
 

 

 University of Groningen

Opportunities and Barriers for Biomass Gasification for Green Gas in the Dutch Residential
Sector
Miedema, Jan H.; van der Windt, Henny J.; Moll, Henri C.

Published in:
Energies

DOI:
10.3390/en11112969

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Miedema, J. H., van der Windt, H. J., & Moll, H. C. (2018). Opportunities and Barriers for Biomass
Gasification for Green Gas in the Dutch Residential Sector. Energies, 11(11).
https://doi.org/10.3390/en11112969

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 21-05-2019

https://doi.org/10.3390/en11112969
https://www.rug.nl/research/portal/en/publications/opportunities-and-barriers-for-biomass-gasification-for-green-gas-in-the-dutch-residential-sector(5992582f-70f2-45e2-90b5-53d89c1970e5).html


energies

Article

Opportunities and Barriers for Biomass Gasification
for Green Gas in the Dutch Residential Sector

Jan H. Miedema 1,*, Henny J. van der Windt 2 and Henri C. Moll 1

1 Center for Energy and Environmental Sciences, Faculty of Mathematics and Natural Sciences, University of
Groningen, Nijenborgh 6, 9747 AG Groningen, The Netherlands; h.c.moll@rug.nl

2 Science and Society Group, Faculty of Mathematics and Natural Sciences, University of Groningen,
Nijenborgh 6, 9747 AG Groningen, The Netherlands; h.j.vanderwindt@rug.nl

* Correspondence: j.h.miedema@rug.nl or janhessels.miedema@hvhl.nl; Tel.: +31-58-28-46-221

Received: 3 October 2018; Accepted: 26 October 2018; Published: 1 November 2018
����������
�������

Abstract: The Dutch residential sector is locked-in into natural gas for the supply of heat.
The expected depletion of national reserves and induced earthquakes in the production area
are reasons to aim to escape this lock-in. The Dutch government and key players in the natural
gas sector have expressed large green gas ambitions. This paper explores the opportunities and
barriers of biomass gasification for green gas production and application in the residential sector.
The Technological Innovation Systems and Multi-Level Perspective were applied as sustainability
transition frameworks to explore the current technological state of biomass gasification and the
developments in the residential sector. Four limitations were observed from a supply perspective;
little financial space for demonstration plants, absence of technology specific policy, lagging market
developments and insecurities related to biomass availability. On the demand side, clear barriers
hampering change are observed, providing large opportunities for green gas. Key players in the
natural gas regime take no substantial responsibility, despite their potential ability to contribute
to overcoming systemic barriers. Therefore, this research concludes that the current green gas
ambitions set by the Dutch government are not feasible and that the government may address this
with technology specific policy, substantial research and development subsidies and funding.

Keywords: biomass gasification; green gas; residential sector; multi-level perspective on sustainability
transitions; technological innovation systems

1. Introduction

The necessity for a transition of the energy system is determined by a number of factors relevant
on different geographical scales. On a European scale there are three main policy objectives; mitigation
of climate change, security of energy supply and economic competitiveness i.e., affordable energy
prices [1,2]. These objectives have trickled down to the individual member states, who all have their
individual challenges to fulfil such objectives, related to the design of their specific energy systems.
The different targets for the share of renewable sources for the individual member states in Annex I of
the Renewable Energy Directive [3] not only emphasise the different starting points for the mitigation
of climate change of the member states, but also implicitly take into account the individual challenges
from the member states. On a national scale, the design of the energy system of The Netherlands is
exceptional, due to the historic high share of natural gas in the energy mix. This was 47% in 2000 and
38% in 2015 [4]. The discovery of the Groningen field in the northeast of The Netherlands in the
1960s [5] has led to a large national dependency on low caloric natural gas. In addition, the historic
quantities of natural gas in the Dutch sub-soil resulted in The Netherlands becoming an important
supplier of natural gas in North-West Europe. However, the field is expected to become depleted in
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about two decades and the Dutch export position will change into a net dependency on natural gas
imports. This awareness has led to the so-called Gas Roundabout strategy by the Dutch government
in 2005, which aims to secure the supply of natural gas and to contribute to the continuity of the
European natural gas supply [6]. The dependency has in particular led to a lock-in of the Dutch
residential sector, where 93% is connected to the low caloric natural gas grid for heating purposes [7].
The average consumption in a Dutch household is about 1500 m3 annum−1 [8] for space heating, hot
water supply and cooking, making the residential sector responsible for the consumption of about
11 billion cubic meters bcm, which is almost half of the current annual production from the Groningen
field. However, production from this field has led to over 1000 induced earthquakes causing damage
to existing buildings and contributing to social turmoil [9].

Recently, the Dutch Petroleum Company (NAM) was forced by the Minister of Economic Affairs
to reduce production from the Groningen field to 24 (bcm) or 760 PJ annum−1 [10], as a response to
induced earthquakes.

During a transitional period towards a sustainable energy system, green gas supply can contribute
to a further reduction of the Groningen field production levels; this may result in a decrease in the
number and severity of the induced earthquakes [11,12].

A large role for green gas is expected by the Dutch government and key players in the natural
gas sector during the transitional period towards a sustainable heat supply system. The most recent
agreement related to the supply of heat is the Heat Vision document. It suggests a tripling of renewable
heat production is possible from 6.1 PJ to 18 PJ between 2013 and 2023 [13]. This renewable heat
should originate from biogas combustion with combined heat and power and green gas through
biogas upgrading. The Dutch gas trade company GasTerra states that up to 3 bcm of green gas (or
about 95 PJ) can be produced in 2030 [14]. Such quantities require large-scale production of green gas.
In order to supply the expected quantities of green gas, gasification technology is thought to have large
potential. Gasification can be used to convert basically all carbon containing compounds into gaseous
products [15]. Biomass gasification combined with a methanisation unit is an innovative developing
technology, which can be used to produce a green gas suitable for injection into the existing gas grid.

