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We report a bipolar field effect tunneling transistor that exploits to advantage the low density of states
in graphene and its one atomic layer thickness. Our proof-of-concept devices are graphene
heterostructures with atomically thin boron nitride acting as a tunnel barrier. They exhibit room
temperature switching ratios ~50, a value that can be enhanced further by optimizing the device
structure. These devices have potential for high frequency operation and large scale integration.

The performance of graphene-based field effect transistors (FETs) has been hampered by graphene’s
metallic conductivity at the neutrality point (NP) and the unimpeded electron transport through
potential barriers due to Klein tunneling, which limit the achievable ON-OFF switching ratios to ~10°
and those achieved so far at room temperature to <10 [1-7]. These low ratios are sufficient for
individual high-frequency transistors and analogue electronics [4-7] but they present a fundamental
problem for any realistic prospect of graphene-based integrated circuits [1-7]. A possible solution is to
open a band gap in graphene, for example by using bilayer graphene [8,9], nanoribbons [10,11],
quantum dots [11] or chemical derivatives [12] but it has proven difficult to achieve high ON-OFF
ratios without degrading graphene’s electronic quality.

In this report, we demonstrate an alternative graphene transistor architecture, namely a field-effect
transistor based on quantum tunneling [13-17] from a graphene electrode through a thin insulating
barrier (in our case, boron nitride of a nm thickness). The operation of the device relies on the voltage
tunability of the tunneling density of states (DoS) in graphene and of the effective height A of the
tunnel barrier adjacent to the graphene electrode.

The structure and operational principle of our FET are shown in Fig. 1. For convenience of
characterization, both source and drain electrodes were made from graphene layers in the
multiterminal Hall bar geometry [18]. This allows us to measure not only the tunnel current-voltage
curves (I-V) but also the behavior of the graphene electrodes, thus providing additional information
about the transistor operation. The tunnel barrier is hexagonal boron-nitride (hBN), and the core
graphene-hBN-graphene structure is encapsulated in hBN to allow higher quality of the graphene
electrodes [19,20]. The whole sandwich is placed on top of an oxidized Si wafer that acts as a gate
electrode (Fig. 1A,B). When a gate voltage V, is applied between the Si substrate and the bottom
graphene layer (Grg), the carrier concentrations ng and ny in both bottom and top electrodes increase
due to the weak screening by monolayer graphene [21], as shown schematically in Fig. 1C. The
increase of the Fermi energy Er in the graphene layers leads to a reduction in A for electrons tunneling
predominantly at this energy [18]. In addition, as shown in the figure, the effective height also
decreases relative to the NP because the electric field penetrating through Grg alters the shape of the
barrier [22,23]. Furthermore, the increase in the tunneling DoS as Er moves away from the NP [21]
leads to an increase in the tunnel current /. Depending on parameters, any of the above three
contributions can dominate changes in / with varying V,. We emphasize that the use of graphene in
this device architecture is critical because this exploits graphene’s low DoS which, for a given change
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Fig. 1. Graphene field-effect tunneling
transistor. (A) Schematic structure of our
experimental devices. In the most basic
version of the FET, only one graphene
electrode (Grg) is essential and the outside
electrode can be made from a metal. (B)
The corresponding band structure with no
gate voltage applied. (C) The same band
structure for a finite gate voltage V, and
zero bias V,,. (D) Both Vg and V,, are finite.
The cones illustrate graphene’s Dirac-like
spectrum and, for simplicity, we consider
the tunnel barrier for electrons.

in Vg, leads to a much larger increase in Er compared
to a conventional two-dimensional gas with parabolic
dispersion (cf. [13-17]). This translates into much
larger changes of both A and tunneling DoS.

