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SPATIAL GIBBS RANDOM GRAPHS

BY JEAN-CHRISTOPHE MOURRAT AND DANIEL VALESIN

Ecole Normale Supérieure de Lyon and University of Groningen

Many real-world networks of interest are embedded in physical space.
We present a new random graph model aiming to reflect the interplay be-
tween the geometries of the graph and of the underlying space. The model
favors configurations with small average graph distance between vertices, but
adding an edge comes at a cost measured according to the geometry of the
ambient physical space. In most cases, we identify the order of magnitude of
the average graph distance as a function of the parameters of the model. As
the proofs reveal, hierarchical structures naturally emerge from our simple
modeling assumptions. Moreover, a critical regime exhibits an infinite num-
ber of discontinuous phase transitions.

1. Introduction. In the Erdős–Rényi random graph, pairs of nodes are con-
nected independently and with the same probability. It is now well known that
most networks of interest in biological, social and technological contexts depart
a lot from this fundamental model. In a very influential paper [8], Barabási and
Albert suggested that these more complex networks have in common that their de-
gree distributions seem to follow a power law. This is in stark contrast with the
degree distribution observed in Erdős–Rényi graphs, which has finite exponential
moments. They proposed that this property become the signature of complex net-
works, a sort of “order parameter” of these systems. They then observed that a
growth mechanism with preferential attachment reproduces the power-law behav-
ior of the degree distribution. The work of Barabási and Albert triggered a lot of
activity, in particular on preferential attachment rules and the configuration model.
We refer to [37] for a comprehensive account of the mathematical activity on the
subject.

This point of view is however not all-encompassing [24]. Several studies point
to the fact that different graphs may share the same degree distribution, and yet
have very different large-scale geometries; and moreover, that the “entropy max-
imizing” graphs with a power-law degree sequence—those that would be favored
by the point of view expressed above—actually do not resemble certain real-world
networks. For instance, the authors of [25] show that the physical infrastructure
of the internet is very far from resembling a graph obtained from the dynamics of
preferential attachment; instead, hierarchical structures are observed, and the or-
ganization of the network is best explained as the result of some optimization for
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performance (see, in particular, [25], Figures 6 and 8). Similarly, the network of
synaptic connections of the brain depart a lot from “maximally random” graphs
with a power-law degree sequence [34]. They also exhibit a hierarchical organi-
zation, as well as high clustering, and the authors of [34] suggest that this is the
result of an attempt to maximize a certain measure of complexity of the network,
with a view towards computational capabilities (see also [33, 35, 36]).

The goal of the present paper is to introduce a new model of a random graph
which is hopefully more representative of such real-world graphs. In our view, one
fundamental requirement for our model is to retain the fact that graphs such as the
infrastructure of the internet, transportation or neural networks, are embedded in
physical space. The examples we described above seem to suggest that the graphs
of interest are the result of some optimization: for the efficient transportation of
information in the case of the infrastructure of the internet, or for some notion of
complexity for neural networks. In fact, it is very easy to imagine a wealth of other
natural objective functions for a network, depending on the context. As for the
geometry of the underlying space, it would be natural to take it as a large subgraph
of Zd . Here, we restrict our attention to a one-dimensional underlying structure.
As for the objective function, we chose a measure of connectedness of the graph:
minimizing the diameter of the graph is an example of objective we consider.

One of the key findings of our study is that despite its simplicity, our model
displays a very rich variety of behavior. In particular, a critical case displays an in-
finite number of discontinuous phase transitions. Moreover, hierarchical structures
emerge spontaneously, in the sense that they are not built into the definition of the
model. As was pointed out above, hierarchical structures have been seen to oc-
cur in real-world networks. While these hierarchies were assumed to emerge from
technological constraints in [25] (in particular, because only a handful of routers
with different bandwidths are commercially available), we show here that the re-
quirements of optimization of the objective function can be sufficient to account
for the emergence of such structures.

The random graph we study is the result of a balance between a desire to op-
timize a certain objective function and entropy effects. As announced, we wish
to focus here on the simplest possible such model and, therefore, restrict our-
selves to a one-dimensional ambient space. Let N be a positive integer, and let
G◦

N = (VN,E◦
N) be the graph with vertex set

VN = {0, . . . ,N − 1}
and edge set

E◦
N = {{x, x + 1} : x, x + 1 ∈ VN

}
.

We will refer to elements of E◦
N as ground edges. In analogy with a transportation

network, we may think of elements of VN as towns, and of edges in E◦
N as a

basis of low-speed roads connecting towns in succession. We now consider the
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possibility of adding additional edges “above” the ground edges, which we may
think of as faster roads or flight routes. Let

EN = {{x, y} : x �= y ∈ VN

}
be the set of (unordered) pairs of elements of VN , and

GN = {
g = (VN,EN) : E◦

N ⊆ EN ⊆ EN

}
be the set of graphs over VN that contain G◦

N as a subgraph. Each graph g =
(VN,EN) ∈ GN induces a graph metric given by

dg(x, y) = inf
{
k ∈ N : ∃x0 = x, x1, . . . , xk−1, xk = y s.t.

for all 0 ≤ j < k, {xj , xj+1} ∈ EN

}
.

This distance is not to be confused with the “Euclidean” distance | · |. For a given
p ∈ [1,∞] and for each g ∈ GN , we define the �p-average path length by

(1.1) Hp(g) =
(

1

N2

∑
x,y∈VN

dp
g (x, y)

) 1
p

,

with the usual interpretation as a supremum if p = ∞. [In other words, H∞(g) is
the diameter of the graph g.] We would like to minimize this average path length,
subject to a “cost” constraint. The cost is defined in terms of a parameter γ ∈
(0,∞) by

Cγ (g) = ∑
e∈EN|e|>1

|e|γ ,

where for each edge e = {x, y} ∈ EN , we write |e| = |y − x| for the length of the
edge e. When γ = 1, the cost of a link is equal to its length; the case γ < 1 can be
thought of as a situation with “economies of scale,” in which the marginal cost of
an edge is lower when the edge is longer.

Ideally, we would wish to find the graph g minimizing Hp(g) subject to a given
upper bound on the cost function Cγ (g). However, real-life constraints prevent this
optimization problem from being resolved exactly. Instead, the resulting graph will
be partly unpredictable, and we assume that its probability distribution follows the
Gibbs principle. In other words, we are interested in the Gibbs measure with energy
given by a suitable linear combination of Hp(g) and Cγ (g).

In order to simplify a little the ensuing analysis, we define our model in a
slightly different way. We denote the canonical random graph on GN by GN =
(VN,EN). For each γ ∈ (0,∞), we give ourselves a reference measure Pγ on GN

such that under Pγ ,

(1.2)
the events

({e ∈ EN })e∈EN ,|e|>1 are independent,

and each event has probability exp
(−|e|γ )

.
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(We do not display the dependency on N on the measures Pγ ; we may think of
the latter as a measure on

∏
N GN .) We denote by Eγ the associated expectation.

Then, for each given b ∈ R and p ∈ [1,∞], we consider the probability measure
P

b,p
γ such that for every g ∈ GN ,

(1.3) P
b,p
γ [GN = g] = 1

Z
b,p
γ,N

exp
(−NbHp(g)

)
Pγ [GN = g],

where the constant Z
b,p
γ,N ensures that Pb,p

γ is a probability measure:

(1.4) Z
b,p
γ,N = Eγ

[
exp

(−NbHp(GN)
)]

.

We denote by E
b,p
γ the expectation associated with P

b,p
γ . One can check that the

measure P
b,p
γ is the Gibbs measure with energy

NbHp(g) − ∑
e∈EN

log
(

exp(−|e|γ )

1 − exp(−|e|γ )

)
,

which is a minor variant of the energy NbHp(g) + Cγ (g). A natural extension of
our model would be to consider energies of the form

βNHp(g) + λNCγ (g),

for general sequences (βN) and (λN). However, this increase in generality does
not seem to change the qualitative behavior of the model, so we favored clarity
over generality.

Our first main result characterizes the behavior of the average path length in
terms of the parameters γ , b and p when γ �= 1.

THEOREM 1.1. For every γ �= 1 and b ∈ R, let

α(γ, b) :=

∣∣∣∣∣∣∣∣∣

(
1 − b

2 − γ
∧ 1

)
∨ 0 if γ < 1,(

γ − b

γ
∧ 1

)
∨ 0 if γ > 1.

For every γ �= 1, b ∈ R, p ∈ [1,∞] and ε > 0, we have

lim
N→∞P

b,p
γ

[∣∣∣∣ logHp(GN)

logN
− α(γ, b)

∣∣∣∣ > ε

]
= 0.

Drawings of the function b �→ α(γ, b) in the cases 0 < γ < 1 and γ > 1 are
displayed in Figure 1.

The proof of Theorem 1.1 essentially reduces to showing that under the refer-
ence measure Pγ , for every p ∈ [1,∞] and α ∈ (0,1), one has

(1.5) − logPγ

[
Hp(GN) 
 Nα] 


∣∣∣∣∣N1−α(1−γ ) if γ < 1,

N1+(1−α)(γ−1) if γ > 1.
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FIG. 1. Under Pb,p
γ for γ �= 1, we have

logHp(GN )

logN
≈ α(γ, b) with high probability.

For γ < 1, the lower bound for this probability is obtained by the hierarchical
construction depicted in the top graph of Figure 2: we draw the edge connecting
the extremities of the interval VN , then the two edges connecting each extremity
with the middle point of VN , and so on recursively until reaching edges of length
Nα . The lower bound for the case γ > 1 is obtained similarly, but starting from
edges of length 2 and building successive layers of larger edges, as depicted in the
bottom graph in Figure 2, until we reach edges of size N1−α .

The proof of the upper bound for the left-hand side of (1.5) confirms the rele-
vance of the strategy used in the proof of the lower bound in the following sense.
For γ > 1, we show that outside of an event of probability smaller than the right-
hand side of (1.5), there are of order Nα points at Euclidean distance at least N1−α

from one another and such that no edge of length N1−α or more goes “above” any
of these points. For γ < 1, outside of an event of suitably small probability, we
identify about N1−α disjoint sub-intervals, which are each of diameter Nα and
have no direct connection between one another.

