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Abstract

Axisymmetric solitonic states (chiral skyrmions) were first predicted theoretically more than two
decades ago. However, until recently they have been observed in a form of skyrmionic condensates
(hexagonal lattices and other mesophases). In this paper we report experimental and theoretical
investigations of isolated chiral skyrmions discovered in PdFe/Ir(111) bilayers two years ago by
Romming et al (2013 Science 341 636). The results of spin-polarized scanning tunneling microscopy
analyzed within the continuum and discrete models provide a consistent description of isolated
skyrmions in thin layers. The existence region of chiral skyrmions is restricted by strip-out instabilities
atlow fields and a collapse at high fields. We demonstrate that the same equations describe
axisymmetric localized states in all condensed matter systems with broken mirror symmetry, and thus
our findings establish basic properties of isolated skyrmions common for chiral liquid crystals,
different classes of noncentrosymmetric magnets, ferroelectrics, and multiferroics.

1. Introduction

Long-period homochiral magnetization modulations (helical phases) [ 1] and axisymmetric solitonic patterns
(vortices or skyrmions) [2—4] are two types of unconventional magnetic states attributed solely to magnetic
compounds with broken inversion symmetry and distinguish them from common (achiral) magnetic materials
(figures 1, 2). Both, extended chiral modulated phases and localized skyrmionic states are stabilized by specific
Dzyaloshinskii-Moriya (DM) interactions arising in chiral magnets owing to their crystallographic handedness
[1]. In the micromagnetic energy functionals of noncentrosymmetric ferromagnets these interactions are
described by energy contributions linear in the first spatial derivatives of the magnetization M (Lifshitz
invariants) [1]

M—L — M;—.
8xk 8xk

€]

Axisymmetric localized structures (figure 1) are related to multidimensional topological solitons with
nonsingular internal structure and finite energy [5]. These particle-like objects are of special interest in
fundamental physics and mathematics [6—8]. In most nonlinear physical systems, multidimensional solitons can
exist only as dynamic excitations [9]. However, the corresponding static solutions are unstable and collapse
spontaneously into topological singularities [10].

In nonlinear field theory, the existence and stability of skyrmion solutions is provided by special terms in the
energy functionals. More than five decades ago T H Skyrme introduced into the nonlinear field model an
interaction term with higher order spatial derivatives that stabilize two- and three-dimensional topological
nonsingular solitons (now commonly addressed as skyrmions) [11]. Since that time, field theorists have been
intensively investigating this family of solitons (skyrmions) within the Faddeev—Skyrme and kindred models
[6,11,12].

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Axisymmetric isolated skyrmions: (a) in cubic helimagnets and uniaxial ferromagnets with D,, symmetry; (b) in uniaxial
ferromagnets with C,,, symmetry [2].

,,
(=2
e
e
W
I
A
WY
A
4
Y
A

e )
o
v

HERU T Sy
DN
W N W
AN AT N
!ifu*\*'\f‘?if;‘-ﬁiﬁ.‘tﬂ‘{ By
R Tt e\ T
WipZzzizsw
SNV

Figure 2. Basic modulated phases in chiral ferromagnets: one-dimensional helicoids (a) and cycloids (b) and two-dimensional skyrmion
lattices (c, d). Bloch-type modulations (a, ¢) arise in cubic helimagnets and ferromagnets with D, symmetries; Néel-type modulations
(b, d) are attributed to uniaxial ferromagnets with C,,, symmetries [2].

Lifshitz invariants of type (1) provide the only known alternative to the Skyrme mechanism that yield regular
solutions for axisymmetric skyrmions [3, 13—15]. These invariants arising in noncentrosymmetric condensed
matter systems (including chiral magnets, liquid crystals, multiferroics, and nanolayers of magnetic metals with
interface induced Dzyaloshinskii—-Moriya interactions) introduce a unique class of materials where mesoscopic
skyrmions can be induced and manipulated.

In a broad range of applied magnetic fields and temperatures isolated skyrmions condense into hexagonal
lattices [3, 16, 17] or other types of two-dimensional modulated states [18, 19]. During the last years, intensive
experimental efforts have been undertaken to find indications of hexagonal skyrmion lattices in different groups
of chiral ferromagnets (see e.g [20—29] and bibliography in [17]). Particularly, direct observations of skyrmion
lattices have been reported in free standing nanolayers of cubic helimagnets in [23] (and the following papers of
this group [24, 30]). These results reveal axial symmetry and homochirality of the embedded skyrmions, and
observed properties of skyrmion lattices were found to be in close correspondence with theoretical results. To
date the LTEM studies of confined cubic helimagnets have focused on the skyrmion condensates (skyrmion
lattices and clusters) [23, 24, 29, 30]. Spin-polarized scanning tunneling microscopy (SP-STM) has been able to
identify isolated skyrmions in the saturated states of PdFe/Ir(111) films [31], and subsequently resolve their
internal structure [32].

From a theoretical perspective, the basic magnetic properties of isolated skyrmions and skyrmion lattices in
bulk noncentrosymmetric magnets have been investigated in a number of earlier contributions [3, 14, 33].
Recently the experimental advances in the observation of chiral skyrmion states [16, 18, 21-30] have renewed
the interest to this phenomenon and triggered intensive theoretical studies of stationary and moving skyrmions
[17,19,35-37,42-47,49-51]. In most of these contributions, only magnetic properties of bound skyrmionic
states are addressed (skyrmion lattices and individual skyrmions confined in nanodots, narrow strips,
nanowires). However, modern theoretical studies have practically paid no attention to the properties of isolated
skyrmions, which are fundamental to understanding the physics of magnetic skyrmions and their applications
in potential spintronic devices [34, 46].

