 
for a selected set of textural parameters. However, there are no studies so far 
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that report on the relationship between IBMs of organs at risk before treatment 
and the risk of complications.
The aim of this study, therefore, was to investigate the prediction of xerostomia 
and sticky saliva, as assessed at 12 months after radiotherapy. The objective was 
to improve predictions by the addition of IBMs of the parotid and submandibular 
glands, determined from the planning CT-scans, to models that contain clinical 
and dosimetric information.

Method

Patient demographics and treatment
The study population of HNC patients was treated with definitive radiotherapy 
either in combination or not with concurrent chemotherapy or cetuximab, 
between July 2007 and August 2014. Patients with tumours in the salivary 
glands, those with excised parotid or submandibular glands and/or patients that 
underwent surgery in the head and neck area were excluded from this study. 
Furthermore, patients with metal streaking artifacts in the CT were excluded, 
due to the influence of CT intensity values that do not correspond to tissue 
densities. Moreover, patients without follow-up data 12 months after RT were 
also excluded. Patient characteristics are depicted in Table 1.
For each patient, a planning CT (Somatom Sensation Open, Siemens, Forchheim, 
Germany, voxel size: 0.94 x 0.94 x 2.0 mm3; 100-140 kV) with contrast enhancement 
was acquired. This CT was used for contouring and RT planning. The parotid and 
submandibular glands were delineated according to guidelines as described by 
Brouwer et al. [12].
Most patients were treated with standard parotid sparing IMRT (ST-IMRT) or 
swallowing sparing IMRT (SW-IMRT) [13,14]. All IMRT and VMAT treatments 
included a simultaneous integrated boost (SIB) and attempted to spare the 
parotid glands and/or the swallowing structures without compromising the dose 
to the target volumes [15]. The tumour and, if present, pathological lymph node 
target volumes, received a total dose of 70 Gy (2 Gy per fraction). Most patients 
received an elective radiation dose of 54.25 Gy (1.55 Gy per fraction) on the lymph 
node levels that were delineated as described by Gregoire et al. [16]. Radiation 
protocols were similar to those described by Christianen et al. [17].
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Table 1 Patient characteristics

Characteristics N=249 %
Sex
Female 61 24

Male 188 76

Age
18 - 65 years 133 53

> 65 years 116 47

Tumour site
Oropharynx 74 30

Nasopharynx 14 6

Hypopharynx 31 12

Larynx 118 47

Oral cavity 11 4

Unknown primary 1 0

Tumour classification
T0 3 1

T1 27 11

T2 81 33

T3 77 31

T4 61 24

Node classification
N0 115 46

N1 23 9

N2abc 104 42

N3 7 3

Systemic treatment
yes 100 40

no 149 60

Treatment technique
3D-CRT 23 9

ST-IMRT 92 37

SW-IMRT 124 50

SW-VMAT 10 4

Bi-lateral
yes 203 82

no 46 18

Abbreviations: CRT: Conformal Radiation Therapy; IMRT: Intensity-Modulated Radiation 
Therapy; ST-IMRT: standard parotid sparing IMRT; SW-IMRT: swallowing sparing IMRT; SW-
VMAT: swallowing sparing Volumetric Arc Therapy
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Endpoints
The EORTC QLQ-H&N35 questionnaire was used to evaluate patient-rated 
xerostomia and sticky saliva before and after RT. This questionnaire is part of a 
standard follow-up programme (SFP), as described in previous reports [4,18,19], 
and uses a 4-point Likert scale that describes the condition as ‘none’, ‘a bit’, ‘quite 
a bit’ and ‘a lot’. All patients included were subjected to the SFP programme, 
where toxicity and quality of life were evaluated prospectively on a routine basis; 
before, during and after treatment.
The endpoints of this study are moderate-to-severe xerostomia (XER12m) and 
sticky saliva (STIC 12m) 12 month after RT. This corresponds to the 2 highest scores 
on the 4-point Likert scale.

Potential CT image biomarkers, dose and clinical 
parameters

Dose and clinical parameters
The planning CT, dose distribution and delineated structures were analysed in 
Matlab (version R2014a). Both the mean dose to the contra- and bi-lateral parotid 
and submandibular glands were determined, since previous studies have shown 
that those were the most important parameters in the prediction of patient-rated 
xerostomia and sticky saliva at 6 and 12 months after RT [4,5,20].
Furthermore, different patient characteristics (age, sex, WHO-stage, weight, 
length and Body Mass Index), tumour characteristics (TNM stage, tumour 
location) and treatment characteristics (treatment technique and the use of 
systemic treatment) were also included. In addition, the patient-rated xerostomia 
and sticky saliva at baseline were taken into account.

CT intensity and geometric image biomarkers
Patient-specific characteristics of the parotid and submandibular glands were 
quantified by extracting potential CT IBMs, representing geometric, CT-intensity 
and pattern characteristics. In figure 1, extraction of different types of IBMs 
is explained schematically. The in-house developed software that was used to 
extract the IBMs was based on commonly used formulas (supplementary data 
1 and 2) and implemented in Matlab (version R2014a). The CT intensity IBMs 
(number = 24) were derived from the CT intensity information of the delineated 
volumes of interest. Examples of these features are mean, variance, minimum, 
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maximum, quantiles, energy and skewness of CT intensity. The geometric IBMs 
(number = 20), such as volume, sphericity, compactness and major and minor 
axis length, were directly derived from the delineated structures.

Textural image biomarkers
More complex CT IBMs are defined to describe the heterogeneity of tissue. These 
textural IBMs (number = 86) were derived from the gray level co-occurrence 
matrix (GLCM) [21], gray level run-length matrix (GLRLM) [22] and gray level size-
zone matrix (GLSZM) [23]. To extract this, the CT intensities were binned from 
-200 to 200 Hounsfield Units (HU) with an interval of 25 HU. All textural features 
were normalized by subtracting the IBM values from their mean and dividing by 
the standard deviation. For more information on textural IBM extraction, refer 
to supplementary data 2 and Aerts et al. [6]. Ultimately, all potential CT IBMs and 
clinical and dosimetric parameters together resulted in 142 variables.

Pre-selection of variables and univariable analysis
A large number of potential variables can increase the risk of false positives, 
overfitting the model and of multicollinearity [24,25]. In this study, a method for 
pre-selecting variables was applied to reduce the probability of these adverse 
effects. First, the (Pearson) correlation was determined between all combinations 
of variables. If a correlation larger than 0.80 was observed, then the variable 
with the lowest univariable correlation with the endpoint was omitted. After 
pre-selection, univariable analysis of the pre-selected variables was performed.

Multivariable analysis and model performance
Lasso regularisation was used to create two multivariable logistic regression 
models to predict moderate-to-severe XER12m and STIC12m. All pre-selected 
variables were introduced to the modelling process. By increasing the penalisation 
term lambda, the regularisation shrinks the coefficients of the variables and 
thereby excludes variables by reducing them to zero. To robustly determine the 
optimal lambda that results in a model that best fits the observed data, 10-fold 
cross validation was used [26]. This was repeated 100 times, as these folds are 
randomly picked [26].
General lasso tends to select models with too many variables [27]. Therefore, 
the 75th quartile (not the average) of the 100 obtained optimal lambdas was 
used to select the variables [28]. Subsequently, the variables selected by lasso 
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were again fitted to the data with logistic regression and internally validated 
through bootstrapping. This validation corrects for optimism by shrinking the 
model (slope and intercept) and the model performance accordingly [25,29].
Reference models without IBMs were created and the contribution of IBMs to the 
models was tested with the log-likelihood-ratio test. The model’s performance 
was quantified in terms of discrimination with the Area Under the Curve of the 
ROC curve (AUC), the Nagelkerke R2 and the discrimination slope. The Hosmer–
Lemeshow test evaluated the calibration. Variance Inflation Factor (VIF) was used 
to evaluate the correlation of a variable with all others in the model [30]. The 
R-packages Lasso and Elastic-Net Regularized Generalized Linear Models (version 
2.0-2) [26] and Regression Modeling Strategies (version 4.3-1) [31] were used.

Impact of variation in delineation
Delineation of organs at risk in the head and neck region by different observers 
may be subject to inter-observer variability [32], which could result in a variation 
in IBM values. To evaluate this, four additional delineations per gland per patient 
were created by eroding the original delineation by magnitudes corresponding 
to the variations in delineation reported by Brouwer et al. [32]. The IBM stability 
was evaluated combining the intra-class correlation of the IBM values of the 
original and created delineations. An IBM with an intra-class correlation higher 
than 0.70 was considered relatively stable (1.0 indicates identical observations). 
For more details, refer to Supplementary data 3.

Results

Patients
After exclusion of patients with metal artefacts in the CT-scans, 424 of the 629 
patients (67%) were included. Of the remaining patients, 249 (39%) completed 
the EORTC QLQ-HN35 at 12 months after treatment and were included in the 
analysis. Moderate-to-severe xerostomia was reported in 40% (100) and sticky 
saliva in 25% (63) of these patients.

Pre-selecting variables and univariable analysis
After testing of inter-variable correlation (Pearson), a selection of 26 of 142 
variables for XER12m and 24 of 142 variables for STIC12m were pre-selected. 
Univariable analysis of the pre-selected variables showed that 8 and 6 variables 
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were significantly correlated to XER12m and STIC12m , respectively (p-value < 0.05) 
(Table 2). However, all pre-selected variables were used in the lasso regularisation 
process. These pre-selected variables are listed in the supplementary data 4.

Table 2 (part 1) Univariable analysis after pre-selection of parotid gland related variables for 
xerostomia

Xerostomia at 12 months after RT

Name Type β p-value OR (95% CI)

Mean dose contra (PG) DVH 0.06 <0.001 1.06 (1.04-1.09)

Baseline xerostomia Clinical 0.80 <0.001 2.22 (1.49-3.30)

Short Run Emphasis GLRLM 0.44 0.002 1.55 (1.18-2.03)

97.5 percentile Intensity 0.39 0.004 1.47 (1.13-1.92)

Long Run Emphasis GLRLM -0.50 0.014 0.61 (0.41-0.90)

SRHGE GLRLM -17.14 0.014 0.00 (0.00-0.03)

Tumour stage Clinical 0.26 0.039 1.29 (1.01-1.65)

Bounding box volume Geometric -0.27 0.046 0.76 (0.59-0.99)

Abbreviations: PG: parotid gland; OR: odds ratio; CI: confidence interval; SRHGE: Short Run 
High Gray Emphasis

Table 2 (part 2) Univariable analysis after pre-selection of submandibular gland related 
variables for sticky saliva.

Sticky saliva at 12 months after RT

Name Type β p-value OR (95% CI)

Baseline sticky saliva Clinical 0.99 <0.001 2.70 (1.81-4.03)

Mean dose (SGs) DVH 0.04 <0.001 1.04 (1.02-1.06)

Maximum Intensity 0.01 0.001 1.01 (1.00-1.01)

97.5 percentile Intensity 0.02 0.008 1.02 (1.00-1.03)

Squared homogeneity GLCM -0.33 0.027 0.72 (0.54-0.96)

SRHGE GLRLM -0.58 0.032 0.56 (0.33-0.95)

Abbreviations: SGs: submandibular glands; OR: odds ratio; CI: confidence interval; SRHGE: 
Short Run High Gray Emphasis

Multivariable analysis and model performance
For Xer12m, the variables selected by the lasso modelling process were mean dose 
to the contra-lateral parotid gland, baseline xerostomia and the image biomarker 
“Short Run Emphasis” (SRE). The SRE significantly improved the model in terms 
of overall and discrimination performance (Likelihood Ratio test: p=0.01). The 
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AUC increased from 0.75 (0.69-0.81) to 0.77 (0.71-0.82) and the discrimination 
slope from 0.19 to 0.21.
For STIC12m, the mean dose of both submandibular glands, baseline sticky saliva, 
the maximum CT intensity and Short Run High Gray Emphasis (SRHGE) were 
selected. The maximum CT intensity added significantly to the model (Likelihood 
Ratio test, p= 0.005). However, the SRHGE did not improve the model performance 
significantly (log-likelihood-test, p=0.12) and had negligible effect on the AUC. 
Therefore, the variable SRHGE was discarded from further analysis and only the 
maximum intensity was used. Adding this IBM to the mean dose and baseline 
sticky saliva based model improved the discrimination slope of the model (from 
0.15 to 0.18) and the AUC (from 0.74 (0.67-0.80) to 0.77 (0.71-0.83), from 0.73 to 
0.76 when tested in bootstrapped data). Resulting (corrected) coefficients and 
performance measures of the models are depicted in tables 3 and 4, respectively. 
For the formulas of the final models refer to supplementary data 5.
The Hosmer–Lemeshow test showed that calibration was satisfactory for 
all models (table 4), indicating a good agreement between the predicted and 
observed patient outcomes. Additionally, the variance inflation factor (VIF) of all 
selected variables was < 1.03, indicating low correlation.

Impact of variation in delineation
For all 249 patients, 4 extra delineations were created of both the contra-lateral 
parotid and submandibular gland. IBMs were extracted from all delineations. 
Their robustness was determined with the intra-class correlation (>0.70). For the 
parotid gland, 92 of all 130 IBMs (71%) were robust. For the submandibular gland, 
73 IBMs (56%) were robust. The intra-class correlation of the SRE (IBM in final 
model Xer12m) was 0.85 (95% CI; 0.82-0.87), indicating that this IBM was relatively 
robust for contour variations. The maximum intensity of the submandibular 
gland (IBM in final model STIC12m) was more sensitive for contour variation 
with an ICC of 0.70 (95% CI; 0.66-0.75).
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Discussion

The results of this study showed that prediction of XER12m and STIC12m could 
be significantly improved by adding the IBMs short run emphasis (SRE) of the 
parotid gland and maximum CT intensity of the submandibular gland to the 
reference models based on dose-volume parameters and baseline factors. The 
improvements of both models with IBMs persisted when internally validated 
with both lasso regularisation and bootstrapping. These models with IBMs are 
a first step to understanding the patient-specific response of healthy tissue to 
dose. This could contribute to a better prediction of side effects and selection 
of patients, based on these predictions for advanced treatment techniques, as 
proposed by Langendijk et al. with the model-based approach to select patients 
for proton therapy [33].

Short Run Emphasis (SRE) and xerostomia
The SRE obtained from the GLRLM matrix, was associated with the development 
of XER12m. This IBM is related to the occurrence of short lengths of similar 
CT intensity value repetitions within the contour. High SRE values indicate 
heterogeneous parotid tissue or, in other words, that the parotid gland 
parenchyma is irregular in these patients. Visual investigation of the parotid 
glands of several patients with high and low SRE suggested that this irregularity 
resulted from fat saturation of parotid glands (figure 2A-D). The relationship 
between fat saturation and impaired parotid function has been shown by Izumi 
et al. [34] for patients with xerostomia related diseases: Sjögren’s syndrome 
and hyperlipidemia. Apparently, the ratio between fatty tissue and functional 
parotid parenchyma tissue is related to parotid function. Our results suggest 
that patients with a larger ratio of fat to parotid parenchyma tissue in the parotid 
glands have a larger risk of developing radiation-induced xerostomia. Our results 
suggest that patient-specific risk of developing radiation-induced xerostomia can 
be quantified by IBMs, a first step to explaining the patient-specific response 
in developing xerostomia to dose. However, CT is not the most optimal image 
modality to differentiate fat and gland parenchyma. Since MRI is superior in 
differentiating fat and gland tissue, evaluating parotid glands prior to treatment 
using MRI images could provide better information for predicting XER12m [35].
Some studies have found a relationship between the initial size of the parotid 
gland and function prior to [34] and after RT [10,36]. We could not reproduce this 
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in our population. Only a univariable significant association was found between 
the volume of the surrounding bounding box of the parotid gland and XER12m.

Figure 2 Examples of patients with high (A-B) and low (C-D) Short Run Emphasis values of 
the parotid gland. Examples of submandibular glands with high (E) and low (F) maximum CT 
intensity value.

Maximum Intensity and sticky saliva
Our multivariable analysis showed that the maximum CT intensity value of the 
submandibular gland was associated with STIC12m. This maximum CT intensity 
was related to intra-vascular contrast in the artery or vein supplying the 
submandibular gland (figure 2E-F). There are no studies reported that support our 
finding that there is a relationship between vascularisation of the submandibular 
gland and the development of sticky saliva. Both lasso and internal bootstrapped 
validation showed robust improvement of prediction with the maximum 
intensity. However, this IBM was not very stable for the inter-observer variation 
in delineations of the submandibular glands. Since the blood vessels supplying 
the submandibular gland can be located at the border of the gland, they are not 
always delineated, resulting in this marginal stability. Additionally, we expect that 
the timing of, or the absence of intravenous contrast admitted during acquisition 
will have a big impact on this IBM. This IBM seems, therefore, suboptimal and 
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further research is necessary to investigate whether there is an underlying 
mechanism. For example, higher perfusion could relate to higher oxidation of 
the submandibular gland, thus increasing the radio-sensitivity. Furthermore, the 
significant improvement of the prediction of STIC12m by the maximum CT intensity 
of the submandibular gland should be tested in an external dataset.

Robustness of modeling
The risk of finding false positive associations and overfitting the model were 
partly addressed by pre-selecting variables based on their inter-correlation. 
Additionally, we performed alternative multivariable analyses, including logistic 
regression with forward and backward variable selection based on log-likelihood 
and the Akaike information criterion (AIC), respectively. The dominating factors 
selected by these analyses were the same as selected by the lasso regularisation. 
The same was true if forward selection was performed without pre-selection. 
Therefore, the selected variables were independent of the method of analysis. 
This suggests the stability of the associations in this dataset are relatively 
high. Furthermore, coefficients and performance measures of all models were 
corrected for optimism by means of internal validation. However, the model 
selection procedure was not included in the internal validation, as this inhibited 
model comparison, and so further external validation is warranted.

Clinical impact
In this study was shown that the NTCP models based on dose and baseline 
complaints were significantly improved with IBMs. Nevertheless, the clinical 
impact of the model improvement in terms of classification and performance 
remains limited at this point in time. Yet we consider the current study important, 
as it is an initial step to improve understanding of the patient-specific response 
of healthy tissue to RT, hereby leading to better identification of HNC patients at 
risk of developing side effects.

Conclusion

Prediction of xerostomia and sticky saliva 12 months after RT was significantly 
improved by including CT characteristics of the parotid and submandibular 
glands for our patient group. The CT image biomarker that positively associated 
with higher probability of developing xerostomia was “short run emphasis”, 
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which might be a measure of non-functional fatty parotid tissue. The maximum 
CT intensity in the submandibular glands was associated with sticky saliva, and 
probably related with vascularization. These image biomarkers are a first step 
to identifying patient characteristics that explain the patient-specific response 
of healthy tissue to dose.
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Abstract

Background and purpose
Current prediction of radiation-induced xerostomia 12 months after radiotherapy 
(Xer12m) is based on mean parotid gland dose and baseline xerostomia (Xerbaseline) 
scores. The hypothesis of this study was that prediction of Xer12m is improved with 
patient-specific characteristics extracted from 18F-FDG PET images, quantified in 
PET image biomarkers (PET-IBMs).

Materials and Methods
Intensity and textural PET-IBMs of the parotid gland were collected from pre-
treatment 18F-FDG PET images of 161 head and neck cancer patients. Patient-
rated toxicity was prospectively collected. Multivariable logistic regression 
models resulting from step-wise forward selection and Lasso regularisation were 
internally validated by bootstrapping. The reference model with parotid gland 
dose and Xerbaseline was compared with the resulting PET-IBM models.