Our second main result concerns the case γ = 1. This case is critical and, there-
fore, more difficult. Rather than “all b ∈ R and all p ∈ [1,∞]” (as in the statement
of Theorem 1.1), Theorem 1.2 is applicable to a certain set of (b,p) ∈ R×[1,∞].
This set is shown in Figure 3 and defined by

(1.6)
k − 1

k
+ h(k,p) < b <

k

k + 1
for some k ∈ N,

FIG. 2. Hierarchical constructions that provide lower bounds for Theorem 1.1: case γ < 1 (top)
and γ > 1 (bottom).
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FIG. 3. Each rectangular region delimited by the horizontal lines p = 1 and p = ∞ and the verti-
cal lines b = k−1

k
and b = k

k+1 is divided into a dark part and a white part. The white part consists
of the values of (b,p) covered by Theorem 1.2.

where h :N× [1,∞] → R is defined by

(1.7) h(k,p) :=

∣∣∣∣∣∣∣∣∣∣∣∣

2p − (p − 1)k

k(k + 1)(k + 2p)
∨ 0 if p < ∞;

1

4
if p = ∞ and k = 1;

0 if p = ∞ and k > 1.

THEOREM 1.2. If p ∈ [1,∞], k ∈ N, b ∈ R satisfy k−1
k

+ h(k,p) < b < k
k+1 ,

and ε > 0, we have

lim
N→∞P

b,p
1

[∣∣∣∣ logHp(GN)

logN
− 1

k + 1

∣∣∣∣ > ε

]
= 0.

We note in particular that for each p > 1, we have h(k,p) > 0 if and only if
k <

2p
p−1 . Therefore, for each p > 1, Theorem 1.2 guarantees an infinite number of

discontinuous transitions for

lim
N→∞

logHp(GN)

logN
,

which ultimately spans the sequence (1
k
)k∈N as b increases to 1. Figure 4 displays

this phenomenon more precisely, and is in sharp contrast with the naive continua-
tion of the graphs of Figure 1 to the value γ = 1.

The origin of this phenomenon can be intuitively understood as follows. Irre-
spectively of the value of γ , the only efficient strategies for reducing the average
path length consist in the addition of successive layers of edges above E◦

N , each of
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FIG. 4. The function α(1, b) plotted above is such that, if b and p satisfy the condition given in

(1.6), then under Pb,p
1 we have

logHp(GN )

logN
≈ α(1, b) with high probability as N → ∞.

which essentially covers the interval {1, . . . ,N}. When γ = 1, all layers covering
{1, . . . ,N} without redundancy have the same cost. If only one layer is allowed,

then the most distance-reducing layer is one made of edges of length N
1
2 , which

brings the average path length down to about N
1
2 . If two layers are allowed, then

it is best to choose one made of edges of length N
1
3 , and one made of edges of

length N
2
3 , in which case the average path length is about N

1
3 . If k coverings are

allowed, then we use layers made of edges of length N
1

k+1 ,N
2

k+1 . . . ,N
k

k+1 , re-

spectively, so as to reduce the average path length to N
1
k . The graphs for the cases

k = 1 and k = 2 are illustrated in Figure 5. Note that these graphs may be seen as
“in between” those displayed at the top and bottom of Figure 2.

In view of this, the proof of Theorem 1.2 will necessarily be more involved than
that of Theorem 1.1. Indeed, in the limiting case γ = 1, the right-hand side of (1.5)
no longer depends on α. The estimate is therefore no longer discriminative, and the
proof of Theorem 1.2 must rely on more precise information on the probability of
deviations of Hp(GN) under the reference measure P1. Our argument is faithful to
the intuition described above, in that we inductively “reveal” the necessity of the
existence of these successive layers.

FIG. 5. Hierarchical constructions that provide lower bounds for Theorem 1.2.
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REMARK 1.3. We conjecture that Theorem 1.2 holds with h ≡ 0. Although
we do not prove this, our proof of the theorem provides some extra information
concerning values of (b,p) that do not satisfy (1.6). Namely:

(1) for every p ∈ [1,∞], b < 0 and ε > 0, we have

lim
N→∞P

b,p
1

[
logHp(GN)

logN
< 1 − ε

]
= 0;

(2) for every p ∈ [1,∞], k ∈N, b ∈ (k−1
k

, k
k+1) and ε > 0,

lim
N→∞P

b,p
1

[
1

k + 1
− ε <

logHp(GN)

logN
<

1

k
− ε

]
= 1;

(3) for every p ∈ [1,∞], b > 1 and ε > 0, we have

lim
N→∞P

b,p
1

[
logHp(GN)

logN
> ε

]
= 0.

Theorems 1.1 and 1.2 demonstrate that random graph models that are embedded
in some ambient space, and that relate to the minimization of some objective func-
tion, are amenable to mathematical analysis. They offer a glimpse of some features
of real-world networks not captured by more common models, in particular with
naturally emerging hierarchical structures. Of course, these results also call for im-
provement: besides closing the gap apparent in Theorem 1.2, it would be very inter-
esting to obtain more specific results about the exact structure of the hierarchies we
expect to be present in the graph. We point out that it is not straightforward to see
them appearing in simulations of Glauber-type dynamics adapted to the model we
study. We are grateful to Vincent Vigon (University of Strasbourg) for performing
such simulations, which are accessible at http://mathisgame.com/small_projects/
SpacialGibbsRandomGraph/index.html.

It would also be very interesting to explore generalizations of the model. For
many real-world networks, it would be most natural to consider an underlying
geometry given by a large box of Z

d , d ∈ {2,3}, as opposed to the case d = 1
considered here. In fact, the model we consider could be defined starting from an
arbitrary reference graph G◦: the cost of the addition of an edge would then be a
function of the distance in the original graph G◦. Ideally, one would then aim to
determine how the properties we discussed here depend on the geometry of the
graph G◦.

Another possible direction for future work would be to consider other objective
functions to minimize. We already mentioned that a certain measure of “complex-
ity” was identified as a parameter to optimize for neural networks; and that the
efficient transportation of information is certainly an explanatory variable for the
physical structure of the Internet. Many variations can be imagined. For instance,
one may assume that in order to turn a vertex into an efficient “hub” with many

http://mathisgame.com/small_projects/SpacialGibbsRandomGraph/index.html
http://mathisgame.com/small_projects/SpacialGibbsRandomGraph/index.html
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connections to other vertices, one needs to pay a certain cost (e.g., because more in-
frastructure is necessary, a more powerful router needs to be bought and installed,
etc.). This assumption may strengthen the possibility of degree distributions having
a fat polynomial tail.

One of the implicit assumptions in our model is that the vertices in VN are
all given the same importance in the computation of the average path length. If
we think of the vertices of VN as towns, it would be more natural to weigh the
average path length according to some measure of the number of inhabitants in
each town. That is, we would endow each x ∈ VN with a number τx measuring the
“importance” of the vertex x, and replace Hp(g) by a suitable multiple of

(1.8)
( ∑

x,y∈VN

τxτydp
g (x, y)

) 1
p

.

As is well known, city size distributions follow a power law, as do a wide range
of other phenomena [31, 32, 39]. In this disordered version of our model, it would
therefore be natural to assume that (τx) are i.i.d. random variables with a power-
law tail.

We conclude this introduction by mentioning related works. First, as was appar-
ent in (1.5), our results can be entirely recast in terms of large deviation estimates
for some long-range percolation model. While this point of view is also natural, we
prefer to emphasize the point of view based on Gibbs measures, which motivates
the whole study [and explains in particular our need for a very fine control of the
next-order correction to (1.5) in the critical case γ = 1, see Proposition 3.1 below].
For long-range percolation models, it is natural to assume a power-law decay of the
probability of a long connection. In contrast, under the reference measure Pγ of
our model, we recall that the probability of presence of an edge of length |e| decays
like exp(−|e|γ ) instead; power-law behavior of long connections is only expected
under the Gibbs measure, and for the right choice of parameters. Early studies in
long-range percolation models include [3, 4, 18, 29, 30], and were mostly focused
on the existence and uniqueness of an infinite percolation cluster. The order of
magnitude of the typical distance and the diameter for such models was studied
in [9–11, 14, 16]. The variant of our model discussed around (1.8) is reminiscent
of the inhomogeneous, long-range percolation model introduced in [15]. We are
not aware of previous work on large deviation events for long-range percolation
models.

With aims comparable to ours, several works discussed models obtained by
modulating the rule of preferential attachment by a measure of proximity; see [2,
13, 17, 20–23]. The survey [7] is a good entry point to the literature on geometric
and proximity graphs where, for example, one draws points at random in the plane
and connects points at distance smaller than a given threshold. Upper and lower
bounds in problems of balancing short connections and costs of routes were ob-
tained in [5, 6]. Similar considerations led to the definition of certain “cost-benefit”
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mechanisms of graph evolution in [26, 27, 38]. Another line of research is that of
exponential random graphs (see for instance [12]), where Gibbs transformations
of random graphs such as the configuration model are studied. (We are not aware
of spatially embedded versions of these models.) Yet another direction is explored
in [1], where the authors give conditions ensuring that the uniform measure on a
set of graphs satisfying some constraints can be well approximated by a product
measure on the edges.

Organization of the paper. We prove Theorem 1.1 in Section 2, and Theo-
rem 1.2 in Section 3. The Appendix contains a classical large deviation estimate,
which we provide for the reader’s convenience.

Terminology. We call any set of the form {a, . . . , b} with a, b ∈ VN , a < b an
integer interval. Whenever no confusion occurs, as in this introduction, we simply
call it an interval.

2. Case γ �= 1. The goal of this section is to prove Theorem 1.1. The section
is split into three subsections: we first prove respectively lower and upper bounds
on the probability of deviations of Hp(GN) under the reference measure Pγ , and
then use them to conclude the proof in the last subsection.

2.1. Lower bounds. In this subsection, we prove lower bounds on the proba-
bility of deviations of the diameter H∞(GN) under the reference measure Pγ .

PROPOSITION 2.1. (1) If γ < 1, then there exists C < ∞ such that for every
α ∈ (0,1),

Pγ

[
H∞(GN) ≤ Nα] ≥ exp

(−CN1−α(1−γ )).
(2) If γ > 1, then there exists C < ∞ such that for every α ∈ (0,1),

Pγ

[
H∞(GN) ≤ Nα] ≥ exp

(−CN1+(1−α)(γ−1)).
PROOF. For 1 < k ≤ l, let

(2.1) EN(k, l) := {{
i2j , (i + 1)2j } ∈ EN : i ∈ N, k ≤ j ≤ l

}
.