The discoveries of isolated chiral skyrmions in PdFe/Ir (111) bilayers [31] and the method for a
determination of their internal structure [32] open up a new dimension in the investigations of chiral skyrmions.
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Our paper devoted to experimental and theoretical investigations of the evolution of isolated skyrmion
structures under the influence of applied magnetic fields represent the first step in this direction.

In the theoretical part of this paper (section 2) we develop the first consistent theory of isolated chiral
skyrmions in thin magnetic layers and apply our findings for the analysis of isolated skyrmions observed in
PdFe/Ir(111) bilayers. In section 2.2 we apply the qualitative theory of differential equations to expound main
features of isolated chiral skyrmions and elucidate their physical nature, investigate the conditions of the
elliptical instability at low fields and calculate within the discrete model the skyrmion collapse field. In section
IIC we construct the phase diagram of the solutions for isolated skyrmions.

In the experimental part we present the detailed evolution of isolated skyrmions in PdFe/Ir(111) bilayers
from the strip-out at low fields to the collapse at high fields.

2. Theory

A phenomenological theory of chiral modulations in noncentrosymmetric magnetic crystals has been developed
by L. Dzyaloshinskii in 1964 [1]. These papers also include analytical solutions for one-dimensional chiral
modulations (helicoids and cycloids). Theoretical investigations of chiral modulations in bulk and confined
noncentrosymmetric ferro- and antiferromagnets have been carried out in many of the papers discussed in [17].

2.1. The micromagnetics of chiral modulations

2.1.1. Energy functional and symmetry

In this paper we investigate isolated skyrmions in a thin layer of a noncentrosymmetric ferromagnet. As a model
we consider a thin plate infinite along the x— and y— axes and of thickness L along the z— axis. In the following
sections we specify the model and discuss its limitations. For a film of a noncentrosymmetric uniaxial
ferromagnet in the applied magnetic field H® perpendicular to the film surface, the micromagnetic energy
density written within terms quadratic in the components of the magnetization vector M has the following
standard form [1]:

w= A(grad m)> + wp(m) — K(m - n)> — gy yMH®m - n — yyMm - H?/2, ()
where A is the exchange stiffness constant, K is the uniaxial anisotropy constant, H? is the demagnetizing field,
m = M/|M| = (sinf cos 1, sinf sin ), cos H) 3)

is the reduced magnetization, n is the unity vector directed perpendicular to the film surface.
The Dzyaloshinskii-Moriya energy density wp is composed of Lifshitz invariants (1):

om; om;
£ = m 2y O
8xk axk

4)

The functional forms of energy density wp, are determined by crystallographic symmetry of a
noncentrosymmetric magnetic crystal and are listed in equations (A.1), (A.2). Lifshitz invariants (4) favour
spatial modulations with a fixed rotation sense along the x; directions [1]. A competition between the chiral
energy wp and other energy contributions leads to the formation of isolated chiral states [2, 3, 14] and spatially
modulated magnetic phases [1, 3].

The Euler equations for energy functional (2) together with Maxwell’s equations,

rotH? =0, div[H® + p,M] =0, (5)

yield solutions for different types of chiral modulations (figures 1, 2, 12).

2.1.2. Demagnetization effects
Generally the equilibrium modulated patterns m(r) in a chiral magnet are derived by numerically solving the
above set of nonlinear differential equations including non-local stray-field calculations [ 14, 34]. Contrary to
soft magnetic materials where demagnetization fields sufficiently influence the equilibrium magnetic states [38],
in chiral magnetic materials the DM interactions strongly suppress these effects [34]. As a result in many
practical cases a magnetostatic problem is reduced to analytical solutions [3, 34, 39], and the stray-field energy
can be expressed as local energy contributions in energy functional (2) [3, 34].

It was also found that for one-dimensional modulations and two-dimensional axisymmetric structures, the
internal stray-field energy has alocal character 3, 38]. Particularly, for ferromagnets with C,,, symmetry the
internal stray-field energy can be taken into account by the following redefinition of the anisotropy constant,

K— K+ Ky Kg= p,M?/2. ©6)
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2.1.3. The equations for axisymmetic skyrmions

We introduce cylindrical coordinates for the spatial variable r = (r cos ¢, r sin ¢, z) and consider magnetic
patterns homogeneous along the z-axis with the magnetization antiparallel to the applied field in the center

(@ = 7 for r=0) and approaching the parallel orientation when the distance from the center approaches infinity
(@ — O0forr — 00).For O(r, ¢), ¥ (r, ) theenergy functional (2) is reduced to the following form:

W= A[af + %9; + sin20(¢$ + izwf,)] + wp — Kcos?0 — pugMH®cos @ — ppMm - HD /2, (7)
r r

and the Dzyaloshinskii-Moriya energy functionals wp (6, ¥, r, ) are listed in equations (A.1), (A.2).
The equations minimizing energy (7) include rotationally symmetric solutions,

0=0@), ¥=1v(), HDY=HI®m. ®)

Analytical solutions ¥ = 1 (¢) for uniaxial noncentrosymmetric ferromagnets [2] and cubic helimagnets
(figures 1, 2) are listed in equation (A.7).

To date, only two types of skyrmionic states from this list have been identified in chiral ferromagnets by
direct experimental observations: skyrmionic patterns with Bloch-type modulations (figure 1(a))

m = &, sin0(r) + & cos 0.(r) ©)

have been observed in free standing nanolayers of cubic helimagnets (see e.g. [23, 24, 30]), and skyrmion lattices
with Néel-type modulations (figure 1(b))

m = &,sinf(r) + €,cosf(r) (10)
have been observed in Fe/Ir(111) and PdFe/Ir(111) nanolayers [27, 31, 32, 41] and in the rhombohedral
ferromagnet GaV,Og with Cs, symmetry [28].

