
 

 

 University of Groningen

Data-driven visualization of multichannel EEG coherence networks based on community
structure analysis
Ji, Chengtao; Maurits, N.M.; Roerdink, J.B.T.M.

Published in:
Applied Network Science

DOI:
10.1007/s41109-018-0096-x

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Ji, C., Maurits, N. M., & Roerdink, J. B. T. M. (2018). Data-driven visualization of multichannel EEG
coherence networks based on community structure analysis. Applied Network Science, 3(41).
https://doi.org/10.1007/s41109-018-0096-x

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 21-05-2019

https://doi.org/10.1007/s41109-018-0096-x
https://www.rug.nl/research/portal/en/publications/datadriven-visualization-of-multichannel-eeg-coherence-networks-based-on-community-structure-analysis(66c9b175-7acc-48a8-9587-dc0ebfbac03a).html


Applied Network ScienceJi et al. Applied Network Science  (2018) 3:41 
https://doi.org/10.1007/s41109-018-0096-x

RESEARCH Open Access

Data-driven visualization of multichannel
EEG coherence networks based on community
structure analysis
Chengtao Ji1*, Natasha M. Maurits2 and Jos B. T. M. Roerdink1,3

*Correspondence: c.ji@rug.nl
1Bernoulli Institute for Mathematics
and Computer Science and Artificial
Intelligence, University of
Groningen, Nijenborgh 9, 9747AG
Groningen, The Netherlands
Full list of author information is
available at the end of the article

Abstract
An electroencephalography (EEG) coherence network is a representation of functional
brain connectivity, and is constructed by calculating the coherence between pairs of
electrode signals as a function of frequency. Typical visualizations of coherence
networks use a matrix representation with rows and columns representing electrodes
and cells representing coherences between electrode signals, or a 2D node-link
diagram with vertices representing electrodes and edges representing coherences.
However, such representations do not allow an easy embedding of spatial information
or they suffer from visual clutter, especially for multichannel EEG coherence networks.
In this paper, a new method for data-driven visualization of multichannel EEG
coherence networks is proposed to avoid the drawbacks of conventional methods.
This method partitions electrodes into dense groups of spatially connected regions. It
not only preserves spatial relationships between regions, but also allows an analysis of
the functional connectivity within and between brain regions, which could be used to
explore the relationship between functional connectivity and underlying brain
structures. As an example application, the method is applied to the analysis of
multichannel EEG coherence networks obtained from older and younger adults who
perform a cognitive task. The proposed method can serve as a preprocessing step
before a more detailed analysis of EEG coherence networks.

Keywords: Multichannel data, Community structure, Visualization, Brain connectivity

Introduction
EEG records the electrical activity of the brain by attaching electrodes to the scalp of a
subject at multiple locations. Synchronous electrical activity in brain regions is generally
assumed to imply functional integration. Such synchronization occurs over a large range
of scales. For example, local synchronization occurs during visual processing, synchro-
nization between neighboring temporal and parietal cortical regions is observed during
multimodal semantic processing, and long-range fronto-parietal interactions occur in
working memory retention and mental imagery (von Stein and Sarnthein 2000). A large
number of methods have been proposed to measure the synchrony between pairs of brain
regions, and these measures are often closely correlated (Nunez et al. 1997). EEG coher-
ence is one of these measures, which is calculated between pairs of electrode signals as a
function of frequency (Halliday et al. 1995; Maurits et al. 2006).
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Visualization provides a visual representation of the data to help people carry out anal-
ysis tasks effectively. It happens at an early stage in the process, usually before a statistical
or computational analysis, and it allows people to explore their data before knowing
exactly what kind of questions to ask (Munzner 2014). After the questions have been well-
defined, existing methods such as machine learning can be used to answer them. For the
case of brain connectivity, visualization can lead to the discovery of unanticipated pat-
terns (Alper et al. 2013), thus providing insight into brain functioning. In this way it can
help neuroscientists to understand how the brain works, especially for the case where
no a priori assumptions or hypotheses about brain activity in specific regions are made
(Ma et al. 2015; Li et al. 2012; Xia et al. 2013; Christodoulou et al. 2011; Gerhard et al.
2011; Fujiwara et al. 2017).
An EEG coherence network represents functional brain connectivity, more precisely,

the coherences between pairs of signals recorded by the electrodes. However, visualiza-
tion of high-density or multichannel EEG (at least 64 electrodes) coherence networks
is not always managed well (ten Caat et al. 2008). Typical visualizations of coherence
networks are a matrix representation with rows and columns representing electrodes
with cells representing coherences between electrode signals or a node-link diagram
with vertices representing electrodes and edges representing coherences (see Fig. 1).
Edges are considered significant when their coherence passes a significance threshold
(Halliday et al. 1995), see also the description of the experimental setup in the “Results”
section. However, such representations can suffer from some drawbacks. The matrix
representation is very effective for visualizing large and/or dense networks (Alper et al.
2013; Yi et al. 2010), but the relative spatial location of electrodes is hard to embed in
this matrix. Therefore, brain connectivity network visualization is complex. The common
focus on specific connections is often insufficient to explain all aspects of information
contained in the network, because the spatial context of the connections is also crucial in
the analysis of brain connectivity. In contrast, the node-link diagram is a straightforward
method of visualizing networks that preserves spatial information about the electrodes
well. This visualization, however, suffers from the potentially large number of overlapping
edges when visualizing dense networks, which makes it hard to distinguish connections
(Kamiński et al. 1997).

Fig. 1 Convention types of EEG coherence network visualization techniques. aMatrix Representation. b
Node-link diagram
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To study connectivity patterns in the coherence graph, researchers often employ a
hypothesis-driven or semi-data-driven definition of certain regions of interest (ROIs), in
which all electrodes are assumed to record similar signals because of volume conduc-
tion effects (Gladwin et al. 2006; Lachaux et al. 1999). However, these methods generally
depend on certain assumptions or hypotheses, where an a priori selection of relevant elec-
trodes is made. As a consequence, not all the available data is used and the underlying
brain network is not fully explored.
As an alternative to the hypothesis-driven and semi-data-driven approaches,

ten Caat et al. (2007a, b, 2008) proposed a method for detection of data-driven ROIs,
referred to as functional units (FUs). An FU is represented in the coherence graph by a
spatially connected maximal clique (a clique is a vertex set in which every two-element
subset is connected by an edge). Because larger ROIs are assumed to correspond to
stronger source signals, larger FUs are considered to be more interesting. Therefore, the
maximal clique based (MCB) method of ten Caat et al. (2007a) focused on maximal
cliques, for which vertex sets are as large as possible. Since the MCBmethod is very time-
consuming (time complexity O

(
3n/3), with n the number of vertices), as an alternative a

watershed based (WB) method was proposed that detects spatially connected cliques in
a greedy way (ten Caat et al. 2007b). To reduce the potential over-segmentation of this
approach, an improved watershed based method (IWB) (time complexity O