Results
High values of the intensity PET-IBM (90th percentile (P90)) and textural PET-IBM 
(Long Run High Gray-level Emphasis 3 (LRHG3E)) were significantly associated 
with lower risk of Xer12m. Both PET-IBMs significantly added in the prediction of 
Xer12m to the reference model. The AUC increased from 0.73 (0.65-0.81) (reference 
model) to 0.77 (0.70-0.84) (P90) and 0.77 (0.69-0.84) (LRHG3E).

Conclusion
Prediction of Xer12m was significantly improved with pre-treatment PET-IBMs, 
indicating that high metabolic parotid gland activity is associated with lower 
risk of developing late xerostomia. This study highlights the potential of 
incorporating patient-specific PET-derived functional characteristics into NTCP 
model development.
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Introduction

18F-FDG PET imaging provides functional information about the metabolic activity 
of tissue. This makes 18F-FDG PET a powerful and widely used diagnostic modality 
in oncology. In head and neck oncology, 18F-FDG PET can complement other 
image modalities in tumour staging and delineation for radiotherapy [1,2]. The 
common clinical use of 18F-FDG PET allows for the possibility to extract large 
amounts of patient-specific functional information that could contribute to 
prognosis for head and neck cancer (HNC) patients. Several studies have shown 
that PET image characteristics of the tumour can contribute to predicting 
overall, disease-free or event-free survival [3–6]. However, patient-specific image 
characteristics for predicting normal tissue radiation toxicities are less explored, 
while these are also crucial in supporting treatment decisions. Additionally, new 
radiation techniques (e.g. proton therapy [7] and Magnetic Resonance Imaging 
(MRI) guided radiation [8]) may allow for better sparing of normal tissue. These 
new techniques demand improved prediction models, to select patients most at 
risk of developing toxicities[9].
Radiation-induced xerostomia is a major and frequent side effect for HNC patients, 
and has a considerable impact on these patients’ quality of life [10]. Conventional 
Normal Tissue Complication Probability (NTCP) models that predict patient-rated 
xerostomia are based on dose-volume parameters and baseline complaints 
[11,12]. However, there is still a significant, unexplained variance in predicting 
xerostomia with these models. Therefore, the demand persists to improve the 
identification of patients at risk. Previous work showed that patient-specific CT 
characteristics of the parotid glands could significantly improve the prediction 
of patient-rated xerostomia, however, model performance improvement was 
marginal [13]. The hypothesis was that the predictive CT characteristic is related 
to the ratio of non-function to functional parotid tissue. It can be expected that 
this ratio would be better represented by image characteristics from functional 
imaging (i.e. PET or MR images).
In this study, the relationship was tested between metabolic activity of the 
parotid gland and late xerostomia. Consequently, the patient-specific response 
to radiation in developing this toxicity was investigated. The purpose was to 
determine whether functional information from 18F-FDG PET images, which is 
quantified in PET-image biomarkers (PET-IBMs), was associated with patient-rated 
moderate-to-severe xerostomia 12 months after radiotherapy (Xer12m). Since 
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current NTCP prediction models are based on parotid gland dose and baseline 
complaints, the study subsequently addressed whether PET-IBMs could improve 
on the current prediction of Xer12m

Materials and methods

Patient demographics and treatment
 18F-FDG PET/CT scans were acquired of 161 HNC patients in treatment position 
before the start of radiotherapy. The patients were treated with definitive 
radiotherapy either with or without concurrent chemotherapy or cetuximab, 
between November 2010 and August 2015. Patients without follow-up data 12 
months after radiotherapy were excluded from this study. Patients were also 
excluded if they underwent surgery in the head and neck area before or within 
one year after treatment.
A detailed description of the radiotherapy protocols is given in previous 
studies [13,14]. In summary, all patients were treated with IMRT or VMAT using 
a simultaneous integrated boost (SIB) technique. The parotid glands and the 
swallowing structures were spared as much as possible without compromising 
the dose to the target volumes [14,15]. Patients received a total dose of 70 Gy 
(2 Gy per fraction, 5 or 6 times a week) to the primary tumour and, if present, 
pathological lymph nodes. A radiation dose of 54.25 Gy (1.55 Gy per fraction, 5 
or 6 times a week) was delivered to the elective lymph node levels.

Endpoints
The primary endpoint was patient-rated moderate-to-severe xerostomia 12 
months after radiotherapy (Xer12m), which corresponds to the 2 highest scores 
of the 4-point Likert scale of the EORTC QLQ-H&N35 questionnaire. This endpoint 
was prospectively assessed as part of a Standard Follow-up Program (SFP) for 
Head and Neck Cancer Patients (NCT02435576), as described in previous studies 
[11,12,16].

Dose and clinical parameters
For treatment planning, parotid glands were delineated on the planning 
(PET/)CT scans. The mean dose to both the contra- and ipsilateral parotid and 
submandibular glands were extracted from the dose-volume information [11,17]. 
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In addition, baseline patient-rated xerostomia (Xerbaseline) was also considered 
(none vs. any).
Patient characteristics such as age, sex, WHO-performance, tumour stage and 
body mass index did not significantly add to the parotid gland dose and Xerbaseline 
in predicting Xer12m in previous studies [11,13,18]. This was again observed in the 
current cohort, therefore these variables were not further reported in this study.

18F-FDG PET acquisition
Approximately 2 weeks before the start of radiotherapy, 18F-FDG PET/CT images 
(Siemens Biograph 64-slice PET/CT scanner, Siemens Medical Systems, Knoxville, 
TN, USA) were acquired in with the patient positioned for radiotherapy. PET/CT 
system performance were initially harmonized conform the Netherlands protocol 
for FDG PET imaging [19] and later by EARL accreditation [20].
 Patients were instructed not to eat or drink 6 hours before scanning, but were 
encouraged to drink water to ensure adequate hydration. A body weight-based 
intravenous injection dose of 3 MBq/kg was administered 60 minutes prior to the 
18F-FDG PET acquisition. 18F-FDG PET images were acquired in the caudal–cranial 
direction with an acquisition time of ~3 min per bed position.

Candidate PET-image biomarkers
Intensity PET-IBMs were extracted, representing first order standardized uptake 
value (SUV) characteristics of the delineated contra-lateral parotid glands. 
Examples are mean, minimum, maximum, standard deviation and root mean 
square of the SUVs. For the complete list of the 24 intensity PET-IBMs, see 
supplementary data 1. Figure 1 shows a schematic representation of PET- IBMs 
extraction process.
Furthermore, more complex, textural features were extracted describing the 
intensity heterogeneity. These textural PET-IBMs were extracted from the grey 
level co-occurrence matrix (GLCM) [21], grey level run-length matrix (GLRLM) 
[22,23], grey level size-zone matrix (GLSZM) [24] and neighbourhood grey tone 
difference matrix (NGTDM) [25]. GLCM describes the grey level transitions, 
GLRLM and GLSZM describe the directional and volumetric grey level repetitions, 
respectively. NGTDM describes the relationship of sum and averages of grey level 
differences of direct adjacent voxels.
For this study, the average of PET-IBMs from GLCM and GLRLM in 13 independent 
directions were used. The range of SUVs were binned with a fixed bin size of 0.25. 
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Discretization of SUV is necessary to reduce the number of possible intensity 
values, and so reduce noise when calculating textural features [26]. All 66 textural 
PET-IBMs (25 GLCM, 18 GLRLM, 18 GLSZM and 5 NGTDM) were normalized by 
subtracting the average from the PET-IBMs values and then dividing by the 
standard deviation. For the complete list refer to supplementary data 2. All PET-
IBMs were extracted in MATLAB (version R2014a).

Univariable analysis
Univariable logistic regression analysis was performed to evaluate the basic 
associations of PET-IBMs with late xerostomia. P-values < 0.05 were considered 
statistically significant. Coefficients (β) were evaluated to understand the effect 
that is described by the PET-IBMs in relation to Xer12m. The univariable analysis 
was not used for the variable selection.

Multivariable analysis
Reference model
A reference prediction model was evaluated for the current patient cohort. 
This model was based on the mean dose to the contralateral parotid gland and 
Xerbaseline. These were the predictors that were identified by Beetz et al.[11].

Intensity and textural PET-IBMs
First, a basic PET-IBM model was created by adding the ‘mean SUV’ of the parotid 
gland as an extra variable to the reference model. Since this variable is the 
simplest of PET-IBMs, it is the easiest to interpret.
Both step-wise forward selection and Lasso regularisation were performed 
for multivariable logistic analysis of the PET-IBMs, together with parotid dose 
and Xerbaseline. Step-wise forward selection was based on the largest significant 
log-likelihood differences [27]. Lasso regularisation uses the penalisation term 
lambda, which excludes variables by reducing their coefficients to zero. The 
optimal lambda was determined by 100-times repeated 10-fold cross validation 
[28].
To understand the contribution of the different types of PET-IBMs to the 
reference model, the model analysis of all SUV intensity and textural PET-IBMs 
were conducted separately. Subsequently, the resulting SUV intensity and 
textural models were compared to the reference and the ‘mean SUV’ model. The 
performance of the constructed models was quantified with the Area Under the 
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ROC curve (AUC), the Nagelkerke R2 and the discrimination slope. Furthermore, 
calibration was evaluated with the Hosmer–Lemeshow test. Internal validation 
was performed with bootstrapping to correct for optimism of the model [29,30]. 
Analyses were performed with the R-packages ‘Lasso and Elastic-Net Regularized 
Generalized Linear Models’ (version 2.0-2)[28] and ‘Regression Modeling 
Strategies’ (version 4.3-1)[31].

Inter-variable relationships
The relationship between variables of predictive PET-IBMs (and Xerbaseline) was 
investigated with Pearson correlation (continuous variables) and univariable 
logistic regression analysis (binary variables). Furthermore, in a previous study, 
the short run emphasis (SRE), which was extracted from CT information of the 
parotid gland, was significantly associated with Xer12m [13]. In the current study, 
this SRE was also extracted from the CT-scans of patients without metal artefacts 
in the images. Subsequently the correlation of the CT-based SRE values and the 
predictive PET-IBMs was tested. Additionally, the improvement of the PET-IBM 
or reference models by SRE was also tested in this patient subset.

Results

Patients
Patient characteristics are depicted in Table 1. Briefly, nearly all patients were 
bi-laterally irradiated, most patients had oropharyngeal carcinomas and had no 
baseline xerostomia (none vs. any: 61% vs. 39%). Sixty of the 161 (37%) patients 
developed moderate-to-severe xerostomia (Xer12m).

Univariable analysis
In the univariable analysis, the mean dose to the parotid gland and Xerbaseline were 
both associated with Xer12m. Univariable analysis showed that 11 of 24 intensity 
PET-IBMs and 35 of 66 textural PET-IBMs were significantly associated with Xer12m 
(supplementary data 3). In general, a negative coefficient was observed for PET-
IBMs that have a positive relationship with SUVs in the parotid gland, indicating 
that low parotid gland SUVs were associated with a high Xer12m risk.
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Table 1 Patient characteristics

Characteristics N=161 %

Sex

Female 50 31

Male 111 69

Age

18 - 65 years 95 59

> 65 years 66 41

Tumour site

Oropharynx 78 48

Nasopharynx 7 4

Hypopharynx 18 11

Larynx 51 32

Oral cavity 7 4

Tumour classification

T1 14 9

T2 51 32

T3 52 32

T4 44 27

Node classification

N0 71 44

N1 14 9

N2abc 74 46

N3 2 1

Systemic treatment

yes 71 44

no 90 56

Treatment technique

IMRT 145 90

VMAT 16 10

Bi-lateral

yes 139 86

no 22 14

Baseline Xerostomia

No 98 61

A bit 46 29

Quite a bit 13 8

A lot 4 2

Abbreviations: IMRT: Intensity-Modulated Radiation Therapy; VMAT: Volumetric Arc Therapy
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Multivariable analysis
Reference model
The reference model with the variables contra-lateral parotid gland dose 
and Xerbaseline (none vs. any) was fit to the dataset (Table 2). The performance 
measures are depicted in Table 3 (AUC =0.73 (0.65-0.81), R2=0.22).

Intensity PET-IBMs
First, the basic PET-IBM model (‘mean SUV’, parotid dose, Xerbaseline) showed 
that the addition of the ‘mean SUV’ significantly improved the reference model 
(Likelihood ratio test; p=0.005). Consistent with the univariable analysis, the 
negative regression coefficient of the mean SUV indicates that high mean SUVs 
were associated with a lower Xer12m risk (Table 2). The performance of this basic 
PET-IBM model (AUC =0.77 (0.69-0.84), R2=0.27), was better than that of the 
reference model (Table 3).
Resulting from both the Lasso regularisation and forward selection, the 90th 
percentile of SUVs (P90) was the most predictive of all intensity PET-IBMs 
(Figure 2), leading to a significant (Likelihood-ratio test; p=0.002), substantial 
improvement of the model performance measures (Table 2 and 3; AUC=0.77 
(0.70-0.84), R2=0.28) compared to the reference model (AUC =0.73 (0.64-0.83), 
R2=0.23). High correlations were observed between P90 and the IBMs that could 
also significantly improve the reference model when individually added to the 
reference model (ρ = 0.82 ± 0.15). See supplementary 4 for the correlations of 
PET-IBMs.
In Figure 3 the NTCP curves for different P90 values are depicted of the following 
P90 model:

where

Textural PET-IBMs
The most predictive textural PET-IBM was the Long Run High Gray-level Emphasis 
3 (LRHG3E), which is derived from the GLRLM. The value of this PET-IMB increases 
when long repetitions of high SUVs are present in the parotid gland with extra 
(power of 3) emphasis on high SUVs (see supplementary data 2 for formula). 
This variable was selected by both the Lasso regularisation and the step-wise 
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forward selection. This variable significantly improved the reference model in 
predicting Xer12m (Likelihood-ratio test; p=0.001). The negative coefficient of 
LRHG3E indicated once more that high SUVs are associated with low Xer12m risk 
(Table 2). The addition of LRHG3E improved the reference model performance 
(0.77 (0.69-0.84), R2=0.29; Table 3). The NTCP curves for different LRHG3E are 
depicted in Figure 3 for the following model:

where

Table 2 Estimated coefficients (uncorrected and corrected for optimism) of reference model 
and PET-IBMs model

β OR (95% CI) p-value

Uncorrected Corrected

intercept -2.633 -2.579

Xerbaseline 1.559 1.526 4.75 (2.32-9.75) <0.001

PG dose 0.056 0.054 1.06 (1.02-1.10) 0.002

intercept 0.906 0.828

Xerbaseline 1.473 1.384 4.36 (2.08-9.14) <0.001

PG dose 0.051 0.047 1.05 (1.01-1.09) 0.007

Mean SUV -1.776 -1.669 0.17 (0.05-0.64) 0.009

Intercept 1.070 0.984

Xerbaseline 1.487 1.402 4.43 (2.10-9.31) <0.001

PG dose 0.050 0.048 1.05 (1.01-1.09) 0.007

P90 -1.620 -1.527 0.20 (0.06-0.63) 0.006

intercept -2.752 -2.598

Xerbaseline 1.577 1.479 4.84 (2.29-10.22) <0.001

PG dose 0.055 0.051 1.05 (1.02-1.10) 0.004

LRHG3E -0.938 -0.880 0.39 (0.19-0.82) 0.013

Abbreviations: Xerbaseline: xerostomia at baseline ; PG dose: contralateral mean dose to parotid 
gland; P90: 90th percentile of intensities; LRHG3E: Long Run High Gray-level Emphasis 3; β: 
regression coefficents; OR: odds ratio; CI: confidence interval

Inter-variable relationships
The predictive PET-IBMs P90 (intensity) and LRHG3E (textural) were closely 
correlated (p<0.001; r=0.83). Moreover, they did not add independent information 
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to each other in predicting Xer12m (Likelihood ratio test; p>0.21). Univariable 
logistic analysis showed no significant association between Xerbaseline and P90 
(p=0.079) or LRHG3E (p=0.465).
In the current study cohort, 100 patients did not have metal artefacts in the CT 
images and could therefore be used for the analysis of the CT-based IBM, the 
short run emphasis (SRE)[13]. This CT-based SRE was significantly correlated to 
the predictive PET-IBMs P90 (p = 0.008; r = -0.26) and LRHG3E (p = 0.026; r = -0.22). 
The SRE neither significantly improved the reference model (likelihood ratio test, 
p=0.055), nor did it add to the PET-IBM models with P90 (likelihood ratio test, 
p=0.140) and LRHG3E (likelihood ratio test, p=0.096) in this cohort subset.

Figure 2 Example of patients with A) low and B) high values of mean SUV, P90 and LRHG3E, 
which were associated with A) higher and B) lower risk of developing Xer12m. Scaling in both 
images: 0.5 to 3.5 SUV

Discussion

This study is novel to show that the high metabolic activity of the parotid gland 
was associated with a lower risk of developing late xerostomia (Xer12m). Moreover, 
the prediction of late xerostomia was significantly and substantially improved 
with addition of patient-specific PET-IBMs to the reference model based on 
dose and Xerbaseline. These findings could improve understanding of normal 
tissue response following radiotherapy, since the variation in patient-specific 
PET characteristics can partly explain the unexplained variance in predicting 



51

Pre-treatment IBMs predict late salivary gland dysfunction - Part I

2

1

4

5

3

Ta
bl

e 
3 

Pe
rf

or
m

an
ce

 o
f N

TC
P 

m
od

el
s 

w
ith

 a
nd

 w
ith

ou
t P

ET
-IB

M
s

Re
fe

re
nc

e 
m

od
el

PE
T-

IB
M

s 
m

od
el

s

Xe
rb

as
el

in
e

Xe
rb

as
el

in
e

Xe
rb

as
el

in
e

Xe
rb

as
el

in
e

PG
 d

os
e

PG
 d

os
e

PG
 d

os
e

PG
 d

os
e

-
m

ea
n 

SU
V

P9
0

LR
H

G
3E

O
ve

ra
ll

-2
 lo

g-
lik

el
ih

oo
d

18
4.

51
17

6.
57

17
5.

30
17

4.
31

N
ag

el
ke

rk
e 

R
2

0.
22

0.
27

0.
28

0.
29

D
is

cr
im

in
at

io
n

A
re

a 
U

nd
er

 th
e 

Cu
rv

e 
(A

U
C

)
0.

73
 (0

.6
5-

0.
81

)
0.

77
 (0

.6
9-

0.
84

)
0.

77
 (0

.7
0-

0.
84

)
0.

77
 (0

.6
9-

0.
84

)

D
is

cr
im

in
at

io
n 

sl
op

e
0.

17
0.

20
0.

21
0.

21

Ca
lib

ra
tio

n
H

L 
te

st
 X

2  
(p

-v
al

ue
)

11
.2

2 
(0

.1
9)

4.
24

 (0
.8

3)
6.

72
 (0

.5
7)

6.
30

 (0
.6

1)

Ca
lib

ra
tio

n 
sl

op
e 

(in
te

rc
ep

t)
1.

00
 (0

.0
0)

0.
95

 (0
.0

2)
0.

95
 (0

.0
2)

0.
99

 (0
.0

0)

In
te

rn
al

 v
al

id
at

io
n

AU
C 

co
rr

ec
te

d
0.