The first direct observations of isolated skyrmions have been reported in PdFe/Ir(111) nanolayers [31].
These chiral solitonic structures have been investigated in a broad range of applied fields [31, 32].

After integration with respect to ¢, the total energy F for an isolated skyrmion of Bloch- and Néel-type inan
applied magnetic field perpendicular to the film surface can be reduced to the following form:

F= 27rf0c £(0, ryrdr. (11)
0

Here f (0, r) = w(0, r) — w(0) is the difference between the skyrmion energy density and that of the saturated
state, w(0) = —K — p,MH:

f6,r)= A(Gf + %sinze) - D(Gr + lsin9c059) + Ksin?0 + pugH (1 — cos®). (12)
r r

In equation (12) the perpendicular component of the internal magnetic field H = H, equals the difference
between the value of the applied magnetic field H© = H'® and the perpendicular component of the
demagnetization field imposed by the film with an isolated axisymmetric skyrmion (Hg(,Sk)): H=H® - H ;Sk).
The analytical solution for the stray-field H{™* has been derived by Y. Tu [34, 39]. In most nanolayers of chiral
magnets investigated so far, skyrmion sizes are smaller than the layer thickness (r; < d). For such ‘thick’ films
the stray-field H{™ can be simplified and yields the following relation between the applied and internal fields:
H = H® — pyM.InPdFe/Ir (111) films investigated in this paper, isolated skyrmion cores are much larger
than the film thickness (r; > d). In this limiting case of ‘ultrathin’ films, the stray-field H™ becomes
exponentially small due to dipole-dipole interactions between the upper and bottom film surfaces, and the
internal field is practically equal to the external field (H = H®). A similar drastic reduction of the stray-field
occurs in ultrathin magnetic films with isolated bubble and stripe domains [40].

The Euler equation for energy functional (12),

A(H,r + l9, - %sin@cos@) + Bsinze — Ksinf cos@ — pyMH sinf = 0, (13)
r r r

with boundary conditions
0(0)=m, 0O(x) =0, (14)
yields the equilibrium structure of isolated axisymmetric skyrmions [2, 3, 14]. Note that for Néel-type

skyrmions, K includes the stray energy contribution (6).
Dimensionless variables

p= 271—T/LD) h :H/HD) k:K/KO) (15)
are commonly used in recent papers to describe modulated states in uniaxial chiral ferromagnets and cubic

helimagnets (see e.g. [17, 26, 32, 42]). Here we use the characteristic parameters of a uniaxial chiral ferromagnet
[3,42]:
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Figure 3. (a) Typical localized solutions of the boundary value problem with magnetization profile 6 (p). The first three excitation
modes &; (p) with positive eigenvalues A; (b) for the solution for K /K, = 2.8. ‘Shooting trajectories ¢ (p) of the Cauchy problem (c)
and corresponding phase trajectories 6, (6) (d).

AmA D? D?
= Hp = , Ky=—. 16)
"= o P T M T ma (

Lpisthe period of a helix at zero field and zero anisotropy, Hp, is the saturated field and K is the critical
anisotropy (A.13).
With variables (15), the equation for axisymmetric skyrmions (13) is reduced to the following form:

0, 1 2sin% 4

—f—zsin9c050+ — ksinfcosf — hsinf = 0, (17)
p

Opp
with boundary conditions (14).

2.2. Solutions for axisymmetric skyrmions
The equilibrium skyrmion profiles 6 (p) are derived by solving the boundary value problem (13) and (14) with a
finite-difference method [14]. Typical solutions of equation (13) are plotted in figure 3, and the existence areas
for isolated skyrmions are indicated in the phase diagram of the solutions (figure 4).

The solutions 6 (p) are linear near the skyrmion axis (mr — ) x p for p < 1) and decay exponentially at
high distances from the center (p > 1)0 o« exp(—pJk + h )/\/ﬁ

Usually the functions 6 (p) have arrow-like shape with the steepest slope at the center of the skyrmion
(r = 0). They transform into bell-shape profiles only near the critical line H,;. In micromagnetism, the
characteristic size of a localized magnetization profile 6 (p) is defined as [38]

=1 — 90 (d9/dr) (18)

r=r1p>

where (1, 6p) is the inflection point of the profile 8 (r) (figure 3(a)).

Theoretically, chiral skyrmions have been investigated by numerical methods in many recent publications
[17,19,35-37,42-50]. These findings demonstrate their rich spectrum of magnetic states characteristic for
chiral skyrmions and various scenarios of their evolution under the influence of applied fields [46, 49, 50].
However, they still require substantial analytical analysis and physical comprehension. The qualitative theory of
nonlinear differential equations together with other analytical methods provide effective tools to gain important
insight into the physics of chiral skyrmions and establish mathematical relations between them and other types
of magnetic solitons.

2.2.1. Visualization of solutions on the (0, 6,) phase plane
Solutions 6 (r) of the boundary value problem (14) can be derived by solving the auxiliary Cauchy initial value
problem for equation (13),

00)=m, 6,00 = —a. (19)

For illustration we consider the Cauchy problem given by (13) and (19) for H=0and » = 7D/ (4VAK) = 0.8
(A.16). The calculated profiles 6 (r, a) and the corresponding curves 6, (0) in the interval [0.4 < a < 4.0]are
plotted in figures 3(c), (d). Most of curves 6 (r, a) oscillate near lines 6, , = £7/2, the maximum values of

= K sin? 6, and the corresponding profiles 6, (6) spiral around the attractors, points (&7 /2, 0). Among these
curves there is a singular line (with a = 1.62471) which ends in the saddle point (0, 0) and, thus, represents a
solution of the boundary value problem for isolated skyrmions.