We denote by AN(k, l) the event that EN(k, l) ⊆ EN .
Let n be the largest integer such that 2n < N , and let k ≤ n. When γ < 1, the

most efficient strategy for reducing the diameter H∞ is to start building a binary
hierarchy starting from the highest levels. We are therefore interested in showing
that

(2.2) AN(k,n) =⇒ H∞(GN) ≤ 2k+1 + 2(n − k).
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Let x ∈ VN . For ik := �x/2k�, we have ik2k ∈ VN and |x − ik2k| < 2k . We then
define inductively, for every l ∈ {k + 1, . . . , n},

il+1 = �il/2�.
We observe that in+1 = 0 and∣∣il2l − il+12l+1∣∣ ∈ {

0,2l},
so either the edge {il2l , il+12l+1} belongs to EN(k,n), or the endpoints are equal.
On the event AN(k,n), the following path connects x to 0 and belongs to GN :
take less than 2k unit-length edges to go from x to ik2k , and then follow the edges
{il2l , il+12l+1} (when the endpoints are different) until reaching 0 for l = n. The
total number of steps in this path is less than 2k + (n − k). Hence, on the event
AN(k,n), any two points can be joined by a path of length at most twice this size,
and this proves (2.2).

It follows from (2.2) that

Pγ

[
H∞(GN) ≤ 2k+1 + 2(n − k)

] ≥ Pγ

[
AN(k,n)

]
.

In view of what we want to prove and of the fact that n < log2(N), we fix k to
be the largest integer such that 2k ≤ Nα/4. Since n < log2(N), for N sufficiently
large, for this choice of k, we have

Pγ

[
H∞(GN) ≤ Nα] ≥ Pγ

[
AN(k,n)

]
.

By (1.2) and the fact that γ < 1, the probability on the right-hand side is
n∏

j=k

(
exp

(−2γj ))�(N−1)/2j � ≥ exp
(−CN2−(1−γ )k)

≥ exp
(−CN1−α(1−γ )),

where C < ∞ may change from line to line, and where we used the definition of
k in the last step. This completes the proof of part (1) of the proposition.

We now turn to part (2) of the proposition. When γ > 1, it is more efficient to
use events of the form AN(1, k) for a suitably chosen k. Indeed, similar to (2.2),
one can show

(2.3) AN(1, k) =⇒ H∞(GN) ≤ 2n−k+2 + 2k,

and, therefore,

Pγ

[
H∞(GN) ≤ 2n−k+2 + 2k

] ≥ Pγ

[
AN(1, k)

]
.

We choose k to be the smallest integer such that 2n−k ≤ Nα/8. (Recall that by
the definition of n, this roughly means 2k 
 N1−α .) For this choice of k and N

sufficiently large, we have

Pγ

[
H∞(GN) ≤ Nα] ≥ Pγ

[
AN(1, k)

]
.
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The latter probability is equal to

k∏
j=1

(
exp

(−2γj ))�(N−1)/2j � ≥ exp
(−CN2(γ−1)k)

≥ exp
(−CN1+(γ−1)(1−α)),

where we used that γ > 1 and the definition of k. �

2.2. Upper bounds. In this subsection, we prove upper bounds on the Pγ -
probability of deviations of the �1-average path length H1(GN). Those upper
bounds match the lower bounds obtained in Proposition 2.1 for the diameter
H∞(GN).

PROPOSITION 2.2. Assume γ < 1.

(1) For every α ∈ (0,1), there exists c > 0 such that

Pγ

[
H1(GN) ≤ Nα] ≤ exp

(−cN1−α(1−γ )).
(2) There exists c > 0 such that

Pγ

[
H1(GN) ≤ cN

] ≤ exp
(−cNγ )

.

PROPOSITION 2.3. Assume γ > 1.

(1) For every α ∈ (0,1), there exists c > 0 such that

Pγ

[
H1(GN) ≤ Nα] ≤ exp

(−cN1+(1−α)(γ−1)).
(2) There exists c > 0 such that

Pγ

[
H1(GN) ≤ cN

] ≤ exp(−cN).

While part (2) of Propositions 2.2 and 2.3 are not really needed for the proof
of Theorem 1.1, we find it interesting to point out that these small probability
estimates already hold as soon as the diameter is required to be a small constant
times N .

For clarity of exposition, we will prove Proposition 2.3 first. We start by intro-
ducing the notion of σ -cutpoint, which in its special case σ = 1 was already used
in [9]. For any σ > 0, we say that x ∈ VN is a σ -cutpoint in the graph GN if no
edge e = {e−, e+} ∈ EN is such that e− < x and e+ ≥ x + σ . In other words, no
edge of length σ passing “above x” reaches x + σ or further to the right. (In view
of the proof of Proposition 2.1, we can anticipate that for γ > 1, we will ultimately
choose σ 
 N1−α .) Let X0 = 0, and define recursively

Xi+1 = inf{x ≥ Xi + σ : x is a σ -cutpoint in GN },



SPATIAL GIBBS RANDOM GRAPHS 763

with the convention that Xi+1 = N if the set is empty. We also define

T = sup{i : Xi < N}.
Both the sequence (Xi) and T depend on N and σ , although the notation does
not make it explicit. The quantity T records a number of σ -cutpoints that are suf-
ficiently separated from one another. We would like to say that up to a constant,
H1(GN) should be at least as large as T . While this would be correct if H1(GN) was
replaced by the diameter H∞(GN), counterexamples can be produced for H1(GN).
The next lemma provides us with a suitably weakened version of this idea. There,
one should think of XT1 and (N − XT2) as being of order N and of T2 − T1 as
being of order T .

LEMMA 2.4 (Average path length via σ -cutpoints). If 0 < T1 < T2 ≤ T , then

H1(GN) ≥ 2XT1(N − XT2)

N2 (T2 − T1).

PROOF. Consider the situation where x, y ∈ VN and 1 ≤ j, j ′ ≤ T are such
that

(2.4) x < Xj < Xj ′ ≤ y.

Any path connecting x to y must visit each of the intervals {Xi, . . . ,Xi+1 − 1},
where i ∈ {j, . . . , j ′ − 1}. Indeed, it suffices to verify that there is no edge
e = {e−, e+} such that e− < Xi and e+ ≥ Xi+1. This is true since Xi is a σ -
cutpoint and Xi+1 − Xi ≥ σ . Hence, if (2.4) holds, then dGN

(x, y) ≥ j ′ − j . As a
consequence,∑

x,y∈VN

dGN
(x, y) ≥ 2

∑
1≤j<j ′≤T

∑
Xj−1≤x<Xj

Xj ′≤y<Xj ′+1

dGN
(x, y)

≥ 2
∑

1≤j<j ′≤T

(Xj − Xj−1)(Xj ′+1 − Xj ′)
(
j ′ − j

)
.

Restricting the sum to indices such that 1 ≤ j ≤ T1 and T2 ≤ j ′ ≤ T , we obtain the
announced bound. �

In order to proceed with the argument, it is convenient to extend the set of
vertices to the full line Z: we consider E∞ = {{x, y} : x �= y ∈ Z}, and the random
set of edges E∞ whose law under Pγ is described by

(2.5)
the events

({e ∈ E∞})e∈E∞,|e|>1 are independent,

and each event has probability exp
(−|e|γ )

.

We can and will assume that under Pγ , the sets EN and E∞ are coupled so that
EN ⊆ E∞. In particular, a σ -cutpoint in G∞ := (Z,E∞) is a σ -cutpoint in GN =
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(VN,EN). We define the sequence (X̃i)i∈N as following the definition of (Xi), but
now for the graph G∞. That is, we let X̃0 = 0 and for all i ≥ 0,

X̃i+1 := inf{x ≥ X̃i + σ : x is a σ -cutpoint in G∞}.
The aforementioned coupling guarantees that, for every i ∈N,

(2.6) Xi ≤ X̃i .

LEMMA 2.5 (I.i.d. structure). The sequence (X̃i+1 − X̃i)i≥0 is stochastically
dominated by a sequence of i.i.d. random variables distributed as X̃1.

PROOF. For every i ≥ 0, the event X̃i+1 − X̃i > x can be rewritten as{∀y ∈ {X̃i + σ, . . . , X̃i + x} ∃e = {
e−, e+} ∈ E∞ s.t. e− < y and e+ ≥ y + σ

}
.

For i �= 0, the point X̃i is a σ -cutpoint, hence the event above is not modified if we
add the restriction that e− ≥ X̃i . For any given x0, . . . , xi , the event

{X̃0 = x0, . . . , X̃i = xi}
is a function of (1e∈E∞) over edges e whose left endpoint is strictly below xi .
Hence,

Pγ [X̃0 = x0, . . . , X̃i = xi, X̃i+1 − X̃i > x]
≥ Pγ [X̃0 = x0, . . . , X̃i = xi]Pγ [X̃1 > x],

and the lemma is proved. �

REMARK 2.6. In fact, the argument above shows that the random variables
(X̃i+1 − X̃i)i≥1 are i.i.d. We could arrange that (X̃i+1 − X̃i)i≥0 be i.i.d. by choos-
ing to define G∞ over the vertex set N instead of Z. However, we prefer to stick to
the present setting, which makes the proofs of Lemmas 2.7 and 2.9 slightly more
convenient to write.

We now state an estimate on the tail probability of X̃1 in the case γ > 1, and
use it to prove Proposition 2.3.

LEMMA 2.7 (Exponential moments of X̃1 for γ > 1). For every γ > 1,
there exists c0 > 0 and C0 < ∞ (not depending on σ ≥ 1) such that for every
θ ≤ c0σ

γ−1,

Eγ

[
exp(θX̃1)

] ≤ exp(C0θσ ).
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PROOF. For every x ∈ Z, we define the reach of x in the graph G∞ as

(2.7) R(x) = sup
{
y ≥ 0 : ∃z < 0 s.t. {x + z, x + y} ∈ E∞

}
(≥ 0).

This quantity will be helpful to control X̃1, since the point x is a σ -cutpoint if and
only if R(x) < σ ; and moreover, the random variables (R(x))x∈Z are identically
distributed. We start by estimating their tail:

Pγ

[
R(0) > r

] ≤ ∑
z<0

Pγ

[∃y > r : {z, y} ∈ E∞
]

≤ ∑
z<0

∞∑
y=r+1

exp
(−(y − z)γ

) ≤ C exp
(−crγ )

,

where the constants C,c > 0 depend only on γ . We can adjust the constant c > 0
so that

(2.8) Pγ

[
R(0) > r

] ≤ exp
(−crγ )

.