72
0.

75
0.

76
0.

75

N
ag

el
ke

rk
e 

R
2 co

rr
ec

te
d

0.
20

0.
24

0.
25

0.
26

H
L:

 H
os

m
er

–L
em

es
ho

w
; c

or
re

ct
ed

: c
or

re
ct

ed
 fo

r o
pt

im
is

m
 w

ith
 b

oo
ts

tr
ap

pi
ng

; I
B

M
: I

m
ag

e 
B

io
m

ar
ke

r;
 X

er
ba

se
lin

e:
 x

er
os

to
m

ia
 a

t b
as

el
in

e;
 P

G
 d

os
e:

 
co

nt
ra

la
te

ra
l m

ea
n 

do
se

 to
 p

ar
ot

id
 g

la
nd

; P
90

: 9
0t

h 
pe

rc
en

til
e 

of
 in

te
ns

iti
es

; L
RH

G
3E

: L
on

g 
Ru

n 
H

ig
h 

G
ra

y-
le

ve
l E

m
ph

as
is

 3



52

Chapter 3 - 18F-FDG PET-IBMs improve prediction of late radiation-induced xerostomia

xerostomia with dose parameters. Moreover, it could improve identification 
of patients that are at risk of late radiation-induced side effects, which could 
potentially benefit most from new therapy technology such as proton [7] and 
MRI-guided irradiation [8]. In other words, better prediction of toxicities could 
improve the treatment decision support [9,32]. However, external validation 
of the PET-IBM models in an independent dataset is necessary before clinical 
implementation [33].

Figure 3 Normal Tissue Complication Probability (NTCP) values for late xerostomia (Xer12m) of 
models based on mean SUV(left), P90 (middle) and LRHG3E (right). Curves are given for the 
mean PET-IBM values (P90: µ=2.23; LRHG3E: µ=201.24) and for 1 and 2 standard deviation 
from these mean values (mean SUV: µ=1.93, σ=0.33; P90: µ= 2.23, σ=0.41; LRHG3E: µ= 201.24, 
σ=177.05). For these curves no baseline xerostomia was assumed.

The PET-IBM that indicates the minimum value of the 90% highest SUVs (P90) 
was the most predictive of all intensity PET-IBMs. The mean SUV also performed 
well, but P90 appeared more relevant in this dataset. A high P90 was associated 
with a lower risk of developing late xerostomia. Similar effect and predictive 
improvement was observed from LRHG3E (Long Run High Gray-level Emphasis 
3) of the textural PET-IBMs, which significantly correlated with P90 (ρ=0.83). 
This PET-IBM indicates high SUVs that are spatially adjacent to each other. Both 
PET-IBMs were negatively associated with Xer12m, suggesting that patients 
with low metabolic activity in the parotid glands were at risk of developing late 
xerostomia. Although both P90 and LRHG3E perform similarly, currently the P90 
is simpler to calculate. However, LRHG3E also contains information about the 
spatial connectivity of the high SUV voxels, i.e. large repetitions of voxels with 
high SUV increase the LRHG3E values. External validation is needed to confirm 
the predictive power of LRHG3E over P90. Additionally, an alternative variable 
selection approach, Lasso regularization, resulted in very comparable final 
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models. Since they were independent of the method of analysis, it suggests that 
the associations in this dataset were relatively stable.
Predictive PET-IBMs were not significantly associated with Xerbaseline. This 
suggests that PET-IBMs contain unique and additional information to baseline 
xerostomia complaints, since the addition of PET-IBMs to Xerbaseline (and PG dose) 
improved the prediction of Xer12m significantly.
This study suggests that high metabolic parotid glands have more viable cells 
(parenchyma and/or stem cells) with more repair capability and/or are less 
radiosensitive. Although possibly driven by multiple underlying biological 
processes, there is some similarity in the tumour reaction to radiation. For 
tumour tissue it is known that high metabolic tumours are more likely to recur 
[34], particularly in their high metabolic regions [35]. A possible explanation 
is that it arises from a combination of higher cell density, proliferation rate of 
metabolically active tissue and DNA repair capacity [36].
Other studies have shown that parotid gland SUVs decrease post-radiotherapy, 
and in addition that this change was associated with parotid gland dose [37,38]. 
Cannon et al. [38] showed that mean ‘SUV-weighted parotid gland dose (voxel-
wise)’ was significantly related to fractional-SUV (post-SUV/pre-SUV). In an 
additional small cohort (n=8), they showed that fractional-SUV was significantly 
associated with fractional salivary flow and physician-rated xerostomia. Although 
this indirectly suggests that ‘SUV-weighted parotid gland dose’ is related to 
xerostomia measures, the direct and separate associations of parotid gland 
dose and pre-treatment SUV with xerostomia measures or fractional SUV were 
unfortunately not described.
In previous work, a positive association was shown between higher risk of 
developing late xerostomia and CT-based SRE (Short Run Emphasis), which might 
be related to the ratio between non-functional fatty tissue and functional parotid 
parenchyma tissue. In this study, we showed that this CT-IBM was significantly 
correlated to P90 and LRGH3E in patients without metal artefacts (n=100) and 
did not significantly add to the PET-IBM models. Additionally, the performance 
of predicting Xer12m was substantially higher with PET-based IBM models than 
with than CT-based IBMs. This suggests that 18F-FDG PET is better to quantify the 
ratio between fatty non-functional and functional parotid parenchyma tissue. 
This is logical since 18F-FDG PET is a functional image modality. Furthermore, 
the SRE did not show a significant improvement in the reference model for the 
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cohort subset, which might be caused by the small additive effect of SRE and low 
number of patients on which this IBM could be tested.
A well-defined protocol was used to ensure optimal standardisation of SUV in the 
18F-FDG PET images by correcting for bodyweight, injection dose, tracer uptake 
period, and glucose plasma levels by letting the patients fast [19,20]. Although 
SUVs may also be affected by fasting blood glucose level, muscle activity, liver 
and kidney function, the images were not corrected for these fluctuations. 
Furthermore, patients with metal artefacts in CT images were included, where the 
attenuation correction can influence SUVs, but this bias will primarily be located 
around the metal implant [20]. Additional analyses showed that the PET-IBMs 
performance was still good in the sub cohort of patients without metal artefacts. 
Additionally, future improvements of the consistency and spatial resolution of 
PET imaging should also improve the performance of the PET-IBMs in predicting 
Xer12m.
In this study, patient-rated outcomes (EORTC QLQ-H&N35 questionnaire) 
were used as a measure for moderate-to-severe xerostomia, because of 
their relationship with the quality of life of HNC patients [10]. However, some 
unexplained variability of the models may be caused by the assessment of 
xerostomia, as the questionnaires can be interpreted differently by the individual 
patients [39]. Our current study could be strengthened by the addition of 
investigating the associations between PET-IBMs and objective xerostomia 
measures. Parotid flow rates are often used, but several studies have shown no 
or modest correlation between patient reported xerostomia and parotid flow 
rates [40] and have a low reproducibility [41]. Another example is scintigraphy 
of parotid gland ejection fraction over time. Although this technique seems 
promising as a quantitative measure for xerostomia, it requires additional 
scans with complex procedures with radioactive tracers [41]. This highlights 
the importance for future research on a non-invasive, accessible and reliable 
quantitative measure of xerostomia. Nevertheless, we believe that patient-rated 
xerostomia remains an important endpoint, due to its clinical importance and 
practical benefits.
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Conclusion

The pre-treatment PET-IBMs indicated that a large quantity of high SUVs in 
the parotid gland was significantly associated with a lower risk of developing 
xerostomia 12 months after radiotherapy. The addition of the predictive 
intensity PET-IBM (90th percentile of SUV) to a model with parotid gland dose 
and baseline xerostomia improved the prediction performance of the reference 
model substantially (0.73 (0.65-0.81) to 0.77 (0.70-0.84)). This study highlights 
the importance of incorporating patient-specific functional characteristics into 
NTCP model development and can, thereby, contribute to the understanding of 
the patient-specific response of healthy tissue to radiation dose.
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Abstract

Background and purpose
This study investigated whether Magnetic Resonance image biomarkers (MR-
IBMs) were associated with xerostomia 12 months after radiotherapy (Xer12m) and 
to test the hypothesis that the ratio of fat-to-functional parotid tissue is related 
to Xer12m. Additionally, improvement of the reference Xer12m model based on 
parotid gland dose and baseline xerostomia, with MR-IBMs was explored.

Materials and Methods
Parotid gland MR-IBMs of 68 head and neck cancer patients were extracted from 
pre-treatment T1-weighted MR images, which were normalised to fat tissue, 
quantifying 21 intensity and 43 texture image characteristics. The performance of 
the resulting multivariable logistic regression models after bootstrapped forward 
selection was compared with that of the logistic regression reference model. 
Validity was tested in a small external cohort of 25 head and neck cancer patients.

Results
High intensity MR-IBM P90 (the 90th intensity percentile) values were significantly 
associated with a higher risk of Xer12m. High P90 values were related to high 
fat concentration in the parotid glands. The MR-IBM P90 significantly improved 
model performance in predicting Xer12m (likelihood-ratio-test; p=0.002), with an 
increase in internally validated AUC from 0.78 (reference model) to 0.83 (P90). 
The MR-IBM P90 model also outperformed the reference model (AUC=0.65) on 
the external validation cohort (AUC=0.83).

Conclusion
Pre-treatment MR-IBMs were associated to radiation-induced xerostomia, which 
supported the hypothesis that the amount of predisposed fat within the parotid 
glands is associated with Xer12m. In addition, xerostomia prediction was improved 
with MR-IBMs compared to the reference model.
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Introduction

Xerostomia is one of the most frequently reported side-effects following 
radiotherapy for head and neck cancer, and has a major impact on quality of 
life [1,2]. Normal Tissue Complication Probability (NTCP) models have been 
developed to predict radiation-induced xerostomia and have demonstrated a 
clear relationship with parotid gland dose and baseline patient-rated xerostomia 
[3,4]. Nevertheless, substantial unexplained variance in predicting xerostomia 
remains. Better understanding of the aetiology of radiation-induced xerostomia 
is necessary to advance towards more individualized treatments and better 
sparing of normal tissues by further dose optimization, by means of new radiation 
techniques, such as proton therapy [5,6] and Magnetic Resonance Imaging (MRI) 
guided radiation [7].
Tumour-based image biomarkers (IBMs), which are shape, intensity and texture 
characteristics extracted from images, can contribute to the prediction of overall, 
disease-free and progression-free survival [8–13]. However, the role of these IBMs 
in normal tissues to predict radiation-induced toxicities is less explored, while 
these are imperative in supporting treatment decisions [5].
Our previous study based on IBMs from pre-treatment CT images, demonstrated 
that high heterogeneous parotid gland tissue, was associated with a higher 
probability of developing late xerostomia [14]. Qualitative evaluation of the 
parotid glands suggested that the predictive CT-IBM indicated the ratio between 
fatty and functional parotid parenchyma tissue. In a subsequent study, we 
showed that patients with low metabolic parotid glands, quantified in pre-
treatment 18FDG-PET IBMs, were more likely to develop late xerostomia. These 
associations also suggested that the non-functional (which can be fatty tissue) 
to functional tissue ratio is an important pre-treatment characteristic to improve 
prediction of xerostomia [15].
MRI is superior in imaging soft tissue contrast and therefore more accurate 
in differentiating fat from the parenchymal gland tissue compared to CT and 
18FDG-PET [16]. Hence, investigating the pre-treatment MR-IBMs of the parotid 
glands could, therefore, potentially provide better information for predicting 
late xerostomia.
The purpose of this study was to test whether MR-IBMs extracted from T1-
weighted MRI scans were associated with the development of xerostomia 12 
months after radiotherapy (Xer12m) and to investigate whether MR-IBMs can 
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improve the xerostomia prediction model based on parotid gland dose and 
baseline xerostomia only. The predictive MR-IBMs were evaluated to test the 
hypothesis that the fat-to-functional parenchymal parotid tissue ratio is related 
to Xer12m. The findings were externally validated in an independent cohort.

Materials and methods

Patient demographics and treatment
The training and test cohort included head and neck cancer patients that were 
treated with definitive radiotherapy with or without concurrent chemotherapy 
or cetuximab between September 2012 and December 2014 at the University 
Medical Center Groningen (UMCG), and between October 2010 and March 2016 
at Memorial Sloan Kettering Cancer Center (MSKCC), respectively. All patients 
were treated with Intensity-Modulated Radiation Therapy (IMRT) or Volumetric 
Arc Therapy (VMAT) using a simultaneous integrated boost (SIB) technique. 
The parotid glands were spared as much as possible. Patients received a total 
therapeutic dose of 70 Gy over 6-7 weeks. Most patients received bilateral neck 
radiation with a prophylactic dose of 54.25 Gy. Details about the radiotherapy 
regimens used are described in detail in previous studies [14,17].
Patients were excluded if they had salivary gland tumours or underwent 
surgery or radiotherapy in the head and neck area prior to or within one year 
after treatment. Moreover, patients without late follow-up data were excluded. 
Furthermore, MRI scan quality was visually evaluated, and if scans had 
considerable noise, limiting both visualization of the parotid glands and reliable 
estimation of the local image intensity, patients were excluded. The final number 
of patients were 68 and 25 in the UMCG and MSKCC cohorts, respectively.

Endpoints
The primary endpoint was patient-rated moderate-to-severe late xerostomia 
(Xer12m). In the UMCG cohort, this corresponds to the 2 highest scores of the 
4-point Likert scale of the EORTC QLQ-H&N35 questionnaire and was consistently 
scored 12 months after treatment, which is part of a Standard Follow-up Program 
(SFP) for Head and Neck Cancer Patients (NCT02435576), as described in previous 
studies [4,18].
In the MSKCC cohort, xerostomia was scored with multiple questions with 
a 0-10 scale [19,20] (see supplemental materials 1). Xerostomia scores were 
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collected between 6 and 17 months after treatment (mean±SD: 11.0±2.5 months). 
Moderate-to-severe xerostomia was considered if any of the questions was 
scored 6 or higher.

MRI acquisition and standardization
In the UMCG, MR images were acquired in treatment position on a single scanner 
(MAGNETOM Aera 1.5T scanner, Siemens Medical Systems, Knoxville, TN, USA) 
approximately 2 weeks before the start of radiotherapy (Spine 32, flexible 4 and 
18 channel coils) for delineation purposes. T1-weighted Turbo Spin Echo (TSE) 
images (TE: 22ms; TR: 457-606ms) were acquired for all patients with a resolution 
of 0.36x0.36x4.00 mm without the use of intravenous contrast agents or fat-
suppression.
In MSKCC, pre-treatment MR-images were acquired on MRI scanners of different 
manufacturers (GE, Phillips, Siemens) and scanners with field strength of 1.5T 
(13 patients) and 3T (12 patients). The resolution of the non-contrast enhanced 
T1-weighted TSE images (TE: 8-20ms; TR: 400-697ms) ranged from 0.35x0.35 to 
1.01 x1.01 mm in-plane and the slice thickness from 3.0 to 5.0 mm.
The MRI intensity values of similar tissue types vary between scans. Therefore, 
only relative intensities within one scan can be compared. To make a comparison 
of the relative intensities between patients possible, scans had to be standardized. 
In this study, fat T1 characteristics were assumed consistent between patients, 
and should, consequently, have similar MR-intensity values. Subcutaneous fat 
was delineated in both the right and left cheek area in a minimum of 4 slices at the 
level of the parotid glands of all patients (Figure 1-I). The fat area was delineated 
laterally of the parotid gland, the masseter muscle and lip muscles, where the 
area is delineated as large as possible while excluding non-fat related structures. 
Subsequently, the MR images were multiplied by a fixed value, which was 
arbitrarily chosen to 350, and divided by the average subcutaneous fat intensity 
value. This approach is a simplified tissue-based MRI Intensity standardisation 
[21]; to our knowledge, no MRI standardisation approaches are known for the 
head and neck area or radiomics purposes.

Candidate MRI-IBMs, dose and clinical parameters
Parotid glands were delineated for clinical planning purposes on the planning 
CT, according to guidelines of Brouwer et al. [22]. Dosimetric parameters were 
extracted from these volumes. MR images were rigidly matched to the CT 
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scans, and the CT contours were transferred to the MR images. The MRI parotid 
delineations were manually corrected where necessary in both datasets.
MRI characteristics of the delineated parotid glands were quantified in intensity 
and texture MR-image biomarkers (MR-IBMs). Intensity MR-IBMs represent first-
order MR-intensity characteristics, such as the mean, minimum, maximum, 
standard deviation and root mean square of the MR-intensity values.
Furthermore, the MR-intensity heterogeneity was quantified by the textural MR-
IBMs. These were extracted from the grey level co-occurrence matrix (GLCM) [23] 
and grey level run-length matrix (GLRLM) [24,25]. Where, GLCM describes the 
grey level transitions, GLRLM describes the directional grey level repetitions. The 
texture IBMs were evaluated in 2D only, which means that the average of MR-IBM 
values from GLCM and GLRLM of 4 independent directions in-plain were used. 
Intensity values were discretized from 0 to 450 with a bin size of 25 standardised 
MR-units [26].
For the complete list of the 21 intensity and 43 textural MR-IBMs (25 GLCM and 
18 GLRLM) see supplementary data 2. The extraction process (Figure 1) was 
performed in MATLAB 2014a and all definitions and formulas were according to 
the ‘Image biomarker standardisation initiative’ [27].

Multivariable analysis and model performance
Reference model
A multivariable logistic regression reference model based on the mean dose 
to the both parotid glands and patient-reported xerostomia at the start of 
radiotherapy (Xerbaseline) was fitted in the training cohort [3,4]. Xerbaseline was 
dichotomized as none vs. any in the UMCG dataset and larger than 1 in the 
MSKCC dataset.

Intensity and textural MR-IBMs selection
To understand the contribution of the different types of MR-IBMs to the reference 
model, intensity and textural based MR-IBM models were considered separately. 
Model training was performed in the UMCG cohort only. MR-IBM values were 
normalised by subtracting each value by the average IBM value and then dividing 
by standard deviation of that IBM variable.
A pre-selection based on (Pearson) correlation was performed to reduce the 
effects of overfitting and multicollinearity. If the correlation between two 
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candidate MR-IBMs was larger than 0.80, only the variable with the highest 
association with Xer12m was selected.
Multivariable logistic analysis of the pre-selected MR-IBMs was performed 
together with the mean parotid dose and Xerbaseline. Based on largest significant 
log-likelihood differences, step-wise forward selection was used to select MR-IBM 
predictors [28] (p-value <0.01).
The internal validity of the variable selection was estimated by repeating the 
entire variable selection procedure (variable normalization, pre-selection and 
forward selection) 1000 times with a bootstrap procedure with replacement (i.e. 
with repetition and same sample size). The most frequently selected variables 
were considered the final model. Model optimism was estimated by calculating 
the average difference between the performance of the models in each bootstrap 
and in the original sample, as suggested by the TRIPOD statement [29].
Trained on the UMCG cohort, the MR-IBM models were externally validated in 
the MSKCC cohort. The model performance measures were the area under the 
ROC (receiver operating characteristic) curve (AUC), the Nagelkerke’s R2 and the 
discrimination slope. Model calibration was tested with the average slope and 
intercept of the models trained on the bootstrap samples that were tested on 
the original data. The coefficients were corrected for optimism accordingly. In 
addition, the model improvement was determined with the Likelihood-ratio test, 
Integrated Discrimination Improvement (IDI) and DeLong’s test (testing if AUC 
significantly improves). The R-packages Regression Modelling Strategies (version 
4.3-1) [30] and pROC (version 1.8) were used for these purposes.