To fabricate the device shown in Fig. 1A, we first
prepared relatively thick hBN crystals on top of an
oxidized Si wafer (300 nm of SiO,) using the standard
cleavage technique [24]. The crystals served as a high-
quality atomically-flat substrate [19]. Monolayer
graphene (Grg) was then transferred onto a selected
hBN crystal (20-50 nm thick) using a dry transfer
procedure [19,25]. After deposition of metal contacts
(5nmTi/50nm Au) and etching to form a multiterminal
Hall bar mesa, the structure was annealed at 350°C in
hydrogen-argon atmosphere. A few-atom-thick hBN
crystal was identified [26] and transferred on top of
Grg by using the same procedures. This hBN layer
served as the tunnel barrier. The whole process of
positioning, annealing and defining a Hall bar was
repeated to make the second (top) graphene
electrode (Gry). Finally, a thick hBN crystal
encapsulated the entire multilayer structure (Fig. 1A;
also, see [18]). Further details of our multistep
fabrication procedures can be found in refs. [18,25].
We tested devices with tunnel barriers having
thickness d from 1 to 30 hBN layers [18]. To illustrate
the basic principle of the tunneling FETs, we focus on
the data obtained from four devices with a tunnel
barrier made of 4-7 layers and discuss the changes
observed for other d.

Fig. 2A shows the behavior of in-plane resistivity p for
the Grg and Gry layers as a function of V,. The curves
indicate little residual doping for encapsulated
graphene (=0 and <10 c¢m™ for Grg and Gry,
respectively). In both layers, p strongly depends on V
showing that Grgz does not screen out the electric field
induced by the Si-gate electrode. The screening
efficiency can be quantified by Hall effect
measurements (Fig. 2B-D). They show that the gate
induces approximately the same amount of charge in
both layers at low concentrations; that is, there is
little screening if ng is small. As the concentration in
Grg increases, the ng(V,) and nt(V,) dependences
become super- and sub-linear, respectively (Fig. 2B-C).
This is due to the increase in ng which leads to an
increasingly larger fraction of the gate-induced
electric field being screened out by Grg [18]. Hence
more electrons accumulate in the bottom graphene
electrode and fewer reach the top electrode. The
total charge accumulated in both layers is linear in V,
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Fig. 2. Graphene as a tunneling electrode. (A)
Resistivities of the source and drain graphene
layers as a function of V. (B-D) Carrier
concentrations in the two layers induced by
gate voltage, which were calculated from the
measured Hall resistivities p,, using the
standard expression n =B/ep,, where B is the
magnetic field and e the electron charge. Close
to the NP, the spikes appear (shown by dotted
curves) because the above expression is not
valid in the inhomogeneous regime of electron-
hole puddles. The shown device has a 4-layer
hBN barrier. Carrier mobilities in the top and
bottom layers are 35,000 and 90,000 cm?/Vs,

(Fig. 2D), as expected. We can describe the
observed redistribution of the charge between
the two graphene layers in terms of the
corresponding sequential circuit including the
guantum capacitance [13,27] of the graphene
layers (see [18]). Note that, for a parabolic band,
the ratio between ng and n, would be
independent on V, and, therefore, the electric
field penetrating into the tunnel barrier would be
significantly reduced even in the limit of zero ng
[13,18].

A bias voltage V, applied between Grg and Gry
gives rise to a tunnel current through the thin hBN
barrier which scales with device area. Fig. 3A
shows |-V characteristics for one of our devices at
various V,. First, we consider the case of zero V,.
At low V,, I is linear in bias, yielding tunnel
resistivity p' =V,/l 100 GQ-um* for this hBN
thickness. At higher voltages (V, above ~0.1V), /
grows more rapidly. The |-V curves can be
described (inset in Fig. 3A; also, see [18]) by the
standard quantum-tunneling formulae [22,23]
assuming energy conservation but no momentum
conservation at the mismatched graphene-hBN
interface [28]. As shown below, we can
distinguish experimentally between electron and
hole tunneling and find that the tunneling is due
to holes. This is in agreement with a recent theory
for the graphene-hBN interface [29], which
reports a separation between the Dirac point in
graphene and the top of the hBN valance band of
~1.5eV whereas the conduction band is >4eV
away from the Dirac point. The fit to our data
with A =1.5eV yields a tunneling mass m =0.5 mq
(mg is the free electron mass), in agreement with
the effective mass for holes in hBN [30].
Furthermore, our analysis indicates that / varies
mainly due to the change in the tunneling DoS,
whereas the change in tunneling probability with
applied bias is a significant but secondary effect
[18]. This is due to the fact that, for our
atomically-thin barriers with relatively low pT, we
are not in a regime of exponential sensitivity to
changes in A[EL(V))].