As a consequence,

Eγ

[
exp

(
θR(0)

)] ≤ exp(θσ ) +
∞∑

k=0

exp
(
2k+1θσ

)
Pγ

[
2kσ < R(0) ≤ 2k+1σ

]

≤ exp(θσ ) +
∞∑

k=0

exp
(
2k[2θσ − c2k(γ−1)σ γ ])

.

Since γ > 1, assuming θσ ≤ c1σ
γ with c1 > 0 sufficiently small, we have

Eγ

[
exp

(
θR(0)

)] ≤ exp(2θσ + C).

By Jensen’s inequality, for θ ≤ c1σ
γ−1, we can rewrite this estimate in the more

convenient form

(2.9)
Eγ

[
exp

(
θR(0)

)] ≤ Eγ

[
exp

(
c1σ

γ−1R(0)
)] θ

c1σγ−1

≤ exp(C1θσ ),

for some constant C1 < ∞ not depending on θ or σ . We now define inductively
Z0 = σ ,

(2.10) Zi+1 = Zi + R(Zi),

and we let

(2.11) I := inf
{
i ≥ 0 : R(Zi) ≤ σ

}
.

The point Zi is a σ -cutpoint if R(Zi) ≤ σ , so X̃1 ≤ ZI , and we will focus on
estimating the exponential moments of ZI . By (2.10), no edge {e−, e+} with e− ≤
Zi is such that e+ > Zi+1, so

R(Zi+1) = sup
{
e+ ≥ 0 : ∃e− ∈ {Zi, . . . ,Zi+1 − 1} s.t.

{
e−,Zi+1 + e+} ∈ E∞

}
.
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Conditionally, on R(Z0), . . . ,R(Zi), the law of the events ({e−,Zi+1 +e+} ∈ E∞)

for e−, e+ as above are independent, and each has probability exp(−|e|γ ). Hence,
the sequence (R(Zi))i∈N is stochastically dominated by a sequence (R′

i )i∈N of
i.i.d. random variables distributed as R(0). Letting

(2.12) Z′
i = σ +

i−1∑
j=0

R′
j

and
(2.13) I ′ = inf

{
i ≥ 0 : R′

i ≤ σ
}
,

we also have that ZI is stochastically dominated by Z′
I ′ . Our task is thus reduced

to evaluating the tail of Z′
I ′ . We note that, by (2.8),

(2.14) Pγ

[
I ′ ≥ i

] = (
Pγ

[
R(0) > σ

])i ≤ exp
(−ciσ γ )

,

and decompose
Eγ

[
exp(θZI )

] ≤ Eγ

[
exp

(
θZ′

I ′
)]

≤ exp
((

2k0 + 1
)
θσ

)
+

∞∑
k=k0

exp
(
2k+1θσ

)
Pγ

[
2kσ ≤ Z′

I ′ − σ < 2k+1σ
]
,

where k0 is chosen as the smallest integer such that 2k0 ≥ 2C1, the constant C1
being that appearing in (2.9). We have

Pγ

[
Z′

I ′ − σ ≥ 2kσ
] ≤ Pγ

[
I ′ ≥ 2k−k0

] + Pγ

[2k−k0−1∑
j=0

R′
j ≥ 2kσ

]
.

The first term is estimated by (2.14). In order to control the second term, we assume
that θ ≤ c1

8 σγ−1, and use Chebyshev’s inequality, independence of the summands
and (2.9) to get

Pγ

[2k−k0−1∑
j=0

R′
j ≥ 2kσ

]
≤ {Eγ [exp(8θR(0))]}2k−k0

exp(2k+3θσ )

≤ exp
(
2k−k0+3C1θσ − 2k+3θσ

)
≤ exp

(−2k+2θσ
)
,

where we used the definition of k0 in the last step. We thus obtain, for θ ≤ c1
8 σγ−1,

that
Eγ

[
exp(θZI )

] ≤ exp
((

2k0 + 1
)
θσ

)
+

∞∑
k=k0

exp
(
2k+1θσ

){
exp

(−c2k−k0σγ ) + exp
(−2k+2θσ

)}
,

and this yields the desired result. �
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PROOF OF PROPOSITION 2.3. We begin with part (1) of the proposition. We
denote by c0 and C0 the constants appearing in Lemma 2.7. Let m be an integer
that will be fixed later in terms of C0 only. By Chebyshev’s inequality, Lemma 2.5
and Lemma 2.7 with θ = c0σ

γ−1,

Pγ [X̃mNα ≥ N ] ≤ [exp(C0c0σ
γ )]mNα

exp(c0Nσγ−1)

= exp
{
−c0N

ασγ

(
N1−α

σ
− C0m

)}
.

Fixing σ = N1−α/(2C0m) (which is greater than 1 for N sufficiently large, since
α < 1), we obtain

Pγ [X̃mNα ≥ N ] ≤ exp
(−c1N

α+γ (1−α)),
for some c1 > 0. By (2.6), on the event X̃mNα < N , we have XmNα < N , and thus
T ≥ mNα . On this event, since Xi+1 − Xi ≥ σ = N1−α/(2C0m), we also have

XmNα/3 ≥ 1

6C0
N and N − X2mNα/3 ≥ XmNα − X2mNα/3 ≥ 1

6C0
N.

By Lemma 2.4, we thus have

X̃mNα < N =⇒ H(GN) ≥ 2m

3 · (6C0)2 Nα.

Choosing m = 3 · (6C0)
2/2, we obtain

Pγ

[
H(GN) ≤ Nα] ≤ Pγ [X̃mNα ≥ N ] ≤ exp

(−c1N
α+γ (1−α)),

which proves part (1). The proof of part (2) is identical, except that we choose
σ = 1 throughout. �

We now turn to the proof of Proposition 2.2, that is, we now focus on the case
γ < 1. From now on, we fix σ = 1 and call a 1-cutpoint simply a cutpoint. If I is
an integer interval, we say that a point x ∈ I is a local cutpoint in I (for the graph
GN ) if whenever an edge e ∈ EN goes above x, none of its endpoints is in I , that
is, {

e = {
e−, e+} ∈ EN s.t. e− < x < e+ and

{
e−, e+} ∩ I �= ∅

} =∅.

We first give a substitute to Lemma 2.4 adapted to this notion.

LEMMA 2.8 (Average path length via local cutpoints). Let I ⊆ VN be an in-
teger interval, and T denote the number of local cutpoints in I . We have∑

x,y∈I

dGN
(x, y) ≥ T 3

63
.
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If I, I ′ ⊆ VN are two disjoint integer intervals, and if T is the minimum between
the number of local cutpoints in I and in I ′, then we also have

∑
x∈I,y∈I ′

dGN
(x, y) ≥ T 3

63
.

PROOF. We only prove the first statement; it will be clear that the proof applies
to the second statement as well. Let Y1 < · · · < YT be an enumeration of the local
cutpoints in I . Assume that for 1 < j < j ′ < T and x, y ∈ I , we have

Yj−1 ≤ x < Yj < Yj ′ ≤ y < Yj ′+1.

As was seen in the proof of Lemma 2.4, if a path joins x to y without exiting I ,
then its length is at least j ′ − j .

By the definition of Y1, there is no edge linking a point outside of I to a point
x′ such that x′ > Y1. Similarly, there is no edge linking a point y′ < YT to a point
outside of I . As a consequence, a path joining x to y faces the following alterna-
tive:

(1) go from x to y without exiting I ;
(2) go through a number of excursions to the left of I , then reenter I to the left

of Y1 and go to y without further exiting I ;
(3) go through a number of excursions to the left of I , then jump directly from

the left of I to the right of I and do a number of excursions to the right of I ,
possibly several times jumping back and forth to the left and to the right of I , and
then finally enter I to the right of YT and connect with y.

Since we want to find a lower bound on the length of such a path, it suffices to
consider the following cases:

(1) the path goes from x to y without exiting I ;
(2) the path first reaches a point x′ ≤ Y1 while staying in I , then exits I to its

left, then jump to the right of I , then reaches y′ ≥ YT , and finally reaches y while
staying in I .

We already found the lower bound j ′ − j for the first scenario. In the second case,
the length of the path is at least (j − 1)+ 1 + 1 + 1 + (T − j ′ − 1) ≥ T − (j ′ − j).
Therefore,∑
x,y∈I

dGN
(x, y) ≥ 2

∑
1≤j<j ′≤T

∑
Yj−1≤x<Yj

Yj ′≤y<Yj ′+1

dGN
(x, y)

≥ 2
∑

1≤j<j ′≤T

(Yj − Yj−1)(Yj ′+1 − Yj ′)
[(

j ′ − j
) ∧ (

T − j ′ + j
)]

.
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Restricting the sum to indices such that

T

5
≤ j ≤ 2T

5
and

3T

5
≤ j ′ ≤ 4T

5
,

and observing that Y2T/5 − YT/5 ≥ T/5 and Y4T/5 − Y3T/5 ≥ T/5, we obtain the
result. �

We now estimate the tail probability of X̃1 (recall that we fixed σ = 1).

LEMMA 2.9 (Exponential moment of X̃1 for γ < 1). For every γ < 1, there
exists θ > 0 such that

Eγ

[
exp

(
θX̃

γ
1

)]
< ∞.

PROOF. We first recall some elements of the proof of Lemma 2.7. We define
R(x) as in (2.7), and observe that the estimate (2.8) still holds under our present
assumption γ < 1. We also define (Zi) and I as in (2.10) and (2.11), respectively,
(with σ = 1). We have that X̃1 ≤ ZI , and that the sequence (R(Zi)) is stochas-
tically dominated by a sequence (R′

i )i∈N of i.i.d. random variables distributed as
R(0). We define (Z′

i ) by (2.12) and I ′ by (2.13), and recall that ZI is stochastically
dominated by Z′

I ′ .
As in Lemma 2.7, our final goal is to estimate the exponential moments of Z′

I ′ .
We start by estimating those of R(x):

Eγ

[
exp

(
θR(0)γ

)] ≤ exp(θ) +
∞∑

k=0

exp
(
θ2γ (k+1))

Pγ

[
2k < R(0) ≤ 2k+1]

≤ exp(θ) +
∞∑

k=0

exp
[−2γ k(c − 2γ θ

)]
.

For θ > 0 sufficiently small, we thus have

Eγ

[
exp

(
θR(0)γ

)]
< ∞.

By Proposition A.1 of the Appendix, letting C0 := Eγ [R(0)]+ 1, there exists c0 >

0 such that

(2.15) Pγ

[
i−1∑
j=0

R′
j ≥ C0i

]
≤ exp

(−c0i
γ )

.