(
n2 log n

)
)

was proposed that merges FUs if they are spatially connected and if their union is a clique
(ten Caat et al. 2008). The WB and IWB methods are up to a factor of 100,000 faster than
the MCB method for a typical multichannel setting with 128 EEG channels, thus making
interactive visualization of multichannel EEG coherence possible. The FUs detected by
the (I)WB method are similar but not identical to the FUs detected by the MCB method.
To distinguish them we therefore denote the corresponding FUs by FUMCB and FUIWB,
respectively.
To visualize the FUs, ten Caat et al. (2007a) introduced the concept of FU map, which

represents the FUs as a set of Voronoi cells (one for each electrode) with identical gray
value, with different gray values for adjacent FUs (see Fig. 7 in the “Method” section for
an example). A color-coded circle is placed at each FU center that represents the aver-
age coherence of this FU, and a color-coded line is drawn between pairs of FU centers
if the average coherence between these two FUs exceeds the coherence threshold. This
visualization shows both synchronization within and between FUs.
A drawback of the MCB and IWB methods is that the analysis of local synchronization

is difficult, since these methods detect maximal cliques, that is, groups of spatially-
connected electrodes that are as large as possible. Specifically, the MCB method views
coherences above or equal to the pre-defined threshold equally while the IWB method
clusters electrodes based on their neighbours which have the largest coherence value with
them, without considering how strong the electrodes are connected with the other mem-
bers of the group. Therefore, in this paper we propose an alternative method, based on
detecting densely interconnected groups of brain regions known as network communities,
which can be observed either in anatomical or in functional networks (Honey et al. 2007;
Rubinov and Sporns 2010). The composition of these individual groups, known as com-
munity structure, is usually obtained by optimizing themodularitymeasure, as proposed
by Newman (2004). We use the community structure analysis of a network as a data-
driven approach to facilitate the visual analysis and interpretation of multichannel EEG
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coherence networks. The proposed method, referred to as the community clique-based
(CCB) method, partitions the set of electrodes into several data-driven ROIs (communi-
ties) based on their connections and positions. As a result, electrodes within the same
community are spatially connected and are more densely connected than electrodes in
different communities. For brevity, the ROIs obtained by community detection will still
be called “functional units”, but denoted by the symbol FUCCB to distinguish them from the
functional units obtained by the MCB and IWB methods. The functional units detected
by the CCB method are visualized in an FUCCB (functional unit) map, in exactly the same
way as for the FUMCB and FUIWB maps.
A preliminary version of this paper appeared in Ji et al. (2018). In that paper, we briefly

described the new method, and compared it with the other two methods. In this paper,
we provide more algorithmic details about the three methods, compare the three meth-
ods when applied to synthetic and real EEG coherence networks, and apply the new
method in one example application. This application shows the potential of our method
for visualizing multichannel EEG coherence networks.
Overall, the new community-based method for detecting functional units is not only

expected to reduce the drawbacks of the conventional hypothesis-based approaches, but
also to allow a more detailed analysis of the relationship between functional connectivity
and underlying brain structure than the data-driven MCB and IWB methods.

Related work
The principal concept in our approach is to visualize brain connectivity, and to extract
meaningful information from this representation for further analysis. The challenge in
visualization often lies in the analysis of a huge amount of data, in our case the large
number of EEG channels.
A straightforward method would be to visualize functional brain connectivity data as

3D node-link diagrams: ROIs are shown as nodes and the relationships between these
nodes are encoded in the edges. But this approach suffers from visual clutter, and side
effects of 3D rendering such as occlusion are hard to remedy (Alper et al. 2013; Dosenbach
et al. 2010).
An alternative approach is to depict the connectivity data by a 2D representation, which

could reduce the work of 3D rendering. A wide variety of methods has been developed
to map data on 2D space to visualize neuronal interactions or relations between brain
regions. To preserve the spatial information of the data to some extent, a node-link dia-
gram based on a biologically meaningful layout has been used (Achard 2006). In this
biological layout, planar projections are used for the 3D electrode locations on the surface
of a head (see for example Fig. 2). Vertices are usually mapped according to a top view of
the head, sometimes to two separate side views of the left and right hemispheres. How-
ever, such a visualization with edges representing connections may suffer from a large
number of overlapping edges, resulting in a cluttered representation, especially for a large
amount of data.
Some methods were proposed to remedy the visual clutter by eliminating overlaps and

reducing the number of long-distance edges employing graph drawing. For example, for
2D node-link diagrams the layout can be calculated by multidimensional scaling or force-
directed algorithms (Fruchterman and Reingold 1991). However, such methods usually
change the layout of the vertices to reduce visual clutter. Yet, the spatial context of the
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Fig. 2 Electrode positions and labels in the 10-20 system Oostenveld and Praamstra (2001). Black circles
indicate positions of the original 10-20 system, gray circles indicate additional positions introduced in the
10-10 extension. Each site has a letter to identify the general brain region and a number to identify the
hemisphere location. The letters, Fp, F, T, C, P, and O stand for fronto-polar, frontal, temporal, central, parietal,
and occipital, respectively. For further explanation of the 10-20 system, see Oostenveld and Praamstra (2001)

data is still vital for facilitating the interpretation of the data by neuroscientists, who are
trained in reasoning with respect to spatial brain regions. Hence, node-link diagrams
are often accompanied by a separate picture showing the position of nodes, with nodes
on the two representations being matched by color encoding or labeling (Nelson et al.
2010). In this approach, information about spatial context is not presented in a single
image. Matrix representations are also popular to represent functional connectivity net-
works. This approach outperforms the node-link diagram in visualizing large networks.
By arranging ROIs along the rows and columns of a matrix, their spatial relations are,
however, lost (Kamiński et al. 1997).
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Some studies explored the capabilities of node-link diagrams and matrix representa-
tions, and these suggested that thematrix representations outperform node-link diagrams
for most tasks when the number of nodes becomes very large (Alper et al. 2013; Ghoniem
et al. 2005).
Based on the basic node-link andmatrix representations, several other useful tools have

been developed for visualizing brain networks. To take advantage of both node-link dia-
grams and matrix representations, some visualization methods provide a dual represen-
tation to explore networks (Ma et al. 2015; Henry and Fekete 2006). Christodoulou et al.
present BrainNetVis to support brain network modelling and visualization by providing
both quantitative and qualitative network measures of brain connectivity (Christodoulou
et al. 2011). Gerhard et al. introduce the Connectome Viewer Toolkit for connectome
mapping, analysis, and visualization (Gerhard et al. 2011). Xia et al. present BrainNet
Viewer to display brain surfaces, nodes and edges as well as properties of the network (Xia
et al. 2013). Fujiwara et al. introduce a visual analytics system for comparison of brain
connectivity across individuals, groups, and time points (Fujiwara et al. 2017). However,
none of these methods can completely overcome the intrinsic drawbacks of node-link
diagrams and matrix representations. To present brain connectivity in a single image and
overcome the drawbacks of conventional methods, we reduce the visual clutter by putting
nodes with specific properties, based on their spatial information and topological net-
work properties, into the same group. This presentation then serves as a first step before
a more detailed analysis of EEG coherence networks.