Inter-variable relationships
The relation between predictive IBMs and Xerbaseline were investigated with the 
Pearson correlation and univariable logistic analysis, respectively.

Results

Patient characteristics are depicted in Table 1. Generally, all patients received 
bilateral irradiation. The majority of the patients had oropharyngeal carcinomas 
and did not report any Xerbaseline (59% in the UMCG cohort; 56% in the MSKCC 
cohort). Moderate-to-severe xerostomia 12 months after radiotherapy (Xer12m) 
was reported by 34 (50%) of the 68 patients in the UMCG cohort and by 10 (40%) 
of 25 patients from the MSKCC cohort. In addition, the average (± standard 
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Table 1 Patient characteristics

UMCG MSKCC
Characteristics N=68 % N=25 %
Sex
Female 27 40 5 20
Male 41 60 20 80
Age
18 - 65 years 47 69 23 92
> 65 years 21 31 2 8
Tumour site
Oropharynx 42 62 17 68
Nasopharynx 5 7 7 28
Hypopharynx 6 9 - -
Larynx 10 15 - -
Oral cavity 2 3 - -
Other 3 4 1 4
Tumour classification
Tx - - 2 8
T1 11 16 8 32
T2 20 29 8 32
T3 16 24 4 16
T4 21 31 3 12
Node classification
N0 19 28 7 28
N1 6 9 4 16
N2 42 62 14 56
N3 1 1 - -
Systemic treatment
yes 42 62 22 88
no 22 32 3 12
cetuximab 4 6 - -
Treatment technique
IMRT 60 88 15 60
VMAT 8 12 10 40
Neck irradiation
Bilateral 62 91 20 80
Unilateral 1 1 4 16
No 5 7 1 4
Baseline Xerostomia
No 40 59 14 56
Any 28 41 11 44

Abbreviations: IMRT: Intensity-Modulated Radiation Therapy; VMAT: Volumetric Arc Therapy; 
UMCG: University Medical Center Groningen; MSKCC: Memorial Sloan Kettering Cancer Center
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deviation) mean PG dose was 31.8 ± 10.9Gy and 22.0 ± 8.8Gy in the UMCG and 
MSKCC cohort, respectively. Mean dose to both parotid glands performed slightly 
better than the contra-lateral gland in this cohort, probably due to the tumour 
location (oropharynx) and advance N-stage, resulting in comparable contra- and 
ipsi-lateral doses.
The reference model based on mean PG dose and Xerbaseline was fitted to the 
training dataset. The model characteristics and the performance measures 
(AUC=0.81(95%CI:0.71-0.91), R2=0.39) are depicted in Table 2 and 3. The reference 
model showed reduced performance in the external dataset (AUCexternal.val.=0.65 
(0.41-0.88), R2

external.val.=0.07).
Resulting from the bootstrapped variable selection of the intensity MR-IBMs, the 
90th intensity percentile (P90) of standardized MRI-units to fat tissue was most 
frequently selected (175 times of 1000 bootstrapped samples; see Supplementary 
data 3 for frequency plots). This MR-IBM had both a univariable (OR=1.03(1.01-
1.05); p=0.004) and multivariable (Table 2) association with Xer12m. The positive 
regression coefficient reveals that high P90 is associated with higher risk of 
developing Xer12m (Table 2). Figure 2 depicts example patients with high and low 
P90 values.

The P90 added significantly to the variables of the reference model (Likelihood-
ratio test; p=0.002; IDI; p=0.004), and resulted in a substantial and significant 
improvement of the model performance measures (DeLong’s test; p=0.04), 
increasing the reference model’s AUC of 0.81(95%CI:0.71-0.91; R2=0.39, AUCinternal.

val.=0.78) to 0.88(0.79-0.96; R2=0.51, AUCinternal.val.=0.84) for the intensity MR-IBM 
model (Table 3). The NTCP-curves for different P90 values are depicted in Figure 3.
The performance of the P90 model remained good when externally validated in 
the MSKCC dataset (AUCexternal.val.=0.83(0.66-0.99), R2

external.val.=0.36). In addition, 
univariable analysis in the external dataset showed a significant association of 
P90 with Xer12m (p=0.039).
From the texture MR-IBMs, the Grey Level Non-uniformity Normalised (GLNnor) 
was most often selected (91 of 1000 bootstrapped samples; see Supplementary 
data 3). Derived from the GLRLM, this texture MR-IBM is high when high 
concentrations of runs with the same grey level are present in the volume of 
interest (for formula see Supplementary data 2). This texture MR-IBM had both 
a negatively significant univariable (OR=0.34, 95%CI 0.20-0.74; p=0.004) and 
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multivariable (Table 2) association with Xer12m, indicating that low GLNnor values 
were related with a higher risk of xerostomia.
When adding GLNnor to the reference model, model performance significantly 
improved (Likelihood-ratio test; p=0.002; IDI; p<0.001). The performance of the 
resulting texture MR-IBM model (Table 2) was good (AUC: 0.88(0.79-0.96), R2=0.52; 
AUCinternal.val.=0.84) and significantly improved compared to the reference model 
(DeLong’s test; p=0.03). The NTCP curves are depicted in Figure 3.
On external validation, the texture MR-IBM model performed well (AUCexternal.

val.=0.83(0.67-0.99), R2
external.val.=0.31). Univariable analysis also showed a 

significant association of GLNnor with Xer12m (p=0.036).
The internal validation calibration slope and intercept showed reasonable 
goodness-of-fit for both the intensity and texture models (Table 3). In addition, 
all models were fitted to the combined dataset (MSKCC + UMCG), and showed 
similar coefficients and performance measures (Supplementary data 4).
The intensity and texture MR-IBM P90 and GLNnor were highly correlated (r=-0.85 
(95%CI: -0.90 – -0.78); p<0.001). In a multivariable analysis, the addition of GLNnor 
did not add significant information in predicting Xer12m with P90 and vice versa 
(Likelihood-ratio test; p>0.27). Furthermore, univariable logistic analysis showed 
no significant association between Xerbaseline and P90 (p=0.45) or GLNnor (p=0.29).
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Discussion

In previous studies we showed that more heterogeneous CT intensity 
characteristics and low metabolic 18FDG-PET activity of the parotid glands were 
related to a higher risk of xerostomia 12 months after radiotherapy (Xer12m) 
[14,15]. These findings led to the hypothesis that the fat-to-functional parenchymal 
parotid tissue ratio is an important pre-treatment marker to improve prediction 
of Xer12m. The results of the current study also support this hypothesis.
Other recent studies also showed that pre-treatment information extracted 
from CT images, quantifying the parotid gland texture [31] and shape [32], were 
associated with observed radiation-induced xerostomia. Additionally, several 
studies have shown associations between xerostomia and parotid gland changes 
in CT data [33,34]. The current study is novel by investigating pre-treatment MR 
intensities of the parotid glands, providing high contrast soft-tissue information, 
in relation to late patient –rated xerostomia .
MRI characteristics of the parotid glands, quantified in pre-treatment MR-IBMs, 
were significantly associated to Xer12m. Moreover, the Xer12m prediction improved 
with the addition of MR-IBMs to the reference model using mean parotid glands 
dose and baseline complaints only (from an AUC of 0.81 to 0.88). These results 
were also valid in an independent external cohort, where the performance of 
the reference model (AUCexternal.val.=0.65) was low compared to the MR-IBM 
models (AUCexternal.val.=0.83). This underlines the importance of tissue-specific 
characteristics in predicting and understanding the development of radiation-
induced toxicities, which is becoming increasingly important in the selection of 
patients for more advanced radiation techniques [6,7] and to tailor the treatment 
to the patient specifically [5].
The most frequently selected intensity MR-IBM was the P90, indicating the 
90th percentile of the MR-intensities of the parotid glands. Since the MR-
intensity values were standardized to fat, fat tissue can be assumed to have 
comparable MR-intensity between patients. Since fat has a short T1 relaxation 
time compared to parenchymal or muscle tissue, it is presented with a high 
signal intensity in T1-weighted images [35]. Hence high P90 values relate to high 
fat concentration in the parotid gland. More specifically, if at least 10% of the 
volume of the parotid gland has high intensity values, patients were at higher 
risk of developing late xerostomia. However, this volume percentage should be 
evaluated with caution, since using the simpler ‘mean standardized T1 intensity’ 
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also significantly improved the reference model (AUC=0.86; Likelihood-ratio test: 
p=0.005). Moreover, 16 of the 21 intensity MR-IBMs and 34 of the 43 texture MR-
IBMs also contributed significantly, as single variables, to the reference model in 
predicting Xer12m (supplementary data 5). This indicates that other MR-IBMs that 
are also related to parotid gland intensity and texture, can give similar results 
as P90 and GLNnor.

Figure 3 Normal Tissue Complication Probability (NTCP) models for Xer12m based on the MR-IBM 
P90 (left) and GLNnor (right) (Table 2). Plotted against the mean dose of both parotid gland, 
NTCP curves are given for the mean (in green) plus/minus one (turquois/yellow) and two (blue/
orange) standard deviations of the P90 (µ=234.89, σ=31.80) and GLNnor (µ=0.18, σ=0.03) values 
for Xerbaseline=0.

The values of the selected texture MR-IBM, GLNnor are low if grey values are 
equally distributed over all grey levels, i.e. more heterogeneity. Lower GLNnor 
values were associated with a higher risk of developing xerostomia. This was 
also demonstrated in a previous study based on CT parotid gland IBMs [14]. 
Noteworthy, the reverse of GLNnor is ‘entropy’, which was the second most 
frequently selected intensity MR-IBM (Supplementary data 3). Moreover, GLNnor 
was highly correlated with P90, which suggests that parotid glands with high (fat 
related) MR signal intensities were more heterogeneous. More research in larger 
datasets is necessary to determine whether both characteristics are relevant in 
the development of xerostomia and the generalizability of P90 and GLNnor, or 
whether they reflect similar biological information.
The theoretical and qualitative evaluation of the predictive MR-IBMs suggested 
a relation with the fat concentration and heterogeneity of the parotid gland. In 
previous work, unrelated to the oncology field, Izumi et al. [36] presented an MRI-



77

Pre-treatment IBMs predict late salivary gland dysfunction - Part I

3

2

5

6

4

based grading of the severity of parotid impairment for patients with Sjögren’s 
syndrome that was based on similar image characteristics: high T1-weigted signal 
intensity areas (e.g. fat tissue) and heterogeneity in the parotid glands. Another 
study by Izumi et al. [37] also showed a relationship between increased signal 
intensities on T1-weighted MR images and impaired parotid function for patients 
suffering from hyperlipidaemia. The findings of the current and studies suggest 
that increased fat concentration in the parotid gland, which may be caused by 
parenchymal changes due to lipid infiltration, can increase the probability of 
developing xerostomia after radiotherapy.
MRI offers the advantage of non-invasively acquired images with high soft 
tissue contrast without the use of radiation with respect to CT and PET imaging. 
However, it is a complex image modality due to the large range of possible 
acquisition settings, and requires intensity standardisation. This study and 
previous studies have both indicated that PET and MR IBMs seem to perform 
better than the CT IBMs in identifying patients that develop xerostomia [14,15]. 
Studies including IBMs from all three image modalities are necessary to determine 
which modality is most optimal in this context, or whether they can add to each 
other in predicting late xerostomia. The analyses of the current study were 
based on relatively simple T1-weigthed TSE, which is widely used and requires 
no administration of intravenous contrast agents. However, more sophisticated 
MRI sequences may better differentiate between fat and functional parotid tissue 
(i.e. combinations of non- and fat saturated images or functional information 
(e.g. DIXON, Diffusion Weighted or Dynamic contrast-enhanced imaging)). In 
addition, IBMs extracted from wavelet transformed images might improve the 
performance of the models presented in the current study.
Limitations of the present study are the small cohort sizes and the lack of one-
to-one correspondence in xerostomia assessments between the two cohorts. 
However, a careful matching was performed such that the two moderate-to-
severe assessments would be as similar as possible given the data. An additional 
limitation is the large variability in MR acquisition parameters in the MSKCC 
cohort compared to the training cohort. Firstly, the resolution had a relative 
large range in these scans. This can impact the texture IBMs, which depend 
on the spatial intensity distribution [38,39]. Secondly, patients in the MSKCC 
cohort were scanned without a thermoplastic mask, resulting in parotid glands 
deformation due to the music headphones that patients wore during acquisition. 
Finally, MSKCC scans were acquired with different field strengths, and scanners 
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from different vendors. Even though part of this variability should be captured 
by MRI standardisation, this can influence the MRI intensity and contrast. Despite 
these limitations, the performance of the MR-IBM models was good when tested 
in the MSKCC dataset, suggesting that these IBMs were robust to variability in 
image acquisition parameters. The simplicity of the P90 metric likely contributed 
to successful validation.
Driven by the hypothesis, the MRI intensity standardisation was linearly 
performed to ensure similar fat tissue intensities between patients. However, 
this is in reality not a linear problem [40]. Our approach is simple, and could 
be regarded as a starting point to improve the standardisation so that not only 
subcutaneous fat is generalized between patients, but also other tissues, such 
as muscle. Additionally, mainly due to the presence of field inhomogeneity’s, 
scans can have intensity variations within the scan, for which sophisticated bias 
field correction algorithms have been developed for brain MR images [41]. The 
above described corrections were explored for this dataset, however, the effect 
of these corrections on IBM analysis is currently unknown, and needs further 
investigation.
In conclusion, the results of the current study support the hypothesis that a high 
fat concentration, quantified in MR-IBMs, within the parotid glands is related to a 
higher risk of developing xerostomia 12 months after radiotherapy (Xer12m). The 
prediction performance of Xer12m based on parotid dose and baseline xerostomia 
only was improved by the addition of the predictive intensity MR-IBM P90. These 
results were maintained in a small external validation cohort. MR-IBMs appear 
to be good candidates to predict the patient-specific response of healthy tissue 
to radiation dose. However, more research in larger patient cohorts is needed 
to further validate our conclusions.
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Abstract

Background and purpose
The aim of this study was to identify a surrogate marker for late xerostomia 12 
months after radiotherapy (Xer12m) based on information obtained shortly after 
treatment.

Materials and Methods
Differences in parotid gland (PG) were quantified in image biomarkers (ΔIBMs) 
before and 6 weeks after radiotherapy of 107 patients. By performing step-
wise forward selection, ΔIBMs that were associated with Xer12m were selected. 
Subsequently, other variables, such as PG dose and acute xerostomia scores 
were added to improve the prediction performance. All models were internally 
validated.

Results
Prediction of Xer12m based on PG surface reduction (ΔPG-surface) was good 
(AUC=0.82). PG dose was related to ΔPG-surface (p<0.001, R2=0.27). The addition 
of acute xerostomia scores to the ΔPG-surface improved the prediction of 
Xer12m significantly and vice versa. The final model including ΔPG-surface and 
acute xerostomia had outstanding performance in predicting Xer12m early after 
radiotherapy (AUC=0.90).

Conclusion
PG surface reduction was associated with late xerostomia. The early post-
treatment model with ΔPG-surface and acute xerostomia scores can be 
considered as surrogate marker for late xerostomia.
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Introduction

Xerostomia is one of the most frequent side effect that affects many head and 
neck cancer (HNC) patients after radiotherapy and has a major impact on quality 
of life (1). Limiting the dose to the parotid glands (PG) reduces the probability of 
developing xerostomia (2–4). Although multiple studies have investigated the 
relation between dose and the risk of xerostomia, substantial variability in this 
relationship remains unexplained (2, 3). A possible reason for this variation is 
that dosimetric parameters (and baseline xerostomia scores) are not the only 
explaining variables, but that patient-specific characteristics, such as intrinsic 
radiosensitivity, also affect the development of late xerostomia (5). Unexplained 
variability could, moreover, result from inconsistency in the assessment of 
xerostomia, i.e. patient-rated xerostomia, as this is a subjective measure (6). 
More specifically, the individual experience of a side effect with similar function 
loss varies widely among individual patients, depending on many aspects, such as 
interpretation of the questions and general quality of life (7). A more quantitative 
measure of late xerostomia may lead to improvement of prediction models by 
increasing the consistency of the endpoint.
A surrogate endpoint early after treatment to evaluate late xerostomia is not only 
interesting in order to understand the development of xerostomia better, but 
would also be desirable and beneficial in order to potentially improve the time 
and cost effectiveness of future clinical studies in HNC patients. Additionally, this 
could also contribute to the physician–patient dialog at the end of treatment to 
provide patients with a more reliable prognosis regarding the expected severity of 
xerostomia for the next few years. Moreover, it can support selection of patients 
that do not recover from acute xerostomia for potential future therapeutic 
strategies of xerostomia, such as adult stem cell-based therapy (8, 9).
CT image acquisition, which is routinely used for radiotherapy treatment planning 
and response assessment, would be an ideal modality to quantify changes of 
radiated tissues, as it is rapid, relatively cheap and widely available.
To identify quantitative candidate surrogates for assessing xerostomia, PG 
characteristics were quantified by extracting image biomarkers (IBMs) of the 
PGs before and after radiotherapy and by calculating the differences (ΔIBMs). 
The main objective of this study was to test the hypothesis that ΔIBMs  – either 
combined with other predictive factors or not – were associated with late 
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xerostomia and to test whether an early post-treatment model based on these 
ΔIBMs could serve as a surrogate marker for late xerostomia.

Materials and methods

Patients
The 107 HNC patients that were prospectively included in this study were 
treated with radiotherapy, either in combination with concurrent chemotherapy 
or cetuximab or not, between June 2008 and April 2012. Patients with salivary 
glands tumours, those that previously (or one year after) underwent surgery or 
radiotherapy in the head and neck area were excluded from this study. Moreover, 
patients without follow-up data 12 months after RT were excluded. For a detailed 
description of the radiation protocols we refer to the paper of Christianen et al 
(10). Briefly, most patients were treated with IMRT that was optimised to spare 
the parotid glands without compromising the dose to the target volumes (11, 
12), using a simultaneous integrated boost (SIB) technique. Generally, 70 Gy (2 
Gy per fraction) was administered to the primary tumour and pathologic lymph 
nodes over the course of 6 or 7 weeks (6 or 5 fractions per week, respectively). 
The majority of patients received elective radiation to the cervical lymph node 
levels of 54.25 Gy (1.55 Gy per fraction) (13). More patient characteristics are 
depicted in Table 1.
For all patients, a standardized planning CT scan (Somatom Sensation Open, 
Siemens, Forchheim, Germany; voxel size: 0.94 x 0.94 x 2.0 mm3; 100–140 kV) 
was acquired 2 weeks before treatment . Six weeks after radiotherapy, a second 
CT scan was acquired together with the last assessment of acute toxicity. Both 
scans were acquired in with a thermoplastic mask in radiotherapy treatment 
positioning. This study was approved the Medical Ethics Commission and all 
participating patients gave informed consent.

