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ABSTRACT 

White fibers from a Late Cretaceous dinosaur Shuvuuia desert i  stained 

posi t ive for  β-kerat in ant ibodies in a 1999 paper , fol lowed by many simi lar  

immunological  claims for  Mesozoic protein in bones and integument . 

Ant ibodies recognize protein epi topes der ived from i ts ter t iary and 

quaternary structure, so such results would suggest  long polypept ide 

preservat ion al lowing for  sequencing with palaeobiological  impl icat ions. 

However, proteins are relat ively unstable biomacromolecules that  readi ly 

hydrolyze and amino acids exhibi t  predictable instabi li ty under diagenet ic 

heat and pressure. Fur thermore, ant ibodies can yield false posi t ives. We 

reanalyzed a Shuvuuia fiber  using focused ion beam scanning electron 

microscopy, energy-dispersive X-ray spectroscopy, t ime-of-fl ight  secondary 

ion mass spectrometry, and laser-st imulated fluorescence imaging, finding 

i t  to be inorganic and composed mainly of calcium phosphate. Our findings 

are inconsistent  with any protein or  other  or iginal  organic substance 

preservat ion in the Shuvuuia fiber , suggest ing that  immunohistochemistry 

may be inappropr iate for  analyzing fossi ls due to issues with false posi t ives 

and a lack of controls.  

 

Keywords: fossi ls; feathers; ant ibodies; kerat in; calcium phosphate; protein 
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1. I nt r oduct ion 

Organic ‘soft  t issue’ preservat ion in Mesozoic fossi ls has been 

reported for  over  three decades (De Jong et  al ., 1974; Gur ley et  al ., 1991; 

Schweitzer  et  al ., 2005, 2007, 2009; Asara et  al ., 2007; Bertazzo et  al ., 2015; 

Moyer et  al ., 2016a, 2016b; Pan et  al ., 2016). The ident ificat ion of 

organical ly preserved, tens-of-mi l l ions-of-years-old proteins, cells, and 

t issues would be groundbreaking, with potent ial  for  studying molecular  

evolut ion through geologic t ime and i l luminat ing ext inct  animal 

physiologies. Ear ly work reported β-kerat in in bird and non-avian dinosaur 

integumentary structures (Schweitzer  et  al ., 1999a, 1999b), such as IGM 

100/977 (Mongolian Inst i tute of Geology, Ulaan Bataar , Mongol ia), a 

specimen of the smal l , bipedal Late Cretaceous alvarezsaur id theropod 

dinosaur Shuvuuia desert i  from the Mongolian Djadochta Format ion with 

mult iple thin fibers associated with the skeleton interpreted as pr imit ive 

feathers (Schweitzer  et  al ., 1999b). 

However, proteins are unstable over  deep geologic t ime (Kr iausakul 

and Mit terer , 1978; Armstrong et  al ., 1983; Lowenstein,1985; Mit terer , 

1993; Bada, 1998; Br iggs and Summons, 2014; Sait ta et  al ., 2017). Par t ial ly 

intact  proteins persist  for  3.4 Ma in except ional ly cold environments 

(Rybczynski et  al ., 2013). Biomineral ized calci te crystals can act  as closed 

systems with respect to intracrystal l ine biomolecules al though degradat ion 

of these biomolecules st i l l  occurs (Curry et  al ., 1991) (e.g., in a survey of 

New Zealand brachiopod shells, immunological  signals correlated with 
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pept ide hydrolysis but  were lost  by 2 Ma (Walton, 1998; Col l ins et  al ., 

2003)). The oldest , uncontested, low-lat i tude pept ide sequence is a short , 

acidic pept ide found within ~3.8 Ma rat i te eggshel ls (Demarchi et  al ., 2016). 

The sequence was a disordered aspart ic acid-r ich region of the eggshell  

protein struthiocalcin. I ts survival  is exceptional since carbonate-bound 

proteins degrade rapidly and predictably (Curry et  al ., 1991; Walton, 1998; 

Col l ins et  al ., 2003), explaining their  ut i l i ty in amino acid racemizat ion 

dat ing, and the surviving region was independent ly predicted by molecular  

simulat ion from four  candidate binding regions. The disordered and 

otherwise unstable sequence adopted a stable configurat ion when bound to 

the calci te which in effect  ‘froze’ the pept ide to the sur face, dropping the 

local  system temperature by ~30 K , as descr ibed by Demarchi et  al . (2016). 

Whi le shor t  pept ide sequences are relat ively common from younger 

Pleistocene sub-fossi ls (Or lando et  al ., 2013), these are over  two orders of 

magnitude younger than purpor ted ant ibody-based Mesozoic pept ides. 

Ant ibodies are immune system proteins with unique molecular  

structures that  can bind to dist inct  epi topes on ant igens, which are 

exogenous substances t r igger ing an immune response, such as pathogens. 

Ant ibody-ant igen binding speci fici ty has been co-opted for  research and 

medical  purposes, but  false posi t ives are common and of concern for  any 

exper iment  (True, 2008). Binding specifici ty is the basis of 

immunohistochemical exper iments per formed on Shuvuuia fibers and other  

fossi ls report ing the presence of β-kerat in (Schweitzer  et  al ., 1999a, 1999b; 
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Moyer et  al ., 2016a, 2016b). A t rue posi t ive would suggest long, l ikely intact , 

pept ide sequence preservat ion with higher -order  protein folding, given the 

conformat ion-based nature of ant ibody-ant igen binding speci fici ty (Laver et  

al ., 1990). Beyond the unlikel ihood of Mesozoic protein folding preservat ion, 

another  issue with these immunochemistry studies is that  molecular  dat ing 

of the evolut ion of kerat in proteins indicates that  modern feather  β-kerat ins 

diverged ~143 Ma, meaning that  the feathers of non-avian dinosaurs such 

as Shuvuuia might not  have been composed of the same family of avian β-

kerat ins as that  of modern feathers (Greenwold and Sawyer, 2011). This 

would mean that  modern feather  kerat in is the wrong ant igen to raise 

ant ibodies against  for  exper iments on Shuvuuia kerat in.  

