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ABSTRACT
Immune responses against Plasmodium parasites, the
causative organisms of malaria, are traditionally dichot-
omized into pre-erythrocytic and blood-stage compo-
nents. Whereas the central role of cellular responses in
pre-erythrocytic immunity is well established, protec-
tion against blood-stage parasites has generally been
ascribed to humoral responses. A number of recent
studies, however, have highlighted the existence of cel-
lular immunity against blood-stage parasites, in particu-
lar, the prominence of IFN-� production. Here, we have
undertaken to chart the contribution of this prototypical
cellular cytokine to immunity against pre-erythrocytic
and blood-stage parasites. We summarize the various
antiparasitic effector functions that IFN-� serves to in-
duce, review an array of data about its protective ef-
fects, and scrutinize evidence for any deleterious, im-
munopathological outcome in malaria patients. We dis-
cuss the activation and contribution of different
cellular sources of IFN-� production during malaria in-
fection and its regulation in relation to exposure. We
conclude that IFN-� forms a central mediator of pro-
tective immune responses against pre-erythrocytic
and blood-stage malaria parasites and identify a
number of implications for rational malaria vaccine
development. J. Leukoc. Biol. 88: 1131–1143; 2010.

Introduction
IFN-� is the only type-II IFN and is the prototypical Th1 cyto-
kine, inducing cell-mediated immunity by promoting Th1 over
Th2 differentiation of T cells, inducing IgG class-switching to
cytophilic isotypes, and activating phagocytes (reviewed in ref.
[1]). It is produced predominantly by lymphocytes, including
NK, NKT cells, ��T, and ��T cells, but may also be produced
by cells of the myeloid lineage [2, 3]. Its induction is largely
dependent on IL-12 and IL-18 production by activated myeloid
APCs [4, 5], in addition to signals directly activating lympho-
cytes themselves.

IFN-� is an important mediator of the immune response
against intracellular (myco)bacteria and some viruses [6–8]
but is also involved in protection against intra- and extracellu-
lar protozoan parasites such as Leishmania spp. [9], Trypano-
soma cruzi [10], and Toxoplasma gondii [11]. In this review, we
will focus on the involvement of IFN-� in immune responses
against malaria.

Malaria is caused by protozoan parasites of the genus Plasmo-
dium, and Plasmodium falciparum in particular has major clini-
cal importance for human disease at a global scale. Plasmodium
parasites have a complicated, multistage lifecycle involving in-
tra- and extracellular stadia in an Anopheline mosquito vector
and a vertebrate host (Fig. 1).

By convention, immune responses in malaria are dichoto-
mized into pre-erythrocytic responses (directed against sporo-
zoites and liver-stage parasites) and blood-stage responses (di-
rected against merozoites and intraerythrocytic parasites).
Whereas humoral (antibody) responses against extracellular
sporozoite stages are well documented [13, 14], pre-erythro-
cytic immunity is generally considered to consist largely of cel-
lular responses against infected hepatocytes, which inhibit in-
tracellular parasite development through the induction of re-
active nitrogen intermediates (reviewed in ref. [15]). In
contrast, humoral responses against extracellular merozoites
and intraerythrocytic parasites (pRBC) have traditionally been
considered the most important component of blood-stage im-
munity [16–18]. T cell responses against pRBC remain less
well understood, partly because erythrocytes lack MHC class I
or II presentation capacity. Nevertheless, cellular responses
against pRBC have been suggested to contribute to protection
in humans in the absence of antibodies [19, 20]. Finally,
monocyte/macrophage-mediated responses, in particular
phagocytosis (e.g., ref. [21]), and ADCI (e.g., ref. [22]), also
form an important component of blood-stage immunity.

Given the above, IFN-� likely forms an important compo-
nent of immunity against both stages of malaria infection. In-
deed, IFN-� plays a plethora of roles in malaria, functioning
equally as an inducer and effector of innate and adaptive im-
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mune responses (Table 1) throughout the parasite lifecycle
(Fig. 1). It could even be argued that IFN-� forms the central
determinant of all immunological pathways involved in protec-
tion against malaria.