Method
Although there are many unsupervised graph clustering methods, they either aim to find
a predetermined number of clusters or do not consider the spatial information of the
data (Ahmadlou and Adeli 2011; Kirschner et al. 2012; Schaeffer 2007). ten Caat et al.
proposed a method considering the functional connections and spatial information of
nodes together (ten Caat et al. 2008). This method assumes that a spatially connected set
of electrodes records similar signals as a result of volume conduction (ten Caat et al. 2008;
2007a). However, one potential drawback of this method is that it is not easy to analyze
local synchronization since the method tries to find groups of electrodes that are as large
as possible.
In this section, we first provide some background on EEG coherence and the data repre-

sentation of the EEG coherence network. Then we describe the community clique-based
method of detecting dense spatially-connected groups of electrodes. Then, we briefly
describe the MCB and IWB methods for later comparison in the “Results” section.

EEG coherence

During an EEG experiment, brain activity is recorded by electrodes attached to the scalp
of a subject at different locations. The electrodes are placed based on the 10/20 system
and the position of an electrode is indicated by its label which is a combination of letters
indicating brain regions (e.g., F for frontal), and digits indicating lateralization (odd num-
bers for left, even for right) and distance from the midline (higher numbers are farther
away) (see Fig. 2) (Luck 2005; Oostenveld and Praamstra 2001). A conductive gel is applied
between electrodes and skin for reducing impedance. EEG provides high-resolution tem-
poral information about brain activity, and the electrical potential is typically measured
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at sampling rates up to 2000Hz. The measured signal that is recorded from each site
is amplified, resulting in one recording channel for every electrode. If there are many
electrodes, e.g., 64 or 128, the term “multichannel” or “high-density” EEG is used.
Activity from one source can result in a strong signal recorded by multiple electrodes,

and nearby electrodes usually record similar signals due to volume conduction and ref-
erence electrode effects (Holsheimer and Feenstra 1977; Nunez et al. 1997). Often, there
are several sources of activity at different locations, and these sources can be synchro-
nized. Consequently, signals recorded by electrodes that are far apart can also be similar.
The degree of interaction between two signals can be measured by coherence which is a
measure for the similarity of signals as a function of frequency.
The coherence cλ as a function of frequency λ for two continuous time signals x and y

is defined as the absolute square of the cross-spectrum fxy normalized by the autospectra
fxx and fyy (Halliday et al. 1995), having values in the interval [0, 1]: cλ(x, y) = |fxy(λ)|2

fxx(λ)fyy(λ)
.

Data representation and EEG coherence network

A network is simply a collection of connected objects. We refer to the objects as nodes or
vertices and the connections between the nodes as edges. In mathematics, networks are
often referred to as graphs, and the area of mathematics concerning the study of graphs is
called graph theory. In this paper, we use the terms network and graph interchangeably.
Functional brain connectivity obtained from EEG data is represented by an undirected

coherence graph G = (V ,E), defined by a set of vertices V and a set of edges E ⊆ V × V
where vertices represent electrodes. Since weak coherences may represent spurious con-
nections and these connections tend to obscure the topology of strong and significant
connections (Rubinov and Sporns 2010), we only consider coherences with values above a
pre-defined significance threshold (Halliday et al. 1995; ten Caat et al. 2008). Coherences
above the significance threshold are represented by edges, whereas coherences below the
threshold are ignored (see Fig. 3c). Vertices are not self-connected. To determine spatial
relationships between electrodes, a Voronoi diagram is employed, which partitions the
plane into regions of points with the same nearest vertex (for a simple example, see Fig. 3a.
For EEG data, the vertex set is equal to the set of electrode positions. The vertices are
referred to as (Voronoi) centers, and the region boundaries as (Voronoi) polygons. The
area enclosed by a polygon is called a (Voronoi) cell. We call two cells Voronoi neighbors if
they have a boundary in common. A collection of cells is called Voronoi connected if for
a pair φ0,φn ∈ C, there is a sequence φ0,φ1, ...,φn of cells in C, with each pair φi−1,φi con-
sisting of Voronoi neighbors. Cells, vertices, nodes, and electrodes are interchangeable in
this paper.

Community clique detection

We now introduce the CCB approach to find dense spatially-connected cliques from an
EEG coherence network based on community structure. Such a clique is a set of electrodes
that are spatially connected, and signals recorded by these electrodes are more densely
connected within the same clique than with signals that are recorded by electrodes in
other cliques.

Community structure

The community structure of a network is defined as groups of nodes with a high density
of within-group connections and a lower density of between-group connections. Such
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(a)

(c)

(b)

Fig. 3 Example layout of a synthetic coherence network with coherence matrix as shown in Table 1.
a Voronoi diagram showing vertex positions with vertex labels within the cells and Voronoi connections
between vertices. Vertices are spatial neighbors if they are 4-connected, e.g., the spatial neighbors of vertex f
are vertices, b, e, g, and j. b Layout preserving the vertex positions. Vertices are represented by solid circles
and lines represent coherences between vertices, while the coherence values are encoded by the color of
the lines (see the color bar on the right). cManual layout of the significant coherence graph without
considering the vertex positions

structures have been observed in many different types of networks including social,
biological, and tele-communication networks (Danon et al. 2005; Newman 2006). In par-
ticular, the community structure of a brain functional connectivity network shows the
groups of neuronal areas where there is more synchronous activity within a group and
less synchronous activity between groups. These communities may be considered as
functional areas in the brain (Ahmadlou and Adeli 2011).
Various algorithms have been proposed for the identification of community structure

from complex networks. Many of these algorithms are based on the idea of optimizing the
so-called modularity index Q of the partition of a network (Newman and Girvan 2004;
Newman 2006). In the case of a weighted network, this index is defined as follows (Blondel
et al. 2008):

Q = 1
2m

∑

v,v′

[
c(v, v′) − KvKv′

2m

]
δ(L(v), L(v′)), (1)
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where c(v, v′) represents the weight (in our case the coherence value) of the edge between
nodes v and v′, Kv = ∑

l c(v, l) is the sum of weights of the edges incident to vertex v,
L(v) is the community label of vertex v, the δ−function δ(i, j) is 1 if i = j and 0 oth-
erwise, and m = 1