The aforementioned factors; climate change, depletion of the low caloric natural gas field, induced
earthquakes, a large national dependency on natural gas, and the residential sector being a captive
customer, emphasise the need for a transition of the residential heat supply system in The Netherlands
in a short timeframe. In this article, the Dutch residential sector is regarded as a captive customer, since
the rate of return of renewable heat supply technology is often too long or the capital investments are
too high for a large part of the population. Biomass gasification can potentially contribute to all these
factors. Green gas produced through biomass gasification can positively contribute to climate change
from a greenhouse gas perspective [16]. Furthermore, large quantities of green gas can potentially
reduce the dependency on the Groningen field, contribute to reduced production levels from the
Groningen field and with that possibly a reduced number of earthquakes.

Biomass gasification can serve as an incremental innovation, since it can stabilise the transition
towards sustainable heat supply in the residential sector. Therefore, the aim of this research is to
explore the opportunities and barriers of biomass gasification for green gas production and application
in the Dutch residential sector.

2. Methodology and Frameworks

The Multi-Level Perspective on sustainability transition (MLP) and the Technological Innovation
System (TIS) are the frameworks that have dominated the literature concerning sustainability transition
theory [17]. The TIS framework is applied here to explore the current technological state of biomass
gasification and with that its technical possibilities to supply green gas.

The MLP is used to explore the position of key players in the natural gas sector and the position
of the residential sector as captive customers. The captivity of the residential sector is addressed by
exploring the absence or presence of six potential barriers, hampering diffusion of renewable energy
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technology, provided by Reference [18]. By including so-called socio-technical regimes and landscape
pressures in this analysis, the TIS approach can be applied to explore transitions [19] and with that
the potential role of biomass gasification and green gas during the transition towards sustainable heat
supply in the Dutch residential sector.

2.1. Sustainability Transition Frameworks

The TIS framework provides a check-list, based on a set of seven so-called system functions.
According to [20], the functions approach should be regarded as a process or history event analysis.
This functions approach has been applied before by References [21,22], on the topic of biomass
gasification. These historic case studies aim to explain the failure of the diffusion of biomass gasification.
They regard the absence of system functions as indicators for failure of the diffusion of biomass
gasification. The functions approach is argued to be generic enough to explore varying TISs and
find barriers [19,23]. Therefore, the TIS framework was applied for the analysis of the current
technological state of development of biomass gasification. The system functions are listed in the
first column of Table 1 and were taken from Reference [20]; the second column lists a number of
relevant indicators taken from References [20,24]. These indicators were adjusted for the specific case
of biomass gasification in order to find systemic barriers for biomass gasification and form a basis for
some policy recommendations to overcome these barriers. The framework in Reference [24] is argued
to be suitable for both policy makers and innovation scholars.

Table 1. Technological Innovation System (TIS) system functions and operationalised indicators applied
in this research.

System Functions Indicators

1 Entrepreneurial activities

Entrepreneurs experimenting with biomass
gasification

Varying feedstock
Varying output
Varying scales

Specific research about technological performance

2 Knowledge development

Scientific theory and experiments
Actors responsible for financial space

Applied research projects
National research and technology programs

Pilot and demonstration plants

3 Knowledge diffusion
Partnerships

Publicly available feasibility assessments
Actors contributing to knowledge development

4 Guidance of the search

Policy documents, strategies and agreements
Induced government activities

Technology specific policy
Green gas policy

Technological expectations
Policy documents from the natural gas regime

5 Market formation

Market size
Current and potential users

Leading parties
Institutional incentives/barriers

6 Resource mobilisation

Adequate public funding
Adequate risk capital

Actors with resources and capabilities
Supportive networks for innovation

Biomass supply and supply expectations
Biomass prices

7 Counteracting resistance Supportive bottom-up initiatives
Legitimate investment decision

System functions were taken from Reference [20]. Indicators were taken from Reference [25] and from an extensive
list provided by Reference [24]. Indicators were operationalised for this specific research when necessary.



Energies 2018, 11, 2969 4 of 20

The MLP on sustainability transitions is a qualitative framework, suitable for the analysis of
long-term transitions related to challenges such as resource depletion [26]. It applies three levels of
change (i.e., the landscape, regime and niche level), where respectively the dynamics between macro
developments, existing configurations and developing technology can be explored. Geels [27] defined
the niche level as “[ . . . ] ‘protected spaces’, such as Research and Development (R&D) laboratories,
subsidised demonstration projects, or small market niches where users [ . . . ] are willing to support
emerging innovations [ . . . ]”. The regime level was defined as “[ . . . ] the deep structural rules that
coordinate and guide actor’s perceptions and actions [ . . . ]” within “[ . . . ] the alignment of existing
technologies, regulations, user patterns, infrastructures and cultural discourses [ . . . ]”. The landscape
was defined as “[ . . . ] the wider context, which influences niche and regime dynamics”, which “[ . . .
] includes spatial structures [ . . . ] political ideologies, societal values, beliefs, concerns, the media
landscape and macro-economic trends” [27]. General patterns in transitions are described by the
interactions between these levels. The approach is graphically presented in Figure 1. In this figure,
biomass gasification is presented as a niche technology and explored with a TIS analysis.

2.2. Data Collection

Empirical evidence was gathered by a number of semi-structured interviews and literature review
by looking through scientific databases. Semi-structured interviews were conducted with key players,
including representatives from a leading housing corporation (J. Leistra, Wold en Waard), municipality
(B. de Boer, Municipality of Leeuwarden), province (H.J. Bouwers, Province of Friesland), energy
supplier (M. van Son, NLDenergie), and of main companies in the natural gas sector involved in the
trade (G. Martinus, GasTerra), infrastructure (W. de Groot, Gasunie), transmission (W. de Groot, GTS)
and distribution (M. van Dam, Enexis) of natural gas. Additionally, policy from the European Union
(EU), i.e., the Renewable Energy Directive (RED) [3] and the Energy Performance of Buildings Directive
(EPBD) [28], were analysed as landscape pressures. The national policy documents taken into account
are the Energy Agreement on Sustainable Growth [29] and the Heat Vision [13]. The future role of
natural gas and with that the potential for green gas was estimated by extrapolating the ambitions
formulated in current policy when it comes to increased energy efficiency and alternative technology
in the residential sector until 2030. The expectations towards green gas in the natural gas sector were
explored by combining the semi-structured interviews with annual reports from actors dominating the
natural gas sector (between 2011 and 2016). The developments in the residential sector were explored
by reports from housing corporations and scientific literature.