However, what then is the hard evidence for a protective
role of IFN-� responses? What host and parasite factors deter-
mine those responses, and how can we exploit those factors to
design an effective malaria vaccine rationally? In this review,
we first focus on the wealth of evidence for the protective role
of IFN-� responses and critically discuss any evidence for their
possible immunopathological (side-)effects. Next, we examine
the various potential cellular sources of IFN-�, their differing
requirements for activation, and their relative contribution to
total IFN-� production during pre-erythrocytic and blood-stage
infection. Finally, we consider the relationship between expo-
sure and IFN-� responses and discuss immunoregulation by
the malaria parasite. We conclude by identifying a number of
implications arising from (gaps in) our current understanding

of IFN-� responses, with particular regard to rational malaria
vaccine development. Where possible, we present direct evi-
dence from human studies of P. falciparum infection, which
we supplement with data from in vitro and murine malaria
models.

EVIDENCE FOR PROTECTION

As a result of distinct biological, immunological, and patholog-
ical characteristics for each stage (Fig. 1), most research into
immunological correlates of protection in malaria has focused
on pre-erythrocytic or erythrocytic stages separately. A wealth
of data about both stages exists from murine malaria models
and human studies. Here, we will briefly discuss the consensus
derived from murine immunological studies and focus primar-
ily on human data, including experimental malaria infections,
cross-sectional and longitudinal field studies, and efficacy data
from vaccine studies.

Pre-erythrocytic stages
Pre-erythrocytic protection can be induced in murine malaria
models by various immunization strategies, including irradi-
ated sporozoites, recombinant peptide, or nucleic-acid vac-
cines. Although immunological effector mechanisms vary
slightly between approaches and between inbred mouse strains
(e.g., refs. [24, 43–48]), the core elements tend to consist of
CD8� and/or CD4� T cells and IFN-�-mediated responses
against infected hepatocytes (reviewed in ref. [15]). Indeed,
protection against pre-erythrocytic malaria in naı̈ve mice, rats,
and monkeys can also be induced by simply injecting exoge-
nous IFN-� [23, 49] or IL-12 [50, 51].

Some of the most compelling evidence for the protective
role of IFN-� responses in humans comes from experimental
malaria infections. The strength of these studies lies in the
tight control exercised over previous exposure, timing, and
measure of infection, factors that often confound field-based
studies. Following a primary infection, high IFN-� responses
are associated with reduced asexual parasite multiplication
rates, although eventually, all volunteers do develop patent
parasitemia [52].

Since the days of malaria therapy, however, scientists have
known that sterile immunity against malaria can be induced in
humans unexposed previously. The best-studied approach has
been through inoculation of irradiated sporozoites by repeated
mosquito bites [53]. These radiation-attenuated sporozoites
arrest during the liver stage and induce humoral (e.g., ref.
[54]) and CD8� [55] and CD4� [56] cytotoxic T cell and
IFN-� responses against sporozoites and liver-stage antigens
[57, 58]. Nevertheless, multiple rounds of immunization,
equating to at least 1000 infected mosquito bites, are required
to generate sterile protection in �90% of the volunteers.

In an attempt to improve upon this protocol, we recently
immunized volunteers with patent sporozoites under cover of
the blood schizonticidal drug chloroquine, which leaves devel-
opment of liver stages unaffected [20]. This approach exposes
volunteers’ immune systems to the full course of intrahepatic
development, in addition to the first cycle of intraerythrocytic

Figure 1. Lifecycle of malaria parasites and effector functions of
IFN-�. Infective sporozoite-stage parasites are unwittingly injected into
the skin of human hosts by blood-feeding mosquitoes, where a propor-
tion is trapped in draining lymph nodes, but the remainder migrates
quickly to the liver. These sporozoites invade hepatocytes, in which
they mature and multiply intracellularly over 6–7 days without causing
symptoms. Once fully ripe, these liver-stage schizonts rupture, releas-
ing merozoites into the bloodstream, which invade erythrocytes
(RBCs) immediately. These intraerythrocytic parasites multiply asexu-
ally over roughly 48 h into blood-stage schizonts, which again rupture,
releasing a second generation of merozoites that in turn invade new
RBCs. It is this exponential multiplication cycle that is responsible for
the clinical symptoms and potentially severe complications of malaria.
A small number of blood-stage parasites develop into male and female
gametocyte forms, which can be taken up by a second blood-feeding
mosquito. Within the mosquito, these gametes undergo sexual replica-
tion, eventually resulting in a new generation of infective sporozoites.
Various effector functions of IFN-�, enhancing immunological recogni-
tion and elimination of the parasite’s different lifecycle stages, are in-
dicated. This figure is modified from ref. [12] with permission.