2
∑

v,v′ c(v, v′). The modularity Q is equal to the fraction of the sum
of weights of edges that connect nodes in the same community minus what that frac-
tion would be on average if the communities remained fixed but the edge weights were
randomly distributed. The higher the value of Q, the more confident one can be that a
significant community structure has been found (Newman 2006). So, the procedure of
detecting community structure is usually based on maximizing the modularity index Q.
The optimal community structure for a given network is typically estimated with opti-

mization algorithms rather than computed exactly (Danon et al. 2005; Rubinov and
Sporns 2010)). A simple and efficient method of optimizing modularity was proposed by
Blondel et al. (2008). It involves the local movement of nodes, and proceeds in two phases.
In the first phase, each node of the network is initialized as a singleton community. Then,
for each node v, the modularity gain �Q is evaluated that would result from removing v
from its community CL(v) and placing it in one of the other communities. The node v is
then placed in the community for which this gain is maximum and positive. If no positive
gain is possible, nothing is done. This process is applied repeatedly and sequentially for all
nodes until no further improvement can be achieved and the first phase is then complete.
Equation 2 can be used to calculate the modularity gain �Q when removing one node v

from its community CL(v) to an arbitrary community Ci (Blondel et al. 2008; Rubinov and
Sporns 2010; Sun et al. 2009):

�Q = 1
2m

⎛

⎝
∑

l∈Ci

c(v, l) −
∑

l∈CL(v)

c(v, l) − Kv
(
KCi − KCL(v) + Kv

)

2m

⎞

⎠ , (2)

where KCL(v) is the sum of the weights of the links incident to nodes in CL(v), KCi is the
sum of the weights of the links incident to nodes in Ci, and Kv is the sum of the weights
of the links incident to node v.
The second phase of the algorithm consists of building a new network whose nodes

are the communities found in the first phase. To do so, the weights of the links between
the new nodes are given by the sum of the weights of the links between nodes in the
corresponding two communities. Links between nodes of the same community lead to
self-loops for this community in the new network. Once this second phase is completed,
the first phase of the algorithm is reapplied to the new network. The combination of both
phases is called a “pass”. The passes are iterated until there are no more changes.

Community clique detectionmethod

Here, we extend the method proposed by Blondel et al. (2008) to obtain dense spatially-
connected cliques, the community clique, consisting of Voronoi-connected vertices of the
EEG coherence network.
The outline of our method can be summarized as follows. The difference with Blondel’s

method is in step 2, the calculation of the modularity gain, where an extra condition is
applied which ensures that the resulting communities are spatially connected cliques (see
the introduction for the motivation):
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1 Assign a unique community to each node of the network.
2 Use 2 to calculate the modularity gain �Q for node v caused by removing node v

from its community and placing it in another community such that the node v is
connected to each node of that community and has at least one Voronoi neighbour
in that community.

3 Place the node v in the community for which the gain is the highest and positive. If
no positive gain is available, nothing is done.

4 Continue repeating steps (2) and (3) until every node is processed.
5 Repeat steps (2) -(4) until no further improvement of the modularity index Q is

achieved.

Note that the algorithm’s output depends on the order in which the nodes are processed
in step (2). The ordering does not have a significant influence on the modularity that is
obtained, but can influence the computation time (Blondel et al. 2008). In our case, a
decreasing order is chosen based on the average local coherence of vertices, which is also
used to detect basins in the IWB method (ten Caat et al. 2008).
Algorithm 1 shows the pseudocode of the community clique detection procedure.

It maintains the following dynamic vertex sets in the coherence graph of significant
electrode connections:

• Ci contains a sorted list of the vertices in community i ;
• L(v) is the community label of vertex v;
• Hi contains a list of vertices (sorted by vertex number) that are connected to each of

the vertices in Ci;
• Ri contains a list of vertices which have at least one Voronoi neighbor in Ci.

The operation remove(v,CL(v)) removes the node v from the community CL(v) and
returns a set consisting of the remaining nodes. Similarly, add(v,Ci) inserts node v into
the community Ci and returns the updated community. The operation isVor(Ci) returns
“true” if the community Ci is empty, or if it only has one vertex, or if each pair of vertices
in Ci is Voronoi-connected when |Ci| > 1; and it returns “false” if not. The size of a vertex
set is denoted by | · |.
We now turn to a more precise analysis of the algorithm:

• Initialization (lines 1-7).

- Initially, every node of the network is a singleton community (line 3).
- The set of vertices which are connected to vertices of community Ci is identical

to the set of vertices which are connected to the node v = V (i) (line 5)
- The set of vertices which are connected Voronoi-neighbours of vertices of

community Ci is the set of vertices that are connected Voronoi-neighbours of
the node v = V (i) (line 6).

- Set flag as true (line 8). flag is used to indicate that the modularity can be
improved. If flag is false, there is no improvement of modularity.

• Main Procedure (line 8-line 37). This consists of the following steps.

- Take the i th node v = V (i) from V. If after removing v from its original
community CL(v) any pair of remaining vertices is not Voronoi-connected,
nothing is done, and the procedure continues with a new node (line 13).
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Algorithm 1 Community Clique Detection algorithm
Require: vertex set V sorted in decreasing order based on their average local coherence;

c(v, v′) = coherence(v, v′) = c(v′, v); θ = sign.threshold; hv = {v′ ∈ V |c(v, v′) ≥ θ};
rv = {v′ ∈ hv|v′ ∈ Vor.neighborsv};

Ensure: Ci is the community i consisting of a set of vertices sorted by vertex number ;
L(v) indicates the label of community in which the vertex v is located.

1: for i = 1 to |V | do
2: v = V (i)
3: Ci = {v}
4: L(v) = i
5: Hi = hv
6: Ri = rv
7: end for
8: flag = true
9: while flag do

10: flag = false
11: for i = 1 to |V | do
12: v = V (i)
13: if isVor(remove(v,CL(v))) then
14: max�Q = 0
15: for j = 1 to |V | do
16: if Cj �= ∅ and v ∈ Hj and v ∈ Rj then
17: �Q = 1

2m (
∑

l∈Cj c(v, l)−
∑

l∈CL(v)
c(v, l) − Kv(KCj−KCL(v)+Kv)

2m )

18: if �Q > max�Q then
19: flag = true
20: max�Q = �Q
21: d = j
22: end if
23: end if
24: end for
25: if flag then
26: CL(v) = remove(v,CL(v))

27: HL(v) = ⋂

l∈CL(v)

hl

28: RL(v) = ⋃

l∈CL(v)

rl

29: Cd = add(v,Cd)

30: Hd = Hd ∩ hv
31: Rd = Rd ∪ rv
32: L(v) = d
33: end if
34: end if
35: end for
36: end while
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Otherwise, set the maximal gain of modularitymax�Q to zero, and take the j th
community Cj.

- In case Cj is empty or v is not connected to any nodes of Cj or v has no Voronoi
neighbors in Cj, nothing is done, and the procedure continues with a new
community (line 16). Otherwise, compute the modularity gain �Q (line 17).

- If the current gain �Q is higher thanmax�Q, which means the modularity can
be improved, set the label of the current community j to the destination
community label d to which community the node v will move (line 21).
Otherwise, nothing is done, and the procedure continues with a new community.