This article is structured as follows. The results and discussion section starts with possible green
gas production routes after which the TIS analysis for biomass gasification is presented. Subsequently,
the change in energy performance and diffusion of renewable heat technology in the residential sector
is explored. In addition, the natural gas regime is delineated on a sectoral basis. The discussion
section is applied to address the methodological choice for such regime delineation and to present the
observed opportunities and barriers. The concluding section combines the observed insights from the
supply (biomass gasification technology) and demand side (residential sector) in combination with the
expectations of the government and the natural gas regime.
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biogas is 13 PJ [31], roughly a doubling of installed capacity would be required when an overall 
efficiency of 75% is assumed for biogas upgrading to green gas [32], if the target of 18 PJ is to be met 
in 2023. In addition, almost half of the biogas is produced trough co-digestion of manure at a farm 
level [31] in rural areas. All this biogas is combusted with Combined Heat and Power (CHP), with 
the main purpose of electricity production and supply of the required process heat [31]. Adjustments 
of these plants, with an upgrading step would be required in order to produce a green gas. However, 
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Figure 1. Overview of the TIS functions for biomass gasification, including alternative niches for
residential heat supply, the natural gas regime, the residential sector and the landscape level. The arrows
indicate the dynamics between different levels and the TIS functions, single arrows indicate unilateral
pressures, whereas double arrows indicate bilateral dynamics combined with the system functions
from TIS. The residential sector is presented as a black box to emphasise its position as a captive
customer within the natural gas regime. Figure 1 is based on Reference [30].

3. Results

3.1. Green Gas Production Routes

In order to supply the envisioned quantities of green gas two technologies can be applied, i.e.,
biological or thermochemical. Currently, the largest part of biogas is produced through the biological
route, with anaerobic digestion (AD) processes in The Netherlands. With AD about 13 PJ of biogas was
produced, of which 2.6 PJ was converted into green gas and injected into the grid in 2016 [31]. Figure 2
gives an overview of the green gas production routes for AD and gasification, including the production
of alternative energy carriers. This research focuses on the gasification route emphasised by the dashed
square in Figure 2. AD is included in the figure, since it is the only option for green gas production
currently installed in The Netherlands on a substantial scale. Given that production of biogas is
13 PJ [31], roughly a doubling of installed capacity would be required when an overall efficiency of 75%
is assumed for biogas upgrading to green gas [32], if the target of 18 PJ is to be met in 2023. In addition,
almost half of the biogas is produced trough co-digestion of manure at a farm level [31] in rural
areas. All this biogas is combusted with Combined Heat and Power (CHP), with the main purpose
of electricity production and supply of the required process heat [31]. Adjustments of these plants,
with an upgrading step would be required in order to produce a green gas. However, the produced
quantities are limited by demand, since these farms are connected to the low pressure distribution
grid. Continuous production may result in supply problems, because the low pressure distribution



Energies 2018, 11, 2969 6 of 20

grid has limited injection capacity [33], since it is a unidirectional grid. This causes local limitations,
especially in summer when there is low demand ([33]; personal communications with M. van Dam,
Enexis on 10 March 2015 and H.J. Bouwers, Provinsje Fryslân on 20 March 2015). The high pressure
transmission grid is therefore more suitable for injection of green gas (personal communication with
H.J. Bouwers, Provinsje Fryslân on 20 March 2015). In addition, linepack can be applied as a source
of flexibility when there are imbalances between injection and extraction [34]. Producing substantial
amounts of green gas in 2030 is therefore not expected from AD. Biomass gasification should result in
centralised production of large quantities of green gas and therefore the high pressure transmission
grid can be used for injection, overcoming the capacity issues.
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gasification, including alternative output fuels.

3.2. TIS Description of Biomass Gasification

Contrary to AD, biomass gasification technology for green gas production is not implemented on
a large scale. Coal gasification for the production of synthetic natural gas is a proven technology (see
e.g., Reference [35]); biomass gasification is still subject to technological challenges which need to be
resolved. Therefore, this paper continues with a systemic approach to explore the factors that form
barriers for diffusion of biomass gasification.

A variety of companies, research institutes, universities and collaborations between these three
have led to a number of pilot and demonstration plants [36–38]. There is a variety in bio-based
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feedstock, from woody lignocellulosic biomass, gaseous and liquid fuels (e.g., syngas and black
liquor) and waste (refuse derived fuel). The output products vary between electricity, heat and
different liquid and gaseous fuels. The gaseous fuels are biogas, syngas and Synthetic Natural
Gas (SNG). SNG is a green gas suitable for injection into the natural gas grid. Liquid fuels are
dimethyl ether (DME) and Fischer-Tropsch diesel (FT diesel), which are renewable transport fuels.
Given the variety of possible output products for biomass gasification (Figure 2) that are being
researched, selection of an optimal design for the biomass gasification technology has not taken place.
A number of biomass gasification initiatives can be identified in Europe. An overview of biomass
gasification projects in Sweden and Denmark is provided by Reference [37]. Of the 19 identified projects
only one demonstration plant was designed with the purpose to produce green gas. In addition,
Reference [36] identified 23 thermochemical conversion initiatives on a global scale. Two additional
initiatives were found that produce green gas in The Netherlands. Furthermore, Reference [38] gives
an overview of 14 biomass gasification projects in Europe, with five additional initiatives of which one
semi-commercial plant aimed to produce green gas. This semi-commercial plant was however, put
on hold [38]. The emphasis on green gas production lies therefore in The Netherlands. The second
plant mentioned by References [36,38] is, however, still in its planning stage. The first Dutch plant is a
800 kW pilot installation by ECN, which had successful trials [39,40], and they aimed to increase the
scale to about 10 MW, since 2010 [40]. Currently, the plans for this demonstration plant are renewed
by a collaboration between the province, municipality, and various actors being part of the biomass
gasification niche and the key players in the natural gas sector [41,42] and construction is being planned
for 2018 [43]. The Dutch province of Noord Holland has agreed to invest about €1 million in the
development of a biomass expertise centre and €0.5 million in the development of a demonstration
plant for biomass gasification technology as developed by ECN [41]. Total costs are in the order of
€23 million; this collaboration has agreed to foresee in the remaining €21.5 million. Other initiatives
in The Netherlands related to biomass gasification are from BioMCN (biofuel production), Synvalor
(engineering consultant), Torrgas (small-scale syngas production), Heveskes (conversion technology),
HVC Alkmaar (waste treatment), HoSt (engineering) and ECN (research institute) [44]. These are
currently quite small initiatives when looking at scales of production (aside from BioMCN).