Recall from (2.8) that

Pγ

[
R(0) > 1

] ≤ exp(−c) < 1,

and thus

(2.16) Pγ

[
I ′ ≥ i

] ≤ exp(−ci).
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We now write

Eγ

{
exp

[
θ
(
Z′

I ′
)γ ]} ≤ exp(θ) +

∞∑
k=0

exp
(
θ2γ (k+1))

Pγ

[
2k ≤ Z′

I ′ − 1 < 2k+1]
,

and bound the probability on the right-hand side by

Pγ

[
Z′

I ′ − 1 ≥ 2k] ≤ Pγ

[
I ′ > i

] + Pγ

[
i−1∑
j=0

R′
j ≥ 2k

]
.

The estimate above is valid for every i. We choose i = 2k/C0, so that the second
term on the right-hand side is bounded by (2.15). Using (2.16) on the first term,
we obtain

Eγ

{
exp

[
θ
(
Z′

I ′
)γ ]}

≤ exp(θ) +
∞∑

k=0

exp
(
θ2γ (k+1))[exp

(
−c

2k

C0

)
+ exp

(
−c0

2γ k

C
γ
0

)]
,

and the latter series is finite when θ > 0 is sufficiently small. �

COROLLARY 2.10. For every γ < 1, there exists c1 > 0 such that

Pγ

[∣∣{x ∈ {0, . . . ,N − 1} : x is a cutpoint in G∞
}∣∣ < c1N

] ≤ exp
(−c1N

γ )
.

In particular,

Pγ [GN has less than c1N cutpoints] ≤ exp
(−c1N

γ )
.

PROOF. In order to prove the corollary, it suffices to see that for some c > 0
sufficiently small,

Pγ [X̃cN ≥ N ] ≤ exp
(−cNγ )

.

This is a consequence of Lemmas 2.5, 2.9 and Proposition A.1. �

We are now ready to complete the proof of Proposition 2.2. In this proof, we
will consider integer intervals I ⊆ VN , and discuss the notion of being a cutpoint
in the graph induced by the vertex set I . Before going to the details, we wish to
emphasize that this notion is defined only in terms of edges with both endpoints
in I . It is therefore different from the notion of being a local cutpoint in I (for the
graph GN ), since in the latter case, every edge having at least one endpoint in I

matters.

PROOF OF PROPOSITION 2.2. We fix c1 > 0 as in Corollary 2.10. Note that
since we fixed σ = 1, the sequence (Xi)i≥1 is just enumerating the sequence of
cutpoints. By Lemma 2.8, we have

(2.17) GN has at least c1N cutpoints =⇒ H(GN) ≥ c3
1

63
N.

Hence, part (2) of the proposition is a consequence of Corollary 2.10.
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We now turn to part (1). Throughout the argument, we denote by c > 0 a generic
constant whose value may change from place to place to be as small as necessary,
and is not allowed to depend on N .

We partition VN into K := N1−α/3 integer intervals of length 3Nα , which we
denote by I1, . . . , IK . For each k ∈ {1, . . . ,K}, we denote by Jk the middle third
interval in Ik . Let Ck be the set of cutpoints induced by the vertex set Ik , and let
Ck denote the event that

|Jk ∩ Ck| ≥ c1N
α.

By construction, the events (Ck)1≤k≤K are independent. Moreover, each has prob-
ability at least 1− exp(−c1N

αγ ), by Corollary 2.10. Consequently, the probability
that

(2.18)
∣∣{k ∈ {1, . . . ,K} : Ck holds

}∣∣ ≥ K

2

is at least

1 − exp
(−cN1−α+αγ )

,

by a standard calculation (see, e.g., [28], (2.15)–(2.16)). We may therefore assume
that the event (2.18) holds.

Let B denote the event∣∣{e ∈ EN : |e| ≥ Nα}∣∣ ≤ N1−α

20
.

We now argue that for some c > 0,

(2.19) Pγ [B] ≥ 1 − exp
(−cN1−α(1−γ )).

In order to do so, we use independence to note that there exists a constant C < ∞
such that for every λ ∈ [0, 1

2Nαγ ], we have

E

[
exp

(
λ

∑
|e|≥Nα

1e∈EN

)]
≤ (

1 + exp
(
λ − Nαγ ))N2 ≤ C,

and, therefore, by Chebyshev’s inequality,

1 − Pγ [B] ≤ C exp
(
−Nαγ

2

N1−α

20

)
,

so that (2.19) is proved.
From now on, we therefore assume that both the event B and the event in (2.18)

are realized, and show that this implies H(GN) ≥ cNα .
Denote the set of endpoints of edges with length at least Nα by

EndN := {
x ∈ VN : ∃y s.t. {x, y} ∈ EN and |y − x| ≥ Nα}

.
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Since we assume the event B to be realized, the set EndN contains no more than
N1−α/10 points. Since we also assume (2.18), we can isolate at least

K ′ := K

2
− 1

10
N1−α =

(
1

6
− 1

10

)
N1−α

pairwise disjoint intervals Il1, . . . , IlK′ such that for every k ∈ {1, . . . ,K ′},
Ilk ∩ EndN = ∅ and |Jlk ∩ Clk | ≥ c1N

α.

Fix k ∈ {1, . . . ,K ′}. We now show that

(2.20) there are at least c1N
α local cutpoints in Ilk .

As recalled before the beginning of the proof, the potentially problematic edges are
those with one endpoint in I and one outside of I . Since Ilk contains no element
of EndN , no such edge can have length larger than Nα . Therefore, if a point is at
distance at least Nα from the extremities of Ilk , then there is no edge going above
it and that has exactly one endpoint outside of Ilk . Since we chose Jlk as the middle
third interval in Ilk , and Ilk is of total length 3Nα , this yields (2.20).

By Lemma 2.8, we deduce that for every k, k′ ∈ {1, . . . ,K ′}, we have∑
x∈Ilk

,y∈Il
k′

dGN
(x, y) ≥ cN3α.

Summing over k, k′ and recalling that K ′ ≥ cN1−α , we obtain that H1(GN) ≥
cNα , as desired. �

2.3. Conclusion. In this final subsection, we complete the proof of Theo-
rem 1.1.

PROOF OF THEOREM 1.1. Fix γ < 1, p ∈ [1,∞], b ∈ (γ − 1,1) and

α := 1 − b

2 − γ
∈ (0,1).

Let ε > 0 be sufficiently small, and let α′ ∈ (0,1) \ (α − 2ε,α + 2ε). By the com-
parisons H1 ≤ Hp ≤ H∞ and Propositions 2.1 and 2.2, there exists a constant
C < ∞ such that

(2.21)

P
b,p
γ [Nα−ε ≤ Hp(GN) ≤ Nα+ε]

P
b,p
γ [Nα′−ε ≤ Hp(GN) ≤ Nα′+ε]

≥ exp(−C−1[Nb+α+ε + N1−(α−ε)(1−γ )])
exp(−C[Nb+α′−ε + N1−(α′+ε)(1−γ )]) .

The function

α̃ �→ (b + α̃) ∨ (
1 − α̃(1 − γ )

)
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attains a strict minimum at the value α̃ = α. Reducing ε > 0 as necessary, we can
make sure that the right-hand side of (2.21) tends to infinity as N tends to infinity.
The other cases are handled similarly. For example, when γ > 1 and b ∈ (0, γ ),
we fix

α := γ − b

γ
∈ (0,1),

take α′ ∈ (0,1) \ (α − 2ε,α + 2ε), and observe that

P
b,p
γ [Nα−ε ≤ Hp(GN) ≤ Nα+ε]

P
b,p
γ [Nα′−ε ≤ Hp(GN) ≤ Nα′+ε]

≥ exp(−C−1[Nb+α+ε + N1+(1−α−ε)(γ−1)])
exp(−C[Nb+α′−ε + N1+(1−α′+ε)(γ−1)]) .

The exponent α was chosen to be realize the strict minimum of the function

α̃ �→ (b + α̃) ∨ (
1 + (1 − α̃)(γ − 1)

)
,

so the conclusion follows as before. �

3. Critical case. The goal of this section is to prove Theorem 1.2. The main
step of the proof consists in showing the following upper and lower bounds on the
probability of deviations of the average path length Hp(GN) under the measure
P1.

PROPOSITION 3.1. (i.) For any p ∈ [1,∞], k ∈ N and N large enough, we
have

P1
[
Hp(GN) ≤ 3kN

1
k
] ≥ exp

{−(k − 1)N
}
.(3.1)

(ii.) Assume p ∈ [1,∞], k ∈ N, η ∈ ( 1
k+1 , 1

k
) and

(3.2) ζ < ζp(η) :=

∣∣∣∣∣∣∣∣
p

k + 2p
(1 − kη) if p ∈ [1,∞),

1

2
(1 − kη) if p = ∞.

Then, for N large enough we have

(3.3) P1
[
Hp(GN) ≤ Nη] ≤ exp

{−kN + N1−ζ }
.

The proof of this proposition rests on the following two lemmas, which involve
no probability. For each g ∈ GN , we denote

C(g) := C1(g) = ∑
e∈EN|e|>1

|e|.
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LEMMA 3.2. For any k ∈ N and N large enough, there exists g ∈ GN such

that C(g) ≤ (k − 1)N and H∞(g) ≤ 3kN
1
k .

LEMMA 3.3. Let p ∈ [1,∞], k ∈ N, η ∈ ( 1
k+1 , 1

k
) and δ ∈ (0,1 − kη). For

every N large enough and g = (VN,EN) ∈ GN , we have the implication

(3.4) Hp(g) ≤ Nη =⇒ ∑
e∈EN :
|e|≥Nδ

|e| ≥ kN − N1−ζp,δ(η) · (logN)6k,

where

(3.5) ζp,δ(η) =
∣∣∣∣∣∣∣

p

k + p
(1 − kη − δ) if p ∈ [1,∞),

1 − kη − δ if p = ∞.

In Section 3.1, we show how Lemmas 3.2 and 3.3 imply Proposition 3.1, and
how this proposition in turn gives Theorem 1.2. In Section 3.2, we prove the two
lemmas.

3.1. Proofs of Proposition 3.1 and Theorem 1.2.

PROOF OF PROPOSITION 3.1. For the first statement, let ĒN be the set of
edges in a graph as described in Lemma 3.2. The desired result follows from

P1
[
Hp(GN) ≤ 3kN

1
k
] ≥ P1

[
H∞(GN) ≤ 3kN

1
k
]

≥ ∏
e∈ĒN

exp
{−|e|} ≥ exp

{−(k − 1)N
}
.