To demonstrate the transistor operation, Fig. 3A
plots the influence of gate voltage on [ V,
significantly enhances the tunnel current and the
changes are strongest at low bias. The field effect

is rather gradual for all gate voltages up to 50V, a limit set by the electrical breakdown of our SiO,
gate dielectric at typically *60V. To quantify this behavior, Fig. 3B plots the low-bias tunneling



conductivity o' =//V,, as a function of V,. The influence of V, is clearly asymmetric: o' changes by a
factor of =20 for negative V, (holes) and by a factor of 6 for positive V, (electrons). We observed
changes up to =50 for hole tunneling in other devices and always the same asymmetry [18]. Also, the
I-V curves of the devices showed little change between room and liquid-helium temperatures, as
expected for A >> thermal energy.

To analyze the observed behavior of csT(Vg), we modeled the zero-bias conductivity by using the
relation o' ocD0oSg(Vy)xDoSH(V,)xT(V,), where the indices refer to the two graphene layers and T(V,) is
the transmission coefficient through the hBN barrier [22,23]. The resulting curve shown in Fig. 3B
explains qualitatively the main features in the measured data, using self-consistently the same
tunneling parameters m and A given above. At V, close to zero, corresponding to tunneling from
states close to the NP, the tunneling DoS in both graphene layers is small and non-zero, due to
residual doping, disorder and temperature [18]. The application of a gate voltage of either polarity
leads to a higher DoS and, therefore, higher ¢'. The gradual increase in GT(Vg) for both polarities in Fig.
3B is therefore due to the increasing DoS. However, V; also affects the transmission coefficient. Due to
the shift of £ with changing V,, the effective barrier height A decreases for one sign of charge carriers
and increase for the other (Fig. 1B). This explains the asymmetry in both experimental and calculated
GT(Vg) in Fig. 3B: It is due to the change in T(V,). This clearly shows that for our devices the effect of V,
on T(V,) is relatively weak (non-exponential) and comparable with the effect due to changes in the
tunneling DoS. The sign of the asymmetry infers that the hBN barrier height is lower for holes than for
electrons, in agreement with the graphene-hBN band structure calculations [29]. The weaker
dependence of / on Vj at high bias is also understood in terms of the more gradual increase in the
tunneling DoS and in E; at high doping (V, =0.5V correspond to ng 10" cm?).
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Fig. 3. Tunneling characteristics for a graphene-hBN device with 6+1 layers of hBN as the tunnel
barrier. (A) 1-Vs for different Vy (in 10V steps). Note, that due to finite doping, the minimum
tunneling conductivity is achieved at Vy=3V. The inset compares the experimental 1-V at V =5V (red
curve) with theory (dark) which takes into account the linear DoS in the two graphene layers and
assumes no momentum conservation. Further examples of experimental curves and their fitting can
be found in Supplementary Material. (B) Zero-bias conductivity as a function of V,. The symbols are
experimental data, and the solid curve is our modeling. The curve is slightly shifted with respect to
zero Vy because of remnant chemical doping. In all the calculations, we assumed the hole tunneling
with m =0.5m,y and A=1.5 eV [29,30] and used d as measured by atomic force microscopy. Both |
and o are normalized per tunnel area, which was typically 10 to 100 pm? for the studied devices.
Temperature: 240 K.



Our results and analysis suggest that higher ON-OFF ratios could be achieved by using either higher V,
or making devices with larger d, so that the tunneling depends exponentially on bias and is controlled
by the barrier height rather than the DoS. The former route is limited by the electrical breakdown of
dielectrics at ~1V/nm (V, =300V for our SiO, thickness). By extrapolating the analysis shown in Fig. 3B
to such voltages, we find that ON-OFF ratios >10" would be possible for our 4-7 layer devices if SiO, of
highest quality were used. However, it would still require unrealistically large V, to enter the regime
where Er becomes comparable with A and changes in GT(Vg) are exponentially fast. Therefore, we have
tried the alternative option and investigated devices with both thinner and thicker hBN barriers. For 1
to 3 hBN layers, we find that zero-bias ' increases exponentially with decreasing number of layers,
consistent with quantum tunneling, and we observe a weaker influence of V, on I, as expected for the
more conductive regime. On the other hand, the thicker hBN barriers are prone to electrical
breakdown. Nonetheless, for a few devices with d ~6 to 9 nm we were able to measure a tunnel
current without breakdown. A significant current (>10pA) appeared at biases of several volts and
increased exponentially with V,. The thicker devices’ |-V characteristics could be fitted using the same
hole-tunneling parameters used above, thus indicating quantum tunneling rather than an onset of
electrical breakdown. Unfortunately, no significant changes (exceeding 50%) in the tunnel current
could be induced by V;. This insensitivity to gate voltage remains to be understood but, partially, is
due to high ng (>10 cm™) induced by V,, so that Grg becomes strongly metallic and efficiently screens
the influence of the gate.