Endpoints
Patient-rated xerostomia scores were evaluated prospectively on a routine basis, 
before radiotherapy, weekly during radiotherapy, and subsequently 6 weeks and 
6 and 12 months after radiotherapy using the EORTC QLQ-H&N35 questionnaire, 
as part of the standard follow-up programme (SFP) at University Medical 
Center Groningen (2, 14). The primary endpoint of this study was moderate-to-
severe patient-rated xerostomia at 12 months after radiotherapy (Xer12m). This 
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Table 1 Patient characteristics

Characteristics N=107 %
Sex
female 12 11

male 95 89

Age
18 – 65 years 67 63

> 65 years 40 37

Tumour site
Oropharynx 28 26

Nasopharynx 3 3

Hypopharynx 7 7

Larynx 65 61

Oral cavity 2 2

Unknown primary 2 2

Tumour classification
Tin situ 1 1

T0 2 2

T1 25 23

T2 47 44

T3 18 17

T4 14 13

Node classification
N0 67 63

N1 8 7

N2abc 29 27

N3 3 3

Systemic treatment
yes 28 26

no 79 74

Treatment technique
3D-CRT 22 21

ST-IMRT 46 43

SW-IMRT 39 36

Neck irradiation
Bilateral 67 63

Unilateral 6 6

No 34 32

Abbreviations: CRT: Conformal Radiation Therapy; IMRT: Intensity-Modulated Radiation 
Therapy; ST-IMRT: standard parotid sparing IMRT; SW-IMRT: swallowing sparing IMRT; SW-
VMAT: swallowing sparing Volumetric Arc Therapy
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corresponds to the 2 highest scores of the 4-point Likert scale (not, a bit, quite 
a bit, a lot).

Quantification of PG changes in ∆IBMs
The PGs were delineated on the planning CT according to the consensus guidelines 
of Brouwer et al. (15). Using deformable image registration, delineations were 
warped to the repeat CT in Mirada RTx (Mirada Medical Ltd., Oxford, UK). The 
warped contours were manually corrected if necessary.
All image biomarkers were extracted from the planning and the repeat CT with 
in-house developed software that was implemented in Matlab (version R2014a). 
Subtraction of the pre- from post-treatment IBMs resulted in the ∆image 
biomarkers (∆IBMs). Twenty geometric IBMs of the PGs, such as volume and 
compactness, were extracted from the delineations directly. Additionally, twenty 
CT-intensity ∆IBMs, were extracted from the CT data of the PGs. For a list of the 
∆IBMs and the additional 8 clinical variables refer to the Supplementary material 1.

Reference model
A reference prediction model for late xerostomia based on the predictors 
found by Beetz et al. (2) (mean dose to the contralateral PG and the baseline 
xerostomia) was fitted to the dataset (Figure 1-‘reference model’). The patient-
reported xerostomia at start of radiotherapy (Xerbaseline) was dichotomized as 
none vs. any. The PG that received the least amount of mean dose was considered 
contralateral.

Figure 1 Investigated associations: ① ΔIBMs and late xerostomia (Xer12m), ② PG dose and 
ΔIBMs, ③ ΔIBMs and acute xerostomia (Xer6w-post), ④ acute xerostomia (Xer6w-post) and 
late xerostomia ⑤ΔIBMs and acute xerostomia combined and late xerostomia, ‘Reference 
model’ PG dose and late xerostomia. All associations were corrected for baseline xerostomia. 
(Abbreviations — IBM: image biomarker; PG: parotid gland)
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∆IBM selection for late xerostomia
To investigate the associations between the potential ∆IBMs and Xer12m (Figure 
1-①), ∆IBMs were considered as candidate variables in the variable selection 
process as described below. Subsequently, the modeling process was repeated 
by adding Xerbaseline first and subsequently the mean PG dose to the candidate 
variables. All individual patient variable values were normalised by subtracting 
each value by the sample mean and then dividing by the sample standard 
deviation of that IBM variable.
Introducing large numbers of highly correlated variables may have negative 
effects on variable selection, due to overfitting and multicollinearity (16, 
17). Candidate ∆IBMs were therefore pre-selected based on their (Pearson) 
correlation. If the correlation of two variables was larger than 0.80, only the 
∆IBMs with the highest association with Xer12m was selected for further analysis.
Step-wise forward selection, based on log-likelihood (18), was used to select the 
most important predictors (p-value <0.01). The internal validity of the variable 
selection was estimated with a bootstrap procedure. The entire variable selection 
procedure (variable normalization, pre-selection and forward selection) was 
repeated in 1000 bootstrapped samples (i.e. with replacement). From the 
resulting models, the most frequently selected variables were considered for 
the final models.
The selected model’s optimism was estimated by calculating the difference 
between the performance of the models in each bootstrap and in the original 
sample, as suggested by the TRIPOD statement (19).
The model’s performance was quantified in terms of discrimination with 
the area under the ROC (receiver operating characteristic) curve (AUC), the 
Nagelkerke R2 and the discrimination slope. Model calibration was tested with 
the Hosmer–Lemeshow test and by calculating the slope and intercept of a logistic 
regression model of the linear predictor derived from the predicted probability 
of moderate-to-severe late xerostomia (variable) against the actual xerostomia 
outcome (response). The coefficients were corrected for optimism accordingly. 
The R-packages Regression Modeling Strategies (version 4.3-1) (20) were used 
for these purposes.

Relation parotid gland dose and selected ∆IBMs
Linear regression was performed to investigate the relation of mean PG dose 
to the selected ∆IBMs (Figure 1-②). Both PGs were considered separately in 
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investigating this relation. Model performance was measured as the explained 
variance (R2) and normality of the residuals of the regression models was checked.

∆IBMs and other predictive variables
Firstly, the addition of mean PG dose to the model with selected ∆IBMs and 
Xerbaseline was investigated.
Secondly, the relation between ∆IBMs and acute xerostomia 6 weeks after 
radiotherapy (Xer6w-post, moderate-to-severe) was investigated (Figure 1-③), in 
order to analyze whether the selected ∆IBMs were a direct substitute measure 
of acute xerostomia scores. If the assumption that acute and late xerostomia 
scores are related would be correct (Figure 1-④), then the selected ∆IBMs 
could actually be a measure of acute xerostomia rather than late xerostomia. 
Therefore, the presumed assumption was tested by investigating the logistic 
relation between Xer6w-post and Xer 12m. Subsequently, a multivariable analysis and 
variable selection was performed to investigate whether the Xer6w-post contained 
additional information to the ∆IBMs to predict late xerostomia (Figure 1-⑤). 
Baseline xerostomia was also considered for these analyses.
Actual xerostomia incidences were depicted over time to illustrate the effects 
of the ∆IBMs and the final post-treatment model with the best prediction 
performance. Patients were classified based on their ∆IBM values (higher or lower 
than median) and on their predicted risk calculated with the final prediction 
model (higher or lower than 50%).

Figure 2 Examples of parotid glands (PG) with a large negative ΔPG-surface (and ΔPG-volume) 
between the start of radiotherapy (green) and 6 weeks after radiotherapy (red).
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Results

Reference model
Moderate-to-severe xerostomia 12 months after radiotherapy (Xer12m) was 
reported by 32 (30%) of the 107 patients. The reference model based on mean PG 
dose and Xerbaseline was fitted to the dataset. The model characteristics and the 
performance measures (AUC=0.76, R2=0.28) are depicted in Table 2 (Reference 
model).

∆IBMs selection for late xerostomia
The most frequently selected ΔIBM variable was ΔPG-surface (a visual 
representation is depicted in Figure 2) of the contralateral PG, obtained with 
forward step-wise selection (468 times of 1000 bootstrapped samples; see 
supplementary material 2 for frequency plots). This variable was significantly 
associated to Xer12m (Table 2, p<0.001; OR: 0.86 (0.79–0.92)). The regression 
coefficient was negative, indicating that larger PG surface reduction or shrinkage 
relates to a higher risk of developing Xer12m. Xerbaseline showed a significant 
predictive contribution in addition to ΔPG-surface (likelihood ratio test; p<0.001). 
A model with ΔPG-surface and Xerbaseline was created with good performance 
(Table 2, AUC=0.82 (0.72 – 0.91), also after internal validation, which includes 
the variable selection (Table 2, AUC=0.77). This model had better performance 
predicting Xer12m than the reference model (Table 2), which was based on mean 
contralateral PG dose and Xerbaseline. No variable selection was performed for the 
reference model, thus internal validation was calculated by re-fitting the variables 
in the bootstrapped samples.
It should be noted that the variable ΔPG-volume was highly correlated to ΔPG-
surface (ρ=0.91), and was therefore eliminated in the pre-selection. A model with 
ΔPG-volume and Xerbaseline had comparable, but slightly reduced, performance 
measures (AUC=0.80; R2=0.34; see supplementary material 3 for model and 
performance characteristics).

Parotid gland dose and surface change
A significant linear relation was observed between contralateral ΔPG-surface and 
contralateral PG dose (p<0.001), but the explained variance was relatively low 
(R2=0.27). Based on the scatterplot (Figure 3A) a quadratic relation was fitted and 
it proved significantly better than a linear fit (R2=0.34, p<0.001, ANOVA F-test). 
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This quadratic fit improved the fit even more for the ipsilateral PG (linear fit 
R2=0.19; quadratic fit R2=0.38, p<0.001, ANOVA F-test). Note that the mean dose 
levels received by the ipsilateral PG were larger (Figure 3B). The residuals of the 
regression models were reasonably normally distributed.

Figure 3 The relation dose and ΔPG-surface for both A) contra- and B) ipsilateral parotid gland 
(PG). Linear (black line) and quadratic (pink curve) regression curves were plotted.

∆IBMs and other predictive variables
Initial (planning) PG mean dose did not significantly add to a model with 
ΔPG-surface in terms of predicting late Xer12m  (likelihood ratio test; p=0.16). 
Performance measures improved slightly, but no difference was seen after 
internal validation (Table 2).
A significant univariable logistic relation was found between ΔPG-surface and 
acute xerostomia scores at the same point in time, 6 weeks after radiotherapy 
(Xer6w-post) (p=0.017; OR=0.93 (0.87 – 0.99); Figure 1-③). However, a stronger 
association between ∆PG Surface and Xer12m was observed (p<0.001; OR=0.86 
(0.79 – 0.93)) (Figure 1-①). Acute (Xer6w-post) and late xerostomia (Xer12m) were 
indeed related (p<0.001; OR=14.29 (5.20-39.27)) (Figure 1-④). Moreover, acute 
xerostomia added significantly to ΔPG-surface in predicting Xer12m (likelihood 
ratio test; p<0.001) and vice versa (likelihood ratio test; p<0.001) (Figure 1-⑤). 
The performance measures of this model with ΔPG-surface and Xer6w-post, further 
improved to an AUC of 0.90 (0.84 – 0.96) and R2 of 0.56 (Table 2). Again, mean 
PG dose could not improve the model (likelihood ratio test; p=0.27). Calibration 
of all presented models was good (Table 2: Hosmer–Lemeshow test, calibration 
intercept and slope).
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Table 2 (part 1). Model characteristics and performance measures of reference model, ΔIBM 
with and without dose models and combined acute xerostomia post-treatment model

β OR p value

Apparent Corrected Apparent Corrected Apparent

Reference 
model

Intercept –2.613 -2.489*

Xerbaseline 1.570 1.500* 4.81 4.48* 0.004

PG dose 0.049 0.047* 1.05 1.05* 0.001

ΔIBM models

Intercept –2.180 -1.647

ΔPG-surface –0.155 -0.126 0.86 0.88 <0.001

Intercept –2.875 -2.112

Xerbaseline 1.587 1.242 4.89 3.46 <0.001

ΔPG-surface –0.154 -0.121 0.86 0.89 0.002

∆IBM and 
dose model

Intercept –3.295 -2.389

Xerbaseline 1.533 1.175 4.63 3.24 0.002

ΔPG-surface –0.130 -0.100 0.88 0.91 0.004

PG dose 0.028 0.022 1.03 1.02 0.161

Acute 
Xerostomia 
model

Intercept -2.763 -1.982

Xerbaseline 1.540 1.164 4.66 3.20 0.004

Xer6w-post 2.581 1.950 13.21 7.03 <0.001

Acute 
Xerostomia + 
∆IBM model

Intercept –4.257 -3.111

Xerbaseline 1.469 1.110 4.34 3.03 0.012

Xer6w-post 2.598 1.963 13.44 7.23 <0.001

ΔPG-surface –0.169 -0.128 0.84 0.88 0.002
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Depicting the actual moderate-to-severe xerostomia incidences, figure 4 shows 
that ΔPG-surface was able to significantly differentiate between patients with 
high and low xerostomia incidence at 6 and 12 months.
Using the complete early post-treatment model (ΔPG-surface, Xerbaseline and 
Xer6w-post) resulted in an even better distinction (Figure 4B), as the actual reported 
xerostomia differences of patients with high (>50%) and low (<50%) predicted 
risk were substantial.
Finally, using the same classification-based early post-treatment model for 
patients with moderate-to-severe xerostomia 6 weeks after radiotherapy 
(Xer6w-post=1) showed that the predictions of the early post-treatment model 
could significantly differentiate between patients who recovered and those still 
suffering from xerostomia at 6 and 12 months (Figure 4C). This suggests that 
ΔPG-surface contributes in differentiating between patients that have persistent 
xerostomia up to 12 months and those that recover. Two patients had no reported 
xerostomia scores at 6 months.

Discussion

In this study, a significant relationship was shown between the geometric 
ΔIBM (ΔPG-surface ) and late xerostomia. ΔPG-surface added significantly and 
independently to acute toxicities scores in predicting late xerostomia. Moreover, 
the performance of the models based on ΔPG-surface (with or without acute 
toxicities) were better than the reference model based on PG dose. Those 
observations together suggest that ΔPG-surface contains additional information 
on patient-specific development of late xerostomia. Mean PG dose did not 
add significantly to any of the ΔPG-surface models in this cohort. A possible 
explanation could be that ΔPG-surface and Xer6w-post, which result from radiation 
dose, contain the same information as the PG mean dose, however this should 
be confirmed in an external dataset.
High correlation between ΔPG-volume and ΔPG-surface was observed. Prediction 
of late xerostomia was good with both variables, but ΔPG-surface performed 
better than ΔPG-volume (supplementary material 2). It can be hypnotized that 
surface change holds more information, because it also includes information 
on the shape of the PG. However, this observation may be limited to the current 
dataset, hence more research is necessary to investigate whether this can be 
confirmed in other datasets. Furthermore, in this study the absolute ΔPG-volume 
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and ΔPG-surface were investigated, similar performance was achieved with 
proportional change.
A non-linear (e.g. quadratic) relation between mean PG dose and ΔPG-surface (or 
volume) was observed, i.e. PG surface reduction increased with increasing the 
mean dose up to 30–40 Gy, but for PGs that received higher doses the PG surface 
reduction decreased again. This suggests that PGs react differently to higher 
doses, which might be due to direct necrosis of the PG cells inducing inflammatory 
swelling, instead of controlled apoptosis (21), which than compensates (partly) 
for the radiation-induced volume decrease.

Although there is no study to our knowledge that has investigated ΔPG-surface 
, many studies reported reductions of PG volumes after radiotherapy (22–27). 
In line with our results, the studies with adequate patient numbers, observed 
a significant, but weak, relation between mean PG dose and volume decrease 
(r=0.41 (24), r=0.26 (25)). This means that a large amount of unexplained variation 
remains. A possible explanation for these findings is variation in individual 
radiation sensitivity of PGs or mean PG dose may not be not the most optimal 
dosimetric parameter (9).
In the present study, significant associations were found between: ΔPG-surface 
and late xerostomia (Figure 1-①), the PG dose and ΔPG-surface (Figure 1-②) 
and PG dose and late xerostomia (Figure 1-‘reference model’). This is the first 
study that verified all these relationships simultaneously and developed a NTCP 
model to predict late xerostomia with a quantitative measure from CT imaging. 
Belli et al. showed a relation between PG shrinkage and acute xerostomia scores 
(28). Another study (25) observed in a limited cohort (n≤24, >12 months follow-
up), that, small mid-treatment PG volume loss was associated with a longer time 
period of xerostomia recovery for patients receiving a relative high mean PG 
dose (>35.7 Gy, n≤11). These counterintuitive findings might be explained by the 
non-linear relation of the dose with ΔPG-surface shown in the current study. 
This relation suggests that a high PG dose may result in small ΔPG-surface (or 
volume), as this is potentially due to inflammatory PG swelling, which in turn 
might be related to the longer time period of xerostomia recovery. Hence, in 
this specific group of patients, ΔPG-surface alone might not optimally represent 
radiotherapy damage. In contrast, for patients with both a high PG dose and 
large PG change, ΔPG-surface still indicated high risk to develop late xerostomia 
in the current study.
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PG surface reduction was related to acute xerostomia scores. However, a stronger 
relation was observed between PG surface reduction and late xerostomia 
(Xer12m). Moreover, not only did acute xerostomia add predictive information 
to ΔPG-surface in predicting late xerostomia, also ΔPG-surface added to acute 
xerostomia. These results suggest that ΔPG-surface yields unique information 
about the patient-specific capability of the PG to recover from radiation damage 
(also see Figure 4C), and is not only a quantitative substitute of Xer6w-post.

The model with ΔPG-surface, baseline and acute xerostomia scores (6 
weeks after treatment) predicts late xerostomia with an exceptionally good 
performance, reflected in the good discrimination measures (AUC=0.90 (0.84–
0.96) and AUCbootstrapped=0.86). Early prediction of late xerostomia could 
improve effectiveness of future clinical studies, as the one year compliance is 
approximately 60% (1 year overall survival of HNC ~70% (29) together with other 
drop-out factors). An early surrogate could increase the follow-up information 
and thereby the time and cost effectiveness of clinical studies. Secondly, 
adequate prediction of late xerostomia can contribute to the physician–patient 
dialog, in order to discuss the chance of xerostomia recovery. Thirdly, selection of 
patients that do not recover from acute xerostomia (Figure 4C) can be beneficial 
for potential future treatments for xerostomia, such as stem cell therapy (9).
The relationship of ΔPG-surface with dose suggests that ΔPG-surface is a 
biomarker that measures physiological response. However, a correlation like 
this does not necessarily make this biomarker a surrogate for a clinical marker 
(30). A candidate surrogate marker should also have a relationship with the 
clinical endpoint, which is patient-rated late xerostomia in this study. This study 
shows a significant association between ΔPG-surface and Xer12m. In addition, the 
model of ΔPG-surface together with acute xerostomia (Xer6w-post) also meets the 
criteria mentioned above. Therefore, this model can be considered as a candidate 
surrogate marker for late xerostomia. Subsequently, external validation or a 
clinical trial is needed to verify whether the model of ΔPG-surface together with 
Xer6w-post can be used as a validated surrogate marker (30, 31).
Unfortunately, no contrast was used for the CT scan 6 weeks after treatment. 
Although this does not influence the geometric ΔIBMs, it could explain why no 
strong relation was observed between late xerostomia and CT-intensity based 
ΔIBMs, such as mean intensity/density change that has been reported in other 
studies (28). Univariable analysis, however, did show a significant relation 
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between mean CT intensity and Xer12m (p=0.019). Textural IBM changes (refer 
to supplementary material 4 for textural IBM details ) were also tested in the 
current cohort, as described in a previous study (32). Univariable analysis showed 
that some textural IBMs were significantly associated with Xer12m, however none 
gave a significant addition to ΔPG-surface. Textural IBM changes may yield similar 
information as ΔPG-surface or be biased due to the presence of metal artefacts 
in some patients. These IBMs were not extensively discussed in this study, since 
they gave no conclusive rejectable results ,due to the above discussed limitations.
Furthermore, since the final models presented in our manuscript may be 
susceptible to limitations of the chosen variable selection procedure, LASSO 
regularisation, which is an alternative variable selection approach, was 
additionally performed and resulted in very comparable variable selection 
frequencies (ΔPG-surface was the most selected ΔIBM: 49% of the bootstrapped 
samples). This suggests a relatively large robustness of the associations found 
in this dataset, independent of the method of analysis. Additionally, modalities 
such as PET and MRI, that provide functional information could contribute 
in determining functionality loss of the PG gland, and could further improve 
quantifying and understanding the development of xerostomia.