We now turn to the second statement. Fix p ∈ [1,∞], k ∈ N and η ∈ ( 1
k+1 , 1

k
).

Also let δ ∈ (0,1 − kη) to be chosen later. For any θ > 0, we have

(3.6)

E1

[
exp

{
θ · ∑

e∈EN :|e|≥Nδ

|e|
}]

= ∏
e∈EN :|e|≥Nδ

E1
[
exp

{
θ · |e| · 1{e∈EN }

}]
≤ ∏

e∈EN :|e|≥Nδ

(
1 + exp

{
(θ − 1)|e|})

≤
N∏

i=�Nδ�

∏
e∈EN :|e|=i

exp
{
exp

{
(θ − 1)i

}}

≤ exp

{
N

∞∑
i=�Nδ�

exp
{
(θ − 1)i

}}
.



SPATIAL GIBBS RANDOM GRAPHS 775

If δ′ < δ and θ = 1 − N−δ′
, (3.6) implies that, for N large enough,

(3.7) E1

[
exp

{
θ · ∑

e∈EN :|e|≥Nδ

|e|
}]

≤ 2.

Then, using Lemma 3.3 and Chebyshev’s inequality, if N is large enough,

P1
[
Hp(GN) ≤ Nη] ≤ P1

[ ∑
e∈EN :|e|≥Nδ

|e| ≥ kN − (logN)6kN1−ζp,δ(η)

]
(3.7)≤ 2 exp

{−(
1 − N−δ′)(

kN − (logN)6kN1−ζp,δ(η))}(3.8)

≤ 2 exp
{−kN + (logN)6kN1−ζp,δ(η) + kN1−δ′}

.

We are still free to choose δ and δ′ < δ. Having in mind the two exponents of N

that appear in (3.8), we choose δ solving

1 − δ = 1 − ζp,δ(η);
this is achieved for δ = ζp(η), as defined in (3.2). Next, we take ζ < ζp(η), as
in the statement of the proposition. Observing that δ = ζp,δ(η) = ζp(η), we can
choose δ′ so that

1 − ζp,δ(η) = 1 − δ < 1 − δ′ < 1 − ζ.

Then, for N large enough the expression in (3.8) is smaller than exp{−kN +N1−ζ }
as required. �

PROOF OF THEOREM 1.2. Define

Ak,ε,N = [
N

1
k+1 −ε,N

1
k+1 +ε], k,N ∈ N, ε > 0.

The desired statement will follow from proving that, for any k ∈ N, if ε > 0 is
small enough and

(3.9) b ∈
(

k − 1

k
+ h(k,p) + 2ε,

k

k + 1
− 2ε

)
,

then

(3.10) P
b,p
1

[
Hp(GN) ∈ Ak,ε,N

] N→∞−−−−→ 1.

To this end, recalling the definition of Z
b,p
γ,N in (1.4), we start bounding:

Z
b,p
1,NP

b,p
1

[
Hp(GN) ∈ Ak,ε,N

]
= E1

[
exp

{−Nb ·Hp(GN)
} · 1{

Hp(GN) ∈ Ak,ε,N

}]
≥ E1

[
exp

{−Nb ·Hp(GN)
} · 1{

N
1

k+1 −ε ≤ Hp(GN) ≤ 3(k + 1)N
1

k+1
}]
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≥ exp
{−3(k + 1)Nb+ 1

k+1
}

· (
P1

[
Hp(GN) ≤ 3(k + 1)N

1
k+1

] − P1
[
Hp(GN) ≤ N

1
k+1 −ε])

(3.1),(3.3)≥ exp
{−3(k + 1)Nb+ 1

k+1
}

· (
exp{−kN} − exp

{−(k + 1)N + oε(N)
})

,

where oε(N) is a function that depends on k, ε and N and satisfies oε(N)/N → 0
as N → ∞. We thus obtain

(3.11) Z
b,p
1,NP

b,p
1

[
Hp(GN) ∈ Ak,ε,N

] ≥ 1

2
exp

{−kN − 3(k + 1)Nb+ 1
k+1

}
.

We note that, by (3.9), we have b + 1
k+1 < 1, so

(3.12) Nb+ 1
k+1 � N as N → ∞,

hence the term −3(k + 1)Nb+ 1
k+1 is negligible (in absolute value) compared to

−kN in the exponential on the right-hand side of (3.11).
Now that we have this lower bound, let us explain how the rest of the proof will

go. Define

A
(0)
k,ε,N = [

0,N
1

k+1 −ε], A
(1)
k,ε,N = [

N
1

k+1 +ε,N
1
k
−ε], A

(2)
k,ε,N = [

N
1
k
−ε,N

]
,

so that [0,N] = Ak,ε,N ∪ A
(0)
k,ε,N ∪ A

(1)
k,ε,N ∪ A

(2)
k,ε,N . We will obtain upper bounds

for

Z
b,p
1,NP

b,p
1

[
Hp(GN) ∈ A

(i)
k,ε,N

]
, i ∈ {0,1,2}

that will all be negligible compared to the right-hand side of (3.11) as N → ∞.
From this, (3.10) will immediately follow.

(a) Upper bound for Pb,p
1 [Hp(GN) ∈ A

(0)
k,ε,N ]

This bound is quite simple:

Z
b,p
1,NP

b,p
1

[
Hp(GN) ∈ A

(0)
k,ε,N

]
= E1

[
exp

{−Nb ·Hp(GN)
} · 1{

Hp(GN) ∈ A
(0)
k,ε,N

}]
≤ P1

[
Hp(GN) ∈ A

(0)
k,ε,N

]
(3.3)≤ exp

{−(k + 1)N − oε(N)
}
.

Using (3.12), it is then readily seen that the right-hand side above is negligible
compared to the right-hand side of (3.11).
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(b) Upper bound for Pb,p
1 [Hp(GN) ∈ A

(2)
k,ε,N ]

Similar to the previous bound,

Z
b,p
1,NP

b,p
1

[
Hp(GN) ∈ A

(2)
k,ε,N

] ≤ exp
{−Nb+ 1

k
−ε} · P1

[
Hp(GN) ∈ A

(2)
k,ε,N

]
≤ exp

{−Nb+ 1
k
−ε}.

In order to show that this is negligible compared to the right-hand side of (3.11),
we note that, due to (3.9), we have

Nb+ 1
k
−ε � kN + 3(k + 1)Nb+ 1

k+1 as N → ∞.

(c) Upper bound for Pb,p
1 [Hp(GN) ∈ A

(1)
k,ε,N ]

This bound is harder than the previous two, as in this case it is not enough to dis-
miss the term N1−ζ in (3.3) as being o(N). Rather, in the comparison with (3.11),
this term is now decisive. This complication is what leads to the introduction of
the function h(k,p) in (1.7) (and the corresponding dark parts of Figure 3).

We define f,g : [ 1
k+1 , 1

k
] →R by

f (η) = b + η,

g(η) =

∣∣∣∣∣∣∣∣
k + p + kpη

k + 2p
if p ∈ [1,∞),

1

2
+ k

2
η if p = ∞.

The definition of g is motivated by the fact that

(3.13) 1 − g(η) = ζp(η) for all η ∈
(

1

k + 1
,

1

k

)
,

where ζp(η) was defined in (3.2). We also note that the function h(k,p) defined in
(1.7) satisfies

(3.14) h(k,p) =
(
g

(
1

k + 1

)
− k − 1

k
− 1

k + 1

)
∨ 0.

We now claim that f (η) > g(η) for all η ∈ [ 1
k+1 , 1

k
]. Indeed, since both f and

g are affine functions of η, this follows from

f

(
1

k

)
(3.9)
>

k − 1

k
+ h(k,p) + 1

k
≥ 1 = g

(
1

k

)
,

f

(
1

k + 1

)
(3.9)
>

k − 1

k
+ h(k,p) + 1

k + 1

(3.14)≥ g

(
1

k + 1

)
.

As a consequence, we can find ε′ > 0 and a partition of the interval [ 1
k+1 +ε, 1

k
−ε]

with numbers η0 = 1
k+1 + ε < η1 < · · · < ηr = 1

k
− ε such that

(3.15) f (ηi) > g(ηi+1) + ε′ for all i.
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We now have

Z
b,p
1,NP

b,p
1

[
Hp(GN) ∈ A

(1)
k,ε,N

]
≤ ∑

i

Z
b,p
1,NP

b,p
1

[
Nηi ≤ Hp(GN) ≤ Nηi+1

]
≤ ∑

i

exp
{−Nb+ηi

} · P1
[
Hp(GN) ≤ Nηi+1

]
(3.3),(3.13)≤ ∑

i

exp
{−Nb+ηi − kN + Ng(ηi+1)+ε′}

.

In order to show that each of the terms of the above sum is negligible compared to
the right-hand side of (3.11), we need to check that, for all i,

Nb+ηi � Ng(ηi+1)+ε′ + 3(k + 1)Nb+ 1
k+1 as N → ∞.

But this follows promptly from (3.15) and the fact that ηi > 1
k+1 for each i, so we

are done. �

3.2. Proof of deterministic lemmas.

PROOF OF LEMMA 3.2. Let L = �N 1
k � and zi,j = iLj , for i, j with j ∈

{1, . . . , k − 1} and i ∈ {0, . . . , �(N − 1)/Lj�}. Then define EN as the set of edges
in E◦

N together with all edges of the form {zi,j , zi+1,j }, and let g = (VN,EN). We
clearly have C(g) ≤ (k − 1)N . Moreover, writing S0 = VN and Sj = ⋃

i{zi,j } for
j ∈ {1, . . . , k − 1}, we have

dg(x, Sj+1) ≤ L for all x ∈ Sj and j ∈ {0, . . . , k − 2};

dg(x, y) ≤ N

Lk−1 = N

�N1/k�k−1 ≤ 2N
1
k for all x, y ∈ Sk−1

if N is large enough; from this, H∞(g) ≤ 3kN
1
k readily follows. �

We now turn to the proof of Lemma 3.3, and first introduce some general
terminology. If I = {a, . . . , b} is an integer interval, we define its interior as
int(I ) := {x ∈ VN : a < x < b}. We let E◦(I ) be the set of edges of E◦

N with
both extremities belonging to I . For 0 ≤ u < v ≤ 1, we define

�u, v� := {x ∈ VN : uN ≤ x ≤ vN};
if I is an integer interval, we define

�u, v�I := {
x ∈ I : min I + u|I | ≤ x ≤ min I + v|I |}.
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From now on, we assume that

(3.16)
cp ∈ [1,∞], k ∈ N, η ∈

(
1

k + 1
,

1

k

)
, δ ∈ (0,1),

g = (VN,EN) ∈ GN, Hp(g) ≤ Nη.