5
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isolated skyrmions
within
the saturated state

0.4 7 "J
’ el 1 B ::s~ B
1 irregular SNy
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0.0 1.0@3 2.0

k= K/K,>0

Figure 4. In the phase diagram in variables k and h the existence area of metastable isolated skyrmions is restricted by the strip-out
critical line h,; (k). The inset shows the regions of global stability of the modulated (helicoidal and skyrmion lattice) and the spatially
homogeneous saturated phases (for details see [17]).

The visual representation of the solutions for the auxiliary Cauchy problem (13), (19) as parametrized
profiles 0 (r, a) (figure 3(c)) and 6, (§) curvesin (#, 6,) phase plane (figure 3(d)) reveal mathematical regularities
in the formation of the localized states.

To demonstrate a crucial role of the DM interactions in the stabilization of chiral skyrmions, in the following
we compare the phase portrait in figure 3(d) with special cases of model (12) with D =0.

Isotropic ferromagnets (D = K = H = 0). The Euler equations for energy functional of an isotropic
ferromagnet w = A (grad m)? yield rigorous analytical solutions for axisymmetric skyrmions 6 (r), 1 (¢)
derived by Belavin and Polyakov [52]

Y =Np+ a, tan(0/2) = (6/rN, (20)

where avand ¢ > 0 are arbitrary values and N are positive integers. The energy (11) for solutions (20)
Fo = 8mAN, does not depend on values  and o [52]. For N = 1 a set of magnetization profiles 6 (r/6) (20) and
phase portrait trajectories 6, (¢)

0 = 2arctan(§/r), 66, = —2sin*(0/2), (21)

are plotted in figure 5. For § > 0, the curves 6, (6) start in points (7, —2/6) and end in the saddle point (0, 0).
However, any anisotropy or magnetic field will destabilize this solution.

Uniaxial centrosymmetric ferromagnets (D = 0). In this case equation (13) has no stable solutions for isolated
skyrmions. For H > 0 all phase trajectories 6, (0) spiral around attractor (—7/2, 0). For H < 0 equation (13)
has radially unstable solutions for isolated skyrmions as proved by Derrick-Hobart theorem (For details
see[3, 10]).

2.2.2. Derrick scaling identities and a virial theorem for chiral skyrmions

Analysis of skyrmion energy F (11) under scaling transformations offers further important insight into the
physics of chiral skyrmions. We consider a family of functions ¥ (r) = ¥ (r/n) obeying the boundary conditions
(14).Here n > 01isan arbitrary constant describing uniform compressions (0 < 7 < 1) or expansions (n > 1)

of profile ¥ (). For rescaled functions ¥ (r) = ¥ (r/n), the skyrmion energy F (11) canbe expressed asa
function of n:

%(7]) =& — &Emn+ Em. (22)

The values of the exchange (£,), Dzyaloshinskii-Moriya (€p), and potential (&) energy contributions for profile
9 (r) (11) are given as follows:

[ee} 1 .
E = 27TAJ; (192 + ?sm2 ﬁ)fdg = Ay,

&Ep = 2m|D| fooo (195 + %sinﬂcosﬂ)gdf = |D]a,

6
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Figure 5. Magnetization profiles for Belavin-Polyakov instantons (a) and the corresponding phase portraits of the solutions (b).

& = 27rfoo [K sin?9 + pyMH (1 — cosd)]&dE (23)
0

or & = Ko + pyMHoy, where «; are the numerical coefficients given by the values of the integrals in
equation (23).

Equation (22) shows that the DM energy plays a crucial role in stabilizing skyrmions [2, 13]. In
centrosymmetric ferromagnets (£p = 0) isolated skyrmions are unstable with respect to compression and
collapse into a singular line (y — 0) (Derrick-Hobard theorem [10]). Skyrmion solutions that minimize the free
energy (22) only occur for nonzero Dzyaloshinskii-Moriya energy contributions.

Ansatz solutions. Potential ?(77) (22) has a convenient form for analysis of skyrmion solutions with trial
functions of type ¢ = ¥ (p/n) that obey the boundary conditions (14). Particularly, a linear ansatz

d=mll=(@/m] ¢<m, =0 @F>n, 24

hasbeen used in [2] to introduce the phenomenon of chiral skyrmions. The ansatz,
9 (r/m) = 4arctan [exp(—r/n)], (25)

based on solutions for isolated 360° Bloch walls [38] provides a good fit to the solutions of equation (13). In [32],
magnetization profiles for isolated skyrmions have been fitted by a combination of functions of type (25). For the
trial function ¥ (r/n) in equation (25), the total energy (22) can be written as

F(n)/@m) = 4.31A + (1.59K + 1.39u,MH)n? — 3.02Dr). For zero anisotropy (k = 0) this ansatz yields
the transition field into the skyrmion lattice h; = H;/Hp = 0.760 (cf. with the rigorous value h; = 0.801 and
hy = 0.675 for the linear ansatz (24) [2]).

For %(77) (22) the equilibrium skyrmion size is

Lp ap

-4 (26)
2T Oé3k + 20{4]’1

o
expressed as aratio of the Dzyaloshinskii-Moriya to the potential energy contributions for the trial function.
The virial theorem for isolated axisymmetric skyrmions is derived by integration of the Euler equation (13).
Partial integration leads to the following virial relation between the equilibrium values of the potential and DM
energies [33] & = 2&p where &y, & are the integrals (23) calculated for the solutions of
equation (13), 9 = 0 (p).