Conclusion

Parotid gland surface reduction between start and 6 weeks after radiotherapy 
(ΔPG-surface) was significantly associated with the development of xerostomia 6 
to 12 months after completing radiotherapy. Mean PG dose significantly correlated 
with ΔPG-surface , and did not add information to the ΔPG-surface model in 
predicting late xerostomia in this cohort. The model with ΔPG-surface and acute 
xerostomia early after radiotherapy significantly improved model performance 
to predict late xerostomia (AUC=0.90 (0.84 – 0.96); AUCbootstrapped=0.86) and 
can therefore be a good candidate surrogate marker for late xerostomia at 
subsequent time points.
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Abstract

Background and purpose
Parotid gland response to radiation dose is patient dependent. The main aim of 
this study was to investigate whether parotid gland changes seen in weekly CT 
during treatment, quantified by delta image biomarkers (ΔIBMs), could improve 
the prediction of moderate-to-severe xerostomia at 12 months after radiotherapy 
(Xer12m).

Materials and Methods
Patient-rated toxicity scores were prospectively collected. Parotid gland image 
characteristics (IBMs) at start and during treatment were extracted from planning 
and weekly CTs. The difference between these IBMs resulted in ΔIBMs, which 
represent geometric, intensity and texture changes of the parotid glands. 
Bootstrapped forward selection was performed to identify the best predictors 
of Xer12m. The predictive contribution of the resulting ΔIBMs to a pre-treatment 
model, based on contralateral parotid gland mean dose (PGdose) and baseline 
xerostomia scores (Xerbaseline) only was evaluated.

Results
Moderate-to-severe xerostomia at 12 months (Xer12m) was reported by 26 (38%) of 
the 68 patients included. The most predictive ΔIBM was the contralateral parotid 
gland surface change, which performed best for week 3 (ΔPG-surfacew3) and was 
significantly associated with Xer12m (p<0.001). Moreover, ∆PG-surfacew3 showed 
a significant predictive contribution in addition to the pre-treatment model 
(likelihood-ratio test, p=0.002), resulting a significantly better model performance 
(AUC=0.91) compared to that of the pre-treatment model (AUC=0.83).

Conclusion
The contralateral parotid gland surface area reduction between the 3rd week 
during and start of treatment (ΔSurfacew3) was associated with the development 
of late xerostomia. The mid-treatment ΔIBM model with ΔSurfacew3 showed 
substantial predictive improvement over the pre-treatment model with PGdose 
and Xerbaseline only.
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Introduction

Xerostomia is one of the most frequently reported side effects following 
radiotherapy of head and neck cancer (HNC) patients and affects patient-
reported quality of life [1]. For the prediction of late xerostomia, Normal 
Tissue Complication Probability (NTCP) models have been developed with pre-
treatment dose-volume parameters and baseline complaints as most important 
predictors [2,3]. However, xerostomia NTCP models based on information during 
treatment are less explored. Since in-treatment parameters contain information 
on the patient-specific response to treatment, they may resolve some of the 
unexplained variability that remains for NTCP models that are based on pre-
treatment variables only. These in-treatment parameters could therefore be used 
to improve the prediction of late xerostomia. Adequate prediction supported by 
in-treatment data may offer new opportunities to guide treatment adaptation 
aiming at a further reduction of late radiation-induced side effects.
Several studies have investigated changes of the parotid glands during and after 
treatment in CT images [4–7] and have shown a weak to moderate relationship 
between parotid gland dose and volume change [4,6]. However, knowledge of 
the relationship between parotid gland changes and patient-reported xerostomia 
is still limited. Therefore, in our previous study, we investigated the association 
between late patient-reported xerostomia and parotid gland changes quantified 
in image biomarkers (IBMs) extracted from CT images before and 6 weeks after 
treatment. That study showed that the parotid gland surface reduction (∆PG-
surface6w-postRT) was strongly associated with the development of xerostomia at 
6 and 12 months after radiotherapy [8].
However, this post-treatment model does not allow for treatment adaptation, as 
the total prescribed radiation dose has already been administered. Hence, the 
next step is to investigate parotid gland changes during treatment.
The aim of the current study was to identify quantitative parotid gland changes 
during treatment that predict the development of late xerostomia. These parotid 
gland changes were extracted from pre-treatment and weekly CT-images during 
radiotherapy, from which delta Image Biomarkers (∆IBMs) were quantified, 
representing differences in intensity, texture and geometric characteristics of 
the parotid glands.
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Method

Patients and image acquisition
The study cohort included consecutive HNC patients that were treated with 
definitive radiotherapy and received weekly CTs between January 2014 and 
December 2016. Radiation plans were adapted where necessary due to 
anatomical changes causing reduced target coverage. Patients were treated with 
IMRT or VMAT using a simultaneous integrated boost (SIB) technique, either as a 
single modality or in combination with concurrent chemotherapy or cetuximab. 
Plans were optimised to spare the parotid glands and swallowing organs at 
risk (superior pharyngeal constrictor muscle and supraglottic area) as much 
as possible without compromising the dose to the target volumes [9,10]. The 
primary tumour and pathologic lymph nodes were generally prescribed 70 Gy (2 
Gy per fraction) and the cervical lymph node levels were prescribed an elective 
radiation dose of 54.25 Gy (1.55 Gy per fraction) [11]. More detailed descriptions 
of the radiation protocols used were reported in previous papers [12,13]. Patient 
characteristics are listed in Table 1.
Patients were excluded if they had salivary gland tumours, underwent prior 
surgery and/or underwent re-irradiation. An additional requirement was that 
patient-rated follow-up information at 6 and/or 12 months after radiotherapy 
was available.
CT scans (Somatom Sensation Open, Siemens, Forchheim, Germany; voxel 
size: 0.94 x 0.94 x 2.0 mm3; 100–140 kV) were acquired within 2 weeks prior to 
treatment (CT0) and weekly during treatment (CTw1-6), where CTw1 was generally 
acquired on the day of the first or second fraction. Patients only received 
intravenous contrast for CT0. All scans were acquired with a thermoplastic mask 
in their radiotherapy treatment position. The data collection was part of routine 
clinical practice and therefore, the hospital ethics committee waivered us from 
ethical approval.

Endpoints
Patient-rated xerostomia scores were collected prospectively on a routine basis; 
before, weekly during, and subsequently 6 and 12 months after radiotherapy 
using the EORTC QLQ-H&N35 questionnaire, as part of the standard follow-up 
programme (SFP) (NCT02435576) [2,14]. The primary endpoint of this study was 
moderate-to-severe patient-rated xerostomia at 12 months after radiotherapy 
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Table 1 Patient characteristics of patients that had follow-up information available at 12 and 
6 months after treatment.

Follow-up info 
at 12 months

Follow-up info 
at 6 months

Characteristics N = 68 % N = 88 %
Sex
Female 20 29 26 30
Male 48 71 62 70
Age
18-65 48 71 62 70
>65 20 29 26 30
Tumour site
Oropharynx 22 32 27 31
Hypopharynx 0 0 1 1
Nasopharynx 5 7 5 6
Larynx 22 32 27 31
Oral cavity 15 22 23 26
Unknown primary 1 1 1 1
Other 3 4 4 5
Tumour classification
T0 1 1 1 1
T1 11 16 14 16
T2 14 21 19 22
T3 17 25 19 22
T4 23 34 33 38
Unknown 2 3 2 2
Node classification
N0 23 34 28 33
N1 9 13 13 15
N2abc 31 46 41 47
N3 3 4 4 5
Systemic treatment
Yes 34 50 47 53
No 34 50 41 47
Treatment technique
IMRT 27 40 30 34
VMAT 41 60 58 66
Bilateral
Yes 57 84 72 82
no 11 16 16 18
Baseline xerostomia
Any 26 38 36 41
None 42 62 52 59

Abbreviations: IMRT: Intensity-Modulated Radiation Therapy; VMAT: Volumetric Arc Therapy
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(Xer12m) and the secondary endpoint was moderate-to-severe patient-rated 
xerostomia at 6 months (Xer6m). This corresponds to the 2 highest scores of the 
4-point Likert scale (not, a bit, quite a bit, a lot).

∆IBMs definitions
Parotid glands were delineated on the CT0 according to the consensus guidelines 
of Brouwer et al. [15]. Delineations were warped to the weekly CTs using the 
deformable image registration tool in the treatment planning system RayStation 
v5.99 (RaySearch Laboratories, Stockholm, Sweden), the warped structures were 
manually corrected where necessary.
The image biomarkers (IBMs) were extracted from the planning and the weekly 
CTs with Matlab-based (Mathworks, Natick, MA, USA; version R2014a) in-house 
developed software. The definitions and formulas were in line with the ‘Image 
biomarker standardisation initiative’ [16]. The geometric IBM changes (geometric 
∆IBMs) were calculated by subtracting the IBMs of CTw2-6 from those of CT0. 
This resulted in 15 geometric ∆IBMs per weekly CT, that for example represent 
volume, surface or compactness changes. Intensity IBMs describe first order 
and histogram characteristics of CT intensities of a parotid gland (e.g. mean 
or variance). Textural features describe the intensity heterogeneity and were 
extracted from the grey level co-occurrence matrix (GLCM) [17], grey level run-
length matrix (GLRLM) [18,19], grey level size-zone matrix (GLSZM) [20] and 
neighbourhood grey tone difference matrix (NGTDM) [21]. Contrast enhancement 
was only used for CT0, and not for the weekly CT-scans. Since this can affect 
the intensity and texture IBM values, CTw1 (generally acquired before the 2nd 
radiation fraction) was considered to be the baseline CT. Hence, intensity and 
texture changes were quantified by calculating the difference between CTw1 
and the CTw2-6. As the intensity and texture IBMs can be influenced by metal 
artefacts, slices with metal artefacts were deleted and IBMs were calculated on 
the remaining slices only.
Figure 1 depicts the calculation of the ∆IBMs and CT time points. For a complete list 
of the 15 geometric, 17 intensity and 66 texture IBMs refer to the supplementary 
data 1, 2 and 3, respectively. Only ∆IBMs of the contralateral parotid gland were 
reported, as they performed better than those of the ipsilateral parotid gland. 
The geometric ∆IBMs were analysed separately from intensity and texture ∆IBMs.
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∆IBM selection
To identify the most predictive ∆IBMs, ∆IBM variable selection was performed 
each week. Firstly, ∆IBMs values were normalised by taking the difference 
between each value and the average, and then dividing by the standard deviation 
of the values of each ∆IBM. Secondly, a pre-selection that was based on inter-
variable correlation was performed to reduce the number of variables. If the 
(Pearson) correlation of two variables was larger than 0.80, only the ∆IBM with 
the highest univariable association with the endpoint was selected [22]. Thirdly, 
stepwise forward selection was used to select the most important predictors 
(likelihood-ratio test: p-value <0.01) [23]. The entire variable selection procedure 
(normalisation, pre-selection and forward selection) was repeated on 1000 
bootstrapped samples (i.e. with replacement), according to the TRIPOD guidelines 
[24]. The variable selection frequencies were evaluated to identify the most stable 
predictive variables per week. The Pearson correlation between the selected 
∆IBMs was also investigated.

∆IBM: univariable analysis
In order to identify the optimum week for predicting Xer12m with ∆IBMs, the 
univariable associations were investigated for the selected ∆IBMs per week.

∆IBM, dose and toxicity: multivariable analysis
A reference ‘pre-treatment model’ that was based on baseline xerostomia scores 
(Xerbaseline; none vs. any) and the contralateral PGdose, was fitted to the current 
dataset [2]. The prediction performance of the ‘pre-treatment model’ was first 
compared with that of models based on Xerbaseline and the selected ∆IBMs. 
Subsequently, the addition of the selected ∆IBMs to the ‘pre-treatment model’ 
was investigated in terms of significance (likelihood-ratio test) and performance.
Since our previous study showed that acute xerostomia scores significantly 
improved the ∆IBM model 6 weeks after treatment [8], we also investigated if 
the addition of acute toxicity as assessed during treatment to the ∆IBM-models 
improved model performance.
All multivariable models were logistic regression models. Model discrimination 
was measured with the area under the receiver operating characteristic curve 
(AUC) and the discrimination slope. Nagelkerke R2 was used as a measure for 
explained variance. Model calibration was tested with the Hosmer–Lemeshow test 
and by repeating the entire variable selection on 1000 bootstrap samples, and 
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by calculating the average of all resulting linear predictor slopes and intercepts. 
The coefficients were corrected for optimism according to this internal validation 
procedure.
The relationships between the resulting ∆IBM predictors, Xerbaseline, PGdose and 
acute xerostomia scores, were additionally explored with univariable logistic 
regression.

Parotid gland dose and ∆IBMs
The relationship of the mean contralateral PGdose and the ∆IBMs was 
investigated with linear regression. Model performance was measured with 
the coefficient of determination (R2), and normality of the residuals of the 
regression models was checked.

Results

Patients
Moderate-to-severe xerostomia was reported by 26 (38%) of all 68 patients 
included at 12 months after radiotherapy. At 6 months after radiotherapy, the 
moderate-to-severe xerostomia reporting rate was 46 (52%) out of a total of 88 
patients.

∆IBMs selection
For the geometric image biomarkers, a change of contralateral parotid gland 
surface (∆PG-surface) was the most frequently selected ∆IBM for all weeks 
predicting Xer12m (see supplementary data 4 for frequency plot), except for 
week 6 where the ∆PG-volume frequency was slightly higher. The ∆PG-surface 
frequency was especially high in week 3 (882 selected in the 1000 bootstrap 
samples). In other weeks, the subsequently selected ∆IBMs, ∆‘volume’, ∆‘bounding 
box volume’ and ∆‘volume times mean intensity’, were highly correlated with ∆PG-
surface for all weeks with ρ=0.77-0.94, ρ=0.63-0.82 and ρ=0.79-0.92, respectively. 
Noteworthy, ∆PG-surface was also the most frequently selected ∆IBM for all 
weeks predicting the secondary endpoint Xer6m.
For the intensity and texture IBMs, no clear selection of ∆IBMs that were most 
frequently selected for all weeks could be made (see supplementary data 4 for 
frequency plot). Overall, the most frequently selected ∆IBMs on average were: the 
large zone low grey level emphasis (LZLGE), coarseness from the neighbourhood 
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grey tone difference matrix (coarseness) and the median intensity (median). 
These ∆IBMs were moderately correlated to each other (|ρ|=0.24-0.51).

∆IBM: univariable analysis
The univariable analysis also showed that ∆PG-surface was the most significant 
∆IBM. This geometric ∆IBM was significantly associated with Xer12m at all weeks 
(p<0.04) but was most significant in week 3 (p<0.001). This week showed the 
largest regression coefficient of all weeks (supplementary data 5).
For the intensity and texture IBMs, none of the most frequently selected ∆IBMs 
were significantly associated with Xer12m in any of the weeks, yet the performance 
was best for week 3 ∆IBMs (LZLGE: p≥0.06; coarseness: p≥0.06; median: p≥0.07) 
(supplementary data 5).

∆IBM, dose and toxicity: multivariable analysis
Since the ∆IBMs showed the best performance in week 3, the multivariable 
analysis was performed with the selected week 3 ∆IBMs only.
Discrimination of the reference ‘pre-treatment’ model (Xerbaseline and PGdose) was 
good (AUC=0.83 (AUCinternal.val.=0.82)), yet the geometric ∆IBM model with ∆PG-
surfacew3 and Xerbaseline performed better (∆IBM model 1: AUC=0.87 (AUCinternal.

val.=0.86)) in predicting Xer12m (Table 2 and 3). Moreover, the addition of ∆PG-
surfacew3 to the pre-treatment model (likelihood-ratio test, p=0.002), significantly 
improved different aspects of performance (∆IBM model 2: AUC=0.91 (AUCinternal.

val.=0.89); Table 3).
Acute xerostomia scores at week 3 (Xerw3) significantly improved this ∆IBM 
model 2 (Xerbaseline, PGdose and ∆PG-surfacew3) (likelihood-ratio test, p=0.01), 
but the improvement in performance was relatively small (AUC=0.92 (AUCinternal.

val.=0.90)). The relationship between ∆PG-surfacew3 and Xerw3 was not significant 
(p=0.14). This is also demonstrated in Figure 2, where patients with a large and 
small surface reduction at week 3 (∆PG-surfacew3) showed a clear differentiation 
of actual moderate-to-severe xerostomia incidences at 6 or 12 months after 
treatment, but not for acute time points.

No significant relationship was found between ∆PG-surface and Xerbaseline 
(p=0.17). Xerw3 was significantly associated with both PGdose (p=0.04) and 
Xerbaseline (p=0.03), probably explaining the marginal prediction improvement 
of Xer3w to the ∆IBM model with PGdose and Xerbaseline.



115

Post- and mid-treatment IBMs predict late xerostomia - Part II

5

4

7
6

For the secondary endpoint Xer6m, ∆PG-surfacew3 also added significantly to 
the pre-treatment model in predicting Xer6m (likelihood-ratio test, p=0.02). See 
supplementary data 6 for more details.
None of the frequently selected intensity or texture IBMs showed any significant 
improvement either compared to or in addition to the pre-treatment model 
(likelihood-ratio test, p>0.27) in predicting Xer12m or Xer6m.

Parotid gland dose and ∆IBMs
The linear relationship of contralateral parotid gland mean dose and ∆PG-
surface was significant for all weeks (p<0.008; Table 4). Depicted in Figure 3, the 
regression coefficients of this linear relationship effectively increased over time, 
as did the coefficient of determination, but remained weak.
The selected intensity and the texture ∆IBMs, ∆median and ∆coarseness were 
significantly correlated (p<0.05) to parotid gland dose for week 2, 3, 5, 6 and 5, 6, 
respectively (supplementary data 7). However, the coefficient of determination 
was relatively low (R2=0.00-0.21). ∆LZLGE was not significant for any week.

Figure 2 Actual moderate-to-severe xerostomia incidence and 95% confident intervals at 
baseline, weekly during, and 6 weeks (week 12), 6 months, and 12 months after treatment for 
patients, with parotid gland surface reduction at week 3 (∆PG-Surfacew3) larger (blue) or smaller 
(yellow) than the median reduction.
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Figure 3 Univariable linear regression of contralateral parotid gland mean dose (PGdose) 
predicting parotid gland surface reduction (∆PG-surface) for different weeks (lines) and 
regression characteristics (Table). Correlation increases over time, but remained weak. Data 
point represent ∆PG-surface values for week 6.