The possibi l i ty that  these results represent false posi t ives is 

invest igated here. Accordingly, we analyzed Shuvuuia fiber  composit ion by 

examining another  fiber  from IGM 100/977 (see Schweitzer  et  al ., 1999b; 

Moyer et  al ., 2016a for  immunochemistry result  on fibers from this same 

specimen). A smal l  piece of matr ix containing the fiber  studied here was 

or iginally removed from the specimen in 2009 by Amy Davidson who 

or iginally prepared the specimen, stored at  room temperature within paper 

towel wrapping, and analyzed from 2016 onwards (potent ially increasing 

the l ikel ihood of detect ing proteinaceous signatures in the form of 

contaminat ion). The or iginal  report  of β-kerat in in IGM 100/977 was 

publ ished in 1999 (Schweitzer  et  al ., 1999b), and the fiber  used in this study 

received no fur ther  preparat ion pr ior  to our  study. I f the fibers indeed 
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contain endogenous kerat in, then the ~17 years between studies is unl ikely 

to result  in much degradat ion, consider ing their  putat ive persist ence since 

the Late Cretaceous and withstanding diagenesis, environmental  moisture 

in the sur face or  subsurface, cl imat ic and geothermal high temperatures, 

and weather ing. Therefore, al though atmospher ic exposure might be argued 

to impose di fferent  degradat ion stresses on the fossi l  (e.g., increased 

oxidat ion or  decay from newly introduced aerobic microbes) than do bur ial 

and diagenesis that  could result  in a loss of or iginal  protein over  ~17 years, 

we consider  this to be unl ikely.  

I f the fiber  is indeed composed of kerat in, then i t  should contain 

signatures consistent  with proteins and organic mater ial  more general ly. 

Therefore, this study examines the basic structure and chemistry of the 

fiber . We analyzed the fiber  using l ight  microscopy, laser -st imulated 

fluorescence (LSF) imaging (Kaye et  al ., 2015; Wang et  al., 2017), t ime-of-

fl ight  secondary ion mass spectromet ry (TOF-SIMS), scanning electron 

microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). The 

untreated fiber  and surrounding sediment matr ix underwent l ight  

microscopy and LSF imaging and a fragment of fiber  and matr ix underwent 

TOF-SIMS. After  discover ing that  the fiber  and matr ix were covered by 

cyanoacrylate consol idant , a focused ion beam (FIB) t rench of the fiber  

fragment was analyzed under SEM and EDS. Final ly, the fragment of the 

fiber  and surrounding sediment matr ix were resin-embedded, polished, and 

the cross-sect ion was analyzed with SEM, EDS, and TOF-SIMS.  
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2. M at er ial  and met hods 

2.1. Light microscopy and LSF 

LSF images were col lected using a modified version of the protocol of 

Kaye et  al . (2015). The untreated fiber  and surrounding sediment matr ix 

was i l luminated with a 405 nm, 500 mw violet  laser  diode and imaged with 

a Leica DFC425 C digi tal  camera under magnificat ion from a Leica M205 C 

stereomicroscope. An appropr iate long pass blocking fi l ter  was fi t ted to the 

object ive of the stereoscope to prevent image saturat ion by the laser . The 

laser  diode was defocused to project  a beam cone that  evenly l i t  the 

specimen dur ing the photo’s t ime exposure in a dark room. The images were 

post-processed in Photoshop CC 2016 for  sharpness, color  balance, and 

saturat ion. 

 

2.2. SEM and EDS 

Fol lowing light  microscopy and LSF, a fragmented por t ion of the fiber  

and surrounding sediment matr ix was sputter -coated with a 50 nm thick 

layer  of gold using an Edwards ScanCoat system to prevent specimen-

induced charging and di fficul t ies with imaging/cut t ing. FIB preparat ion was 

per formed with a FEI  Hel ios NanoLab 600 dual FIB-SEM system. Before 

the cross-sect ion was produced (approximately 40 μm × 20 μm × 20 μm), a 

protect ive str ip of plat inum was deposited over  the region border ing the cut  

to prevent against  any potent ial  ion-beam damage to the sample sur face. 
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Mil l ing was conducted at  30 kV with progressively lower beam currents (6.0 

nA to 0.9 nA) to produce an ar tefact -free surface.  

The same fragment of fiber  and surrounding sediment matr ix was 

later  embedded in EpoThin 2 epoxy resin and pol ished using sil icon carbide 

paper to reveal a cross-sect ion of the fiber . SEM and EDS analysis of the 

FIB-trenched, and subsequent ly, the resin-embedded polished sample was 

conducted within a Zeiss SIGMA-HD VP scanning electron microscope with 

associated EDS instrumentat ion from EDAX Ltd. The EDS system consisted 

of an Octane Plus Si -dr ift  detector  alongside TEAM control  and analysis 

software.  

Spot composit ional analysis was per formed on the samples at  15 kV 

and 1.7 nA electron beam current  for  a durat ion of 100 s per  point  before 

progressing onto the next  user -defined point . Elemental  mapping of the ion-

beam cut sur face was conducted using the same instrument to visual ly 

ident i fy regions of composit ional simi lar i ty and var iat ion. All  EDS analyses 

were taken in cross-sect ional or  top-down view in order  to mit igate ar tefacts 

der iving from the or ientat ion angle of the detector  relat ive to one axis of the 

specimen. 