Due to the assumption Hp(g) ≤ Nη, if we take σ > η, then we expect most pairs
x, y ∈ VN to satisfy dg(x, y) ≤ Nσ (in case p = ∞, this in fact holds for σ = η

and all pairs x, y). With this in mind, we fix σ ≥ η and introduce some additional
terminology. We say that a vertex x ∈ VN is regular if there exists y ∈ VN such
that |y − x| ≥ N/4 and dg(x, y) ≤ Nσ . Vertex x is irregular if this does not hold,
that is, if dg(x, y) > Nσ for all y with |y − x| ≥ N/4. Note that for p = ∞ all
vertices are regular. For p < ∞, we have

Npη ≥ H(g)p ≥ 1

N2

∑
x:x is

irregular

∑
y:|y−x|≥N/4

dp
g (x, y)

≥ 1

N2 · N

2
· Nσp · ∣∣{x : x is irregular}∣∣,

so that

(3.17)
∣∣{x ∈ VN : x is irregular}∣∣ ≤ 2N1−p(σ−η).

In the remainder of this section, the exponents η, δ and σ will be held fixed, but
N will often be assumed to be large enough, possibly depending on η, δ and σ .

Given � ⊆ EN and e = {a, b} ∈ E◦
N , we define

ψ(e,�) := number of edges e′ = {
a′, b′} ∈ � \ E◦

N with a′ ≤ a and b′ ≥ b.

In case ψ(e,�) = n, we say that the ground edge e is covered n times by �. Since
γ = 1, for any g = (VN,EN) ∈ GN we have

(3.18) C(g) = ∑
e∈EN\E◦

N

|e| = ∑
e∈E◦

N

ψ(e,EN).

The proof of Lemma 3.3 is split into three parts, called “levels,” in which we
progressively argue that ground edges are covered by long edges of EN (a “long
edge” here is an edge {x, y} with |x−y| ≥ Nδ). Level 1 (carried out in Lemma 3.4)
is a simple initializing estimate. Level 2 (in Lemma 3.5) is obtained from recur-
sively using Level 1, and identifies one layer in the pile of layers alluded to in
the introduction. Level 3, which contains the statement of Lemma 3.3, is obtained
from recursively using Level 2 to identify the correct number of layers present in
the graph.

It will be helpful to describe heuristically the ideas of proof for the first two
levels. Both Levels 1 and 2 take as input an integer interval I ⊆ VN and state two
alternatives, at least one of which must hold true for I . One of the alternatives is of
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FIG. 6. In case the depicted path leaves I from the left, we let I ′ = �0, 1
3 �I and I ′′ = � 1

3 ,1�I . In

case it leaves I from the right, we let I ′ = � 2
3 ,1�I and I ′′ = �0, 2

3 �I .

the form “I has many irregular vertices” and the other states that the ground edges
of I are covered by long edges of EN in a way which we deem satisfactory for
that level. We will simultaneously treat the cases p ∈ [1,∞) and p = ∞, and the
reader will note that the latter case is simpler, as irregular vertices are then absent
and only one of the aforementioned alternatives is possible (namely, ground edges
being satisfactorily covered).

For Level 1, the first alternative is that the middle third of I only has irregular
vertices. If this is not the case, then we can find a path of length less than Nσ

from the middle third of I to the exterior of I . We then decompose I = I ′ ∪ I ′′ in
two subintervals, according to whether the path leaves I from the left or the right
(see Figure 6). The idea is that we can guarantee that most ground edges of I ′ are
covered by long edges of the path, while we do not guarantee anything concerning
I ′′.

LEMMA 3.4 (Level 1 of recursion). If (3.16) holds and N is large enough,
then the following holds. For every interval I ⊆ VN with |I | ≤ N/4, either

(3.19)
∣∣{x ∈ I : x is irregular}∣∣ ≥ |I |/4

or there exist �I ⊆ EN and a decomposition I = I ′ ∪ I ′′ of I into intervals with
disjoint interiors such that

|�I | ≤ Nσ ;(3.20)

every edge of �I is incident to at least one vertex of int(I );(3.21)

|e| ≥ Nδ for all e ∈ �I ;(3.22) ∣∣I ′′∣∣ ≤ 3 · |I |/4;(3.23) ∣∣{e ∈ E◦(I ′) : ψ(e,�I ) = 0
}∣∣ ≤ 2Nσ+δ.(3.24)

PROOF. We first note that, if I is small (say, |I | ≤ Nσ+δ), then we can set
I ′ = I and �I = I ′′ = ∅; then, (3.20), (3.21), (3.22), (3.23) and (3.24) are trivially
satisfied. So let us assume that |I | > Nσ+δ . We also assume that N is large enough
that |� 1

3 , 2
3 �I | ≥ |I |

4 and |� 1
3 ,1�I | ≤ 3|I |

4 for any I with |I | > Nσ+δ .
Suppose that (3.19) does not hold. Then there exists a regular vertex x ∈ � 1

3 , 2
3 �I ;

since |I | ≤ N/4, by the definition of regular there exists a path π from x to
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(int(I ))c of length at most Nσ . We let �I denote the set of edges e in this path
such that |e| ≥ Nδ . (3.20) and (3.21) then trivially hold. In case π leaves int(I )

from the left, we let I ′ = �0, 1
3 �I and I ′′ = � 1

3 ,1�I ; in case π leaves int(I ) from
the right, we let I ′ = � 2

3 ,1�I and I ′′ = �0, 2
3 �I . Then (3.23) holds.

Let e = {x, y} ∈ E◦(I ′) be a ground edge with ψ(e,�I ) = 0. Then there are
two possibilities:

• π traverses e. There can be no more than Nσ edges for which this holds.
• π does not traverse e and there is some edge e′ = {x′, y′} with 1 < |e′| < Nδ so

that π traverses e′ and ψ(e, {e′}) = 1, that is, e′ covers e. The number of edges
for which this is true is no more than∑

e′′:|e′′|<Nδ,
π traverses e′′

∣∣e′′∣∣ ≤ Nσ+δ.

This proves (3.24). �

For Level 2, we again start with an interval I , which we re-label as I0. We then
apply the following procedure. We try to decompose I0 = I ′

0 ∪ I ′′
0 as in Level 1;

if this is impossible (due to irregular vertices), we stop. Otherwise, we let I1 = I ′′
0

and try to decompose I1 = I ′
1 ∪ I ′′

1 again as in Level 1; if this is impossible, we
stop, etc., continuing until we are either forced to stop because too many irregular
vertices make a decomposition impossible, or we reach a sufficiently small interval
In.

In the statement below, the sets �I ⊆ EN and ẼI ⊆ E◦(I ) are the end products
of this recursive procedure. �I is the set of all long edges obtained in successful
decompositions (i.e., a union of sets of the form �Ii

given by Lemma 3.4). ẼI is
the set of ground edges of I which end up not being covered by long edges of �I .
The alternatives in (3.29) thus express that either |ẼI | is small or there are at least
1
5 |ẼI | irregular vertices in I .

LEMMA 3.5 (Level 2 of recursion). If (3.16) holds and N is large enough,
then the following holds. For every interval I ⊆ VN with |I | < N/4 there exist
�I ⊆ EN and ẼI ⊆ E◦(I ) such that

|�I | ≤ Nσ (logN)2;(3.25)

every edge of �I is incident to at least one vertex of int(I );(3.26)

|e| ≥ Nδ for all e ∈ �I ;(3.27)

ψ(e,�I ) ≥ 1 for all e ∈ E◦(I ) \ ẼI ;(3.28)

either |ẼI | ≤ Nσ+δ(logN)4 or
(3.29) ∣∣{x ∈ int(I ) : x is irregular

}∣∣ ≥ |ẼI |/5.
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PROOF. Denote I0 = I . In case we have

(3.30) |I0| > Nσ+δ(logN)3 and
∣∣{x ∈ int(I0) : x is irregular

}∣∣ < |I0|/4,

we take �I0 ⊆ EN , I ′
0, I

′′
0 ⊆ I0 corresponding to I0 as in Lemma 3.4 and denote

I1 = I ′′
0 (in particular, |I1| ≤ 3|I0|/4). Next, if

|I1| > Nσ+δ(logN)3 and
∣∣{x ∈ int(I1) : x is irregular

}∣∣ < |I1|/4,

we take �I1 ⊆ EN , I ′
1, I

′′
1 ⊆ I1 corresponding to I1 as in Lemma 3.4 and denote

I2 = I ′′
1 (in particular, |I2| ≤ 3|I1|/4). We continue in this way, obtaining sets of

vertices I0 ⊃ I1 ⊃ · · · and sets of edges �I0,�I1, . . . until we reach the first index
n for which either

(3.31) |In| ≤ Nσ+δ(logN)3

or

(3.32)
∣∣{x ∈ int(In) : x is irregular

}∣∣ ≥ |In|/4;
note that, since |Ii+1| ≤ 3|Ii |/4 for each i, we must have n ≤ (logN)2 if N is large
enough.

Now, in case n = 0, then one of the conditions in (3.30) fails; in either case,
setting �I = ∅ and ẼI = E◦(I ), it can be readily seen that (3.25), (3.26), (3.27),
(3.28) and (3.29) are all satisfied.

Assume n > 0. Let

�I =
n−1⋃
i=0

�Ii
, ẼI = E◦(In) ∪

(
n−1⋃
i=0

{
e ∈ E◦(I ′

i

) : ψ(e,�Ii
) = 0

})
.

Then (3.25) holds because n ≤ (logN)2 (as already observed) and |�Ii
| ≤ Nσ

for each i [as guaranteed in (3.20)]. Also, (3.26), (3.27) and (3.28), respectively,
follow from (3.21), (3.22) and the definition of ẼI .

Let us prove (3.29). We observe that

ẼI ≤ |In| +
n−1∑
i=0

∣∣{e ∈ E◦(I ′
i

) : ψ(e,�Ii
) = 0

}∣∣ (3.24)≤ |In| + 2(n − 1)Nσ+δ

(3.33)
≤ |In| + 2Nσ+δ(logN)2.

Assume that (3.31) holds. Then the above computation gives ẼI ≤ Nσ+δ ×
(logN)3 + 2Nσ+δ(logN)2 ≤ Nσ+δ(logN)4, so we have (3.29) in this case.