1132 Journal of Leukocyte Biology Volume 88, December 2010 www.jleukbio.org



development. Following 3 rounds of immunization (totalling
36–45 infectious bites), sterile protection against subsequent
patent sporozoite challenge was achieved in all volunteers,
none of whom developed detectable blood-stage parasitemia.
Interestingly, robust cellular responses were detected in all im-
munised volunteers, consisting of pluripotent effector memory
T cells that produced IFN-�, in addition to TNF-� and IL-2 in
response to pRBC in vitro, suggesting an important role for
stage-transcending cellular immunity. In contrast, antibody re-
sponses against pre-erythrocytic and blood-stage antigens were
detectable at low titers in only 8 of 10 and 3 of 10 volunteers,
respectively [20].

Many field studies in malaria-endemic areas have sought to
correlate (cellular) immune responses with protection against
malaria. The most robust of these included multiple assay
points and a prospective follow-up, whereas cross-sectional sur-
veys and other single-point measurements can suffer from the
commonly observed temporal variability in individual immune
responses to malaria [59–61]. Furthermore, it can prove diffi-
cult sometimes to differentiate between pre-erythrocytic and
blood-stage protection, particularly in clinical studies.

Initial studies measuring only plasma IFN-� levels in malaria
patients found a correlation with protection against reinfec-
tion [62], but results from subsequent studies remained equiv-
ocal, failing [63–65] or succeeding [66–69] to demonstrate an
association between clinical protection and IFN-� responses to
selected pre-erythrocytic antigens. The explanation for these
discrepancies may be related to obvious differences in setting,
endemicity, age, and assay techniques. Alternatively, this out-
come may represent an insufficiently measurable effect of such
individual responses amidst the full spectrum of antiparasite
immune reactivity. Simple ex vivo assays, representing effector
(memory) responses, may be less representative of in vivo pro-
tection than cultured assays representing central memory re-
sponses, as has been shown for the vaccine candidate TRAP
(ref. [70] vs. ref. [71], respectively) and circumsporozoite pro-
tein [69].

Associations between IFN-� responses to individual pre-
erythrocytic antigens and clinical protection have also been
studied in phase IIa and phase IIb malaria vaccine trials, in

particular in the context of RTS,S, a pre-erythrocytic vaccine
candidate containing epitopes from the circumsporozoite pro-
tein coupled to hepatitis B surface antigen particles in a pro-
prietary oil-in-water adjuvant [72]. In an initial phase IIa trial,
prolonged IFN-� responses by CD4� and CD8� T cells against
the circumsporozoite protein associated with protection upon
experimental challenge [73]. Although in another study only a
trend was seen for higher circumsporozoite protein-specific ex
vivo and cultured ELISPOT IFN-� responses in PBMC from
protected volunteers [74], a review of subsequent phase IIa
trials confirmed that higher IFN-� ELISPOT counts were ob-
served consistently in protected volunteers [75]. Results from
phase IIb field studies have been slightly less forthcoming, but
nevertheless, PBMC-cultured IFN-� ELISPOT responses to 1
circumsporozoite protein epitope were associated with protec-
tion in Gambian adults [69], and a trend was seen for higher
CD8� IFN-� responses to circumsporozoite protein in pro-
tected Mozambiquan infants [76].

A phase IIa trial of liver-stage antigen-1 [77] in a similar ad-
juvant system induced robust IFN-� recall responses but unfor-
tunately failed to induce protection against challenge in malar-
ia-naı̈ve volunteers. More success has been achieved with the
vaccine candidate malaria epitope-TRAP, administered in the
form of prime-boost regimens with attenuated vaccinia and
adenoviral vectors. This vaccine has been shown to induce pro-
tection against challenge in a proportion of naı̈ve volunteers,
which correlates with IFN-� responses by cultured, but not ex
vivo, ELISPOT [78, 79].

Thus, sufficiently strong IFN-� responses against selected,
pre-erythrocytic antigens are associated with protection against
(clinical) malaria episodes.