 

2.3. TOF-SIMS 

The fiber  and surrounding sediment matr ix underwent TOF-SIMS 

untreated and, later , resin-embedded pol ished. The samples were mounted 
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direct ly onto a sample holder  using double-sided carbon tape or  clean 

stainless steel  screws and cl ips as appropr iate.  

Stat ic SIMS analyses were carr ied out using an ION-TOF ‘TOF-SIMS 

IV – 200’ instrument (ION -TOF GmbH, Münster , Germany) of single-stage 

reflectron design (Schwieters et  al ., 1991). Posi t ive and negat ive ion spectra 

and images were obtained using a Bi
3

+
 focused l iquid metal  ion gun at  25 

keV energy, incident at  45° to the sur face normal and operated in ‘bunched’ 

mode for  high mass resolut ion. This mode used 20 ns wide ion pulses at  10 

kHz repet i t ion rate. Charge compensat ion was effected by low-energy (~20 

eV) electrons provided by a flood gun. The total  ion dose density was less 

than 1 × 10
16
 ions m

–2
. The topography of the sample sur face and the ion gun 

mode of operat ion l imited the mass resolut ion in this work to approximately 

m/Dm = 2000. The spat ial  resolut ion was limited by the pr imary ion beam 

diameter  to ~4 μm. 

Ini t ial  analysis of untreated sample: Posi t ive and negat ive ion stat ic 

SIMS spectra and images were recorded from the outermost ~1 nm of the 

sample sur face at  room temperature. Raw data containing t he secondary 

ions recorded at  each pixel  was acquired with a 256 pixel  × 256 pixel  raster  

and a field of view of 256 μm × 256 μm. 

Subsequent analysis of resin-embedded pol ished sample: The area to 

be analyzed was sputtered using the Bi
3

+ 
ion beam in ‘cont inuous’ or  ‘DC’ 

mode for  240 s in an at tempt to remove any contaminat ion from the 

pol ishing process. The ion beam current  was 0.5 nA and the ion dose density 
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was less than 1 × 10
19

 ions m
–2

. Posi t ive and negat ive ion stat ic SIMS spectra 

and images were recorded from the outermost ~ 1 nm of the sample sur face 

at  room temperature. Raw data containing the secondary ions recorded at  

each pixel  was acquired with a 256 pixel  × 256 pixel raster  and a field of 

view of 500 μm × 500 μm. 

Images were regenerated from selected peaks in the raw datasets 

fol lowing a full  recal ibrat ion of the mass scale using the ‘Ionspec’ and 

‘Ionimage’ software from ION -TOF GmbH. The images are presented un-

normal ized with a l inear  intensi ty scale and after  Poisson correct ion for  the 

detector  dead-t ime effects. The images are shown in thermal scale which 

runs from black through red, orange, and yel low to white with increasing 

signal intensi ty. 

Using the software to select  pixels in regions of interest  from the total  

ion image al lowed spectra of the fiber  and matr ix regions in the sample to 

be generated from the raw data col lected by the ION-TOF ‘TOF-SIMS IV – 

200’. 

 

3. Resul t s 

3.1. Light microscopy and LSF  

The fiber  resides within loosely consolidated, predominant ly sand-

sized quartz grains (Fig. 1A–C). The fiber  is a pale, white cyl inder  with 

unidirect ional taper ing and occasional breakages. White residues simi lar  in 

color  and texture to the fiber  also appear in adjacent sediment near the 
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fiber . Some fiber  segments are missing through breakage (as evidenced by 

the fact  that  the specimen has mult iple fibers preserved that  vary in 

cont inui ty and consistent  with the loosely consol idated nature of the 

sediment) and others deflect  around sediment grains. The fiber  is 7.7 mm in 

l inear  length and ranges in width from 0.25 mm basal ly to 0.03 mm 

apical ly. LSF reveals that  the fiber  fluoresces a di fferent  color  to the 

surrounding sediment grains (Fig. 1D). 

  

3.2. TOF-SIMS  

In the untreated sample, both the fiber  and sediment grains have 

strong CN
–
 (m/z = –26) peaks as well  as strong peaks at  m/z = –112 

consistent  with C
5
H

6
NO

2

–
 (Supplementary Figs. S135–S136). The sediment 

grains and fiber  have very simi lar  spectra over  the ent i re m/z range 

examined, consist ing largely of organic secondary ions (Supplementary Figs. 

S137–S140). 

 In the resin-embedded polished sample (Fig. 2A), secondary ions such 

as Ca
+
, CaO

X

+
, CaPO

X

+
, and PO

X

–
 were strongly local ized to the fiber  (Fig. 

2B–F). Secondary ions such as Mg
+
, Fe

+
, K

+
, Al

+
, Na

+
, Si

+
, Si

–
, SiO

X

–
, and Cl

–
 

were present in the sediment grains at  elevated levels compared to the fiber , 

al though low levels of Na
+
, relat ive to the grains, show some non-specific 

local izat ion to the fiber  as well  (Fig. 2G–O). Secondary ions related to epoxy 

(both posi t ive and negat ive) and cyanoacrylate (negat ive) residues appear 

on the grains, fiber , and embedding resin (Fig. 2P–R). Of the secondary ions 
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examined that  can potent ial ly relate to amino acids such as those ident i fied 

by Hedberg et  al . (2012) (Fig. 2S–JJ), total  N
+
 (Fig. 2KK), and S

– 
(Fig. 2LL), 

none showed preferent ial  localizat ion to the fiber , and most were detected at  

low levels broadly across the grains, fibers, and embedding resin, whi le CN
–
 

st rongly local ized to the embedding resin (Fig. 2S–MM). Fur thermore, 

peaks at  m/z = 76.02 that  could possibly come from C
2
H

6
SN

+
 are not  strongly 

present in the fiber  and are more expressed in the sediment grains and 

embedding resin.  

