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Abstract

The community structure of networks plays an important role in their analysis. It represents a high-level organization of objects
within a network. However, in many application domains, the relationship between objects in a network changes over time,
resulting in the change of community structure (the partition of a network), their attributes (the composition of a community and
the values of relationships between communities), or both. Previous animation or timeline-based representations either visualize
the change of attributes of networks or the community structure. There is no single method that can optimally show graphs that
change in both structure and attributes. In this paper we propose a method for the case of dynamic EEG coherence networks
to assist users in exploring the dynamic changes in both their community structure and their attributes. The method uses an
initial timeline representation which was designed to provide an overview of changes in community structure. In addition, we
order communities and assign colors to them based on their relationships by adapting the existing Temporal Multidimensional
Scaling (TMDS) method. Users can identify evolution patterns of dynamic networks from this visualization.

CCS Concepts
• Applied computing → Life and medical sciences; • Human-centered computing → Information visualization;

1. Introduction

Networks are generally used to model interactions between objects,
and play an important role in various disciplines, such as biology,
social science, mathematics, computer science, and engineering. In
mathematics, networks are often referred to as graphs, where ob-
jects are represented by vertices (nodes) while their interactions are
indicated by edges (links). Most of these networks have an inher-
ent community structure, i.e., vertices can be organized into groups,
which are referred to in various ways, such as communities, clus-
ters, cliques, or modules [For10].

In many application domains, the relationship between objects
in a network changes over time, resulting in a dynamic net-
work [GDC10]. The community structure (the partition of a net-
work), as well as the corresponding attributes (the composition of
communities and the relationships between communities) are then
dynamically changing over time [vLKS∗11, HET13]. Visualizing
the evolution of networks in dynamic networks can facilitate the
discovery of evolution patterns of communities and can help re-
searchers propose hypotheses to explain these patterns for further
study.

In this paper we focus on dynamic EEG coherence networks that
represent functional brain connectivity, in which nodes represent
electrodes which are used to record electrical activity of the brain

and edges represent coherences between pairs of signals recorded
by electrodes. As the starting point, we consider the existing vi-
sualization method for static EEG coherence networks based on
functional unit maps (FU maps) by ten Caat et al. [tCMR08]. An
example of such a static EEG network is shown in Figure 1(a). The
FU-map method clusters electrodes based on their relative spatial
position and corresponding coherence values. The resulting clus-
ters for the example in Figure 1(a) are shown in Figure 1(b) and
compose an FU map, in which electrodes represented by polygon
cells are divided into several groups, each of which is an FU, that
is, a spatially connected set of electrodes recording pairwise sig-
nificantly coherent signals. Each FU is assigned a gray color for
distinguishing between FUs and the color of lines connecting two
FUs indicates the corresponding inter-FU coherence.

To visualize the evolution of dynamic EEG coherence networks,
Ji et al. proposed a visualization framework based on a timeline
representation [JvdGMR17]. This representation assists users in
identifying the temporal evolution of FUs and their correspond-
ing location on the scalp. However, this approach only shows the
change of community structure and composition of FUs, but it does
not consider how the relationships between FUs change. Also, ex-
isting visualization methods either focus on the change of network
attributes or the change of community structure [vLKS∗11]. For
example, some methods have been proposed to depict the evolu-
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Figure 1: Example of a static EEG coherence network. (a) Layout
of a coherence network (the EEG frequency band is 8-12 Hz). Ver-
tices represent electrodes, and edges represent coherences between
electrode signals, where only coherences of at least 0.2 are plotted.
The color of the edge indicates the coherence value. (b) FU map
based on the coherence network in (a). Spatial groups of similarly
colored (in gray scale) cells correspond to FUs with a size of at
least four, while the white cells are part of smaller FUs. Circles
overlayed on the cells represent the barycenter of the FUs and are
connected by lines whose color reflects the inter-FU coherence cal-
culated as the average coherence between all electrodes of the FUs
(see colorbar).

tion of community evolution structure, such as splitting or merg-
ing of communities [RTJ∗11, VBAW15], where the attributes of
the connections between these communities are ignored. On the
other hand, some methods have been designed to show the change
of attributes of individual nodes or edges instead of at the group
level [BBDW16]. However, there is no single method that can op-
timally show graphs that change in both structure and attributes.

Therefore, we here propose a combined visualization approach
taking both the community structure and the relationships between
communities into account to support the identification of evolu-
tion patterns of dynamic EEG coherence networks. First, follow-
ing [JvdGMR17] we use an initial timeline representation to show
significant events for community evolution in EEG coherence net-
works. Additionally, we adapt the temporal Multidimensional Scal-
ing (TMDS) method which was developed for multivariate data
[JFSK16] to order and assign colors to network communities for
each time step based on relationships between them. The ordering
and assignment of color makes that similar communities are spa-
tially close in the representation and have similar colors, so they
can be identified efficiently.