Blood stage
Cellular responses, including IFN-�, are also important in con-
trolling blood-stage parasites in murine models (reviewed in
refs. [80, 81]). Perhaps the most clear-cut evidence for this
arises from infections in IFN-��/� [28, 82, 83] and IFN-�R�/�

mice [84], who fail to control the initial wave of parasite multi-
plication following blood-stage challenge and succumb rapidly
to hyperparasitemia. A similar failure to control parasitemia is

Table 1. Effects of IFN-� on Innate and Adaptive Immune Responses against Malaria

Function References

Innate immune responses
Increased production of reactive nitrogen species (iNOS) by liver cells against intrahepatic parasites [23–25]
Increased production of reactive oxygen (H2O2) and nitrogen species (iNOS) by monocytes against

blood-stage parasites [26–29]
Enhanced phagocytosis of merozoites and pRBC [27, 30–32]
Inhibition of gametocyte infectivity to mosquitoes [33]

Interplay between innate and adaptive systems
Proinflammatory priming of TLR responses [34–37]
Up-regulation of MHC class I and II expression [38]
Enhanced ADCI against blood-stage parasites [22]

Adaptive immune responses
Increased Th1/Th2 ratio amongst T cells [39]
Class-switching by B cells to cytophilic antibody isotypes [40]
Enhanced induction of cellular (central) memory responses [41, 42]
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observed in immunocompetent animals, in which IFN-� is de-
pleted during infection [85–87].

To assess blood stage-specific protection in human volun-
teers, Pombo and colleagues [19] infected volunteers repeat-
edly with submicroscopic inocula of blood-stage parasites,
which were subsequently drug-cleared before they became
patent. These inoculations induced strong CD4� T cell-medi-
ated responses against pRBC, including proliferation and
IFN-� production, but no measurable antibody responses. The
volunteers were subsequently found to be protected against a
similar blood-stage challenge. This landmark study was thereby
the first to demonstrate a protective effect of cell-mediated
immune responses against blood-stage malaria parasites in
humans [19], although a concomitant effect of residual cir-
culating antimalarial drug concentrations could not be ex-
cluded [88].

Several field studies have also assessed cellular correlates of
protection against blood-stage malaria by measuring IFN-� pro-
duction to whole parasites (i.e., live pRBC or pRBC lysate) in
whole blood or PBMC assays. With the exception of 1 small
retrospective study [89], other prospective studies have consis-
tently found pRBC-induced IFN-� responses to be associated
with reduced risk of fever and clinical malaria episodes [90–
92]. Similarly, we recently found pRBC-specific IFN-� re-
sponses to correlate with protection against parasitemia at an
ethnic and individual level [93]. Associations between protec-
tion and IFN-� responses to individual (vaccine candidate)
blood-stage antigens are not conclusive: although most studies
failed [94–99], two other studies did show such associations
[66, 100].

In conclusion, broad, antiparasite IFN-� responses, but not
necessarily responses to individual blood-stage antigens, are
associated with protection against (clinical) malaria episodes.

Evidence for IFN-� in inflammation
and immunopathology
Clinical malaria is characterized by strong, proinflammatory
responses, in particular the production of IL-1�, IL-6, and
TNF-� endogenous pyrogens, which induce the disease’s
characteristic of high fever. Overproduction of these cyto-
kines has also been implicated in the immunopathology un-
derlying various forms of SM, in particular cerebral malaria
[101–105]. IFN-� in itself is not a pyrogen but can induce
downstream pyrogenic cytokines, in addition to its many
other immunomodulatory functions (Table 1). IFN-� has
been shown to be involved in many [83, 106 –109] but not
all [110 –113] murine models of cerebral malaria, and simi-
lar discrepancies exist for other forms of severe disease in
rodent models [114 –116]. What then is the evidence that
IFN-� contributes to pyrexia and more importantly, to im-
munopathology in human malaria? Studies in malaria-naı̈ve
volunteers have indeed indicated (temporal) correlations
between IFN-� responses and fever during experimental in-
fection [52, 117]. Most (but not all [118]) case-control stud-
ies have similarly measured higher plasma IFN-� levels in
symptomatic malaria patients compared with healthy or un-
infected controls [119 –121]. Furthermore, ex vivo IFN-�
responses to blood-stage exoantigens [95] but not whole

pRBC [90] have prospectively been associated with suscepti-
bility to pyretic malaria episodes. Thus, it seems likely that
IFN-� does indeed contribute to inflammation and fever in
malaria.