  

3.3. SEM and EDS  

To reveal the internal composit ion in a minimal ly intrusive fashion, a 

t rench was mi l led using FIB. SEM reveals the fiber ’s corrugated surface and 

platy core textures (Fig. 1E), al though the potent ial  for  ‘cur taining’ art i facts 

from FIB should be kept in mind. EDS up the FIB sect ion from the more 

inter ior  region onto the uncut surface shows consistent  elemental  makeup 

with strong Ca, C, Si , Al , O, and P peaks (Supplementary Figs. S1–S22, 

Supplementary Tables S1–S7). Other  smal l  peaks detected include Fe, Mg, 

and Na. S peaks are weak in all  spectra. Ga peaks are a result  of 

implantat ion from FIB. Top-down elemental  maps (i .e., t rench viewed 

perpendicular  to the fiber  sur face as opposed to viewing the wal l of the FIB 

trench which is perpendicular  to the fiber  sur face) show potent ial  

preferent ial  local izat ion of C to the uncut sur face (Supplementary Figs. 

S23–S41, Supplementary Tables S8–S12). 
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 The resin-embedded polished sample shows a simi lar , yet  stronger 

signal , wi thout  topographic ar t i facts inevi tably present in the EDS of the 

FIB t rench. The platy texture of the fiber  core st i l l  seems apparent  (Fig. 

3A). Ca and P are strongly local ized in the fiber , and al though Si, Al , and O 

are also present, they are more prevalent  in adjacent sediment grains. S is 

weakly expressed in the fiber  and sediment. Mg is present in smal l  amounts 

in the fiber . Na is more prevalent  in the sediment than the fiber , while Fe 

most ly appears in the space between the fiber  and sediment grains (Fig. 

3B–I ). No substant ial  C was detected (Fig. 3J). 

  

4. Discussion 

The analyses per formed here reveal four  key aspects of the fiber ’s 

chemistry: i t  is covered in cyanoacrylate, i t  is largely calcium phosphate, i t  

lacks chemical signatures consistent  with protein, and i t  l ikely has clay 

mineral  infi l t rat ion within the possibly endogenous calcium phosphate. 

TOF-SIMS data suggest that  the fiber  and surrounding sediment are 

encapsulated in ethyl -cyanoacrylate polymer as indicated by the presence of 

C
5
H

6
NO

2

– 
secondary ions (Supplementary Figs. S135–S140), der iving from 

the consol idant used in the or iginal  preparat ion of the fossil  to stabi l ize the 

specimen pr ior  to the Schweitzer  et  al . (1999b) study (Krazy Glue™ 201 

ethyl -cyanoacrylate, white cap, low viscosi ty, Borden Inc., purchased in 

1994, and used in addit ion to Butvar  B-76 [polyvinyl  butyral ]; Amy 

Davidson personal communicat ion). The presence of cyanoacrylate fi rst  
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became apparent when analyzing the untreated sample with TOF-SIMS, 

pr ior  to embedding in resin and pol ishing. Cyanoacrylate was detected 

strongly in the untreated sample, but  was detected as a di ffuse pattern 

(along with epoxy embedding resin; Fig. 2P and Q) across the ent i re sur face 

of the pol ished sample l ikely due to gr inding (Fig. 2R). EDS detected sur face 

consol idant as C (Supplementary Figs. S1–S41, Supplementary Tables S1–

S12). 

EDS of the fiber  core revealed Ca, P, and O, consistent  with calcium 

phosphate (Fig. 3B–D and J). TOF-SIMS corroborated this composit ion with 

preferent ial  local izat ion of Ca
+
, CaO

X

+
, CaPO

X

+
, and PO

X

–
 to the fiber , whi le 

the lack of Ca
–
 was consistent  with Ca der ived from the cat ion of CaPO

4
 

(Fig. 2B–F). TOF-SIMS carr ied out by Schweitzer  et  al . (1999b) also 

detected Ca
+
 and CaO

2

+
 in Shuvuuia (IGM 100/977) fibers.  

Very l i t t le S was observed in the fiber  through EDS, which would 

have been present in stable disul fide bonds of kerat in protein in vivo 

(Goddard and Michaelis, 1934); no signi ficant N was observed, strongly 

suggest ing the absence of protein since N is incorporated into pept ide bonds 

(Fig. 3I  and J). TOF-SIMS showed a lack of preferent ial  local izat ion of any 

of the examined potent ial  amino acid fragment ions from Hedberg et  al . 

(2012) (work which relates secondary ions to the par t icular  amino acid they 

can der ive from), total  N
+
, or  S

–
 to the fiber  (Fig. 2S–MM). Relat ively 

uniform, low-intensi ty distr ibut ions across the pol ished sect ion of some of 

these fragment ions suggests that  they largely came from spreading of 
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appl ied consol idant residues dur ing gr inding. Given the lack of S
–
, peaks at  

m/z = 76.02 are l ikely due to C
5
H

2
N

+
 (m/z = 76.018) and/or  C

2
H

4
O

3

+
 (m/z = 

76.016) rather  than C
2
H

6
SN

+
 der iving from the cysteine found abundant ly in 

kerat in and responsible for  forming disul fide br idges. Regardless, m/z = 

76.02 peaks do not strongly appear in the fiber , but  rather  in the sediment 

grains and embedding resin (Fig. 2CC). What l i t t le S is present in the fiber  

could potent ial ly be in an inorganic form such as pyr i te, which is commonly 

found in fossi ls. Some of the S atoms themselves, however, could have 

or iginally been released from kerat in breakdown products. Previously-

publ ished, posi t ive-ion TOF-SIMS data of Shuvuuia (IGM 100/977) fibers 

revealed the presence of var ious organic secondary ions, interpreted as 

der iving from endogenous kerat in amino acids (Schweitzer  et  al ., 1999b), 

which are l ikely der ived from ei ther  non-amino acid molecules or  from 

amino acid contaminat ion, possibly bound with cyanoacrylate. A fur ther  

issue with the TOF-SIMS analysis of Schweitzer  et  al . (1999b) is that  i t  did 

not  present  the results from the sediment matr ix control  in the main text  

that  might elucidate localizat ion patterns, or  lack thereof, of these organic 

secondary ions.  