We conclude that our tunneling devices offer a viable route for high speed graphene-based analogue
electronics. The ON-OFF ratios already exceed those demonstrated for planar graphene FETs at room
temperature by a factor of 10 [3-7]. The transit time for the tunneling electrons through the nm-thick
barriers is expected to be extremely fast (a few fs) [13-17] and exceeds the electron transit time in
submicron planar FETs. It should also be possible to decrease the lateral size of the tunneling FETs
down to the 10 nm scale, a requirement for integrated circuits. Furthermore, there appears to be no
fundamental limitation to significantly enhance the ON-OFF ratios by optimizing the architecture and
by using higher-quality dielectrics. We believe that the electronic properties of the demonstrated
devices merit further research to explore their limitations and scope, and their potential for
applications.
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Supplementary Material

#1 Experimental structures

Our devices contain two graphene Hall bars placed on top of each other with a thin layer of hBN in
between. Figure S1 shows one of the studied devices. The turquoise area in Fig. S1A is a thick hBN
crystal on top of an oxidized Si wafer (brown-purple). The hBN layer served as a substrate to ensure
the quality of the bottom graphene electrode. The actual graphene-hBN-graphene-hBN sandwich is
highly transparent and practically invisible on this image taken in an optical microscope (Fig. S1A).
Nonetheless, one may discern a mesa structure in the central area between the Au leads. The
multilayer Hall bar geometry is illustrated in Fig. S1B. This is an electron micrograph of the same
device but before depositing Au contacts. The colored image of various layers was used at a design
stage for the last round of electron-beam lithography. The Au leads (deposited later) are shown in
violet, and two graphene mesas in orange and green. The hBN crystal used as the tunnel barrier can
be seen as a light grey patch of irregular shape. Its thickness was determined using atomic force
microscopy, Raman microscopy and optical contrast [26].

Figure S1. One of our hBN-graphene-hBN-graphene-hBN devices. (A) Optical image of the final device.
(B) Electron micrograph of the same device at the final design stage before evaporating Au leads. Two
10-terminal Hall bars made from graphene are shown in green and orange. The spatial scale is given
by the width of the Hall bar, which was 2 um for this device. Fabrication required 4 dry transfers and
alignments of the graphene and hBN crystals, 4 nonconsecutive rounds of electron-beam lithography,
3 rounds of plasma etching and two separate metal depositions.

#2 Penetration of electric field through the graphene electrode
Consider the geometry shown in Fig. 1A of the main text. The external electric field between the Si and
bottom graphene electrodes, which are separated by distance D, is f; =V,/D (dielectric constants for
both SiO, and hBN are similar and, for simplicity, we assume them both equal to & ). The electric field
F, between Grg and Gry and the induced carrier densities in the graphene plates ny and ng are related
by the equations
€(Fp —Fg) =4mnge
-eF, =4mtnse

A bias voltage V, between the two graphene electrodes is given by

eV = eFpd - p(ny) + p(ne)
where d is the hBN thickness and p(n) are the chemical potentials in the corresponding graphene
layers. For simplicity, we assume that graphene electrodes are chemically undoped and, therefore, n;
=ng =0 in the absence of applied voltages.

Taking into account the electron-hole symmetry p(-n) =-u(n), we obtain the following equation
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which allows us to determine ny induced by the field effect in Gry for a given V,. For a conventional
two-dimensional (2D) electron gas, u(n)oc n and the first term in eq. (S1), which describes the classical

capacitance of the tunnel barrier, is dominant for any realistic d, larger than interatomic distances. In
graphene with its low DoS and Dirac-like spectrum, u(n)oc Jn and this leads to a qualitatively different

behavior, which can be described in terms of quantum capacitance [27] (also note the discussion of
doping of graphene through an hBN spacer in ref. [S1]).