The output of theoretical scientific knowledge related to biomass gasification increased on
average with 20% per annum since 2000 when looking at results from Web of Science when using
biomass gasification as keyword. Furthermore, The Netherlands had the EDGaR program, in which
research addressing biomass gasification for green gas also had a substantial role between 2010 and
2015 [45]. A follow-up program was not realised. Experimental knowledge is developed through
a number of pilot and demonstration plants. However, increasing the scale from a pilot plant to a
demonstration plant or from demonstration to a commercial plant proves difficult. Reference [38]
mentions the example in Finland, where a 12 MW pilot plant had successful trials, but still stopped
experiments afterwards. In addition, Reference [46] observe a more general trend where the shift from
demonstration plants to a commercial scale hampers. In The Netherlands this story is similar, since the
aim to increase the scale of the 800 kW pilot plant to a 10 MW demonstration plant exists for eight
years already. In addition, further development to early commercialisation and full scale commercial
plants is a lengthy process. Furthermore, Reference [46] argue that it takes at least three years after
the construction of a demonstration plant is finished, before the performance is good enough to find
investors for a pre-commercial plant. Further upscaling, permits for construction and construction
itself of a full-scale commercial plant that can contribute to the transition in the Dutch residential sector
is a process that will take more than a decade at best.

Technology specific policy could contribute to such developments, but the Dutch government has
only put in place an operating grant for promotion of renewable energy, called SDE+, which provides
the opportunity for investors to receive financial compensation for the production of renewable energy
for a certain period. This should accelerate the implementation of renewable energy technology.
The high initial cost of such a large plant are however difficult to overcome and an operating grant
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is therefore not useful. Despite the absence of technology specific policy, lower governments play a
facilitating role by supporting local initiatives and bringing entrepreneurs together ([29]; personal
communications with H.J. Bouwers, Provinsje Fryslân on 20 March 2015 and B. de Boer, Municipality
of Leeuwarden 5 November 2014). The current planning of the 10 MW demonstration plant by ECN,
Gasunie, Dahlman and HVC in Alkmaar is an example of collaboration and the facilitating role of
lower governments.

Furthermore, a market for green gas should be present. This could be the residential sector,
but this is highly dependent on future natural gas and green gas prices, and the cost for alternative
renewable technology to supply heat. Thus, besides the technical development, the development
of both the natural and green gas prices are of importance. Depending on the feedstock cost the
green gas cost will be €14–24 GJ−1, which is currently twice the price of natural gas [47]. However,
natural gas prices are expected to rise (€11–14 GJ−1 in 2030) and therefore green gas has possibilities to
become competitive in the coming decades. A low feedstock price can be attained by the application
of waste instead of biomass as feedstock. Future biomass prices are insecure, given the expected
global availability of 33 to 1135 EJ a−1 in 2050 [48]. Besides that, biomass for energy purposes is
subsidy-driven, since there is a direct relation between biomass co-combustion in coal fired power
plants and national subsidy structures in The Netherlands [49]. The most recent estimates for demand
and supply of biomass within the Dutch bioeconomy show that demand exceeds domestic supply
with at least a factor two and possibly a factor nine in 2030 [50]. This is emphasised by the example of a
relatively small-scale initiative like the biomass incineration plant from Eneco (49.9 MWe), that requires
waste wood, which is already imported from neighbouring countries ([51]; personal communication
with J. de Haas, CEO at Eneco on 9 December 2015). When green gas production is combined with
higher value renewable products, the additional profits can be applied to reduce the cost for green gas
production. Co-production of value-added chemicals may result in a cost reduction of €4.5 GJ−1 [47].
This would require flexible production of which the importance, when it comes to input and output
products, is emphasised in literature [52–55].

The results of this TIS analysis are summarised in Table 2, where the systemic barriers are also
included. The TIS analysis shows that the development of biomass gasification technology for green
gas in The Netherlands is still in the formative phase. The larger part of the systemic barriers are
institutional and lacking financial or knowledge infrastructure. The required network interactions
between the players in the biomass gasification TIS and key players in the natural gas sector have
led to a collaboration that is aiming to continue with the currently planned demonstration plant in
The Netherlands. Further technological development and diffusion of biomass gasification is limited
by four factors. The first is the inability of the involved actors to increase the scale to demonstration
and subsequent pre-commercial or full scale commercial plants. In The Netherlands, this inability
results from the absence of financial infrastructure for investments, and not because of unsuccessful
testing. High capital investments are required; with insecure profits, this results in large investment
risks. Expectations for green gas are, however, large; this holds for key players in the natural gas
sector, but also for Dutch politics and parties involved in the development of Dutch energy strategies.
The second factor is institutional and involves the absence of technology specific policy. Lower levels
of the Dutch government aim to facilitate initiatives in line with the existing strategies and key players
in the natural gas sector collaborate with the technology developers. Key players contribute to the
direction of the technological development of biomass gasification, but the current quantity of the
investments does not guarantee successful diffusion of biomass gasification to foresee in the desired
quantities of green gas in 2030. Third is the absence of a substantial market. A market share of 5%
for green gas, as envisioned by the Dutch government in 2023, which is a requirement for successful
diffusion of a technology [56] is not guaranteed. Fourth are limitations related to knowledge and
financial infrastructure, which involve the insecurity related to future biomass prices and availability
as feedstock for energy purposes.
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Table 2. Overview of the present (+) and absent (−) system functions and the systemic barriers.