Potent ial  clay presence in the fiber  suggested by EDS as Si, Al , and O 

(Fig. 3D–F and J) is consistent  with SEM observat ions of a platy texture 

within the FIB t rench and resin-embedded pol ished sample, keeping in 

mind the potent ial  for  FIB ar t i facts (Fig. 1E). Fur thermore, the observed 

ul t rastructural  texture and internal structure do not match descr ipt ions of 
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those from modern feathers (Davies 1970; Lucas and Stet tenheim, 1972). 

TOF-SIMS did not  reveal clay markers in the fiber  as EDS did, perhaps due 

to lower resolut ion mapping (e.g., Mg
+
, Fe

+
, Al

+
, Na

+
, Si

+
, Si

–
, SiO

X

–
), but  did 

show non-specific Na
+
 presence in the fiber  at  lower levels than the 

sediment grains (Fig. 3G–O). Ult imately, calcium phosphate dominance in 

the fiber  is consistent  with the di ffer ing fiber  autofluorescence to the 

surrounding si l icate-dominated sediment matr ix dur ing LSF (Fig. 1D). 

Simi lar  to the data here, Schweitzer  et  al . (1999b) detected Na
+
, Al

+
, and Si

+
 

in Shuvuuia (IGM 100/977) fibers using TOF-SIMS.  

 

4.1. Calcium phosphate preservat ion of fossil  kerat inous structures: 

updat ing the taphonomic model  

Endogenous organic carbon in Shuvuuia fibers cannot be confi rmed, 

especial ly in l ight  of the detect ion of appl ied cyanoacrylate. Their  white 

colorat ion is consistent  with a lack of organic carbon. Simi lar ly, fossil  bone 

from the Djadochta Format ion is also white, again consistent  with organic 

loss. 

Kerat inous structures (i .e., the anatomical  structure/t issue or iginal ly 

containing kerat in protein in vivo) commonly fossi l ize as white, fluorescing 

mater ial , such as claw sheaths preserved in the Djadochta Format ion  

(Moyer et  al ., 2016b) and other  Mesozoic local i t ies (Mart in et  al ., 1998; 

Schweitzer  et  al ., 1999a). For  example, Psi t tacosaurus integument appears 
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to preserve as fluorescent calcium phosphate with associated fossi l  melanin  

(Mayr et  al ., 2016; Vinther  et  al ., 2016).  

Moyer et  al . (2016b) ran EDS on white claw sheaths from the 

oviraptor id theropod dinosaur Cit ipat i , similar ly preserved from the same 

format ion as Shuvuuia and also claimed to contain kerat in protein based on 

immunohistochemistry. Their  study simi larly revealed the Cit ipat i  claw 

sheaths to be predominant ly composed of Ca and O, with P also present , 

indicat ing preservat ion as calcium phosphate. EDS on Cit ipat i  claw sheaths 

did not  reveal S, suggest ing that  phosphat ic preservat ion of kerat inous 

t issues need not contain S. Platy textures found in Cit ipat i  claw sheaths 

simi lar  to those observed here in the Shuvuuia fiber  were interpreted as 

kerat in by Moyer et  al . (2016b), but  our  study suggests that  such textures 

are l ikely not  indicat ive of protein preservation. EDS on Cit ipat i  claw 

sheaths simi lar ly revealed the presence of Si , Al , and Mg (Moyer et  al ., 

2016b), consistent  with clay mineral  infi l t rat ion. 

Most research into fossi l  feathers focuses on organical ly preserved 

specimens, as in the field of paleo-color  reconstruct ion (Vinther , 2015), 

probably par t ly related to the r ichness of except ional carbonaceous fossi ls 

from China (Norel l  and Xu, 2005) and simi lar  Lagerstät ten. However, 

calcium and phosphorus are known to be concentrated in Archaeopteryx 

feather  rachi  (Bergmann et  al ., 2010) and an isolated L iaoning feather  

(Benton et  al ., 2008). North Amer ican Mesozoic fossi l  discover ies in 

par t icular , unl ike those from Konservat -Lagerstät ten with extensive 
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carbonaceous preservat ion as in some Chinese deposits, provide an example 

of al ternat ive preservat ional modes for  kerat inous structures. Contrary to 

finer-grained, anoxic deposit ional environments that  retain and preserve 

organic molecules l ike fossil  melanin (Fu  rsich et  al ., 2007), North Amer ican 

Mesozoic kerat inous fossi ls are often from coarser-grained, oxidized 

deposit ional environments adverse to organic retent ion and preservat ion 

(Parry et  al ., 2018). Instead, Mesozoic keratinous fossils in North Amer ica 

are often preserved as simple skin impressions in the sediment  (Bel l , 2012) 

– possibly explaining why large Chinese tyrannosaurs are preserved wit h 

carbonaceous fossi l feathers (Xu et  al ., 2012), while large North Amer ican 

tyrannosaurs only preserve scale impressions (Bel l  et  al., 2017).  

In some cases, however, North Amer ican fossi l  kerat inous structures 

appear to preserve in a manner consistent  with phosphat ized sheaths. 