However, the evidence is less clear-cut for an association
between IFN-� responses per se (as opposed to TNF-� and
other proinflammatory cytokines) and manifestations of SM.
Whereas several case-control studies found higher plasma
IFN-� levels in SM compared with UM patients [122–126],
various similar studies have found higher plasma levels of
TNF-� [120, 127–130], IL-2R [131], IL-6 [127, 132], IL-1�

[128], or IL-1� [130] but never IFN-� in SM compared with
UM patients. Furthermore, plasma levels of IL-12 [130, 133–
136] and IL-18 [134 –136], which induce IFN-�, have been
found to be lower in SM than UM patients. Finally, a higher
proportion of children with UM registered ex vivo IFN-�
responses to malaria antigens, although absolute cytokine
concentrations did not differ between UM and SM groups
[66].

Any association between IFN-� and specific outcomes of
SM remains similarly unclear: whereas plasma levels of
IFN-� were lower in Indian patients with cerebral malaria
than in patients with other forms of SM or UM [130], no
such difference was seen in Burundi [137]. Postmortem
studies have identified [138] and failed to identify [139]
elevated IFN-� in the brains of cerebral malaria victims. The
largest study to date in 287 Vietnamese patients with severe
disease found plasma levels of TNF-� and IL-6 and IL-10
but not IFN-� to be positively correlated with the risk of
death. Amongst patients with various manifestations of se-
vere disease, high plasma IFN-� levels were particularly asso-
ciated with hyperparasitemia and to a lesser extent with
jaundice and shock, but not with renal failure and were
negatively correlated with cerebral malaria [140]. Similarly,
amongst Malian children with cerebral malaria, plasma
IFN-� levels and the prevalence of the IFN-� promoter poly-
morphism 183G/T (which increases gene transcription
[141, 142]) were lower than in matched UM controls [143].

Whereas some studies have found elevated plasma levels of
IFN-� associated with (severe) malarial anemia [144, 145],
other studies found no such association [90, 146] or even an
inverse relationship between IFN-� responses and anemia
[147]. Finally, IFN-� has been associated with adverse preg-
nancy outcome [148, 149], particularly in primigrivdae, but
again, this has not been a universal finding [150, 151].

Some caution must be exercised when interpreting these
findings, as cross-sectional immunological measurements, in
particular plasma cytokine levels during infection, may repre-
sent both cause and effect of clinical presentation. Thus, al-
though IFN-� responses appear to be correlated with symptom-
atic infection, the relationship between IFN-� responses and
manifestations of severe disease appears to be much more
complex and will require further dissection. Nevertheless, the
greater part of evidence from human studies would at least
suggest a negative association between IFN-� responses and
cerebral malaria.
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HOST AND PARASITE FACTORS
DETERMINE THE MAGNITUDE OF IFN-�
RESPONSES AGAINST MALARIA

Cellular sources of IFN-� against different parasite
life stages
��T cells, ��T cells, NKT cells, and NK cells have variously
been shown to produce IFN-� in response to Plasmodium para-
sites, although mechanisms of activation differ amongst these
lymphocyte subsets, and their relative magnitude varies be-
tween parasite stages. Delineating these various pathways and
their potential contribution to the total magnitude of IFN-�
production is an important step toward understanding protec-
tive cellular immunity against malaria.

Classical "adaptive" (��)T cell responses are dependent on
presentation of cognate antigen in the context of MHC class I
or II molecules. CD8� T cells recognize parasite-infected hepa-
tocytes in the context of MHC class I presentation [44], lead-
ing to IFN-� production (e.g., ref. [152]), but first require
priming by cross-presenting DCs in skin-draining lymph nodes
[153, 154]. CD4� T cells also recognize pre-erythrocytic anti-
gen in MHC class II context [56, 155, 156]. In addition to
��T cells, ��T responses have been shown to contribute to
liver-stage protection [157], and NKT cells can inhibit intrahe-
patic parasite development through IFN-� production [158].
Finally, NK cell IFN-� responses have been demonstrated
against sporozoites [159] and parasitized hepatocytes [47,
160]. Thus, considerable redundancy appears to exist between
cellular sources of IFN-� against pre-erythrocytic parasite
stages, but the relative importance of these various lymphocyte
subsets for protection in humans remains unresolved (re-
viewed in ref. [15]).