2.2.3. Radial stability and collapse at high field (discrete model)

The stability of the solutions 8 (p) of the boundary value problem (13), (14) under small radial distortions ¢ (p)
(€ (0) = ¢ (o0) = 0) hasbeen investigated in [14]. This problem is reduced to the spectral problem for the
perturbation energy functional [14]. By numerically solving the eigenvalue problem for this functional, the
radial stability of isolated skyrmions has been established in a broad range of the control parameters (k, 1) [3].
Contrary to magnetic bubbles, which collapse with finite radii at certain critical fields [38], the solutions of the
boundary value problem (13) and (14) (figure 3) exist at arbitrary high fields. In increasing fields their sizes
gradually decrease and asymptotically approach zero.

The continuum model (2), however, becomes invalid for localized solutions with sizes of few lattice
constants. In this region we investigate solutions for chiral skyrmions within the discrete models. We consider
classical spins, S;, of unitlength on a two-dimensional square lattice with the following energy functional [47]
E = Ey + Epwhere
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Figure 6. Micromagnetic energies of an isolated skyrmion (a) and a bubble-domain (b) as function of their sizes for selected values of
the applied magnetic fields [14, 38]. Isolated bubbles collapse at critical field Hy, with finite radius r;,. Isolated chiral skyrmions exist at
very high fields without collapse. The equilibrium skyrmion sizes p as functions of the applied field calculated for different values of p,
(30) indicate the collapse of chiral skyrmions (c) (p is defined here as a diameter of a circle encompassing a skyrmion core area with

m, < 0.995).

Eg=—J] > (Si-S) — Y [H-S; + K(S;-n)], (27)

() i

and the Dzyaloshinskii-Moriya energy equals

Ep=~D (8 X Sivz &+ Si X Sirj - ) (28)

1

for Bloch-type modulations, and

Ep=—D Y (Si X Siyz ) — Si X Siyy - %) (29)

for Néel-type modulations ({i, j) denotes pairs of nearest-neighbor spins).
Forahelix S; = (cos §;, sin 6, 0) propagating along the x-axis at field and anisotropy (H = K = 0), model
(27) isreduced to

E =3 [-]cos(; — 0i1z) — Dsin(0; — 0;42)], (30)

and yields the equilibrium period p, = 27 /arctan(D/]) (po is the number of magnetic ions corresponding
to AQ = 2m).

The equilibrium solutions for isolated skyrmions are derived by numerically solving the equations
minimizing the energy functional E (27). Typical solutions for the equilibrium skyrmion size p as a function of
the applied field are plotted in figure 6(c). The solutions with finite sizes exist only below a certain critical
(collapse) field h. (p,) (figure 6(a)). The critical field k. (p,) increases without limit with increasing pq
(figure 6(b)) and, thus, signifies a transition from the discrete model to the continuous model.

2.2.4. Elliptic instability (strip-out) at low fields

Isolated skyrmions exist as metastable states above the critical field h; (k) (figures 4(a), (b)). Below this line the
energy F (11) becomes negative and skyrmions tend to condense into a hexagonal lattice [3]. However, if the
formation of skyrmion lattices is suppressed (as in PdFe/Ir (111) films [32]) isolated skyrmions continue to exist
below the critical line A (k) (with the skyrmion core energy density lower than that of the surrounding saturated
state). At the same time isolated skyrmions have a tendency to elongate and expand into a band with helicoidal or
cycloidal modulations and eventually to fill the whole space, since the spiral state represents the minimum with
lower energy as compared to the local minima with the metastable isolated skyrmions. These (elliptic)
instabilities are similar to ‘strip-out’ instabilities of isolated magnetic bubbles at a certain critical field [53]
observed in common ‘bubble-domain’ films [38] and in magnetic nanolayers with perpendicular anisotropy
[54]. A theory of elliptic instabilities for chiral skyrmions have been developed in [33] where a strip-out field has
been derived from the stability analysis of the skyrmion energy (11) with respect to (elliptic) perturbations of

type
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Figure 7. Collapse (H,) and strip-out or elliptic instability (H,;) critical fields calculated within the discrete model (27) for k=0 and
different values of p, (30). At the dashed line H;(p,) the isolated skyrmion energy F equals zero, and below this line skyrmions can
condense into the hexagonal lattice (a). Calculated distributions of the magnetization of the skyrmion core for k = 1.315, p, = 24
andfor h = 0.42 (b)and h = 1.27 (c).

p=p+en(p)cos2p, =1+ ((p @) (€2)

where (¢ < 1)[33].1In[33], the strip-out field H,; has been calculated for stray-field free elliptic distortions of
Bloch-type isolated skyrmions. There, a set of parametrized ansatz functions of type 1 (p) = sin8/(1 + asin )
with optimized values of a were used [33]. In this paper the critical line h,; (k) (0 < k < k,) for a Bloch-type-
skyrmion (figure 4) has been calculated by direct minimization of the perturbation energy.

Within the discrete model (27) the critical field /i, has been calculated for zero anisotropy (k = 0) and for
6 < p, < 30.Figure 7 (a) shows that the strip-out field k., essentially decreases with the decreased size of
skyrmions what can be beneficial for possible application of such skyrmions. However, the existence region of
these isolated skyrmions is restricted by the lower field of collapse A..