System Functions Indicator Present Remark Systemic Barrier

1 Entrepreneurial
activities

Entrepreneurs
experimenting with
biomass gasification

+

A variety of institutes in the
European Union (EU) and

multiple small
initiatives/companies in the

NLs not all related to green gas

Varying feedstock + Biomass and waste in the EU,
biomass in the NLs

Varying output +

Electricity; renewable gases;
liquid fuels; building blocks for

chemical industry in the EU,
green gas in the NL

Varying scales +
500 kW to 160 MW in the EU,

800 kW for green gas is present
in the NLs

Specific research about
technological performance + A variety of institutes in Europe,

ECN in the NLs

2 Knowledge
development

Scientific theory and
experiments +

Clear increase in theoretical
scientific output since 2000;
gasification was part of the
Energy Delta Gas Research

Actors responsible for
financial space +/-

Financing is difficult, there are
delays; Dutch national subsidies

are focused on production
(SDE+) not on construction

and development;

Institutional and
financial infrastructure

Applied research projects +/-
Lower level governments

facilitate niche and
regime initiatives

Institutional and
financial infrastructure

National research and
technology programs - EDGaR was finished in 2016, no

follow-up programme
Financial and physical

infrastructure

Pilot and demonstration
plants +/-

Financing is difficult; there are
delays; construction of 10 MW

demonstration plant is planned
in the NLs since 2010

Institutional and
financial infrastructure

3 Knowledge
diffusion

Partnerships +
Collaboration between niche

players and the natural
gas regime

Publicly available
feasibility assessments +

Green gas production costs,
technological assessments of

biomass gasification

Actors contributing to
knowledge development + Both on niche level and natural

gas regime

4 Guidance of the
search

Policy documents,
strategies and agreements +/-

Energy Agreement and Heat
vision; implementation is

behind schedule
Institutional

Induced government
activities +/-

Facilitating role for lower
governments; financial means

are too small

Institutional and
financial infrastructure

Technology specific policy - No specific support schemes for
biomass gasification Institutional

Green gas policy +/-

Subsidy schemes are present;
high green gas expectations; aim
is 18 PJ in 2023, no clear role for

biomass gasification

Institutional,
interactions and actors

Technological expectations +/- No clear view on the future role
of biomass gasification

Knowledge
infrastructure, network

interactions

Policy documents from the
natural gas regime +

Annual reports of players in the
natural gas regime show

openness towards green gas;
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Table 2. Cont.

System Functions Indicator Present Remark Systemic Barrier

5 Market
Formation

Market size +/-
Currently a niche market,

potentially large in the
residential sector

Institutional

Current and
potential users - Potential in the residential sector Institutional

Leading parties + Players within the natural
gas regime

Institutional
incentives/barriers - Upscaling of technology is

difficult due to financial means Financial infrastructure

6 Resource
mobilisation

Adequate public funding - ISDE subsidy is only available
for proven technologies Institutional

Adequate risk capital +/-
Over €20 million from public

and private parties, not enough
for upscaling

Institutional, network
interactions

Contributions from actors
with resources
and capabilities

+ 10 MW demonstration plant
in Alkmaar

Supportive networks
for innovation + United in a consortium of niche

an regime players

Biomass supply and
supply expectations - Small projects already

require imports
Knowledge

infrastructure

Biomass prices - Unpredictable
Financial and

knowledge
infrastructure

7 Counteracting
resistance

Supportive bottom-up
initiatives - Small energy corporations have

little access to green gas Institutional

Legitimate
investment decision - Investment risk is high, due to

uncertain outcomes
Knowledge

infrastructure

3.3. Implementation in the Residential Sector

Now that the barriers for green gas on the supply side are identified, this section explores the
developments in the residential sector in order to find the potential for green gas on the demand
side. The residential sector is regarded as a captive customer within the natural gas sector. In order
to get insights in the potential for green gas, this section is used to indicate the existing barriers
towards implementation of improved energy performance measures and alternative heat technology
in the residential sector. Six potential barriers limiting the diffusion of renewable energy technology,
namely; awareness and information, economic and financial constraints, technical risks, institutional
and regulatory barriers, market barriers and behaviour, were provided by Reference [18]. The actors
influencing change in the residential sector are divided in three groups. These are the owners in the
private sector, the housing corporations and its tenants. The EPBD [28] is the overarching European
policy that focuses on the energy performance of the built environment and with that the residential
sector. It aims to have new houses built that, on average, produce similar quantities of energy as they
consume. The EPBD introduced the energy performance certificates for buildings, ranging from A+++,
being the best to G, being the worst performer. A minimum of a certificate C is required in the private
sector and a minimum of certificate B for property of housing corporations, in 2020 [57].