Table 2 Estimated coefficients (uncorrected and corrected for optimism) of pre-treatment and 
∆IBM models

Model name β OR (95% CI) p-value

Uncorrected Corrected

Pre-treatment
reference 
model

intercept -3.794 -3.385*

Xerbaseline 2.531 2.280* 12.56 (3.39-46.54) <0.001

PG dose 0.099 0.089* 1.1 (1.03-1.18) 0.005

∆IBM model 1

intercept -3.139 -2.515

Xerbaseline 2.533 2.074 12.59 (3.13-50.73) <0.001

∆PG-surface w3 -0.568 -0.465 0.57 (0.41-0.79) 0.001

∆IBM model 2

intercept -4.515 -3.305

Xerbaseline 2.591 1.936 13.35 (3.13-56.95) <0.001

PG dose 0.072 0.054 1.07 (0.77-1.51) 0.074

∆PG-surface w3 -0.481 -0.360 0.62 (0.57-0.67) 0.005

*No variable selection was performed for internal validation of the reference model
Abbreviations: Xerbaseline: xerostomia at baseline ; PG dose: contralateral mean dose to parotid 
gland; ∆PG-Surfacew3: Parotid gland surface change from before and week 3 during treatment. 
β: regression coefficients; OR: odds ratio; CI: confidence interval; N.B. Surface change in cm2
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Table 3 Performance of NTCP models IBMs

Pre-treatment 
reference model ∆IBM model 1 ∆IBM model 2

Xerbaseline Xerbaseline Xerbaseline

PG dose PG dose

∆PG-Surface 
w3

∆PG-Surface 
w3

Nagelkerke R2 0.45 0.53 0.57

Area Under the Curve (AUC) 0.83 (0.72-0.94) 0.87 (0.79-0.96) 0.91 (0.85-0.98)

Discrimination slope 0.37 0.43 0.47

HL test X2 (p-value) 3.96 (p=0.41) 5.19 (p=0.27) 5.80 (p=0.21)

AUC corrected 0.81* 0.84 0.87

Nagelkerke R2
corrected 0.40* 0.45 0.46

Calibration slope (intercept) 0.90* (-0.03) 0.82 (-0.06) 0.75 (-0.07)

*No variable selection was performed for internal validation of the reference model 
Abbreviations: HL: Hosmer–Lemeshow; corrected: corrected for optimism with bootstrapping; 
IBM: Image Biomarker; Xerbaseline: xerostomia at baseline; PG dose: contralateral mean dose 
to parotid gland; ∆PG-Surfacew3: Parotid gland surface change from before and week 3 during 
treatment.

Discussion

The current study shows that surface change of the contralateral parotid gland 
(∆PG-surface) assessed during the course of radiotherapy was strongly associated 
with the development of late xerostomia (Xer12m and Xer6m). The association 
of this geometric ∆IBM was statistically significant during the entire course of 
treatment but performed best for changes obtained between treatment planning 
and week 3. This time point is still clinically relevant, as any treatment adaptations 
could still influence the patient’s toxicity outcome. ∆PG-surfacew3 did not only 
show improved predictive performance over PGdose, but it also improved the 
pre-treatment model performance significantly. The resulting model that was 
based on Xerbaseline, PGdose and ∆PG-surfacew3 showed excellent performance 
when predicting Xer12m (AUC=0.91). However, these results should be confirmed 
by direct external validation.
Castelli et al. showed that parotid gland dose could significantly be reduced 
with an adaptive radiotherapy approach (ART) [25]. By re-planning the dose 
distribution on weekly CTs, an average NTCP reduction of 11% (maximum 30%) 
was observed. However, weekly re-planning is time consuming. This highlights 
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the potential of the ∆IBM NTCP model with ∆PG-surfacew3, since it could select 
patients during treatment that have a high risk of developing xerostomia. If these 
high-risk patients could, subsequently, receive less PGdose by re-planning, their 
risk of xerostomia could be further reduced. Alternatively, the model-based 
approach has been introduced to select patients for proton therapy. Patients 
can be selected that have a clinically relevant NTCP-reduction with a proton 
plan compared to their photon based treatment plan [26]. Proton therapy 
has the potential to better conform the dose to the tumour while sparing the 
surrounding normal tissue, due to the intrinsic properties of protons [27]. By 
incorporating patient-specific ∆IBM response information in the pre-treatment 
reference model, patients that do not initially qualify could be reclassified for 
proton therapy. Accordingly, treatment can be changed from photon to proton 
therapy, when relevant differences are seen in the new DNTCP values.
In a previous study, the geometric IBM differences were calculated between 6 
weeks post-treatment and prior to treatment(∆IBM6week-postRT) [8]. The association 
of ∆IBM6week-postRT with Xer12m was investigated in a patient cohort (n=107) 
independent of the current cohort  . Interestingly, the most stable and predictive 
post-treatment ∆IBM was also the contralateral ∆PG-surface. Similar to the results 
of the current study, inclusion of ∆PG-surface substantially improved the pre-
treatment model. Using the same coefficients of the post-treatment model with 
∆PG-surface6w-postRT, Xerbaseline and PGdose in the current cohort, also showed a 
comparable performance (AUC=0.89) to that of the model trained in the current 
cohort (AUC=0.91). The other way around, using the coefficients of the current 
model in the previous cohort also resulted in a comparable improvement in 
performance for the model in the post-treatment cohort (supplementary data 
8). This suggests that the ∆PG-surfacew3 model would also perform well when 
externally validated in a cohort where ∆PG-surface is acquired at week 3. In both 
studies, ∆PG-volume was highly correlated to ∆PG-surface, and also performed 
well in predicting late xerostomia.
In line with other studies that observed a relationship between PGdose and PG 
shrinkage [4,6,28,29], linear regression in the current study also showed that 
there was a weak to moderate correlation between ∆PG-surface and PGdose. 
Interestingly, the correlation between PGdose and ∆PG-surface effectively 
increased over the time of treatment, illustrated by the increasing values of 
the regression coefficients and R2 every consecutive week. This suggests that 
the effect of planning PGdose on ∆PG-surface becomes clearer as more dose is 
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administered. However, such an effect was not seen for the association between 
∆PG-surface and Xer12m, since the univariable logistic regression coefficient and 
the performance of ∆PG-surface increased from week 2 to 3, but decreased 
for the subsequent weeks. Hence, we concluded that the best moment for 
predicting Xer12m was during week 3. The explanation may be that most parotid 
glands shrink when irradiated, as reported in previous studies [4–7], but patients 
that have a parotid gland that shrinks early in treatment have a higher risk of 
developing late xerostomia. Therefore, ∆PG-surfaceweek 3 could be a marker to 
differentiate between patients that develop permanent damage of the parotid 
gland versus those that can recover.
In addition to these observations, ∆PG-surface was not associated with acute 
xerostomia, although it was strongly associated with the development of late 
xerostomia. Figure 2 also demonstrated this, as ∆PG-surfacew3 did not show 
a clear differentiation between the actual incidences of moderate-to-severe 
xerostomia at week 3 or any of the other acute time points. In contrast, this 
differentiation can be clearly seen for 6 and 12 months after radiotherapy. 
Furthermore, acute xerostomia scores at 3 weeks (Xer w3) did significantly add 
to the model with Xerbaseline, ∆PG-surface and PGdose, although the improvement 
in performance measures was small. This is probably due to the correlation 
between Xerw3 and both PGdose and Xerbaseline. Further research needs to be 
performed on larger datasets in order to investigate whether acute toxicities can 
contribute to ∆IBM models.
Changes in intensity or texture IBMs were not related to the development of 
xerostomia. In contrast, many of these ∆IBMs were significantly related to PGdose, 
even though no relationship was seen with the development of xerostomia. 
Furthermore, detailed investigation of the most frequently selected intensity 
or texture ∆IBMs showed that these ∆IBMs contained one or two outliers that 
determined the effect. The influence of outliers indicates the importance of 
evaluating the selected IBMs before presenting them in a final model. In this 
study, the analysis of ∆IBMs was used rather than the IBMs directly extracted per 
week. The results of these absolute weekly IBMs were not significant. In contrast, 
in a previous study, a pre-treatment CT IBM that indicates tissue heterogeneity, 
was significantly associated with the development of late xerostomia [30]. It 
might be that the effect of pre-treatment is too weak to be observed in this 
relatively small dataset. In addition, using proportional ∆IBMs instead of absolute 
difference ∆IBMs did not improve the results of this study either.
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The limitations of this study are the low numbers of patients included in this 
analysis and no direct external validation was performed. Furthermore, only pre-
treatment PGdose rather than the accumulated dose over all weekly CT scans was 
evaluated, since this was outside the scope of the paper. Brouwer et al. showed 
that accumulated dose calculated on weekly CTs was almost equal to the pre-
treatment PGdose [31]. Using accumulated PGdose could improve the predictive 
performance of PGdose. Additionally, other modalities, such as positron emission 
tomography and magnetic resonance imaging could potentially provide better 
information during treatment on function loss of the PG gland. Future studies 
using these modalities could improve the quantification and understanding of 
the development of late xerostomia.

Conclusion

Contralateral parotid gland surface area reduction during the course of 
radiotherapy (ΔPG-surface) was associated with the development of late 
xerostomia both at 6 and 12 months after radiotherapy. The model consisting 
of Xerbaseline, parotid gland dose and ∆PG-surface, as assessed at week 3 during 
treatment (ΔPG-surfacew3), showed the best performance, and substantially 
improved the pre-treatment model based on parotid gland dose and Xerbaseline 
only (from AUC of 0.83 to 0.91). This mid-treatment model may be a good 
candidate to identify patients most at risk of developing late xerostomia and who 
may benefit from treatment adaptations, but external validation is warranted.
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Summary and general discussion
This thesis is the first to show that image biomarkers (IBMs) can be used to 
improve prediction models for radiation-induced xerostomia in head and 
neck cancer (HNC) patients. These IBMs represent patient-specific tissue 
characteristics that are quantified in tangible values, allowing for quantitative 
analysis of three-dimensional clinical image information. We developed 
dedicated software to extract IBMs from clinical images. Toxicity prediction was 
improved by the addition of normal tissue IBMs (or ∆IBMs), which were either 
extracted before, during or after radiotherapy, to reference NTCP-models that 
were based on planning dose-volume parameters and baseline toxicity scores 
only. By optimizing toxicity prediction, this thesis contributes to the next step 
in personalized treatment approaches. Furthermore, it generated hypotheses 
for the patient-specific reaction to radiation dose, hereby advancing towards a 
better understanding of the development of late treatment-induced toxicities.

Part 1: Pre-treatment image biomarkers predict late toxicities
Chapter 2 reports the first published study on the association of salivary gland 
IBMs obtained from pre-treatment CT images with radiation-induced toxicities in 
HNC patients. The Short Run Emphasis (SRE) of the contralateral parotid gland was 
significantly associated to xerostomia 12 months after radiotherapy. This texture 
IBM added significantly to a model based on contralateral parotid gland dose and 
baseline xerostomia scores. Higher SRE values indicate a larger heterogeneity of 
the parotid tissue. Visual inspection of the CT images of patients with high and 
low SRE suggested that this heterogeneity was related to fat saturation of parotid 
glands, as infiltration of the fat tissue between the parenchymal gland tissue, 
resulting in increased texture in the gland due to the different image intensities 
of these tissues.
The resulting hypothesis was that the ratio of fat-to-functional parotid gland 
tissue may be an important pre-treatment factor in the development of 
xerostomia following radiotherapy.
In addition, maximum intensity within the submandibular glands seemed to be 
related to sticky saliva at 12 months after radiotherapy. This IBM was related 
to the CT intensity of the intravenous contrast of the artery or vein within the 
submandibular gland. However, next to the low stability of this IBM, no satisfying 
possible explanation could be found from the literature or the data for the 



127

Summary and general discussion - Chapter 7

6

5

7

relation between this IBM and sticky saliva. More research is needed to interpret 
these findings.
Chapter 3 describes a study to investigate the added value of pre-treatment 
18F-FDG PET-IBMs in predicting late xerostomia. The PET-IBM that indicates the 
minimum value of the 90% highest SUVs (P90) was the most predictive of all 
intensity PET-IBMs. Additionally, the mean SUV also performed well, but P90 
appeared more relevant in this dataset. Consequently, this study was the first 
to show that patients with low metabolic activity in the parotid glands were 
more likely to develop late xerostomia. The results of this study suggest that 
pre-treatment high metabolic activity in the parotid glands is associated with 
more viable parenchymal and/or stem cells with more repair capability and/or 
are less radiosensitive. Although, probably driven by other biological processes, 
the same is seen for high metabolic tumour tissue. Tumour tissue areas with high 
metabolic activity on 18F-FDG PET images are where the recurrences are most 
likely to occur [1]. A possible explanation is that it arises from a combination of 
higher cell density, proliferation rate of metabolically active tissue and DNA repair 
capacity [2]. Considering that fat tissue is non-functional parotid gland tissue and 
is often low in intensity on 18F-FDG PET images, the result of this study supports 
the hypothesis from the CT IBM study that the ratio of fat-to-functional parotid 
gland tissue may be an important pre-treatment factor for late radiation-induced 
xerostomia.
Building on the hypothesis that resulted from Chapter 2 and 3, Chapter 4 
describes parotid gland characteristics that were obtained with IBMs from 
Magnetic Resonance (MR) images. Since this modality is superior in imaging soft 
tissue contrast, it is more accurate in differentiating fat from the parenchymal 
gland tissue compared to CT and 18F-FDG PET. MRI-based IBMs were significantly 
associated to xerostomia 12 months after treatment. Also in this study, the 
most robust and significant predictor was the P90, yet here indicating the 90th 
percentile of the standardized MR-intensities of the parotid glands. The MR-IBMs 
showed that high T1-signal within the parotid glands, which indicates high fat 
concentration, was significantly associated to higher rates of late xerostomia. 
Moreover, the addition of the MR-IBMs to the reference models significantly 
improved the prediction of xerostomia. The results of this MR-IBM study also 
supported the hypothesis that the ratio of fat-to-functional parotid gland tissue 
is an important predictor for late xerostomia.



128

Chapter 7 - Summary and general discussion

Unrelated to the oncology field, previous studies have shown a relationship 
between fat saturation of the parotid glands and xerostomia related diseases: 
hyperlipidemia (elevated lipid plasma levels in the blood) and Sjögren’s syndrome 
[3–5]. Izumi et al. [4] developed a MRI-based grading of the severity of parotid 
impairment for patients with Sjögren’s syndrome that was based on similar 
image characteristics as where found by the studies of this thesis, i.e. high T1-
weigted signal intensity areas (e.g. fat tissue) and heterogeneity in the parotid 
glands. Another study by Izumi et al. [5] also showed a relationship between 
increased signal intensities on T1-weighted MR images and impaired parotid 
function for patients suffering from hyperlipidemia. The findings of these studies 
suggest that increased fat concentration in the parotid gland can be caused by 
parenchymal changes due to lipid infiltration from the blood, and hereby reducing 
the functionality of the parotid gland. Since this is a continuous process, where 
only patients with severe hyperlipidemia experience xerostomia symptoms, pre-
treatment oncology patients could have increased fat infiltrated parotid glands 
without having any symptoms (i.e. asymptomatic impaired parotid glands). These 
pre-treatment partially impaired parotid glands might have less reserve, less 
repair capacity and/or be more radiosensitive. This is in line with the results of 
Chapter 1, 2 and 3, which suggest that increased fat concentration in the parotid 
gland increases the probability of developing late xerostomia after radiotherapy. 
All these findings together lead to the hypothesis that high lipid blood levels are 
associated to the development of late radiation-induced xerostomia.
We recently initiated a study to investigate this relationship between blood lipid 
protein levels related to hyperlipidemia (e.g. triglycerides) and the development of 
late radiation-induced xerostomia. We aim to show a relationship between blood 
lipids and higher risk for patients to develop late xerostomia. This study will be the 
first to investigate the potential underlying pathophysiological process of toxicity 
development based on predictive image biomarkers. This will not only contribute 
to the improvement of personalised treatment approaches, but may also open 
doors for new xerostomia prevention research (e.g. prophylactic treatment of 
blood lipid reducers prior to treatment), due to a better understanding of the 
development of radiation induced xerostomia.
Another aspect that may be related to the increase of fat tissue in the parotid 
glands is ageing. With aging, the functional parotid tissue is substituted by 
connective tissue, such as fat or fibrous tissue in healthy individuals [1]. However, 
no age-related decrease of salivary flow rates is observed in the majority of 
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studies [1]. This suggests that the reserve capacity of healthy salivary glands 
is able to compensate for aging. After radiotherapy, typically no significant 
relationship between age and the development of radiation-induced xerostomia 
is found [2,3], which was also the case in the research of this thesis. This might be 
because age is an unreliable indicator of aging, since tissue aging rates fluctuate 
between individuals, as they are affected by multiple factors, such as lifestyle, 
environment and genetic factors [4]. Therefore, the effect of aging would be 
a more adequate variable, rather than age itself. The IBMs presented in this 
thesis may be a marker of the deterioration of functional parotid tissue as part 
of natural aging, which can be caused by lifestyle such as drinking or diet, or due 
to an underlying disease or a combination of both. As a consequence, the reserve 
capacity of the parotid glands is reduced, thereby the risk of radiation-induced 
xerostomia is increased.

IBM model applications (part 1)
One of the applications of prediction models is to guide treatment decisions. In 
radiotherapy, personalised treatment-decision making is gradually introduced. 
Very recently, the first step was made by using NTCP-models to decide whether 
patients should be treated with conventional photon radiotherapy or with proton 
therapy. Proton therapy (PT) was clinically introduced in January 2018 in the 
Netherlands, in the UMCG, providing an additional radiotherapy treatment option 
for HNC patients. This advanced treatment modality can limit radiation dose to 
spare normal tissues, while still delivering the prescribed dose to the tumour 
tissue [6–8]. Considering that the capacity for PT is limited, a model-based 
approach was introduced to select patients that are expected to benefit most 
from PT based on their toxicity risk reduction [9]. The model-based approach 
currently uses NTCP models that are based on dose-volume parameters and 
baseline toxicity scores. More accurate risk stratification could be obtained by 
using the pre-treatment IBM models presented in part one of this thesis (Figure 1, 
application ), but this requires external validation in independent datasets with 
sufficient numbers of patients.
The accurate pre-treatment NTCP estimation could also be used to select patients 
for other advanced treatment strategies (Figure 1, application ). Real-time MR-
guided irradiation (MR-Linac) for example is introduced in radiotherapy, but, 
similarly to proton therapy, is limited available [10]. Since MR-Linac radiation 
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could reduce the error margins around the tumour, it may reduce surrounding 
normal tissue radiation.
Recent studies in the UMCG identified regions in the parotid glands containing 
high densities of stem cells and showed that sparing of those stem cells, which 
are presumed to be responsible for the parenchymal tissue regenerative ability, 
may reduce radiation-induced xerostomia [11]. Soon, the first clinical studies 
will start in which stem cells are extracted from patients before treatment and 
reintroduced after treatment to repair the regenerative ability of the salivary 
glands. The image biomarker xerostomia prediction models could guide 
the selection of patient that would benefit from such a treatment (Figure 1, 
application ). However, more research is necessary to determine if predicted 
high xerostomia risk patients would react well to future stem cell therapy.
Pre-treatment toxicity prediction could also be applied for model-based treatment 
plan optimisation (Figure 1, application ). Instead of planning on dose-volume 
parameters, model-based optimisation uses NTCP values as objectives. NTCP 
values and dose-volume parameters cannot be directly translated, since their 
relationship is generally sigmoidal and not linear. Model-based optimisation is 
thus using weighted dose-volume parameters in order to plan directly on the 
patient-specific toxicities risk. IBM models could improve this approach even 
more, as IBMs quantify normal tissue characteristics, thereby taking into account 
the estimated tissue specific reaction to radiation dose. In other words, supplying 
the optimisation algorithm with more accurate toxicity estimation, allowing for 
more optimised organs at risk prioritisation.
Finally, for the current practise, where planning on dose-volume parameters is 
still the standard, treatment planners could also take into account that patients 
with unbeneficial parotid gland IBM values, such as high P90 in MR images or low 
P90 in 18F-FDG PET images, are more likely to develop late xerostomia. For these 
specific patients, the sparing of salivary glands could be prioritized over other 
organs at risk, and hereby reducing the dose to the salivary glands.