The cellular source of IFN-� responses to intraerythrocytic
parasites appears at first to form an immunological blind spot.
Whereas CD4� T cells may recognize malaria antigen phagocy-
tosed and presented on MHC II molecules by professional
APCs, it was generally believed that CD8� T cells cannot re-
spond to pRBC. However, it was demonstrated recently in mu-
rine malaria models that blood-stage infection can generate
parasite-specific CD8� (cytotoxic) T cell responses, following
cross-presentation by DCs [161, 162]. Intriguingly, it has been
suggested that such blood-stage infection-induced CD8� T
cells may be involved in protection against liver-stage but not
blood-stage infection [48]. Furthermore, CD4� and CD8�

pRBC-responding T cell clones have been isolated from hu-
man exposed previously [163].

��T cells too can recognize malaria antigens in the MHC
class II [164, 165] or I [166] context, inducing proliferation
and IFN-� production [167–169]. Some studies have suggested
this response to be IL-2-dependent [166, 170, 171], implying a
crucial accessory role for CD4� T cells. However, the ��TCR is
also capable of recognizing nonpeptide antigens directly, par-
ticularly phosphoantigens, without MHC presentation. Thus,
in contrast to ��T cells and NK cells, ��T cells can respond to
pRBC in the absence of APCs [172, 173], although supple-
mentation with APC-derived cytokines, e.g., IL-12, can aug-
ment ��T cell IFN-� production further (reviewed in ref.
[174]).

NK cells are considered innate lymphocytes as the first line
of defense (reviewed in ref. [175]) and potent early producers
of IFN-� in response to pRBC in vitro, for which they are de-
pendent on IL-12 and IL-18 [176]. Myeloid APCs presumably
form the source of the required IL-12 and IL-18, as the pres-
ence of these cells is required for IFN-� response by NK cells
in vitro. Exactly which APC subsets are required remains some-
what unclear: some authors report that only monocytes suffice
[177], whereas others also demonstrate this ability in mDCs
[178]. The latter group further demonstrated the additional
requirement of contact-dependent signals between APCs and
NK cells [178]. Besides these accessory signals, NK cells must
make direct cell contact with pRBC for an IFN-� response
[179, 180]. Intriguingly, heterogeneity in killer cell Ig-like re-
ceptors appears to correlate with NK IFN-� responses to pRBC
[179, 181], although this does not necessarily mean that these
receptors interact directly with pRBC, which lack MHC class I
molecules. More recently, it was also proposed that NK cells
recognize the parasite surface protein P. falciparum erythrocyte
membrane protein-1 via another NKR, NKp30 [182]. Finally,
IFN-� induction by pRBCs in NK cells is also IL-2-dependent
[178] but needs additional helper signals from CD3� T cells
(unpublished results). An overview of the various cellular path-
ways to IFN-� against different parasite stages is provided in
Fig. 2.

The relative contribution of these different lymphocyte sub-
sets to total IFN-� production in response to pRBC needs to
be explored further, however. In in vitro stimulation experi-
ments with PBMC from malaria-naı̈ve donors, the majority of
IFN-�-producing cells has, respectively, been identified as NK
cells [176, 177], ��T cells [171, 185], and ��T cells [168], in-
cluding intriguing NK-like ��T cells [169]. Whether these in-
consistencies represent differences between donors or in ex-
perimental setups is not fully clear, although it is evident that
in most donors, all three subsets do contribute to the total re-
sponse. Less still is known about in vivo sources of IFN-� dur-
ing malaria infection in humans or in recall responses from
previously exposed donors. Plasma samples taken from malaria-
naı̈ve volunteers undergoing experimental malaria infection
revealed soluble granzyme induction in addition to IFN-� and
other cytokines, suggesting an early role of NK cells [186], and
during and following infection, not only ��T cells but also
��T cells and NK cells contributed to the overall increase in in
vitro IFN-� responses against pRBC (unpublished results). In a
naturally exposed, healthy pediatric population, the majority
of IFN-�-producing lymphocytes was NK-like ��T cells [91],
and more data will be required to identify the different cell
sources of IFN-� in (non-)immune malaria patients.