2.2.5. The k— h phase diagrams

In this section we consider the existence area for isolated skyrmions in the magnetic phase diagram (figure 4).
The energy functional for uniaxial chiral ferromagnets (2) depends on the two independent control parameters,
the reduced values of the applied field, & and uniaxial anisotropy, k (15). The magnetic phase diagram in
variables k and h collects all possible solutions for model (2). The calculated phase diagram in the inset of figure 4
shows the existence areas of the cycloids and skyrmion lattices and the transition lines between these modulated
phases and the saturated state. The phase diagram indicates the critical fields at zero anisotropy, the bicritical
point B (1.90, 0.10), and the critical point A (2.67, 0) [3] (for a detailed description of this phase diagram see
[17]). Figure 4 shows critical lines for isolated skyrmions (results of the continuum model (2)). Isolated
skyrmions condense into a skyrmion lattice when the applied magnetic field decreases to the critical value h; (k).
However, isolated skyrmions can exist as localized objects below the critical line 4, (k) and strip-out into
helicoids at the critical line h,;.

3. Experiment: isolated skyrmions in PdFe/Ir(111) bilayers

Sample preparation and spin-polarized (SP)- STM experiments were performed in a multi-chamber UHV
system at a base pressure of 5 - 10~!! mbar. Details of the sample preparation can be found in [31]. We use
antiferromagnetic bulk Cr tips to minimize magnetostatic interactions between tip and sample. The SP-STM
measurements were performed at T = 4.2 Kin perpendicular magnetic fields of —3 to 43 Tesla. We repeatedly
scanned the same sample area while continuously sweeping the magnetic field at a speed of 12.8 mT/min,
resulting in a series of images with a field difference of AB = 87 mT. Constant current images and maps of
differential conductance (dI/dU) were measured simultaneously by lock-in technique. All SP-STM images
displayed in this work are dI/dU maps. We used small bias voltages (U = 20mV) and moderate currents

(I=3 nA) to minimize the influence of the tunnel process on the field-dependent magnetic evolution within the
PdFe bilayer [31].

PdFe/Ir(111) bilayers have a uniaxial anisotropy of ‘easy-axis’ type and exhibit chiral modulations of Néel-
type [31, 32]. It was also established by SP-STM observations that a cycloid (figure 2(b)) is the ground state of
PdFe/Ir(111) films [31]. The material parameters of model (2) for PdFe/Ir(111) at T = 4.2 K determined in
[32, 55] yield the following values for the characteristic parameters (16): Lp = 6.44nm = 23.85q, i.e. p, = 24
(ap = 0.27 nm is the lattice constant ), y,Hp = 3.46 T, Ky = 1.9 x 10° J/m® K; = poM?/2 = 0.76 x 10°]/

9



10P Publishing

NewJ. Phys. 18 (2016) 065003 AOLeonovetal

L,=6.44 nm
k=K/K,=13

Figure 8. Magnetization profile 6 (r) for an isolated skyrmion (circles) derived from SP-STM data (inset) for the applied field

ttoH = 1.11 T. Data has been taken along the arrow in the inset. The profile 6 (r) can be directly calculated after determining the tip
magnetization direction by fitting a trial function to the skyrmion profile[32]. The solid line is the solution of equation (17) for

k = 1.315and h = 0.321, r,is the skyrmion core radius defined by equation (18).

m’ (‘shape anisotropy’). The sufficiently strong values of ‘easy-axis’ anisotropy (k = K /K, = 1.315) ensures the
stability of chiral modulations in PdFe/Ir(111) films with respect to stray-field effects [34, 38] and make them
convenient objects for investigations of chiral skyrmions [31, 32].

The calculated magnetic phase diagram of easy-axis chiral ferromagnets includes the existence areas of one-
dimensional modulations and skyrmion lattices (figure 4, Inset) [3, 17]. These chiral modulations and
transitions between them have been directly observed by Lorentz transmission electron microscopy (LTEM) in
free standing nanolayers of cubic helimagnets [23, 24, 29, 30] and in PdFe/Ir(111) bilayer films by SP-STM
[31,32].

Isolated skyrmions and their internal structure have been investigated by SP-STM in PdFe bilayers [31, 32].
Following [32] we reconstruct the magnetization profile 6 (r) for one of the isolated skyrmions in the film at the
applied field ;1yH = 1.11T (figure 8). These experimental results are in close agreement with the solution of
equation (17) for k = 1.315and h = 0.321 (or 4y H = 1.11T). In free standing films of magnetically soft cubic
helimagnets, chiral skyrmions readily condense into hexagonal lattices below h, (k) (figure 4, inset)

[23,24, 30, 31]. Atlow temperatures, however, an enhanced coercitivity of PdFe/Ir (111) bilayers prevents the
formation of skyrmion lattices below A (k) (see the results of [32] for T = 4.2 K). This offers a unique
opportunity to investigate isolated skyrmions in a broad range of applied fields.

Figure 9 shows selected frames from the whole SP-STM data set where the evolution from isolated
skyrmions at high fields to spin spirals at zero field can be observed. The two-lobe appearance of skyrmions is
due to a predominantly in-plane magnetization of the Cr tip [31, 32]. The strip-out of skyrmions starts in
figure 9(c) where a skyrmion, labeled (1), has jumped to a different position and a skyrmion (2) has developed an
elongated shape. In figure 9(f) more skyrmions have adopted elongated shapes, a process that seems to be
influenced and assisted by defects, see skyrmion (3), and the repulsive interactions with other skyrmions and
chiral modulations along the sample edges (so called surface twists) [35, 56]. The strip-out process can be
quantified more accurately in an area with only one strongly pinning defect, see detailed view in figure 10. In
figure 10(c) the skyrmion shape starts to deviate from rotational symmetry at ;1yH ~ 1.1 T and becomes more
and more elongated through figures 9(d) and (e). Other skyrmions retain axial symmetry even at much lower
fields. The calculated value of the strip-out field for k = 1.315 equals 1, H,; = 0.65 T. The images in figure 9 (see
also video materials in [32]) show that the elliptical instability field has different values for different skyrmions
and strongly depends on skyrmion-skyrmion interactions, interactions with sample edges and defects. Similar
effects are characteristic for strip-out instabilities of isolated bubble domains (see e.g. [54]).