Now assume that (3.31) does not hold and (3.32) holds. Since we then have
|In| > Nσ+δ(logN)3 > 8Nσ+δ(logN)2, (3.33) gives |ẼI | ≤ 5

4 |In|, and then∣∣{x ∈ int(I ) : x is irregular
}∣∣ ≥ ∣∣{x ∈ int(In) : x is irregular

}∣∣
(3.32)≥ 1

5
· 5|In|

4
≥ |ẼI |

5
. �
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LEMMA 3.6 (Level 3 of recursion). If (3.16) holds and N is large enough,
then there exist sets �1 ⊆ · · · ⊆ �k ⊆ EN such that, for every j ∈ {1, . . . , k}, we
have

|�j | ≤ 3Nσj (logN)3j ,(3.34)

|e| ≥ Nδ for all e ∈ �j,(3.35) ∣∣{e ∈ E◦
N : ψ(e,�j ) ≥ j

}∣∣
≥ N − (logN)5jNσj+δ − 10j

∣∣{x ∈ VN : x is irregular}∣∣.(3.36)

PROOF. We will do induction on j . To start the induction, we fix x̄1, x̄2, x̄3,

x̄4 ∈ VN so that, letting K0 = �0, x̄1�, K1 = �x̄1, x̄2�, K2 = �x̄2, x̄3�, K3 = �x̄3, x̄4�
and K4 = �x̄4,N − 1�, we have |K0|, |K1|, |K2|, |K3|, |K4| < N/4. We then apply
Lemma 3.5 to K0, K1, K2, K3 and K4. For i = 0,1,2,3,4, let �Ki

⊆ EN and ẼKi

be as in that lemma; then set �1 = ⋃5
i=0 �Ki

. Then (3.34) and (3.35) with j = 1
respectively follow from (3.25) and (3.27). By (3.28), we have

∣∣{e ∈ E◦
N : ψ(e,�1) ≥ 1

}∣∣ ≥ N −
4∑

i=0

|ẼKi
|;

furthermore, by (3.29), for each i ∈ {0,1,2,3,4} we either have |ẼKi
| ≤ Nσ+δ ×

(logN)4 or |{x ∈ int(Ki) : x is irregular}| ≥ |ẼKi
|/5. Hence,

4∑
i=0

|ẼKi
| · 1{|ẼKi

|≤Nσ+δ(logN)4} ≤ 5Nσ+δ(logN)4,

4∑
i=0

|ẼKi
| · 1{|ẼKi

|>Nσ+δ(logN)4} ≤ 5
∣∣{x ∈ VN : x is irregular}∣∣.

(3.37)

This proves (3.36) with j = 1.
Now assume j < k and �j has been defined and satisfies (3.34), (3.35) and

(3.36). Let z0 < z1 < · · · < zr denote the vertices that belong to the set

{0, x̄1, x̄2, x̄3, x̄4,N − 1} ∪ {x ∈ VN : x is the extremity of some edge in �j }.
Also define the integer intervals Ii = {zi−1, . . . , zi}, for i ∈ {1, . . . , r}. Note that,
for any fixed i, the value of ψ(e,�j ) is the same for all edges e contained in
E◦(Ii). We thus let J1, . . . , Js be those intervals among I1, . . . , Ir that satisfy

(3.38) ψ(e,�j ) ≥ j for all e ∈ Ji.

We have

s ≤ r ≤ 2|�j |
(3.34)≤ 6Nσj (logN)3j ,(3.39)
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s∑
i=1

(|Ji | − 1
)

(3.38)= ∣∣{e ∈ E◦
N : ψ(e,�j ) ≥ j

}∣∣
(3.36)≥ N − (logN)5jNσj+δ − 10j

∣∣{x ∈ VN : x is irregular}∣∣.
(3.40)

Now, for each i ∈ {1, . . . , s} we apply Lemma 3.5 to Ji , thus obtaining �Ji
⊆

EN and ẼJi
⊆ E◦(Ji). Let �j+1 = �j ∪ (

⋃s
i=1 �Ji

). We observe that, for each i,

(3.41) �Ji
∩ �j = ∅.

Indeed, by construction no edge of �j is incident to vertices of int(Ji), and by
(3.26) every edge of �Ji

is incident to at least one vertex of int(Ji).
By (3.27), all edges e ∈ �j+1 satisfy |e| > Nδ ; moreover,

|�j+1| = |�j | +
s∑

i=1

|�Ji
|

(3.25), (3.34),(3.39)≤ 3Nσj (logN)3j + 6Nσj (logN)3j · Nσ (logN)2

≤ Nσ(j+1)(logN)3(j+1).

Hence the proof will be complete once we show that∣∣{e ∈ E◦
N : ψ(e,�j+1) ≥ j + 1

}∣∣
≥ N − (logN)5(j+1)Nσ(j+1)+δ

− 10(j + 1)
∣∣{x ∈ VN : x is irregular}∣∣.

(3.42)

Applying (3.28), (3.38) and (3.41) to each �Ji
, we have

i ∈ {1, . . . , s}, e ∈ E◦(Ji) \ ẼJi

=⇒ ψ(e,�j+1) ≥ ψ(e,�j ) + ψ(e,�Ji
) ≥ j + 1,

hence∣∣{e ∈ E◦
N : ψ(e,�j+1) ≥ j + 1

}∣∣
≥

s∑
i=1

(|Ji | − 1 − |ẼJi
|)

(3.40)≥ N − (logN)5jNσj+δ − 10j
∣∣{x ∈ VN : x is irregular}∣∣ − s∑

i=1

|ẼJi
|.



SPATIAL GIBBS RANDOM GRAPHS 785

We then conclude by bounding

s∑
i=1

|ẼJi
| · 1{|ẼJi

|≤Nσ+δ(logN)4}
(3.39)≤ 6Nσj (logN)3j · Nσ+δ(logN)4

≤ Nσ(j+1)+δ(logN)3j+4

and, similar to (3.37),

s∑
i=1

|ẼJi
| · 1{|ẼJi

|>Nσ+δ(logN)4} ≤ 10
∣∣{x ∈ VN : x is irregular}∣∣.

�

PROOF OF LEMMA 3.3. Recall that so far our only assumption concerning σ

was that σ ≥ η; now, setting j = k in (3.36), we will choose the value of σ that
makes the estimate in (3.36) the sharpest as N → ∞.

In case p = ∞, we simply take σ = η and the desired result follows, as there
are no irregular vertices in this case. In case p ∈ [1,∞), using (3.17) we obtain∣∣{e ∈ E◦

N : ψ(e,EN) ≥ k
}∣∣ ≥ N − (logN)5kNσk+δ − 10kN1−p(σ−η).

We then set σ = 1+pη−δ
k+p

, so that we equate the two exponents of N :

σk + δ = 1 − p(σ − η) = 1 − p(1 − kη − δ)

k + p
.

Note that σ ≥ η follows from our assumption that δ < 1 − kη. This completes the
proof. �

APPENDIX: LARGE DEVIATION ESTIMATE

The purpose of this appendix is to prove the following large deviation result
concerning sums of i.i.d. random variables with stretched exponential tails. While
the result is classical, and can be deduced for instance from the more general re-
sults of [19], we prefer to give a self-contained and short proof here for the reader’s
convenience.

PROPOSITION A.1. Let γ ∈ (0,1], θ > 0 and (Xi)i∈N be i.i.d. nonnegative
random variables satisfying E[exp(θX

γ
1 )] < ∞. For every m > 0, there exists c >

0 such that uniformly over N ≥ 1,

P

[
N∑

i=1

Xi ≥ (
E[X1] + m

)
N

]
≤ exp

(−cNγ )
.
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PROOF. By a change of variables, it suffices to prove the result with θ = 1.
Let

X̃
(N)
i := Xi ∧ N, X

(N)

i := X̃
(N)
i −E

[
X̃

(N)
i

]
and

ϕN(λ) := E
[
exp

(
λX

(N)

1
)]

.

We first show that there exists C > 0 such that uniformly over λ ≤ Nγ−1/2 and N

sufficiently large,

(A.1) ϕN(λ) ≤ exp
(
Cλ2)

.

Since ϕ′
N(0) = 0, we have

ϕN(λ) ≤ 1 + λ2 sup
[0,λ]

ϕ′′
N.

In order to prove (A.1), it thus suffices to show that there exists C < ∞ such that
uniformly over λ ≤ Nγ−1/2 and N sufficiently large,

(A.2) ϕ′′
N(λ) ≤ C.

Clearly,

(A.3) E
[
X̃

(N)
1

] −−−−→
N→∞ E[X1] < ∞,

so in particular, supN |E[X̃(N)
1 ]| < ∞. Hence,

ϕ′′
N(λ) ≤ E

[(
X

(N)

1
)2 exp

(
λX

(N)

1
)]

≤ E
[(

X̃
(N)
1 + C

)2 exp
(
λ
(
X̃

(N)
1 + C

))]
≤ E

[
(X1 + C)2 exp

(
λ
(
N1−γ X

γ
1 + C

))]
,

where in the last line, we used the fact that for every x ≥ 0, N1−γ xγ ≥ x ∧ N . We
then obtain (A.2), and thus (A.1) (uniformly over λ ≤ Nγ−1/2), using the fact that
E[exp(X

γ
1 )] < ∞ and the elementary observation supx≥0 x2 exp(x/2)/ exp(x) <

∞.
In view of (A.3), we can choose N sufficiently large that∣∣E[

X̃
(N)
1

] −E[X1]
∣∣ ≤ m

2
.

For such a choice of N , we have

P

[
N∑

i=1

Xi ≥ (
E[X1] + m

)
N

]
≤ P[∃N : Xi ≥ N ] + P

[
N∑

i=1

X̃
(N)
i ≥ (

E[X1] + m
)
N

]

≤ P[∃N : Xi ≥ N ] + P

[
N∑

i=1

X
(N)

i ≥ m

2
N

]
.
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The integrability assumption and Chebyshev’s inequality ensure that

P[∃N : Xi ≥ N ] ≤ exp
(−Nγ /2

)
.

For the other term, Chebyshev’s inequality and (A.1) yield that for every λ ≤
Nγ−1/2,

P

[
N∑

i=1

X
(N)

i ≥ m

2
N

]
≤ exp

[(
Cλ2 − λm

2

)
N

]
.

Choosing λ = Nγ−1/2 leads to the announced result when γ < 1; otherwise, it
suffices to choose λ > 0 sufficiently small and independent of N . �
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