Ungual  and beak sheaths on hadrosaurs (Murphy et  al ., 2006) and 

osteoderm sheaths in stegosaurs (Chr ist iansen and Tschopp 2010) are 

potent ial ly some examples of phosphat ized kerat inous fossils, deserving of 

fur ther  chemical analyses. The North Amer ican ankylosaur Borealopelta 

has osteoderm sheaths with preserved melanin and calcium phosphate, 

al though this rare specimen was found in an except ional  carbonate 

concret ion formed under euxinic condit ions (Brown et  al ., 2017). As for  

fi lamentous kerat in, Late Miocene phosphat ized baleen has been reported 

from South Amer ica (Gioncada et  al., 2016). Regarding this Shuvuuia 

specimen, the loosely consol idated, sand-sized quartz grains of the matr ix 
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would not  be expected to retain organics well  due to the potent ial  leaching of 

breakdown products through the relat ively large pore size or  through 

relat ively greater  exposure to adverse condit ions such as oxidat ion, so 

phosphate-dominated preservat ion of fibers is not  unexpected. 

A phosphat ic preservat ional mode of fossi l  kerat inous structures is 

unsurpr ising since many di fferent  kerat inous t issues are hardened via 

calcium phosphate deposit ion in vivo to varying degrees. For  example, 

calcium phosphate has been measured or  detected in fresh/modern claw, 

horn, beak, and hoof sheaths, nails, baleen, hair , qui l ls, whiskers, and 

feathers, especial ly feather  calami (Blakey et  al ., 1963; Pautard, 1963, 1964, 

1970; Blakey and Lockwood 1968; Lucas and Stet tenheim 1972; Szewciw et  

al ., 2010). Calci ficat ion of kerat inous structures appears to change their  

mater ial  propert ies of the integumentary structure, posi t ively correlat ing 

with hardness and presumably related to the biological funct ion of the 

structure (Baggott  et  al ., 1988; Bonser , 1996; Szewciw et  al ., 2010).  

Fossi l  kerat inous t issues l ikely undergo signi ficant volume loss due to 

protein degradat ion, with resistant  calcium phosphate and pigments 

remaining (Sait ta et  al ., 2017). Volume loss would al low for  clay minerals to 

precipi tate into the fossi l  as evidenced by clay signatures in Shuvuuia fibers 

and Cit ipat i  claw sheaths (Moyer et  al ., 2016b). Future work should be 

conducted to determine to what degree phosphat ic preservat ion of 

kerat inous structures represents endogenous calcium phosphate with 

subsequent infi l l ing of other  mater ials (e.g., clay minerals), or  i f endogenous 
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calcium phosphate can act  as a nucleus for  addit ional, secondary calcium or  

phosphate precipi tat ion dur ing fossi l izat ion. I f the former, then 

phosphat ized kerat inous structure fossi ls could provide important  

paleobiological  data regarding the shape, size, and degree and distr ibut ion 

of calci ficat ion of integumentary structures in vivo.  

I t  might be argued that  the kerat in protein could be phosphat ized 

through authigenic mineral izat ion as a result  of decay, as is the case with 

fossi l  muscle t issue (Br iggs et  al., 1993; Br iggs and Wilby, 1996; Br iggs, 

2003; Parry et  al ., 2015). However, invoking authigenic mineralizat ion as an 

explanat ion for  kerat inous structure fossi l izat ion is unnecessary since they 

can contain calcium phosphate endogenously. Our taphonomic model is 

consistent  with the fact  that  phosphat ic kerat inous t issue fossils are often 

structures expected to be hardened in vivo (e.g., claw, osteoderm, and beak 

sheaths). Fur thermore, authigenically phosphat ized t issue tends to preserve 

smal l  st ructural  detai ls with high fidel i ty, which does not appear to be the 

case for  some fossi l  kerat inous structures such as the Shuvuuia fibers. 

IGM 100/977 fibers l ikely der ive from feathers rather  than the 

taphonomic environment  based on their  distinct , taper ing morphology as 

wel l  as their  distr ibut ion and or ientat ion around the bones. Fur thermore, 

the structures l ikely do not represent t issue types other  than integumentary 

structures, such as dermal col lagen or  muscle. The claim that  dermal 

col lagen has been found fossi l ized as fibers has been heavily refuted 

(Smithwick et  al., 2017), and al though muscle t issue can phosphat ize via 
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authigenic mineral izat ion (Br iggs et  al ., 1993; Br iggs and Wilby, 1996; 

Br iggs, 2003; Parry et  al ., 2015), the sparse distr ibut ion of the Shuvuuia 

fibers and their  or ientat ion around the bones is inconsistent  with 

phosphat ized masses of muscle. Given that  the fibers are calcium 

phosphate, Shuvuuia feathers were l ikely hardened in vivo. As rachi might 

be expected to be preferent ial ly calcified (Pautard, 1964; Benton et  al ., 2008; 

Bergmann et  al ., 2010; also see Supplementary Fig. S141 for  an LSF image 

of a modern feather  rachis with prominent fluorescence consistent  with 

calci ficat ion), Shuvuuia feathers could have consisted of a well -developed 

rachis with less calcified barbs being unpreserved in this specimen, except 

possibly for  some calcium phosphate residues in the matr ix. Such an 

interpretat ion is consistent  with alvarezsaur id phylogenet ic posi t ion, since 

closely related maniraptor i formes are known to have pinnate feathers (Cau 

et  al ., 2015) more closely resembl ing the morphology of many modern 

feathers (Lucas and Stet tenheim, 1972) than to simple monofi laments. In 

this case, former interpretat ions of morphological ly simple monofi laments 

typical ly assumed for  alvarezsaur ids (Xu et  al ., 2014) may be 

taphonomical ly biased. Therefore, a more complex feather  morphology is 

potent ial ly a bet ter  supported hypothesis than simple, calci fied 

monofi laments such as those in Psi t tacosaurus. Unlike the short  fibers of 

Shuvuuia, Psi t tacosaurus br ist les are hyper -elongated and erect , suggest ing 

a unique display or  signal ing funct ion (Mayr et  al ., 2016). However, another  

al ternate hypothesis might  involve calci fied, simple fi laments that  represent 
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vest igial  st ructures as a result  of secondary 

terrest r ial izat ion/glidelessness/fl ight lessness, in a manner resembl ing the 

calamus-l ike wing feathers on cassowar ies (Prum, 2005). Thus, in a rather  

unusual reversal  of the typical  direct ion of evidence and interpretat ions for  

this topic of study, bet ter  resolved phylogenies and invest igat ions 

pinpoint ing the appearance and loss of arboreal i ty/gl iding/fl ight  using 

osteological  data may be integral  in working out feather  morphology for  this 

taxon. 