About one-third of the residential sector is managed by housing corporations [58,59].
Although [60] argue that the financial space for housing corporations is large enough, the main
goal of a B certificate for this sector [57] is not expected to be met in 2020 [58,61]. In addition, AEDES
(the national organisation that promotes the interest of almost all housing corporations [62]) argues in
their annual reports that the financial space for investments of the housing corporations is not as strong
as thought [63,64]. Proposed adjustments to the Heat Law are expected to indirectly force housing
corporations to switch from collective heat supply to individual natural gas boilers [65]. Collective
heat contributed for 5,5% to heat supply in the residential sector in 2016 [66]. Collective heat supply is
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mainly driven by natural gas and is assumed to increase up to one-third of the total supply in 2030 [13].
Visscher et al. [58] argue that convincing tenants to participate in energy saving measures, that result in
an increase in rent, is challenging. In addition, the energy certificates A and B underestimate the actual
natural gas use, whereas the certificates E, F and G overestimate the actual natural gas use [58,67].
An increased cost for rent due to energy saving measures, combined with lower energy cost is therefore
no guarantee that tenants will end up with lower monthly costs. In addition, Reference [68] argues that
this risk of increased cost is especially relevant for tenants who already use little energy for heat for
economic reasons. Furthermore, a large part of tenants was found to have little interest in the energy
performance of their homes [69]. Besides that, Reference [70] emphasise that investments in the private
sector in energy performance of buildings offers economic benefits. Despite this, private owners
are not easily convinced to improve the energy performance of their households [70]. In addition,
residents’ behaviour and heating technology are two important factors in the total energy consumption
in the Dutch residential sector [70–72]. Van Middelkoop et al. [70] recognise the importance of heating
behaviour, but also argue that this importance is not visible in Dutch policy. Brounen et al. [72] mention
that efficiency increases may be annihilated, due to the behavioural aspects related to an ageing Dutch
population. In addition, smart-metering technology may contribute to awareness within households,
but does not guarantee behavioural change. Currently, the effect of smart-meters has offered no
more than 1% reduction in heat demand [73]. When it comes to heating technology, Reference [74]
mention that with current policy 9% of the high efficiency boilers in the residential sector will be
replaced in 2030. The expected substitute technologies are hybrid boilers, which still have a natural
gas dependency, and electric heat pumps. When considering the government’s heat specific policy [13]
it aims to avoid increasing dependency on politically instable regions by diversifying the heat supply
in The Netherlands. They see potential for a variety of technologies, like heat and cold storage,
geothermal heat, solar boilers, biomass and (hybrid) heat pumps. Collective heat supply could be up
to a third of the total heat demand in 2030. In regions where heat supply remains dependent on gas
(i.e., in areas with a low population density), the goal is to replace this to a large extent with renewable
gases. The contribution of green gas to heat supply is expected to be between 6.1 and 18 PJ in 2023 [13],
of which the latter is 5% of the current natural gas consumption in the Dutch residential sector. Schoots
and Hammingh [7] argue that the largest challenges, when it comes to the implementation of this
policy, are the absence of a market model and infrastructure. The absence of physical infrastructure
does not hold for green gas, since green gas can be distributed via existing grids. Table 3 summarises
the existing barriers hampering change in the residential sector.

Figure 3 is used to determine the minimum market share for natural gas in the residential sector
in 2030, by extrapolating the government’s policy targets for 2023 [13] until 2030. The ambition to
increase the energy performance of 300,000 existing buildings with two certificate steps until 2020 [29]
is taken into account, by assuming a reduction in heat demand due to improved insulation, of 1.4%
and 1% respectively, between 2010 and 2020 and 2020 to 2030 (based on Reference [61]). Starting points
for geothermal, heat and cold storage, heat pumps, solar boilers, waste heat and green gas in 2013
were taken from Reference [13]. For collective heat supply 8 PJ was used as a starting point in 2013,
which is roughly a third of the available collective heat [75], but results in an overestimation when
compared to [76].

In Figure 3 the total heat supplied with natural gas is half of the demand, with the assumption that
collective heat is based on natural gas, resulting in a demand around 5 bcm from the Groningen field in
2030. In addition, the government’s heat policy is not very specific on the sector where renewable heat
should be applied. All renewable heat that is not specifically allocated to a sector in the existing policy
is assigned to the residential sector, which means that the demand for natural gas in the residential
sector in 2030 is an underestimation. The captivity of the residential sector in the natural gas regime
becomes smaller, but remains substantial. The market share for natural gas in the residential sector
remains large and with that the potential for green gas as a means to foresee in renewable heat.
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Table 3. Barriers affecting change in the residential sector.

Barriers Housing Corporations Tenants Private Owners

Lack of awareness
and information

Difficult to convince
tenants to accept

increased rent prices

Large part shows little
interest in energy

performance

Despite economic
benefits owners are not

easily convinced to
implement technology

Economic and
financial constraints

Limited financial space
for investments

Insecure net effect of
increased rent and

decreased energy cost
Captive customers

Technical risks

Absent infrastructure
for centralised renewable

heat supply besides
green gas

Absent infrastructure
for centralised renewable

heat supply besides
green gas

Institutional and
regulatory barriers

Heat Law may provide
adverse incentives

Policy agreements are
not mandatory

Policy agreements are
not mandatory Policy is not mandatory

Market barriers Absent market model Absent market model

Behaviour Positive attitude
towards change

Smart meters have little
effect on behaviour

Smart meters have little
effect on behaviour
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Figure 3. Residential heat demand for space heating, hot water and cooking. The demand for cooking
is marginal (i.e., roughly 7.5 PJ, based on 32 m3·household−1 [77]); the demand for hot water is about 63
PJ based on an average showering time of 8.12 min [77], a flow rate of 10 litre·min−1 and a temperature
difference of 30 Kelvin. The remainder is required for space heating. Data are in petajoule (1015 joule).