Summarizing, our main contributions include:

• a combination of a timeline representation for dynamic EEG co-
herence networks and TMDS for visualizing evolution patterns
of community structure and relationship between communities;
• a color assignment method for communities;
• a color design for transition edges connecting communities that

belong to the same dynamic communities.

2. Method

Our method aims to overcome the drawback of a previously
proposed visualization method for EEG coherence networks by
Ji et al. [JvdGMR17]. The drawback of that approach is that it fo-
cuses only on the changes of state of dynamic FUs and ignores the
changes in relationships between FUs. The solution we propose
here for incorporating the attribute changes in the visualization is
based upon the TMDS method of Jäckle et al. [JFSK16].

Once the dynamic FUs have been detected and inter-dynamic
FU coherences have been calculated, we can model the relation-
ships between dynamic FUs at a certain time step t as an undirected
weighted graph Gt = (V,Et) in which vi ∈ V represents a dynamic
FU and ei j ∈ Et represents the inter-dynamic FU coherence be-
tween vi and v j . A dynamic graph, more precisely the sequence
graph G := (G1, ...,GN), then is defined as a sequence of N ordered
graphs of which each observes the structure of a system at N mo-
ments [HET13]. The inter-dynamic FU coherence at a certain time
step is the inter-FU coherence which is calculated as the average
coherence between all electrodes in the corresponding FUs. Note
that after dynamic FU detection, the number |V | of dynamic FUs is
a constant, but any FU may exist for a limited period of time only
instead of for all time steps.

The main idea of our approach is as follows. For a given dy-
namic coherence graph with the derived dynamic FUs and a given
color space, we embed the dynamic FUs at each time step into the
specified color space using the TMDS method (without using the
sliding window approach) so that users can recognize the evolution
patterns of inter-FU coherences from the changes in FU colors. In
this approach, the distance between dynamic FUs in the color space
should be inversely related to their similarity, as defined by their
inter-FU coherence at each time step.

2.1. Timeline-based Representation

The timeline representation is a widely used visual metaphor
for visualizing the evolution of communities in dynamic graphs
[RTJ∗11, VBAW15, JvdGMR17, TA08]. This visualization can
track the progress of communities over time in a dynamic network,
where each community is characterized by a series of significant
evolutionary events [GDC10], such as two or more current FUs
merging into one FU in the next time step, or one current FU split-
ting into two or more FUs in the next time step.

We here propose to use a coloring scheme to depict the evolu-
tion pattern of the relationship between dynamic network commu-
nities over time. Although there have been studies of the assign-
ment of color to (dynamic) communities, most color schemes were
designed in such a way that (dynamic) communities are easily dis-
tinguished in generic representations [JRFL09, DEG07, VBAW15,
RTJ∗11]. Instead, we propose a coloring solution using multidi-
mensional scaling to assist users in recognizing the relationships
between dynamic communities and explore the evolution of pat-
terns of relationships between such communities over time.

2.2. Distance Function

For a given graph Gt at time step t, we define a distance measure
for the set of dynamic FUs so that dynamic FUs with high inter-FU
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coherence will have a small distance. In addition, we only incorpo-
rate coherences above a pre-defined significance threshold; in our
case, we set the threshold to 0.2 [HRA∗95,MSvdHdJ06, tCMR08].
Specifically, we use the following distance function with parame-
ters a and b based on the coherence value ei j between nodes i and
j:

di j =

{
ea (1−ei j)−1 ei j ≥ 0.2
ea (1−ei j)−1+b else

(1)

We then embed the dynamic FUs into a color space using MDS as
described in Section 2.3.

This exponential function has several properties. First, it de-
creases with increasing coherence so that dynamic FUs that have
high inter-FU coherence will have a small distance and will be em-
bedded closely together in the color space C. The parameter a can
be used to adjust the rate with which the distance decreases. Sec-
ond, inter-FU coherences that are below the threshold will be as-
signed a large distance, and will be separated far away from each
other in the color space C. This is achieved by the additive con-
stant b. When b is larger the distances between values below the
threshold are larger. Third, the inter-FU coherence is limited to the
interval [0, 1], which makes coherence values harder to distinguish,
so by introducing the exponential function the coherence value do-
main is stretched out while the relative order of coherence values is
preserved.