To determine the skyrmion collapse field with reasonable statistical accuracy, we have monitored the
repeated creation and annihilation of a skyrmion at higher tunnel bias and current as a function of applied field.
With the tip positioned above the pinning defect, we monitored the telegraph noise in the spin-resolved dI/dU
signal and extracted the average lifetime of the skyrmion as a function of applied field (see insets in figure 1 1).
The skyrmion lifetime decreases roughly exponentially [57] down to a value of 5 ms at 4.5 T reaching the time
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Figure9. Field-dependent dI/dU maps of PdFe/Ir(111) takenat T = 4.2 K, U=20 mV and I = 3 nA. The extension of elliptic
deformations in isolated skyrmions in decreasing applied magnetic fields (a-f) is terminated by the formation of cycloid patterns (g, h).

wH= 2739 mT

999 mT 825 mT 564 mT

Figure 10. Detailed view of an isolated skyrmion. With decreasing external magnetic field the skyrmion gradually develops an elliptical
shape and finally stretches into a spiral domain.

resolution limit of our setup. At this field value the skyrmion state is still metastable and the collapse field must
therefore be higher than 4.5 T.

Minimization of functional (27) with p; = 24 and k = 1.315 yields the collapse field 4.4 T, in reasonable
agreement with the experimental data.

4. Conclusions

Detailed SP-STM investigations of magnetic states in PdFe/Ir (111) thin films and a comprehensive theoretical
analysis within the standard model (2) enable to describe the basic magnetic properties of isolated chiral
skyrmions and describe their evolution in a broad range of applied magnetic fields.

The equilibrium states of isolated axisymmetric skyrmions are described by differential equation (17)
common for different groups of chiral magnets [2, 3]. Moreover, similar equations describe axisymmetric
solitonic states in other condensed matter systems with broken inversion symmetry [15] including
noncentrosymmetric antiferromagnets [68, 69] and chiral liquid crystals [58—60].

This implies a universal character of chiral skyrmion properties and allows to consider the investigations in
PdFe/Ir films as representative of the entire phenomenon. These investigations include general features of the
chiral skyrmion evolution in applied magnetic fields terminated at lower fields by the formation of skyrmion
condensates or by elliptic instabilities of individual skyrmions and the collapse of the skyrmion core at high
fields.

In this paper we have investigated magnetic properties of solitary skyrmions only and neglected their
interactions with other skyrmions, with chiral modulations arising at the sample edges[56], and different types
of defects. We also have considered skyrmions magnetically homogeneous along their axis. This assumption is
justified by the structure of PdFe/Ir (111) bilayers that exclude magnetic modulations along the film thickness
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Figure 12. Projections of m onto the basal plane in the core of chiral skyrmions for noncentrosymmetric uniaxial ferromagnets [2].

[2]. In thicker cubic helimagnets and uniaxial ferromagnets with D,, and C,, symmetry, however, such
modulations are physically admissible and influence magnetic properties of these systems [35, 56].

Recently chiral skyrmions and bubble domains have been investigated in magnetic multilayers with a strong
easy-axis magnetic anisotropy [54, 65—67]. In such systems, the interlayer exchange and dipole couplings play an
important role in the formation of the equilibrium magnetic states. Stray fields for bubble domains in magnetic
multilayers have been calculated and investigated in [54]. In a similar way, the equilibrium magnetic
configurations and stray-field energy can be derived for chiral skyrmions by applying methods and results of
[34, 39, 40, 54].
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Appendix

A.1. Skyrmion structure in different classes of uniaxial helimagnets
Functional forms of wp, energy contributions are determined by crystallographic symmetry of a
noncentrosymmetric magnetic crystal [1,2, 61].

wP =L+ £9), wiP =LY+ Ly, (A1)
Cu: W1, Dyg: W1, Dy:wd™, £,
Saz w7, w1 Cos ™, wi®, LG, (A2)
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For 0 (p, ), ¥ (p, ¥)
wH = cos(1h — )f, — sinf cos O sin(eh — )1,

~ Linw — )6, + Lsinbcostcos@ — )i, (A3)
P P

wl(f) = cos(y) + )0, — sinf cos O sin(y + ¢)1,
_1 sin(y 4+ )0, — 1 sin @ cos 0 cos(y) + ©)¥, (A4)
p p

wit) = sin(1) — )6, — sinf cosd cos(yh — )1,

+ lcos(z[x - )0, — lsin9 cos 0 sin(y — @)1, (A.5)
p p

wi) =sin(y + )0, — sinf cosd cos(y + ©) v,

+ 1 cos(y + @), — 1 sin 6 cos @ cos(y + ), (A.6)
p p

The solutions 1) (¢) are determined by crystal classes of the system [2].

Cm/:w:@) Dzd2¢=—¢+ﬂ/2’ Dn¢¢=¢+7f/2»
S4w:—@+w1; an:@-f—’ll)l (A7)

For ferromagnets belonging to S, and C,, classes energy functionals wp, include two terms:
wp = Dyw( ™ + Dyw{™ for Syand wp = Dyw™ 4+ D,wi™ for C,.. Angles 1, = arctan(D,/D;) and the
effective values of the DM constant are D = /D + D;.

For noncentrosymmetric cubic ferromagnets belonging to T and O crystallographic classes the energy
functional wp, has the following form [61]

wp = /,:(yzx) + LECYZ) + L(Z’;) = m - rotm, (A.8)

and stabilizes solutions with ) = 7/2 + .
The skyrmion energy densities for all these structures can be reduced to a common functional form [3].