 

4.2. False posi t ives in paleo-immunohistochemistry  

We argue that  previous paleontological  studies using polyclonal 

ant ibodies raised against  kerat in (Schweitzer  et  al ., 1999a, 1999b; Moyer et  

al ., 2016b, 2016b; Pan et  al ., 2016) have mistaken false posi t ive results for  

evidence of or iginal  kerat in protein preservat ion in fossi ls. Two obvious 

sources might yield false posi t ive stains in Shuvuuia fibers and other  

fossi l ized kerat inous structures: calcium phosphate or  cyanoacrylate 

polymer. 

Calci fied mater ial  has been stated to yield both false negat ives and 

posi t ives with immunohistochemistry (Sedivy and Batt istut t i , 2003), whi le 

biomedical  research has used cyanoacrylate nanopart icles to adsorb 

ant ibodies (I l lum et  al ., 1983). The or iginal  study of Shuvuuia fibers 

showing posi t ive ant ibody stains per formed no demineralizat ion and instead 

r insed them in 100% ethanol pr ior  to analysis (Schweitzer  et  al ., 1999b), 
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which might  not  be expected to act  as a strong enough solvent to remove 

cyanoacrylates through r insing, al though other  consol idants appl ied to the 

fossi l  in the field or  lab might exhibi t  different  solubi li ty, such as Butvar  B-

76. A more recent  analysis resul t ing in posi tive ant ibody stains of Cit ipat i  

(former ly IGM 100/979) claw sheaths (Moyer et  al ., 2016b), l ikely 

consol idated dur ing col lect ion or  preparat ion in a simi lar  manner to IGM 

100/977, did use demineral izat ion and revealed fibrous structures, 

consistent  with applied organic polymers, as wel l  as mineral  grains. 

Ant ibody binding to the Shuvuuia fiber  r im and throughout the fiber  (Moyer 

et  al ., 2016a) suggests that  both cyanoacrylates, or  other  consol idants l ike 

Butvar  B-76, and calcium phosphate could be responsible for  false posi t ives.  

Another  issue for  paleo-immunohistochemistry is that  ant ibodies 

show non-specific binding to melanoidins, condensat ion products formed 

dur ing degradat ion of protein and polysacchar ide mixtures that  can be 

present in fossi ls and sediments (Col l ins et  al ., 1992). Al though we do not 

suspect melanoidin presence in Shuvuuia fibers given the limited organic 

content  of the fibers, this could explain ant ibody staining of other  fossi ls 

that  do have organic preservat ion. 

Since ant ibodies typical ly bind to a speci fic 3-dimensional epi tope of 

the target protein, a posi t ive result  on Mesozoic fossi ls would suggest not  

only that  pept ides are present , but  also highly preserved protein with 

surviving 3° or  4° structures. H igher order  protein folding is unl ikely to 

persist  through deep t ime (Bada, 1998), therefore false posi t ives are of 
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concern. In an immunological  study of subfossi l  human skeletal  mater ial  for  

three target proteins, ant ibody cross-react ivi ty was observed with non-

human mammal bone, cer tain col lagens, and bacter ial  cel ls (Brandt et  al ., 

2002), cal l ing into quest ion the ut i l i ty of immunochemistry on ancient  

mater ial .  

False posi t ives from immunohistochemistry are even possible in 

recent, biological  samples (True, 2008). The observat ion that  “...in [a] 

feather  t reated for  10 years at  350°C, [Moyer et  al .] were able to 

demonstrate weak posi t ive binding of ant i -feather  ant ibodies local ized to the 

t issues” (Moyer et  al., 2016a, p. 7/18) can ei ther  be interpreted as epi tope 

survival  or  the propensity for  nonspecific cross-react ivi ty of ant ibodies as 

proteins degrade. At tempts to repl icate these 350 °C condit ions in a 

laboratory oven revealed that  feathers rapidly star t  to smoke at  this 

temperature and turn into a black ash (i .e., wi thin minutes) 

(Supplementary Figs. S142–S143), consistent  with melanoidin and other  

browning condensat ion react ions and the inferable loss of protein structure.  

Ul t imately, immunohistochemistry was used to support  the claim 

that  Shuvuuia fibers consisted of kerat in protein (Schweitzer  et  al ., 1999b; 

Moyer et  al ., 2016a). I f this claim were t rue, then other  techniques should 

be capable of providing mult iple, independent l ines of evidence that  support  

or  are consistent  with a kerat in protein composit ion. We show here that  this 

is not  the case, thereby quest ioning the validi ty the evidence evoked from 

immunohistochemistry.  
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4.3. Suggest ions for  future pract ice 