2.3. Multidimensional Scaling

Multidimensional scaling enables the analysis of high-dimensional
data or relations (usually given as a similarity/dissimilarity matrix)
between objects in a lower dimensional space [BSL∗08, VHBV16,
JFSK16]. It provides a visual representation of the pattern of prox-
imities (i.e., similarities or distances) among a set of objects such
that those objects that are very similar to each other are placed near
each other, and those that are very different are placed far away
from each other in the representation.

Our MDS approach is based on an adaptation of the temporal
MDS approach in [JFSK16], in which a temporal 1D MDS plot is
computed for each window separately and then sequentially aligned
in the Cartesian coordinate system. The x-axis represents time and
the y-axis represents the 1D similarity value derived from the MDS
computation. In our case, we map dynamic FUs to a color space
for each time step using MDS based on their inter-FU coherences
which are included in the weighted graph Gt , such that FUs hav-
ing higher inter-FU coherence also have more similar colors. The
resulting colors are then assigned to dynamic FUs in the timeline
representation.

The MDS layout for each time step (also referred to as an MDS
“slice”) is computed by the method proposed in [GKN05,XKH11].
In our implementation, the Matlab package of Xu et al. [XKH11]
was used to calculate MDS for every time step.

2.4. Color Space Selection

The distance matrix obtained in Section 2.2 can be used to produce
a 3D layout in a color space using MDS since usually the color is a
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Figure 2: HSV color components. Saturation and Value are varying
on the condition of Hue is setting equal to 1. The Hue component
has been normalized so that it lies in the interval [0, 1] instead of
the interval from 0 to 360 degrees.

combination of three components. It also can produce a 2D or 1D
layout in a 3D color space when fixing the other one or two com-
ponents. However, when vertices are mapped to 2D or 3D color
space, the resulting color is very hard to interpret, and it requires a
high cognitive load to compare colors. We chose to map vertices to
the Hue component using 1D MDS rather than Saturation or Value
component, because it is easier to recognize the color differences,
since colors change gradually from red to yellow, green, blue and
pink. Then colors that are close in the color space will be similar,
and colors having a large distance in the color space will be per-
ceived as very different (see Figure 2). In addition, the reason we
have chosen the Hue component of the HSV model instead of one
of the single-hue sequential color schemes as provided by Color
Brewer (colorbrewer2.org) is that we are not aiming for an
exact quantitative reflection of the distance or similarity between
nodes. Instead, we focus on finding the general evolution pattern of
clusters of nodes having a close relationship for a long time. The
Hue component has the desired property of providing an intuitive
visual representation of such clusters.

2.5. MDS Slice Flipping

We first normalize the MDS similarity values of all dynamic FUs to
the interval [0, 0.9] instead of [0,1]. Hue has an intrinsic circularity
property, meaning that the color at the left end of the interval is the
same as at the right end (see Figure 2). By normalizing the MDS
similarity values to [0, 0.9] we avoid the extreme condition that two
blocks of lines with a large distance between them (therefore being
placed at totally different positions) would get the same red color.

MDS is not invariant to rotation [JFSK16]. This property means
that position can make the evolution of inter-FU coherence patterns
hard to identify. Figure 3 gives an example of applying MDS to the
first and second time steps, where Figure 3(a) and 3(b) show totally
different orderings of dynamic FUs at the second time step, even
though they share the same graph G2. To solve this problem, we
first compute the sum of the absolute differences ∑ |Xi[t]−Xi[t−1]|
between positions of dynamic FUs i which are present at time step
t−1 and t before and after flipping, respectively. If the value after
flipping is smaller than before flipping, the position of dynamic
FUs at time step t will flip; otherwise dynamic FUs will keep the
original position computed by MDS.

c© 2018 The Author(s)
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Figure 3: 1D layout computed by MDS for graphs at the first (1)
and second (2) time step. (a) 1D layout before flipping the second
time step. (b) 1D layout after flipping the second time step.

3. Usage Scenario

We demonstrate the proposed method on dynamic coherence net-
work data obtained from a single person [JvdGMR17]. The data
were collected during an auditory oddball experiment, in which
participants were instructed to count target tones of 2 kHz (proba-
bility 0.15) and ignore standard tones of 1 kHz (probability 0.85).
After the experiment, each participant had to report the number of
perceived target tones [MSvdHdJ06, tCMR08]. In our data, brain
responses to 20 target tones were analyzed in L = 20 segments of 1
second, sampled at 1000 Hz. We first averaged over segments and
then divided the averaged segment into five equal time intervals.
For each time interval, we calculated the coherence network within
the [8, 12] (alpha) Hz frequency band and performed the procedure
described in [JvdGMR17] to detect dynamic FUs.