In summary, the efficiency targets are not likely to be met in 2020 [69], and the expected share
of installed renewable heat technology in the residential sector is low in 2030 [74]. Given that the
required infrastructure for distribution and consumption of natural gas is present in The Netherlands,
and landscape factors, such as the coming depletion of the Groningen field, the resulting import
dependency and the continued captivity of the Dutch residential sector, a renewable alternative for
natural gas, such as green gas, has large potential for renewable heat supply in the residential sector.
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3.4. The Natural Gas Regime

The previous sections showed that biomass gasification technology cannot supply large quantities
of green gas in the short term, whilst meanwhile a transition in the residential sector is lagging
behind. In this section the natural gas regime is delineated to explore their perceptions towards
green gas and their potential ability to contribute to overcoming systemic barriers. Here, the natural
gas regime is defined as: The parties involved in the supply chain from natural gas production
from the Groningen field, including end-use in the residential regime. The residential sector is a
part of the natural gas regime, as shown in Figure 1. Key parties are the joint venture between
Royal Dutch Shell and ExxonMobil known as the NAM. The NAM is responsible for the natural gas
production in the Groningen field. The produced natural gas by the NAM is purchased by GasTerra,
the Dutch gas trading company. Their mission is to maximise the Dutch value of natural gas reserves
in The Netherlands [14]. GasTerra is owned for 25% Shell, 25% ExxonMobil, 40% Energiebeheer
Nederland (EBN) and 10% Ministry of Economics. GasTerra has the responsibility to maximise the
value of the Dutch natural gas reserves and thus serves as a natural gas trade company. GasTerra
expected 0.3 bcm of green gas to be produced in 2014 and an increase to 3 bcm (95 PJ) in 2030 already
in 2011 [78]. In this same year, GasTerra started with green gas contracts [78]. In practice, GasTerra
purchased about 60 million cubic meters of green gas in 2016 [14], which is about 0.5% of the natural
gas consumed in the Dutch residential sector [8]. In 2016, GasTerra stated that energy should be
saved and renewable energy, with an emphasis on green gas, should be promoted [14]. Partnership
Groningen (Maatschap Groningen) consists of NAM for 60% and EBN for 40%. This partnership was
constructed in order to give the Dutch government the possibility to participate in the development of
the Groningen field; the consequence was that the NAM became the operator for the concession and
responsible for the risk. Furthermore, the NAM is obliged to sell all the produced natural gas from
the Groningen field to GasTerra [79]. EBN, which is fully owned by the Dutch state is responsible for
participating in, and facilitating the, exploration and production, trade, transport and storage of oil
and gas. Gasunie is fully owned by the Dutch government (Ministry of Finance) and is responsible for
the natural gas infrastructure. Gasunie is the owner of the high-pressure natural gas transmission grid,
and facilitates the use of pipelines, LNG facilities located near Rotterdam and gas storage. Gasunie
mentions an expected increase in green gas in the order of 2.2 bcm (70 PJ) in 2030 [80]. Gasunie
Transport Services (GTS) is a subsidiary company of Gasunie and is the transmission system operator.
They are responsible for management, functionality and development of the Dutch transmission
grid [81]. The transmission system operator GTS expects a shifting role of gas to a more supporting
role to facilitate decentralised energy sources [82]. Distribution system operators (DSOs) manage the
low-pressure distribution grid, such as Alliander and Enexis. The DSOs are directly or indirectly
owned by the national government, provinces, municipalities or other public bodies [83,84]. Enexis is
in favour of green gas, since their revenue depends on the use of their grid based on capacity and not
on volumes (personal communication with M. van Dam, Enexis on 10 March 2015). The risk for the
DSO when it comes to loss of revenue is in disconnection of the residential sector from the existing
distribution grid. This could lead to shorter depreciation periods for infrastructure then estimated,
but they expect to distribute green gas instead of natural gas in the future [85]. Furthermore, there are
energy supply companies that use the grid in order to supply energy to the end-users, in this case the
residential sector.

The delineation on a sectoral basis emphasises the large involvement of the Dutch state in the
natural gas regime. The contribution to the national income has, however, rapidly decreased from
15.4% in 2013 to 0.8% in 2016, due to decreased production and lower energy prices [86]. The latest
projection for natural gas production from the Groningen field stems from 2013 [87]. The additional
annual reviews (2014–2016) do not provide a long-term projection, due to ongoing research on induced
earthquakes [88–90]. The insecure future production rates comprise a risk for the existing natural gas
regime responsible for the supply of heat in the residential sector. High expectations for green gas
are present for a longer time in the natural gas regime. The trade, infrastructure and transmission
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companies in the natural gas regime show awareness of a changing role for natural gas, since an
increase in green gas is expected.

Given the expected quantities of green gas, large scale production is required. The expressed
expectations in 2011 for green gas production in 2016 by GasTerra are a factor five lower than the
actual produced quantities. In addition, in order to end up with 95 PJ green gas in 2030, current
quantities purchased by GasTerra should increase fiftyfold. When produced with biomass gasification
the required installed capacity is in the order of 5 GW, assuming an efficiency of 70% [91] and 7500 h
of production per annum. A strategy concerning who is responsible, or how the future production of
green gas should be addressed, is not presented by these central companies.

4. Discussion

This section is used for two purposes. First, to discuss the methodological choice for the delineation
of the regime on a sectoral basis. Second, to deepen the presentation of the opportunities and barriers
for the use of green gas from biomass gasification in the Dutch residential sector.

A delineation of the regime on a sectoral basis is sufficient to explain the inertia in the natural
gas regime [30]. A regime shift, which is challenging to address when defining a regime on a sectoral
basis [30] is not explored here. Hence, biomass gasification technology for green gas can be considered
an incremental innovation and its future contribution is therefore not expected to result in a regime
shift. This is in line with [92], who argues that regimes generate incremental innovation and therefore
this paper looked at the possible contribution of the natural gas regime to the diffusion of biomass
gasification technology. In addition, Kern [93] states that scientific literature addressing the diffusion
of renewable energy technologies shows little evidence of “creative destruction”; renewable energy
technologies are often complementary to the existing regime and do not overthrow incumbent regimes.
In this research, energy policy was analysed as a landscape pressure on the natural gas regime.
The landscape level comprises a variety of insecure and unpredictable pressures on the natural gas
regime that may or may not provide incentives to adjust the heat supply system. However, political
ideologies, societal values, beliefs, and concerns, which are part of the landscape level are implicitly
taken into account by this approach, since the Dutch energy policy is an outcome of agreements with a
large number of involved parties [29].

In the following, the observed opportunities and barriers are presented from a political, economic,
societal and technological perspective, from both the demand and supply side.