- After all communities are traversed, select the first community which has the
highest �Q, and update community CL(v) by removing node v from its original
community CL(v) (line 26); replace HL(v) by vertices that are connected to each
node of the updated community CL(v) (line 27); replace RL(v) by the vertices that
are connected Voronoi neighbours of nodes of the updated community CL(v)
(line 28); move node v into the destination community Cd (line 29); replace
HL(v) by its intersection with the set of vertices that are connected with v in the
coherence graph (line 30); replace RL(v) by its union with the vertices that are
connected Voronoi neighbours of v (line 31); v receives label d (line 32).

- This procedure is repeated until no improvement is obtained, which means
flag = false after all nodes have been processed.

Figure 4 illustrates the procedure of community clique detection for an EEG coherence
network, with the coherencematrix shown in Table 1. Table 1 shows a synthetic coherence
network, and we use it to illustrate the procedure of the threemethods. The following deta
iled description contains references to Fig. 4. For a dataset of 119 electrodes, the computing
time was around 0.84 s on a modern desktop computer (Intel 3.2 GHz, 8 GB RAM).
At T1, the initial stage, each of these twelve vertices correspond to a unique community

represented by a specific colored symbol: L(a) = 1, L(b) = 2, L(c) = 3, L(d) = 4,

Fig. 4 Illustration of Voronoi-connected community clique detection for a coherence network with the
coherence matrix shown in Table 1. Each colored symbol represents a community at T1. For each step Ti,
the gain �Q is shown on the right. Before the dash: the node to be removed; after the dash: the node or
nodes constituting a community. T28 shows the vertex positions in 2D space
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Table 1 Synthetic coherence matrix

a b c d e f g h i j k l

a 0 0.65 0.10 0.10 0.64 0.60 0.20 0.10 0.30 0.23 0.10 0.10

b 0.65 0 0.10 0.10 0.63 0.63 0.21 0.10 0.32 0.33 0.10 0.10

c 0.10 0.10 0.10 0 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

d 0.10 0.10 0.10 0 0.10 0.10 0.70 0.71 0.10 0.10 0.10 0.70

e 0.64 0.63 0.10 0.10 0 0.62 0.20 0.10 0.33 0.20 0.10 0.10

f 0.60 0.63 0.10 0.10 0.62 0 0.70 0.10 0.30 0.31 0.10 0.10

g 0.20 0.21 0.10 0.70 0.20 0.70 0 0.69 0.20 0.20 0.10 0.70

h 0.10 0.10 0.10 0.71 0.10 0.10 0.69 0 0.10 0.10 0.10 0.72

i 0.30 0.32 0.10 0.10 0.33 0.30 0.20 0.10 0 0.32 0.10 0.10

j 0.23 0.33 0.10 0.10 0.20 0.31 0.20 0.10 0.32 0 0.10 0.10

k 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0 0.10

l 0.10 0.10 0.10 0.70 0.10 0.10 0.70 0.72 0.10 0.10 0.10 0

The rows and columns represent the nodes, and the cells contain the coherence values between nodes. Values above or equal to
the significance threshold, in this case 0.2, are indicated in bold

L(e) = 5, L(f ) = 6, L(g) = 7, L(h) = 8, L(i) = 9, L(j) = 10, L(k) = 11, L(l) = 12.
Then, we calculate the modularity gain �Q caused by removing k (since k has the highest
local average coherence, and the descending order of vertices based on their local average
coherence is: h, a, f , e, b, l, d, g, i, j, c, k) from its community to the other communities; all
the values of �Q are listed on the right in Fig. 4.
T2-T12. At every next step, the next vertex v will be chosen and the gain of removing v

from its community CL(v) to the remaining communities will be computed. If the positive
highest gain max�Q results from the movement of node v to the community in which v
has at least one Voronoi neighbour and is connected with each vertex in that community,
then the vertex v will be removed from its original community to the destination com-
munity CDes, CL(v) is updated by deleting v from CL(v) and CDes is replaced by the union
of itself with v. At T2, v = h, CL(v) = C8 = ∅, CDes = C12 = {h, l}. At T3, v = a,
CL(v) = C1 = ∅, CDes = C5 = {a, e}. At T4, v = f , CL(v) = C6 = ∅, CDes = C5 = {a, e, f }.
At T5, v = e, nothing is done since max�Q is negative when merging e and i into one
community. At T6, v = b, CL(v) = C2 = ∅, CDes = C5 = {a, b, e, f }. At T7, v = l, nothing
is done since all the communities except C12, the original community, have no connected
Voronoi neighbours of l. At T8, v = d, CL(v) = C4 = ∅, CDes = C12 = {d, h, l}. At T9,
v = g, CL(v) = C7 = ∅, CDes = C12 = {g, d, h, l}. At T10, v = i, CL(v) = C9 = ∅,
CDes = C5 = {a, b, e, f , i}. At T11, v = j, CL(v) = C10 = ∅, CDes = C5 = {a, b, e, f , i, j}.
At T12, v = c, and at T13, v = k, nothing is done since the vertex v has no connected
Voronoi-neighbours.
From T14 on, all vertices will be traversed again. The gain �Q can be easily computed

and it can be observed that there is no more positive gain, which means the modularity
can not be improved anymore. So the detection procedure stops. Finally, we obtain two
community cliques {a, b, e, f , i, j} and {g, d, h, l} at T25.

FU detection using the MCB and IWBmethod

MCBmethod

The maximal clique based (MCB) method (ten Caat et al. 2007a) is an extension of the
method proposed by Bron and Kerbosch (1973). It detects maximal cliques consisting of
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Voronoi-connected vertices. Its recursive procedure maintains four dynamic vertex sets
(ten Caat et al. 2008):

• The set compsub contains an increasing or decreasing clique.
• The set currentcand contains the candidates that are a Voronoi neighbor of at least

one element in compsub, and only these can be added to compsub at the current step.
• The set complcand is the complement of currentcand in candidates containing

vertices that are connected to all vertices in compsub.
• The set not contains vertices that are connected to all vertices in compsub and that

were added to compsub previously.

At each call, the element from currentcand that has the largest number of connec-
tions with the other candidates (currentcand ∪ complcand) is added to compsub. Let this
element be v (in the coherence graph). The set newcurrentcand is the intersection of cur-
rentcand and the neighborhood of v (in the coherence graph), united with the Voronoi
neighbors of v in complcand. The set newcomplcand is the intersection of complcand and
the neighborhood of v (in the coherence graph), minus the Voronoi neighbors of v in
complcand. The set (new)not is the intersection of not and the neighborhood of v. This
is repeated until newcurrentcand is empty. If newnot is also empty, then compsub is a
Voronoi-connected maximal clique.
Figure 5 illustrates Voronoi-connected maximal clique detection using the MCB

method for a coherence network, with the coherence matrix shown in Table 1. Its adja-
cency matrix is shown in Table 2 (here, we set the threshold at 0.2), and the Voronoi
diagram is shown in Fig. 3a.
The following detailed description contains (row and column) references to Fig. 5. The

procedureA. starts with all twelve vertices in the set candidates (not illustrated), and with
not = ∅.A1.Then, the vertex g with the highest degree (following Table 2) is first added to
compsub. Its adjacent vertices in the coherence graph are in currentcand if they are spatial
neighbours ({f , h}); otherwise, they are in complcand ({a, b, d, e, i, j, l}). A2-A6. At every
step, the element, say, v, from currentcand that has the largest number of connections in
the coherence graph with the other candidates (currentcand ∪ complcand) is added to
compsub. In case of ties, one vertex is selected randomly. The spatial neighbours of v in
complcand, denoted by �(v), are moved from complcand to currentcand. Furthermore,