The goal of the analysis is to identify patterns of synchronization
and how these relate to task conditions. Previous work focused on
the synchronization between electrode signals within FUs, which
cannot analyze synchronization between FUs [JvdGMR17]. In con-
trast, the combined approach can identify not only the change of
dynamic FUs, but also the evolution of relationships between dy-
namic FUs over time.

Figure 4 is the result of a timeline representation in which the
straight lines are rendered by the color derived from the proposed
method described in Section 2. In 4(a), we ordered the FUs at each
time step based on the location of their barycenter on the FU map,
while the FUs in 4(b) are ordered based on their position on the
H-axis in the HSV color space. To indicate the shift in relative
positions of dynamic FUs along the H-dimension, we render the
transition edges between neighbouring time steps with gradually
changing colors using linear interpolation. For example, at the first
time step, dynamic FU 1 that is located at around 0.61 is assigned

a blue color. At the second time step, dynamic FU 1 splits into
two FUs: dynamic FU 1 and 4, where dynamic FU 4 is located at
around 0.15 and assigned a yellow color. We then render the tran-
sition edges which reach from dynamic FU 1 in the first time step
to dynamic FU 4 at the second time step with gradually changing
color from blue to yellow (Figure 4(a)).

(a)

(b)

Figure 4: Timeline representation of the evolution of dynamic FUs
over time. Each block of lines represents an FU at each time step.
The color of the lines at each time step represents the correspond-
ing position of the dynamic FU on the H-axis in the HSV color
space (see legend). The top block of lines (rendered in black) is the
set of electrodes belonging to very small FUs. (a) FUs ordered by
their barycenter on the FU map. (b) FUs ordered by their position
on the H-axis in HSV color space.

From Figure 4, it can be seen that dynamic FUs 1, 5, 11, 14 have
a similar blueish color across time steps (this is especially clear
in Figure 4(b)), except for the fourth time step at which dynamic
FU 14 is green, but it shifts back to a blueish green color at the
fifth time step. This means that there is rather constant high inter-
dynamic FU coherence among them, but at the fourth time step
dynamic FU 14 is less synchronized with the other FUs. In addition,
these four dynamic FUs exist for all time steps and the size of most
of them is large. Another observation is that even though dynamic
FU 10 exists for all time steps, it is consistently far apart from all
other dynamic FUs, meaning that it has low inter-FU coherence
with these other dynamic FUs. This pattern changes at the fourth
time step, at which dynamic FU 9 is far from the other dynamic FUs
in the specified color space. Dynamic FU 4 has similar behaviour,
it appears at the second time step and is a branch of dynamic FU
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1. But it does not have a color close to that of dynamic FU 1 from
t = 2 to t = 5. Similar to dynamic FU 9 and 14, it displays a big
change of color at the fourth time step.

The dynamic FU 1 is located posteriorly while dynamic FU 14 is
located anteriorly, dynamic FU 5 is located left-centrally, dynamic
FU 9 is located right-centrally and dynamic FU 11 is located right-
frontally [JvdGMR17]. These regions have a high synchronization
during the cognitive processing task. Therefore, regions where dy-
namic FUs 1, 5, 9, 11, and 14 are located, as well as the change
in behaviour at the fourth time step are particularly interesting for
further targeted analyzes.

4. Conclusion

We have presented a combination of a timeline representation for
dynamic graphs and the TMDS technique to visualize dynamic
EEG coherence networks. The main goal of this study was to help
users discover the evolution pattern of relationships between dy-
namic FUs over time. It does not only show the change in com-
munity structure of dynamic networks, but also the evolution pat-
terns of relationships between communities. Therefore, the pro-
posed method can act as a guideline for further analysis and has
the potential for visual exploration of large data sets. It can be ex-
tended to analyze different types of networks. Many networks can
be ordered by their similarity using algorithms such as developed
by Van den Elzen et al. [VHBV16].

However, the proposed method has some limitations. First, the
underlying visualization metaphor (timeline representation) has a
limited scalability. In our application, there are 119 electrodes for
each coherence network and 5 time steps. When this method is ex-
tended to other dynamic networks of thousands of nodes and hun-
dreds of time steps, the scalability becomes an issue. In such cases,
interactive methods may be helpful to facilitate users to explore the
evolution patterns of dynamic networks, e.g., drilling-down abil-
ities and more aggregated views. Second, the final assessment of
similarity involves the composition of the similarity reduction from
a high-dimensional space to 1D (hues) with the way humans per-
ceive hues as being similar or not. As such, what MDS finds to be
similar of different is not necessarily perceived in the same pro-
portion by a human observer. Studying the precise effect of this
composition is an interesting topic for future research.
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