Immunohistochemistry of fossi ls is insufficient  to confi rm protein 

preservat ion because of i ts high suscept ibil ity to false posi t ives. These 

compl icat ions are more readi ly diagnosed and addressed when analyzing 

recent, biological  samples wi th well -establ ished protocols and controls 

(True, 2008). (However, see Col l ins et  al . (1992) for  an al ternat ive 

exper imental  procedure with ant ibodies, whereby ant ibody cross-react ivi ty 

with exper imental ly-produced melanoidins was observed and suggest ive of 

Mai l lard-type pathways for  protein-polysacchar ide degradat ion occurr ing 

natural ly in diagenesis). Other  chemical tests (e.g., chromatography and 

mass spectrometry) can detect  unique protein markers. For  example, 

pyrolysis-gas chromatography–mass spectrometry is a sensi t ive, cheap 

method used for  geologic samples, yielding a dist inct  sui te of pyrolysates for  

intact  or  degraded proteins, par t icular ly amides, succinimides, and 

diketopiperazines (Sait ta et  al ., 2017). Addit ional ly, l iquid chromatography 

can be used to search for  amino acids, and racemizat ion can indicate their  

relat ive age (Bada and Schroeder 1975). Methods such as these might not  be 

necessary, however, if the sample in quest ion does not fi rst  show clear  

indicat ion of an organic composit ion. Note that  these methods were not used 

to study the Shuvuuia fiber  since the sample fai led to give fundamental  

chemical  and structural  signatures consistent  with an organic, let  alone 

proteinaceous, composit ion. I t  is also important  to thoroughly extract  
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conserving agents from fossi ls pr ior  to any analysis (Pinder et  al ., 2017). 

Our  study highlights that , ideal ly, mult iple tests should be run to produce 

robust claims of fossi l  proteins that  search for  organic elemental  and 

molecular  signatures, protein degradat ion products, and predictable amino 

acid racemizat ion profi les before sequencing pept ides or  at tempt ing 

immunohistochemical exper iments.  

Quest ionable usage of histochemical staining on fossi l  samples has 

impl icat ions beyond that  of dinosaur or  feather  evolut ion. For  example, 

Kemp (2002) used a posi t ive result  from picrosir ius red (a dye used to stain 

col lagen and amyloid in t issues) of conodont hyal ine t issue as one l ine of 

evidence to conclude that  col lagen was or iginal ly present in the t issue, 

refut ing homology with ver tebrate enamel and leading others to claim that  

conodonts were not ver tebrates (Turner  et  al ., 2010). L ike the ant ibody 

staining of fossi l  t issues, might picrosir ius red staining also be suscept ible 

to false posi t ives in such samples, weakening this l ine of evidence? Further  

highl ight ing the di fficul t ies in at tempts to determine the or iginal  protein 

composit ion, or  lack thereof, in a fossi l  t issue is the more recent pr oposit ion 

that  conodont hyal ine t issue actual ly contained kerat in, not  col lagen, in 

ear ly growth stages whi le the major i ty of the t issue lacked organics (Terr i l l  

et  al ., 2018). However, the S and organic signatures detected in the t issue 

through EDS and X-ray photoelectron spectroscopy by Terr i l l  et  al . (2018) 

are inconclusive evidence, insufficient  to diagnose a kerat in protein source.  
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5. Conclusions 

Shuvuuia fibers from IGM 100/977, previously ident ified through 

immunohistochemistry as preserving kerat in, are composed of calcium 

phosphate by vir tue of their  color , texture, fluorescence, elemental  

composit ion, and secondary ion mass spectra. Hardened kerat in contains 

calcium phosphate in vivo. Thus, one hypothesis is that  the fibers 

potent ial ly der ive from the remains of calci fied feather  rachi , raising the 

possibi l i ty of a more complex, pennaceous feather  morphology in 

alvarezsaur ids than previously thought , al though simple monofi laments 

cannot be ruled out . Endogenous organic mater ial  or  amino acid signatures 

could not  be confi rmed in the fiber . Detected organic mater ial  l ikely der ived 

from appl ied consol idants rather  than endogenous proteins based on the 

lack of local izat ion of any dist inct  organic secondary ions to the fiber . The 

fiber  and associated sediment matr ix are covered in cyanoacrylate, l ikely 

der ived from the fossi l ’s preparat ion, in which cyanoacrylate and Butvar  B-

76 were appl ied. Cyanoacrylates and other  substances, potent ial ly including 

calcium phosphate, can accumulate ant ibodies, l ikely explaining previous 

reports of kerat in preservat ion in these fibers as false posi t ives. As 

suggested by our  study, immunohistochemistry on fossi ls is l ikely 

inappropr iate for  studying ancient , putat ive proteins without independent, 

corroborat ive evidence, and even then, the possibi l i ty of contaminat ion in 

corroborat ing methods should be control led for .  
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Figur e legends 

Fig. 1. Shuvuuia (IGM 100/977) fiber  analyzed. (A–D) Untreated fiber . (A–

C) Light  micrographs. (A) Whole fiber . (B) Basal end. (C) Apical  region. (D) 

LSF image of basal por t ion showing unique fluorescence in color  and 
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intensi ty relat ive to the matr ix. (E) Scanning electron image of FIB t rench 

in fiber . 

 

Fig. 2. Resin-embedded polished sample TOF-SIMS. Fiber  in center . 

Fragment ions associated with (B–F) fiber , (G–O) sediment mat r ix, (P–R) 

appl ied residues, and (S–MM) potent ial  amino acids or  their  derivat ives, 
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Fig. 3. EDS of resin-embedded polished sample. Fiber  in center . Signi ficant 

peaks of region analysis of fiber  (A) label led in spectrum (J). 
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H ighlights 

 Immunohistochemistry has been used to claim fossil  protein 

preservat ion. 

 Reanalysis of a fossil  feather  reveals that  i t  is inorganic, not 

proteinaceous. 

 The fossi l  feather  was also covered in cyanoacrylate consol idant. 

 Ant ibody cross-react ivi ty might lead to false posi t ive results in fossi ls. 

 Claims for  ancient  proteins require mult iple l ines of corroborat ing 

evidence.  

 

 