Fig. 5 Illustration of Voronoi-connected maximal clique detection using the MCB method for a coherence
network with the coherence matrix shown in Table 1 and associated adjacency matrix shown in Table 2. C7
illustrates the vertex positions in the 2D space. Compare to Fig. 4
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Table 2 Adjacency matrix

a b c d e f g h i j k l

a 0 1 0 0 1 1 1 0 1 1 0 0

b 1 0 0 0 1 1 1 0 1 1 0 0

c 0 0 0 0 0 0 0 0 0 0 0 0

d 0 0 0 0 0 0 1 1 0 0 0 1

e 1 1 0 0 0 1 1 0 1 1 0 0

f 1 1 0 0 1 0 1 0 1 1 0 0

g 1 1 0 1 1 1 0 1 1 1 0 1

h 0 0 0 1 0 0 1 0 0 0 0 1

i 1 1 0 0 1 1 1 0 0 1 0 0

j 1 1 0 0 1 1 1 0 1 0 0 0

k 0 0 0 0 0 0 0 0 0 0 0 0

l 0 0 0 1 0 0 1 1 0 0 0 0

The matrix element is 1 if the corresponding coherence value (Table 1) is above or equal to the threshold (0.2), otherwise the
element is set to 0

vertices not adjacent to v in the coherence graph, denoted by �c(v), are removed from
both currentcand and complcand. This continues until currentcand is empty. At A2, v =
f , �(v) = {b, e, j}, and �c(v) = {d, h, l}. At A3, v = e, �(v) = {a, i}, and �c(v) = ∅. At
A4, v = a, �(v) = ∅, and �c(v) = ∅. At A5, v = b, �(v) = ∅, and �c(v) = ∅. At A6,
v = i, �(v) = ∅, and �c(v) = ∅. At A7, v = j, �(v) = ∅, �c(v) = ∅, and compsub =
{a, b, e, f , i, j, g} is a Voronoi-connected maximal clique, because currentcand = ∅ (and
not = ∅).
B. A later iteration for the MCB method returns to the situation preceding A2, with

vertex g in the compsub, and vertex f put into the set of not. Then, at B1. only the vertex
h is retained in currentcand, and complcand is the same as inA1. ({a, b, e, i, j, d, l}). At B2,
v = h, �(v) = {d, l}, �c(v) = {a, b, e, i, j}, and not = ∅. At B3, v = d, �(v) = ∅, �c(v) = ∅,
and not = ∅. At B4, v = l, �(v) = ∅, �c(v) = ∅, not = ∅, and compsub = {g, d, h, l} is a
Voronoi-connected maximal clique, because currentcand = ∅ (and not = ∅).
As it can be seen from the above example, every vertex can be part of multi-

ple (Voronoi-connected) maximal cliques. (In the above example, vertex g belongs to
Voronoi-connected maximal cliques {a, b, e, f , i, j, g} and {g, d, h, l}). To assign a unique
label to every vertex, a quantity total strength is defined for a (sub)graphG = (V ,E) as the
sum of all edge values. For a vertex detected in more than one clique, it will be assigned
to the clique which has the largest total strength. Then, the final cliques in above example
are {a, b, e, f, i, j, g} and {d, h, l } (see C1).

IWBmethod

The IWB method is an alternative to the MCB method. It is a greedy method, approx-
imating Voronoi connected maximal cliques on the basis of an edge-based watershed
transform (ten Caat et al. 2007b).
This IWB method contains two main steps:

• Initialization. An edge queue is initialized with edges (corresponding with a
significant coherence) between markers, which are defined as nodes having locally
maximal average coherence, and their Voronoi neighbors. These edges are sorted in a
descending order based on their values. Each marker corresponds to a basin and is
assigned a unique label.
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• Main Procedure. Remove the first edge, e = (v, v′), from the queue, and determine
the label of node v′. In case the node v′ is unlabelled, v′ receives the label of v and the
queue is extended with the edges between v′ and its unlabelled connected
Voronoi-neighbours, if v′ is connected to every node of the basin where v is in. In
case v′ was also labelled, check if the two basins that contain v and v′ can merge into
a single basin. If so, then merge them, otherwise nothing is done.

The main procedure is repeated until queue is empty. Each basin then corresponds to
an FUIWB.
Figure 6 illustrates FU detection with the IWB method for a coherence network, with

the coherence matrix shown in Table 1 and the Voronoi diagram shown in Fig. 3a. The
following detailed description contains references to Fig. 6.
At S1, three markers, a, f , h, are detected, and they are represented by a green diamond,

red star, and magenta up-triangle, respectively. Each is then assigned a unique number:
L(a) = 1, L(f ) = 2, L(h) = 3; edges (corresponding to significant coherences) between
markers and their unlabelled Voronoi neighbours represented by blue squares are added
in the queue; the edge with the highest value in the queue is c(h, l) and is shown at the top
on the right of S1.
S2-S11. At every next step, the edge, say, c(v, v′), with the highest value in the queue

is removed. Then, the vertex v′ is labelled. The edges (denoted by 	(v′)) between v′ and
its unlabelled Voronoi-neighbours are inserted in the queue and will be highlighted in
bold. At S2, v = h, v′ = l, L(v′) = L(h) = 3, and 	(v′) = ∅. At S3, v = h, v′ = d,
L(v′) = L(h) = 3, and 	(v′) = ∅. At S4, v = f , v′ = g, L(v′) = L(f ) = 2, and 	(v′) = ∅.
At S5, v = h, v′ = g, h which was labelled already in the previous stage. But, the basin
of g and the basin of h can not merge since their union is not a clique in the coherence
graph (h, d, l are not significantly connected with f, which can be derived from 1). Hence,
nothing will be done at this stage. At S6, v = a, v′ = b , L(v′) = L(a) = 1, and 	(v′) = ∅.
At S7, v = a, v′ = e , L(v′) = L(a) = 1, and 	(v′) = {(e, i)}. At S8, v = f , v′ = b , b
was labelled already in the previous stage. But the basins of f and b can merge since their
union is a clique in the coherence graph. Hence, vertices in the basin of bwill be moved to
the basin of f. L(v′) = L(f ) = 3, L(a) = L(f ) = 3, L(e) = L(f ) = 3, and 	(v′) = ∅. At S9,
v = f , v′ = e , L(v′) = L(e) = 3, and 	(v′) = ∅. At S10, v = e, v′ = i , L(v′) = L(e) = 3,
and 	(v′) = ∅. At S11, v = i, v′ = j , L(v′) = L(j) = 3, and 	(v′) = ∅. At S12, v = f ,
v′ = j , L(v′) = L(j) = 3, and 	(v′) = ∅. Now, two basins have been detected, { a, b, e, f, i,
j, g} and { d, h, l}, because the queue is empty.