Dynamics of IFN-� responses in relation to exposure
A second factor affecting the magnitude of IFN-� responses
against malaria is their modulation in relation to exposure.
Low-level IFN-� responses to pRBC have been demonstrated
repeatedly in malaria-naı̈ve donors [169, 176, 187–190] and
have variously been ascribed to innate responses, nonspecific
polyclonal responses to superantigens, or cross-reactive re-
sponses by T cells primed by environmental antigens (dis-
cussed in ref. [191]). In contrast, recall responses are mark-
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edly increased in malaria patients following a first clinical epi-
sode [192–195]. Indeed, even subclinical infections are
sufficient to induce robust IFN-� responses to pRBC in previ-
ously naı̈ve donors [19, 20, 42].

In general, immune responses to malaria are commonly be-
lieved to be short-lived following exposure, based mainly on
the short half-life of specific antibodies [196–198] (reviewed
in ref. [199]), an explanation that is often offered for the slow
development of immunity. It would appear that IFN-� re-
sponses to individual antigens are indeed relatively short-lived,
i.e., declining within a few years of exposure [200, 201], or at
least unstable [59–61]. However, even before the characteriza-
tion of IFN-�, Wyler and Oppenheim [192] demonstrated that
cellular, proliferative responses to a crude, whole parasite anti-
gen could be detected in donors up to 15 years following a
single malaria infection. More recently, Todryk et al. [42]
found undiminished IFN-� effector responses at 3 months
postinfection in previously naı̈ve volunteers, and data from our
own laboratory suggest such IFN-� recall responses to whole
pRBC remain practically undiminished at least 14 months
postinfection (unpublished results). Thus, although responses
to individual antigens or epitopes may be unstable, possibly
representing in vivo fluctuations in individual T cell clones,
the total IFN-� response to pRBC can remain remarkably long-
lived.

It comes somewhat of a surprise therefore to find that adult
residents of highly endemic regions produce markedly lower
IFN-� responses against pRBC than residents of low-endemic
regions or indeed even nonexposed donors [194, 202] and
that plasma IFN-� levels during clinical malaria episodes are
relatively lower in semi-immune rather than in nonimmune
patients [118, 119]. Depressed responses in highly exposed
individuals can be rescued by supplementation of exogenous

IL-2 [203]. Furthermore, these defective responses appear to
be antigen-specific [194, 202], suggesting clonal elimination or
specific suppression by regulatory T cells [204, 205]. In either
case, down-regulation of proinflammatory responses has been
proposed to be a beneficial adaptation by the host to avoid
immunopathology as a result of repeated or chronic malaria
infections [206], although as we have seen that there is limited
evidence to support this hypothesis with regard to IFN-� in
humans.

Modulation of IFN-� responses by the parasite
Various mechanisms by which malaria parasites may actively
suppress cellular immune responses have been reviewed else-
where [206, 207]. Suppression of (protective) proinflammatory
responses may be an active strategy pursued by malaria para-
sites to prolong their own survival in the host. Indeed, sup-
pression of proliferation (e.g., refs. [208, 209]) and IFN-� pro-
duction [193, 210] during clinical malaria episodes is a com-
mon, although not universal [211], finding. Evidence that
repeated or chronic parasitemia also suppress IFN-� responses
has arisen from longitudinal field studies [59] and long-term
chemoprophylaxis studies [212]. Thus, it appears that down-
regulation of cellular responses in general and IFN-�, in par-
ticular, is not only an active strategy pursued by the parasite
but also that this strategy is so central to its survival that it has
evolved multiple mechanisms by which to achieve it.

IMPLICATIONS FOR VACCINE
DEVELOPMENT

Given this evidence for the protective effect of IFN-� against
parasitemia, developing a malaria vaccine aimed at reproduc-

Figure 2. Induction and cellular sources of IFN-� against
various malaria parasite stages. (A) NK cells recognize free
sporozoites directly [159]. (B) In skin-draining lymph
nodes, sporozoites invade or are taken up by DCs, which
in turn, prime CD4� T cells (presentation on MHC-II)
[156] and CD8� T cells (cross-presentation on MHC-I)
[153, 154]. (C) Primed CD8� T cells recognize infected
hepatocytes directly [44, 152]; primed CD4� T cells re-
spond to antigen presented by local APCs [56, 155, 156].
NK cells are activated in a bystander manner [47, 160].
(D) In blood or spleen, ��T cells recognize pRBC-phos-
phorylated antigens directly without the need for APC pre-
sentation [172, 173]. APCs (monocytes and/or mDCs) rec-
ognize pRBC ligands through PRRs (e.g., hemozoin [183]
and/or associated parasite DNA [184] via TLR-9). CD4�

and CD8� recognize pRBC antigens presented by DCs in,
respectively, MHC-II [163] and (cross-presented) MHC-I
context [161, 162]. NK cells recognize pRBC directly [179]
but require help from APCs and probably also T cells for
full activation [177, 178].
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ing such IFN-� responses would appear to be desirable.
Whether "the stronger, the better" in terms of IFN-� responses
should be the ultimate goal of malaria vaccine development
must eventually depend on a more precise understanding of
the complex relationship between IFN-� and manifestions of
severe disease. Nevertheless, in designing any such vaccine
strategy, a number of lessons can be drawn from what we un-
derstand currently about the factors that determine the magni-
tude of IFN-� responses against malaria.

Induce multiple cellular pathways and a broad IFN-�
response
In addition to traditional ��T cells, NK cells and ��T cells
form important tappable sources of IFN-�. Their IFN-� re-
sponse against malaria parasites is induced through distinct
pathways that can be exploited in vaccine design, i.e., by the
inclusion of phosphoantigens to activate ��T, or whole para-
sites to activate IFN-� production by NK cells (see Cellular
sources of IFN-� against different parasite life stages above).
Although generally considered "innate" lymphocytes, we (un-
published results) and others [213, 214] have clearly demon-
strated "memory-like" patterns in the IFN-� responses of these
cells, supporting their rational inclusion in vaccine design. Ex-
ploiting such alternative cellular pathways furthermore by-
passes parasite-mediated inhibition of IFN-� responses in ��T
cells.

The problem of short-lived or IFN-� erratic responses to in-
dividual antigens can be overcome partially by inducing a
broader response, e.g., by whole parasite-based vaccines. These
expose the host’s immune system to the full palette of parasite
antigens, ideally also inducing IFN-� against multiple life
stages. Furthermore, whole parasites contain a "built-in adju-
vant", augmenting overall IFN-� responses further [183]. In-
deed whole parasite-based vaccine approaches induce robust
IFN-� responses in humans [19, 20, 53] and have generally
proven more successful than subunit vaccines [215–218].

Prevent exposure-mediated suppression of IFN-�
responses
As suppression of IFN-� responses in relation to exposure does
not seem to serve the host but rather appears solely a survival
strategy by the parasite, the question arises whether/how such
suppression can be avoided in the context of vaccine-induced
IFN-� responses. In other words, does suppression of IFN-�
responses automatically follow from repeated exposure, and
can we design strategies to bypass it? Further field studies ad-
dressing the mechanism(s) underlying immune suppression in
relation to exposure will be necessary but are complicated by
the fact that in endemic settings, the effect of exposure cannot
be distinguished readily from the effect of age [219]. Infants’
and children’s immune systems function differently from
adults’, quantitatively and qualitatively (e.g., refs. [220, 221]),
and it could be hypothesized that the basis for life-long, sup-
pressed IFN-� responses against malaria is laid in the imma-
ture immune systems of infants in highly endemic areas [222].
However, only little is understood about the effect of age on
(cellular) immune responses to malaria from rodent models

[223–225], and although IFN-� responses against malaria in
human children growing up in endemic areas tend to be
weaker than in adults [61, 68, 226–228], the effect of prior
exposure in these studies is again hard to distinguish from
that of age per se.

One potential approach to answering these related ques-
tions would be to study IFN-� responses in people who be-
come highly exposed to malaria only later in childhood or in
adulthood, e.g., transmigrants, as has been performed for hu-
moral responses in Javanese transmigrants to Irian Jaya [229–
231] or in settings of epidemic or resurgent malaria such as
Madagascar [232].

CONCLUDING REMARKS

In this review, we have shown how IFN-� forms a critical com-
ponent of immune responses against pre-erythrocytic and
blood-stage malaria parasites. A wealth of evidence supports its
protective efficacy against clinical malaria episodes, whereas
the evidence associating IFN-� responses with immunopathol-
ogy remains equivocal and will require further investigation. In
the meantime, striving for strong and long-lasting IFN-� pro-
duction appears justified as a malaria vaccine strategy, and to
achieve this, such vaccines should be designed to induce a
broad response via multiple cellular pathways. Additionally,
the mechanism by which repeated exposure leads to suppres-
sion of such responses needs to be resolved.
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