The above expressions were employed to find ny and ng as a function of bias V,, and gate voltage V,
and the results were then used to model the |-V characteristics (see the theory curves in Fig. 3 of the
main text). To illustrate the agreement between the experiment and theory at the intermediate stage
of determining ny and ng, Figure S2 shows the same experimental data for carrier concentrations in the
top and bottom graphene layer n(V,) as in Fig. 2B,C and compares them with the behavior expected
from solving eq. (S1).

0 5 10

v,V
Figure S2. Nonlinear dependence of charge carrier concentrations in the two graphene electrodes as a
function of gate voltage. The symbols are experimental data (red symbols for the bottom graphene
layer; blue for the top). The solid curves in the corresponding colors are our modeling. No fitting
parameters are used.

#3 Modeling of device operation
I-V curves for a tunnel junction are generally described by [23]

1(V)oc jdEDosB(E)DosT(E —eVT(E)[f(E—eV)- f(E)] (S2)

where f(E) is the Fermi distribution function. At low temperatures the difference of the Fermi
functions restricts the relevant energy E integral to u<E <pu+eV where p is the chemical potential

and, to be specific, we consider the case eV > 0. The above formula assumes that there is no in-plane
momentum conservation, which is most likely to be the case of realistic graphene-hBN interfaces.
Indeed, there are several possible mechanisms for elastic scattering at the interface and, in particular,
unavoidable fluctuations of the mass term due to the lattice mismatch [S2]. Note that elastic tunneling
is forbidden between two 2D systems if in-plane momentum is conserved.

If the tunneling conductance per channel is much smaller than conductivity quantum e*/h (as in our
case) the transmission probability T is exponentially small and depends strongly on the energy E of
tunneling electrons,

T(E)= A(E)exp[-W (E)] (S3)



where A is a smooth function that depends on details of the wave-function matching at the interface.
In our modeling, we assume A=const.

Let us now discuss common functional forms for W(E). For the case of an isotropic barrier, we need to
solve the dispersion equation E :sn(kx,ky,kz) for each band of the barrier material, where E is the

energy of electrons tunneling in the z direction. No real solution for k, is possible inside the energy
gap, and the minimal Imk, for a given E and arbitrary k, and k,, which dominates the tunneling
probability, is given by

W(E)=2d Imk,
v 2mA
For the case of parabolic bands, Imk, :T where A is the barrier height (in our case, the distance

to the valence band) and m is the effective mass [22-23,53].

In the case of layered crystals, their band structure can be described in the simplest approximation as
elk, k, k, )=7(k, )+ & (k, K, ) (S4)
where 1k,) =2t cos(k,/); t, describes the interlayer coupling and / is the interlayer distance (for the

case of hBN, / =3.4A). By solving the corresponding tunneling equation, we find k, within the gap to be

K, :—In |E 81| (E—alJz_

ERRis

The top of the valence band corresponds to E,,, = maxe;(ky,k,)+2t, (to be specific, we choose t, >0),

and the optimal value for the tunneling wavevector is then

2

Imkzziln A+1 + A+1 -1 (S5)

whereA=E-E_, . IfA>>2t , this expression can be simplified as kzz%ln(AJ and yields the
L

tunneling probability T oc (t,/A)*" where n :d/l is the number of atomic layers in the tunnel barrier. In

\/Zm A M

where m" =——is the effective mass
I tl h 2t 1

in the tunneling direction. This shows that the standard isotropic model is applicable to layered
crystals, provided tunneling occurs not too far from the band-gap edge.

the opposite limit of A <<2t,, we obtain k, =

Eq. (S4) is a simplified version of the real band structure of hBN, which depends on stacking order. hBN
crystals usually have AA’ stacking [S4]. In the next approximation that allows an analytical solution by
neglecting the mixing of mand o bands [29,30], we obtain the following dispersion relation [S4]

2
62 (ky Ky K ) et 62k, ky )£ 21k, s (ke K, ) (S6)
where E,is the energy difference between boron and nitrogen sites [S4]. In this case, we find
2
imk, =i -4 [ 2] 4 (57)
Iop2t, Ylat,

E2
where ® =, E2 —Tg—|sl(kx,kyl. Eq. (S7) differs from (S5) by replacement E —,/E*—EZ/4, which

indicates the general validity of equation Imk, o In(A) for describing vertical tunneling through
strongly layered materials. (S5) and (S7) fit our experimental data equally well. It is worth noting that
the tunneling exponent through layered crystals depends on E only weakly (logarithmically) in

9



comparison with isotopic crystals that exhibit the standard square-root energy dependence. For small
changes in A, this difference is unimportant (see below).