Fig. 6 Illustration of FU detection using the IWB method for a coherence network with the coherence matrix
shown in Table 1. Three basins are represented by a green diamond, red star, and magenta up-triangle,
respectively. Blue squares represent vertices that have at least one significant edge in the queue connected
to a labelled vertex. The edges in queue and their values are listed (in descending order) on the right for each
step. The new inserted edges are indicated by bold text, e.g., “e-i” which appears at S7. S14 illustrates the
vertex positions in the 2D space
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FU visualization

Given FUs, the inter-FU coherence c′λ at frequency λ between two FUs C1 and C2 is
defined as the sum of coherence values between one vertex in C1 and the other vertex in
C2, divided by the maximal number of edges between C1 and C2:

c′λ(C1,C2) =
∑

i,j{cλ(vi, vj)|vi ∈ C1, vj ∈ C2}
|C1||C2| . (3)

Note that coherences between any pair of vertices are taken into account to normalize
for the size of the FUs even if their coherence is below the predefined threshold.
An FU map visualizes each FU as a set of Voronoi cells with identical gray values and

with different gray values for adjacent FUs. See Fig. 7 for an example. The colour of the
circle over the geographic centre of FU C1 reflects its average coherence ĉλ(C1), which is
defined as ĉλ(C1) =

∑
i,j{cλ(vi,vj)|vi∈C1,vj∈C1}

|C1|(|C1|−1) . Note that the geographic centre of an FU can
be located in a cell not belonging to the corresponding FU. A line is drawn between FU
centres if the corresponding inter-FU coherence exceeds a predefined threshold.
In our case, only FUs larger than five cells are considered. White Voronoi cells are part

of smaller FUs.

Comparison of methods applied to synthetic EEG coherence networks

In this subsection, we will first compare the proposed method with two other meth-
ods using a synthetic EEG coherence network (see Fig. 3 and Table 1). The comparison
between the three methods applied to real functional brain networks is described in the
“Results” section.

Fig. 7 Example of an FUMCB map (ten Caat 2008) as obtained during an auditory oddball task (see
“Experimental setup” section. Spatial groups of similarly colored (in gray scale) cells correspond to FUs with a
size of at least four, while white cells are part of smaller FUs. Circles overlayed on the cells represent the
barycenters of the FUs and are connected by lines whose color reflects the average coherence between all
electrodes of the FUs (see color bar). See ten Caat et al. (2007a) for details
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For the MCB method, at the stage of (Voronoi-connected) maximal clique detection,
coherences are considered equally when their values are above or equal to the thresh-
old. This method intends to find all possible maximal cliques in a coherence network.
Then, at the stage of vertex assignment, the vertex is assigned to the clique which has the
highest total strength when it is part of multiple cliques, no matter how strong the ver-
tex is connected to these cliques. Hence, the vertex will be placed in the clique with more
vertices when two cliques have an equal average coherence. For example, at the stage
of maximal clique detection, we found two overlapping maximal cliques, {a, b, e, f , i, j, g}
and {g, d, h, l}, in Fig. 5. But the former has a higher total strength, so g is removed from
{g, d, h, l} at the assignment stage, and the final cliques are shown in C1.
For the IWB method, the edges connecting a labelled vertex and an unlabelled vertex

will be placed in the queue first if these vertices are significantly connected Voronoi neigh-
bours. Then, the unlabelled vertex will be placed in the clique in which one of its Voronoi
neighbours has the highest coherence with this vertex compared to others in the queue.
For example, at S3 in Fig. 6, the vertex g is assigned to f since their connection value is
0.71 while the connection value with h is 0.69. The final cliques are shown in S12.
The community clique-based (CCB) method detects the dense spatially connected

cliques in a coherence network. It first calculates the degree of connections between
nodes and community cliques, which is quantified by modularity. Then, the node will be
placed in the clique which has the strongest node-community connection. For example,
at T8 in Fig. 4, vertex g has a stronger connection with clique {d, h, l} than with clique
{a, b, e, f }. At T21, vertex g still has a stronger connection with clique {d, h, l} than with
clique {a, b, e, f , i, j}. The final cliques are shown in T26.

Results
In this section, we will first describe the experimental setup, before applying the CCB
method to twelve participants for an example application. To compare the three meth-
ods when applied to real EEG coherence networks, we selected four of these sixteen
participants (two young and two old) to demonstrate any differences.

Experimental setup

Brain responses were recorded during an auditory oddball detection experiment, in which
older and younger participants were instructed to count target tones and ignore standard
tones. After the experiment, each participant had to report the number of perceived target
tones. In our data, brain responses to L target tones were analyzed in L segments of 1
second, sampled at 256Hz. A procedure from Neurospec was adopted to compute the
coherence (www.neurospec.org). A detailed description of the procedure is given in ten
Caat et al. (2008).
In the present study we do not consider ongoing EEG but the event-related potential

(ERP) which is an EEG recording of the brain response to a sensory stimulus. To calculate
the coherence for an ERP with L repetitive stimuli, the EEG data can be separated into L
segments. A significance threshold for the estimated coherence is then given by Halliday
et al. (1995):

θ = 1 − p1/(L−1), (4)

where p is a probability value associated with a confidence level α, such that p = 1 − α.

www.neurospec.org
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Throughout this section, we use p = 0.01, and L = 13 segments. In addition, we set the
inter-FU coherence threshold to the same value as the significance threshold θ .

Comparison of methods applied to real EEG coherence networks

Besides comparing the three methods when applied to the synthetic EEG network in the
“Method” section, we also compared the three methods when applied to real EEG coher-
ence networks as obtained from two younger and two older participants in the experiment
described in “Experimental setup” subsection. The results are shown in Fig. 8, and we
make the following observations.

• For the young participants, it can be observed that there is no big difference between
FU maps obtained from these three methods. In the [1, 3]Hz frequency band, FU
maps are very similar for both young participants in terms of, for example, the
number of FUs and their location. Similarly, for the [4, 7]Hz frequency band, there
are no big differences between the methods either.