Part 2: Image biomarkers changes after and during radiotherapy 
predict late toxicities
In the second part of this thesis, we investigated IBM changes (∆IBMs) of the 
parotid gland after (Chapter 5) and during radiotherapy (Chapter 6) in relation 
to planning parotid gland dose and late xerostomia.
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In Chapter 5, ∆IBMs were extracted from post-treatment CT scans that were 
acquired 6 week after treatment and planning CT scans. Only geometric ∆IBMs 
were evaluated, since the post-treatment CTs were not contrast enhanced, unlike 
the planning CTs. The most predictive ∆IBM was ∆Surface of the contralateral 
parotid gland. This ∆IBM showed better and more robust performance than 
∆Volume, yet these ∆IBMs were very strongly correlated to each other. It might 
be that ∆Surface partly quantifies shape deformation together with volume 
reduction. Furthermore, for patients that experienced moderate-to-severe 
xerostomia 6 weeks after radiotherapy, ∆Surface was also able to differentiate 
between patients that recovered and those that still experienced xerostomia at 
6 and 12 months after treatment. In other words, this ∆IBM seems to provide 
a useful toxicity prediction early after treatment. The application of a post-
treatment model are described in the ‘IBM model applications’ below. In addition, 
this study served as a proof of principle that ∆IBMs can predict the development 
of late xerostomia following radiotherapy.
Treatment options of radiation-induced xerostomia after radiotherapy are 
currently still limited. Therefore, the post-treatment model currently does not 
allow for interventions to reduce the risk of late xerostomia. Accordingly, we 
conducted a subsequent study using the data of an independent cohort of 
patients that received weekly CT scans as part of an adaptive radiation treatment 
scheme. In Chapter 6, the relationship is described between ∆IBMs, extracted 
from the weekly CTs, and the development of late xerostomia. Interestingly, 
the most predictive and frequently selected ∆IBM was again ∆Surface, which 
performed best at week 3 during treatment. The week 3 model with ∆Surface, 
parotid gland planning dose and baseline xerostomia scores had an excellent 
performance in selecting patients that are likely to develop late xerostomia. This 
time point offers opportunities for clinical interventions, as less than a third of 
the radiotherapy treatment has been completed.

IBM model applications (part 2)
The in-treatment IBM prediction, described in Chapter 6, can be used to guide 
adaptive radiotherapy (ART) approaches [12]. Since this model is developed for 
week 3 during radiotherapy, treatment adaptations can still be made that could 
influence the risk on xerostomia. In order words, early in-treatment prediction 
of normal tissue damage could potentially guide treatment adaptation, so that 
management of side effects can be improved or avoided. Castelli et al. showed 
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that the ART approach of weekly re-planning can reduce the parotid gland dose 
significantly [13]. They observed an average NTCP reduction of 11% (maximum 
30%). However, since weekly re-planning is time consuming, early in-treatment 
selection of patients that would benefit from ART would be desirable (Figure 1, 
application ). Another application of the in-treatment IBM models could be to 
change treatment modality from photon to proton irradiation to limit the total 
parotid dose for patients that show a large ∆Surface at week 3 during treatment 
(Figure 1, application ). A clinical trial will have to be conducted to evaluate if 
patients with a high risk of developing late xerostomia during treatment will 
benefit from the above-mentioned treatment adaptations.
The post-treatment model described in Chapter 5 could potentially serve as an 
early surrogate of late toxicity in the future (Figure 1, application ). Such an 
early surrogate of late xerostomia could improve effectiveness of future clinical 
studies, because the compliance of reporting side effects 6 weeks after treatment 
is much higher than a year after treatment (~ 60% 1-year compliance, due to 
death and other dropout factors). This could increase the cost-effectiveness of 
clinical studies. Early assessment of late xerostomia could also contribute to 
the physician-patient dialog, in order to discuss the probability of xerostomia 
recovery. Finally, the potential surrogate presented in this study, showed to 
discriminate between patients who do and do not recover from acute xerostomia. 
This may support the selection of high risk patients that may benefit from 
potential future xerostomia treatments, such as stem cell therapy [11], described 
in ‘IBM model application (part 1)’ (Figure 1, application ). The post-treatment 
model can support the decision whether stem cell transplantation will be 
effective.
It is not surprising that ∆IBM models described in chapter 5 and 6 provided very 
adequate toxicity prediction, considering that meaningful ∆IBMs already capture 
a biological response of the parotid gland to radiation. Hence, ∆IBMs can also be 
regarded as a quantification of toxicities (Figure 1, application  and ). The main 
aim of quantifying toxicity scores is to eliminate their subjective nature, since 
part of the unexplained variability of prediction models may be explained by 
this subjectivity. The individual experience of radiation-induced side effects with 
similar function loss varies widely among individual patients. This is illustrated 
by the discrepancy between physician-rated and patient-rated reporting of 
xerostomia scores [14]. However, the difficulty with validating the accuracy of 
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tissue damage quantification is that there is no reliable ground truth to compare 
it to, only the subjective measures.

Validation and future model development
A crucial next step for clinical implementation of the IBM NTCP models is external 
validation in larger patient cohorts. This would show that these models can also 
be utilised in new patient cohorts, and can be generally applied to obtain a more 
accurate prediction of late xerostomia than with conventional NTCP models. 
Therefore, the first next step should be to validate the pre-treatment models 
with new datasets from the UMCG and from other institutes. Datasets with multi-
modality images (CT, PET and MRI) together with patient-reported xerostomia 
scores are sparse, but are becoming readily more available. In addition, the in-
treatment model will need to be validated in a large cohort with late xerostomia 
scores and weekly CTs or high quality conebeam-CT scans. Furthermore, since the 
models’ main aim is to select patients for more advanced treatment strategies, 
these models should in the future also be validated for the treatments they will 
be used for, such as proton therapy, MR-guided photon treatment and ART, as 
changes in treatment method can influence the NTCP models [15].
Implementation of prediction models is an iterative process, as models can 
be improved due to the availability of more knowledge and data over time. By 
evaluation of the predictive IBMs from all image modalities (CT, PET and MRI), the 
relationships between these IBMs should be explored more, and subsequently 
it can be evaluated whether the CT-, PET- and MR-IBMs add to each other in 
predicting late xerostomia or yield similar information, and the best IBM modality 
has to be determined. Based on the current studies, MR showed the most 
potential in predicting xerostomia, probably due to the good soft tissue contrast, 
yet we only investigated the simple sequences T1 weighted Turbo Spin Echo. 
Dedicated sequences that specifically differentiate fat from gland tissue, could 
improve the prediction further.
Ideally, treatment decision making is not only based on NTCP values, but also 
on tumour control probability (TCP) and/or survival probability. Multiple studies 
have observed a relationships between tumour image biomarkers and overall, 
disease-free and progression-free survival [16–21]. In work not included in 
this thesis, we showed that image biomarkers of the tumour tissue were able 
to predict overall survival better than clinical variables only [22]. Ultimately, 
treatment should ideally be optimised for every patient individually based on 
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tumour, normal tissue, patient and treatment characteristics, hereby, guiding 
patient-specific tumour and organ at risk dose objectives. For example, for a 
patient that has high estimated tumour control (e.g. based on HPV status and IBM 
tumour characteristics), but has also a high risk of developing late xerostomia, 
dose to the tumour might be somewhat compromised to decrease the dose to 
the parotid glands. The other way around, for a patient that has a high risk of 
recurrence and the NTCP values are low, intensification of the treatment (e.g. 
hyper-fractionation) might be considered. Nevertheless, more research has to 
be conducted to validate the models and test the feasibility of such approaches, 
before clinical trials can be designed to test dose limiting or intensification 
strategies based on image biomarkers.
Finally, the workflow that is presented in this thesis could be translated to other 
organ and tumour sites. Pre-treatment lung variations, quantified in image 
biomarkers, were shown to be related to radiation-induced pneumonitis in 
oesophageal cancer patients [23]. Similar to the work presented in this thesis 
the addition of predictive lung image biomarkers to conventional NTCP models 
could improve the prediction of toxicities.
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Nederlandse samenvatting

Introductie
Radiotherapie speelt een belangrijke rol bij de behandeling van hoofd-
halskanker door de tumor lokaal te bestralen. In de afgelopen decennia is de 
levensverwachting van hoofd-halskanker patiënten na radiotherapie verbeterd. 
Hierdoor is er een groeiende groep overlevenden na kanker die langer leven 
met de bijwerkingen van de bestraling. Recentelijk zijn er nieuwe geavanceerde 
bestralingstechnieken zoals protonentherapie ontwikkeld die schade in normaal 
weefselschade kunnen verminderen. Echter deze therapie is maar beperkt 
beschikbaar. Hierdoor wordt onderzoek naar het voorspellen van bijwerkingen 
als gevolg van bestraling door radiotherapie steeds belangrijker. Door beter te 
kunnen voorspellen en begrijpen welke patiënten een grote kans hebben op 
het ontwikkelen van bijwerkingen, kan de behandeling van hoofd-halskanker 
meer geoptimaliseerd worden voor de individuele patiënt. Een voorbeeld 
hiervan is om patiënten met het grootste risico op bijwerkingen te selecteren 
voor protonentherapie.

De meest voorkomende bijwerkingen van hoofd-halsbestraling op lange termijn zijn 
droge mond (xerostomie) en taai slijm. Dit heeft een grote impact op de kwaliteit 
van leven. Om deze bijwerkingen te kunnen voorspellen zijn er predictiemodellen 
ontwikkeld die gebaseerd zijn op baseline klachten en de speekselklier 
bestralingsdosis. De performance van deze modellen is redelijk, maar om patiënten 
met een hoog en laag risico beter te kunnen onderscheiden moeten de modellen 
worden geoptimaliseerd. Ondanks dat patiënten dezelfde bestralingsdosis krijgen 
is er grote variatie in het ontwikkelen van late xerostomie en taai slijm.

De groeiende hoeveelheid beschikbare medische beeldvorming geeft, naast 
informatie over de tumor, ook veel ongebruikte extra informatie over de 
anatomie en fysiologie van de patiënt. We hebben software ontwikkeld om 
beeldkarakteristieken van weefsel te kwantificeren in zogenoemde image 
biomarkers (IBMs). IBMs geven informatie over intensiteit, textuur of geometrie 
van een bepaald interessegebied.
Het doel van dit onderzoek was om speekselklier disfunctionaliteit beter te voorspellen 
met behulp van IBMs. Deel 1 van dit proefschrift gaat over IBMs uit medische scans 
voor de radiotherapie en deel 2 uit beelden na en tijdens radiotherapie.
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Deel 1: Image biomarkers (IBMs) voor radiotherapie voorspellen late 
xerostomie
Hoofdstuk 2 introduceert de eerste gepubliceerde studie waar IBMs worden 
gebruikt om bijwerkingen - als gevolg van gezonde weefselschade - te voorspellen. 
Het doel van dit onderzoek was om de predictie van xerostomie en taai slijm 12 
maanden na radiotherapie te verbeteren met IBMs uit Computer Tomografie 
(CT) scans.
De CT-IBM die uit de variabele selectie voor xerostomie predictie werd 
geselecteerd, was de Short Run Emphasis (SRE) van de contralaterale parotisklier. 
De SRE was significant geassocieerd met late xerostomie en verbeterde het 
predictie ‘referentie model’ dat gebaseerd is op de parotisklier bestralingsdosis 
en baseline xerostomie klachten. Hogere SRE-waarden zijn gerelateerd aan 
hogere heterogeniteit van het parotisklierweefsel. De visuele inspectie van 
parotisklieren met hoge en lage SRE op CT-scans suggereerde dat deze 
heterogeniteit gerelateerd was aan de infiltratie van vetweefsel tussen het 
functionele parenchym parotisklierweefsel. Dit resulteerde in de hypothese 
dat de verhouding van vet-tot-functioneel parotisklierweefsel een mogelijke 
risicofactor is voor de ontwikkeling van xerostomie na radiotherapie.
De maximale intensiteit van submandibularisklieren had een statistisch 
significante associatie met het ontwikkelen van taai slijm na radiotherapie. 
Deze IBM was gerelateerd aan de CT-intensiteit van het intraveneuze contrast 
in de submandibularisklier arteriën. Echter, de stabiliteit van deze CT-IBM 
is twijfelachtig. Meer onderzoek is nodig om deze bevindingen te kunnen 
interpreteren.
Hoofdstuk 3 beschrijft een onderzoek naar IBMs uit 18F-FDG Positronemissieto-
mografie (PET) scans voor het verbeteren van late xerostomie predictie. De best 
voorspellende PET-IBM was de P90 die de minimumwaarde aangeeft van de 10% 
hoogste SUV’s. De gemiddelde SUV deed het ook goed, maar P90 leek relevanter 
in deze dataset. De resultaten van deze studie suggereren dat hoge metabolische 
activiteit in de parotisklieren gepaard gaat met meer functionele parenchymale 
cellen. Aangezien vetweefsel niet-functioneel parotisklierweefsel is en vaak een 
lage intensiteit heeft op 18F-FDG PET-beelden, ondersteunen deze resultaten de 
hypothese dat de verhouding van vet-tot-functioneel parotisklierweefsel moge-
lijk een belangrijke risicofactor is voor late bestraling geïnduceerde xerostomie.
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Hoofdstuk 4 bouwt voort op de hypothese van hoofdstuk 2 en 3, met parotisklier 
karakteristieken uit Magnetic Resonance Imaging (MRI) beelden. Doordat MRI 
een superieure modaliteit is op het gebied van weke delen contrast, kan MRI 
nauwkeuriger vet en parenchym klierweefsel differentiëren dan CT en 18F-
FDG PET. Ook in deze studie was de P90 de meest robuuste en significante 
voorspeller, maar hier is het 90ste percentiel van de gestandaardiseerde MR-
intensiteiten van de parotisklieren. De MR-IBM toonden aan dat een hoog T1-
signaal in de parotisklieren, wat wijst op een hoge vetconcentratie, significant 
geassocieerd was met hoger risico op late xerostomie. Bovendien, verbeterde 
de voorspelling van xerostomie aanzienlijk met de toevoeging van de MR-IBM 
aan de referentiemodellen. Ook deze resultaten ondersteunen de hypothese 
dat de verhouding van vet-tot-functioneel parotisklierweefsel een belangrijke 
voorspeller is voor late xerostomie.
Eerdere studies die niet aan hoofd-halskanker gerelateerd zijn, hebben een 
verband aangetoond tussen de vetverzadiging van de parotisklieren en 
xerostomia-gerelateerde ziekten: hyperlipidemie (verhoogde lipide plasma niveaus 
in het bloed) en het syndroom van Sjögren [3-5]. Soortgelijke beeldkenmerken 
als in dit proefschrift werden gepresenteerd als graderingsmarkers voor het 
syndroom van Sjögren: hoge T1- intensiteit en heterogeniteit van de parotisklieren 
[4]. Ook werd een verband aangetoond tussen verhoogde T1-intensiteit en 
verminderde parotisklierfunctie voor patiënten die lijden aan hyperlipidemie 
[5]. De bevindingen van deze studies suggereren dat verhoogde vetconcentratie 
in de parotisklier kan worden veroorzaakt door lipide-infiltratie vanuit het bloed, 
waardoor de functionaliteit van de parotisklier vermindert. Hoewel vetinfiltratie 
van de parotisklier kan gebeuren zonder symptomen, kan daardoor wel de 
reservecapaciteit worden verminderd waardoor de kans op late xerostomie na 
radiotherapie toch wordt verhoogd.
Samenvattend leidt dit tot de hypothese dat hoge niveaus van lipide in het bloed 
worden geassocieerd met een grotere kans op de ontwikkeling van late door 
straling geïnduceerde xerostomie.
Als vervolg op deze studies hebben we een onderzoek geïnitieerd om deze relatie 
tussen bloedlipide-eiwitniveaus gerelateerd aan hyperlipidemie (bijvoorbeeld 
triglyceriden) en de ontwikkeling van late door straling geïnduceerde xerostomie 
te onderzoeken. Dit is voor zover bij ons bekend, de eerste studie die op basis 
van IBMs het pathofysiologische proces van toxicteitsontwikkeling onderzoekt.
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Deel 2: Image biomarkers veranderingen na en tijdens radiotherapie 
voorspellen late bijwerkingen
In het tweede deel van dit proefschrift hebben we IBM-veranderingen (ΔIBM’s) 
van de parotisklier na (hoofdstuk 5) en tijdens radiotherapie (hoofdstuk 6) 
onderzocht die gerelateerd zijn aan de ontwikkeling van late xerostomie.
In hoofdstuk 5 werden ΔIBM’s uit CT-scans voor en 6 weken na de behandeling 
verkregen. Het oppervlakteverschil van de contralaterale parotisklier (ΔSurface) 
was de meest voorspellende ΔIBM. Deze ΔIBM deed het beter dan ΔVolume, maar 
ze waren wel zeer sterk aan elkaar gecorreleerd. Mogelijk kan ΔSurface zowel 
de vervorming als de volumevermindering kwantificeren. ΔSurface was in staat 
onderscheid te maken tussen patiënten die wel of niet herstelden van ernstige 
xerostomie net na behandeling. Met andere woorden, ΔSurface kan snel na de 
behandeling een adequate lange termijn voorspelling geven. Dit kan nuttig zijn 
om een objectieve surrogaatmarker te hebben voor late xerostomie, en voor 
mogelijke toekomstige behandelingen van xerostomie.
De behandelingsopties van door bestraling geïnduceerde xerostomie zijn helaas 
op dit moment nog steeds beperkt. Daarom hebben we een volgende studie 
uitgevoerd in een onafhankelijk cohort van patiënten van wie wekelijkse CT-scans 
zijn verkregen als onderdeel van het adaptieve radiotherapie procedure waarin 
wekelijks bekeken wordt of het actuele bestralingsplan nog adequaat is..
In Hoofdstuk 6 wordt de relatie beschreven tussen ΔIBMs, uit de wekelijkse 
CT’s en de ontwikkeling van late xerostomie. Interessant is dat de meest 
voorspellende ΔIBM opnieuw ΔSurface was, die het beste voorspeldein week 
3 tijdens de behandeling. Het model met ΔSurface van week 3, de parotisklier 
bestralingsdosis en de baseline xerostomie klachten presteerde uitstekend bij 
het selecteren van patiënten die mogelijk late xerostomie ontwikkelen. Dit tijdstip 
biedt kansen voor klinische interventies, aangezien minder dan een derde van 
de radiotherapiebehandeling is voltooid.
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