The demand side is subject to technological lock-in, due to an absent infrastructure for
alternative heat supply. This holds for both private owners and housing corporations with its tenants.
The dependency on low-caloric natural gas from the Groningen field is, however, going to change.
Given the technological lock-in; green gas, and thus change on the supply side, is an obvious solution
when the dependency on natural gas is to be reduced. From a societal point of view, large scale green
gas production with biomass gasification has a preference over other renewable alternatives in the
Dutch residential sector, since the use of green gas requires no technological adjustments. Technological
adjustments on the demand side are limited by social and economic barriers. In the case of tenants,
the insecure effect of increased insulation on their monthly cost, combined with little interest in the
energy performance of their residence, hampers change. In addition, housing corporations argue
to have limited financial means for investments and find it difficult to convince tenants to accept
increased rent prices in order to generate the financial means for investments. Private owners can be
considered captive customers. Hence, a switch to another technology requires large investments in
insulation and for example, a heat pump. Increasing the amount of insulation reduces the natural gas
consumption, which can result in a subconscious lock-in effect where the residential sector does not
feel the economic incentive to switch from natural gas to another heating technology. The current aim
to have energy performance certificates B and C, for respectively the property of housing corporations
and the private sector, in 2020 [57] could actually facilitate such a subconscious lock-in, by stimulating
insulation measures.
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These technological, social and economic factors emphasise the challenge to generate change on
the demand side and guide the transition to a sustainable heat supply system. There is a large potential
market for green gas from biomass gasification, given the aim to have a decarbonised building stock in
2050 [94] and the currently lagging technological change and lock-in of the Dutch residential sector.
The development of the potential green gas market is, however, affected by the natural gas prices,
which are expected to rise, the availability of biomass feedstock and the implementation of the biomass
gasification technology to produce green gas on a large scale.

On the supply side the technological barrier is the upscaling of the biomass gasification technology.
This upscaling is hampered, because of the high investment risk and unpredictable biomass prices. In
addition, there is no clear policy on the expected role of biomass gasification for green gas. The key
players in the natural gas regime have expressed clear expectations for green gas, but hesitate to
take a risk by investing in gasification technology on a large scale. Therefore, this technological
barrier can be regarded as the result of an economic and political barrier. The natural gas regime
does not take responsibility, guidance on a political level is absent and subsequently, the gasification
technology developers cannot get past the demonstration phase. A possible solution to overcome
this status quo may be by public private partnerships or joint ventures. Fantozzi et al. [95] argue that
such partnerships could reduce risks for private parties and can link technology to the market or the
needs on the demand side. They illustrate this by analysing the economic feasibility of two cases in
Greece and Italy, where the different risks related to bioenergy projects are allocated to public and
private parties.

Such a joint venture strategy could be an option in The Netherlands to link large scale biomass
gasification to the potential market for green gas in the Dutch residential sector. This requires, on a
political level, not only a facilitating but also a guiding role on the implementation of bioenergy
technologies. A guiding role with a clear vision from the national government is difficult to establish,
since the Dutch energy policy is the result of agreements with many parties. However, Section 3.4
shows the large in involvement of the Dutch government in the natural gas regime, suggesting that
such structures should also be possible in bioenergy projects.

Aside from the implementation of biomass gasification technology, the availability of biomass
for energy remains an insecure factor. Shortages in domestic biomass supply of a factor two to nine
are expected in 2030 [50], therefore import of biomass will be required. International supply chains to
realise biomass imports can be feasible from an economic perspective [96]. The potential market for
green gas from biomass gasification in the residential sector can correspond with multiple gigawatts
installed capacity, emphasising the need for the development of such international biomass supply
chains. Given the expected domestic shortages and the potentially large demand, such international
supply chains need dedicated energy crop production systems.

5. Conclusions

This research emphasised the large challenges with which The Netherlands is confronted;
the expected depletion of the Groningen field, induced earthquakes in the production area and
the large residential dependence on this field. Therefore, the barriers and opportunities for biomass
gasification to supply green gas to the Dutch residential sector were explored.

From a supply perspective, the TIS analysis showed that there are four limitations that hamper
the diffusion of biomass gasification for green gas, which are systemic barriers mainly related to
institutional challenges and financial and knowledge infrastructure. A substantial contribution of
biomass gasification on the short term in The Netherlands is therefore not obvious. On the demand side,
i.e., the residential sector, the rate of change related to energy performance is behind schedule. In the
rental sector this is due to limited financial means, absence of a market model and policy agreements,
which are not binding. Resistance of tenants to change, due to lack of interest in energy performance
and/or insecurity about the effect on their monthly costs are therefore difficult to overcome. In the
private sector, the absence of mandatory policy and lack of awareness hamper change in energy
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performance. In addition, for both the housing corporations and the private owners, the absence of
infrastructure offers technical risks, and have a negative effect on implementation of renewable heat
technology and energy performance. The absence of a market model results in lack of implementation
on both the demand and supply side.

In conclusion there are optimistic expectations for green gas both on a governmental level and by
key players in the natural gas regime. The lagging developments in the residential sector and the issues
related to depletion and induced earthquakes emphasise the urgency to change. Theoretically, green
gas is an ideal solution to address the challenges the Dutch residential sector currently faces, but in
practice there is no strategy concerning the implementation of the required technology. In addition,
the required technology to produce green gas is not ready for large scale implementation. Key players
in the natural gas regime take no substantial responsibility, despite their potential ability to contribute
to the systemic barriers related to knowledge and financial infrastructure. This emphasises that the
shift towards a sustainable heat supply system in the residential sector requires policy aimed to
overcome institutional barriers and a clear implementation plan that is mandatory for all parties
on the demand and supply side. Substantial risk capital is absent, but required if the goal is to
produce substantial quantities of green gas. The natural gas regime can foresee in this requirement, but
incentives to do so are absent. In addition, the government can stimulate this with technology specific
policy, substantial R&D subsidies and funding. When the green gas ambitions are to be reached in
The Netherlands in 2030, substantial policy pressures should occur on the short term. Assuming that
such pressures occur then the key players in the natural gas regime can contribute to the diffusion of
biomass gasification technology.
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