• For the older participants, however, there are large differences between FU maps for
the different methods. In the [4, 7]Hz frequency band, the three methods result in a
similar number of FUs. In the [1, 3]Hz frequency band for participant 3 both MCB
and IWB methods detect two large FUs located anteriorly and posteriorly: FUsMCB 1,
5 and FUsIWB 1, 3. In the CCB method, however, these FUs are split into small FUs
due to a weak inter-community connection. For example, FUMCB 5 splits into FUsCCB 6
and 7, while FUMCB 1 splits into FUsCCB 1 and 2. From these splits, we can see that
FUsCCB 6 and 7 have higher average coherence than FUMCB 5, and the inter-FU
coherence between FUsCCB 6 and 7 is also lower than their average coherence. This is
also true for FUMCB 1 and FUsCCB 1, 2. From a global point of view, FUCCB 7 has the
highest average coherence, followed by 1 and 2, and there are higher inter-FU
coherences among these FUs. For participant 4, the MCB method detects two large

Fig. 8 Illustration of FU maps (top view, nose on top) obtained by using the three FU detection methods for
two different EEG frequency bands. a FU maps obtained from two young participants. b FU maps obtained
from two older participants
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FUs located anteriorly and posteriorly, with significant inter-FU coherence between
them. The IWB method has a similar result, except for the frontocentral connection.
The CCB method, in contrast, finds a total of seven FUs with size above five.
Compared to the CCB method, FU 1 obtained by the MCB and IWB methods is split
into four FUs 1, 2, 3, 4 in the CCB method due to the weak inter-community
connections with each other. FUCCB 1 in the CCB method has the highest average
coherence among these four FUs. From a global point of view, the two FUsCCB having
the strongest connection are 1 and 7, which are located at the frontal and
parietal-occipital areas of the brain, respectively. In the [4, 7]Hz frequency band, the
MCB and IWB methods produce similar results, except in the frontocentral area of
the brain. The main difference between methods is that FUMCB 1 splits into FUsCCB 1
and 2 in the CCB method due to weak inter-community connections. In addition, the
average coherence of FUCCB 1 and 2 is higher than FUMCB 1. FUMCB 6 is an extension of
FUCCB 7, but it can be seen that their average coherence differs.

In this example, the FUmaps obtained from older participants generally have larger FUs
and the coherence within-and between FUs is also high compared to the young partici-
pants. This could be interpreted as the older participants having higher local and global
synchronization. All the methods are trying to find cliques and for the young participants
brain areas are apparently less synchronized, which results in lower coherence. In this
case we end up with small(er) FUs. This also explains why the FUmaps obtained from the
three methods are similar for the younger participants. For the older participants, there is
apparently high synchronization between brain areas. In this case, more electrodes make
up larger cliques. The MCB and IWB methods then detect larger FUs. Consequently, the
detected FUs are less suited for analyzing local synchronization. In this case, however,
the CCB method still considers the community properties: if an electrode can be put into
several FUs, it will be added to the FU with which it has a strong connection rather than
to the largest FU as in the other methods.

FUCCB maps

In this subsection, we apply (only) the CCB method to the data of six younger and six
older participants in the experiment described in the “Experimental setup” subsection.
Figure 9a and b show FUCCB maps of the younger and older adults, respectively. In

general, the color of circles and edges is lighter for older participants than for younger
participants over the three frequency bands. This probably corresponds to earlier find-
ings using a hypothesis-driven method (Maurits et al. 2006), indicating the older adults
have higher local and global synchronization compared to the younger adults and that
aging is associated with increased EEG coherence during a relatively easy cognitive task.
The midline regions are usually less synchronized as reflected in the FUs of these regions
being small and the color of circles and edges connecting with other FUs having darker
colors. Throughout the three frequency bands, FUs with high average coherence (light
circle color) are usually found in anterior and posterior regions, and these FUs usually
have high inter-FU coherence which is also in accordance with previous observations in
the literature (ten Caat et al. 2008), particularly for the older participants.
For the younger participants, the inter-FU coherence decreased with increasing fre-

quency except for participant 1 (Fig. 9a). The left and right-temporal part of the brain are
usually less synchronized compared to the older participants, for example, participants 1
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(b)

(a)

Fig. 9 FUCCB maps (|FU| ≥ 5) for 6 younger adults and 6 older adults for three frequency bands (1-3, 4-7, and
8-12 Hz). Each FU is visualized as a set of Voronoi cells with identical gray values and with different gray values
for adjacent FUs. White Voronoi cells are part of FUs, with |FU| < 5. A line connects FUs if the inter-FU
coherence exceeds the significance threshold, with its color depending on the value (see color bar, bottom
right). The color of the circle located at the barycenter of each FU reflects the average coherence within FUs.
a Young participants. b Old participants

and 3 have no left-temporal FUs while these FUs in the rest of young participants have a
low average within-FU coherence. Participant 1 seems to be an exception in more ways,
having the least synchronization among all FU maps for frequencies between 1-3 Hz and
having only 4 FUs with a size above 5 and no lateral FUs for this frequency band.
For the older adults, the inter-FU coherence also decreased with increasing frequency,

especially for the FUs located at the anterior and posterior regions, which can be derived
from the color of the edge connecting these FUs fading (Fig. 9b). For example, it is very
obvious for old participant 5: the inter-FU coherence between FUCCB 7 and 1 for fre-
quencies between 1-3 Hz is very high; the inter-FU coherence between FUCCB 6 and 1 for
frequencies between 4-7 Hz is low, and the inter-FU coherence between FUCCB 6 and 1
for frequencies between 8-12 Hz is the lowest. There is also a variety in these findings
among old adults, for example, the size of FUs for old participant 1 is usually smaller com-
pared to other old participants and the color of the circle or edges is darker compared to
the rest, as well. Another example is old participant 2 for frequencies between 4-7 Hz for
which FUs 3, 6 and 7 left- and right-temporally are small and not connected with other
FUs, which means these regions are less synchronized and also are less synchronized with
other regions.

Conclusions and future work
Visualization is an important aspect in the analysis of EEG coherence, especially for
multichannel EEG coherence networks. Since conventional methods either suffer from
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reduced spatial information or visual clutter, they have inherent limitations when applied
to EEG coherence networks. We developed a visualization approach based on the
functional unit (FU) concept that attempts to preserve spatial relationships between func-
tional brain regions and allows analysis of functional connectivity within and between
regions.
A new community clique based (CCB) method was proposed that first partitions an

EEG coherence network into dense groups of spatially connected electrodes recording
pairwise significantly coherent signals. The resulting communities (groups of electrodes)
were visualized in an FU map, which makes it possible to investigate the relationship
between functional brain connectivity and underlying brain structure. The novelty of
this method is that it is helpful to analyze the local and global connectivity without
any a priori hypotheses. Community cliques found by the CCB method can be used for
further analysis, e.g., the analysis of ERP components across FUs and synchronization
between FUs.
As topics for future work we first mention the influence of the order in which nodes

are traversed in the CCB procedure, which needs to be further analyzed. Second, differ-
ences between FUmaps were assessed only visually in our study. However, there is still the
need to develop methods for comparing FU maps quantitatively, and to discriminate not
only between single subjects, but also between different groups, e.g., old and young par-
ticipants. Our method is a visually aided pre-processing method that can be used before
analysis questions about data are well defined. Although our method is specific to EEG
coherence networks, we believe that it can be easily adapted to other network visualiza-
tions which need to capture the whole structure of networks and that do not only depend
on the analysis of single nodes or specified connections between pairs of nodes.
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