Finally, in the case of a strong electric field such that it changes the rectangular shape of the tunnel
barrier (Fig. 1D), the above expressions for W can be generalized within the WKB approximation [S3]
as

W =2j.dxlme(A—>A(X))-

#4 Layered versus isotropic barrier

In the main text, we have chosen for the sake of brevity to ignore the fact that our tunnel barriers are
made from a strongly layered material. This simplification allowed us to refer to the standard
tunneling theory. However, the assumption can be justified further by the fact that, for our device
parameters, we have found no difference between the I-V characteristics calculated for the layered
and isotropic materials and, therefore, we cannot distinguish between the two cases. To illustrate the
indifference to the layered structure of our tunnel barrier, Figure S3 shows experimental |-V curves for
two devices and compares them with the behavior expected for layered and isotropic cases. No major
difference can be seen, except at low bias in Fig. S3A. The exact shape of experimental curves at low
bias varies from sample to sample (cf. Fig. S3A & B) and, hence, we do not discuss the difference.

501
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NE ~
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2 ez
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_50_
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v,V v,V

Figure S3. Tunneling I-V characteristics for two different 4-hBN-layer devices at zero gate voltage and
their comparison with theory. (A) The red solid curve is the experimental data from Fig. 3. The two
dashed curves are our modeling for an isotropic barrier (A and m as in the main text) and for a layered
barrier of the same height and t, =0.6eV, by using formulae from the above section. Note that t,
~0.6eV corresponds to m =0.5mq. (B) Nominally similar device (for clarity, the experimental data are
shown by symbols). The curves are again the layered and isotropic versions of the tunneling theory.
The fitting parameter is the constant A in eq. (S3), which determines the absolute value of /. The close
agreement between functional forms of the theoretical curves validates the use of the conventional
tunneling formulae in the main text.

#5 Additional examples of our device operation

We have studied 6 multiterminal devices such as shown in Fig. S1 and >10 simpler tunneling FETs with
only one or two Ohmic contacts attached to each graphene electrode. The latter type does not
provide much information about the properties of the graphene electrodes but even one contact is
sufficient to study their tunneling 1-V characteristics. The devices with the same hBN thickness have
exhibited qualitatively similar behavior, as discussed in the main text. To illustrate the degree of
reproducibility for different samples, Figure S4 plots the behavior observed in another device with the
tunnel barrier consisting of 4 hBN layers. One can see that the nonlinear |-V characteristics are

10



qualitatively similar to those presented in the main text, and their response to gate voltage is also
fairly similar.

I,nAlum? 40
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Figure S4. Another hBN-graphene-hBN-graphene-hBN field-effect device. (A) Tunneling I-Vs and their
response to gate voltage (in 5V steps, cf. Fig. 3 of the main text). The inset compares the experimental
I-V at zero gate voltage (red curve) with theory (dark) which takes into account the linear DoS in the
two graphene layers and assumes no momentum conservation. Temperature: 300 K. (B) Changes in
low-bias tunneling (symbols) and the theory fit for 4 hBN layers (solid curve). The main difference with
respect to the device in the main text is a weak response at low gate voltages, which is probably due
to stronger disorder and chemical doping that smears the gate influence. The electron-hole
asymmetry again implies the hole tunneling as discussed in the main text.

The only consistent difference that we noticed for a number of devices with 4 or more atomic layers of
hBN was the absolute value of ' which could vary by a factor of 100 for nominally the same d.
Although this can be attributed to possible errors in determining the number of layers in thicker hBN
[26], more careful analysis of the devices’ response to bias and gate voltages reveals that the reason
for these variations is more likely to be inhomogeneous thickness of hBN. We believe that in some
devices one or two layers can be missing locally (in submicron scale patches) so that the tunnel
current then concentrates within these thinner areas. Graphite is known to cleave leaving occasional
stripes of smaller thickness for few-layer graphene crystals and, whereas it is possible to see missing
graphene patches in an optical microscope, hBN does not allow the required resolution [26].
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