A.2. Solutions for one-dimensional modulations
For one-dimensional modulations propagating along the £ — axis the energy functional (2) can be written as
W= A(H% + sin? 91/}%) + wp — K cos?6 — p1yMH cos 6. (A.9)

In the DM energy contribution wp, (A.9) Lifshitz invariants of type [,SJ’»‘), ngy ) induce modulations
propagating in the xy plane (e.g. helicoids and cycloids in figures 2(a), (b)), and invariants ngy) favour modulations
along the z-axis (cones).

Helicoids and cycloids. To be specific, we consider in-plane modulations propagating along the x— axis.
Depending on the magnetic crystal symmetry, different types of modulations are stabilized by the wp, energy
functional [2]. Particularly, in cubic helimagnets and uniaxial ferromagnets of D,, crystallographic classes, M
rotates as a Bloch-type domain wall (helicoids), and in uniaxial ferromagnets with C,,, symmetry the
magnetization rotates along the propagation direction like a Néel-type domain wall (cycloids) (figures 2(a), (b)):

m = ¢, sinf (x) + €; cosf (x) (helicoids),

m = ¢, sinf (x) + €, cosf (x) (cycloids). (A.10)
The Euler equation for the functional
wn(0) = AG2 — DO, — puyMH cos — K cos*0 (A.11)

yields magnetization profiles 6 (x) for helicoids and cycloids [1]. Analytical solutions for 6 (x) describe helical
modulations distorted by the applied field and uniaxial anisotropy [1]. These helicoids (cycloids) gradually
unwind into a set of isolated domain walls at critical line Hy, (K) [1, 3, 17].

Cones. In cubic helimagnets and uniaxial ferromagnets with C,, and D,, symmetries, the DM energy
functional wp includes Lifshitz invariants ££fy) (A.2), (A.8) favouring chiral modulations (cone phases) along the
z— axis. Minimization of the energy functional

wn(0) = AO2 — DO, — p1,MH cos ) — K cos? 0 (A.12)
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yields the solutions for single-harmonic modulations describing the cone phase [42, 61]:
-1
H K
cos = —|1 - —]| , =z/Lp. A.13
o ( Ko) Y=2z/Lp (A.13)

These equations include the characteristic parameters of a uniaxial chiral ferromagnet (16).

A.3. Characteristic lengths and critical parameters
In uniaxial noncentrosymmetric ferromagnets, chiral modulations arise as a result of a competition between the
DM interactions favouring a rotation of the magnetization, the exchange coupling and the ‘potential’ energy
f () = —pyMH cos — K cos®§ tending to suppress such modulations. The balance between the chiral
energy wp (6, 6,) and the potential energy contributions f (¢) determine the equilibrium spin configurations in
chiral magnets. At zero field and for zero anisotropy single-harmonic modulations 6 = g,x (g, = D/(2A))
minimize the functional (A.9). In the opposite limit of strong anisotropy (K > 72D?/(16A)) these modulations
transform into a set of isolated 180° domain walls separating the homogeneous states with 6, = 0, 6, = .

The width of an isolated Bloch domain wall L, its energy, ,, and anisotropy field H, are as follows:

L= |2, 4y =4JAK. H, = —~ (A.14)
K ,U/OMO

These are the fundamental parameters describing magnetic states in a common (centrosymmetric) uniaxial
ferromagnet [38]. To demonstrate a competing character of the magnetic interactions in chiral uniaxial
ferromagnets, we consider an isolated domain wall at zero field that separates the homogeneous states with
0, = 0and 6, = 7. The equilibrium states of this domain wall are derived by minimization of functional (A.9)
for H=0[38]. The standard calculation of the wall energy [38] ~,, = ‘]; . [wh(8) — wy (0)]dx yields the

following result [3, 62]

v = 4JAK — 7|D| = 47rA(l - 1). (A.15)
Ly Lp

The first (positive) term in (A.15) is the wall energy of a uniaxial ferromagnet [38] arising as a common effect of
the uniaxial anisotropy pinning the magnetization vector along the easy-axis and the exchange stiffness
suppressing deviations of M from these directions. The negative energy contribution in ,, (A.15) is due to the
DM interactions favouring modulations of the magnetization with a specific rotation sense. The strength of this
‘winding force’ is characterized by 1/Lp: the larger the DM coupling, the smaller the period of the modulations.
For Lp < wLgthe wall energy becomes negative manifesting the instability of the homogeneous states with
respect to chiral modulations.

The dimensionless parameter ¢ introduced as [3, 62]

™ |D | 7TLB
Y 4JAK( — »), 2 Ak I (A.16)
provides the criterion for the existence of chiral modulated states. For »c > 1, the DM interactions overcome a
pinning of the magnetization along easy-axis direction and stabilize modulated states. For 0 < 3¢ < 1chiral
modulated phases are totally suppressed, and chiral patterns exist as metastable localized states in a form of
isolated skyrmions and domain walls (kinks).

Parameter > (A.16) is similar to the Ginzburg-Landau parameter scg; = A/§ in the theory of Abrikosov
vortices (the mixed state) in superconductors [63]. The parameter s is a ratio of two characteristic lengths, the
coherence length & and the penetration depth . Abrikosov vortices exist in superconductors with sz, > 1//2
(type-1I superconductors) [63, 64]. Physical analogies between superconductor’s mixed states and chiral magnetic
modulations are discussed in [3, 62]. The characteristic lengths Lp and L provide different ways to introduce
reduced variables into model (12).

The reduced energy functional based on the characteristic length L with control parameters h = H/H,
and 7 (A.16) and the reduced magnetic field (where H, define in equation (A.14) is convenient for investigations
ofisolated skyrmions in helimagnets with a strong uniaxial anisotropy (0 < s < 1)[33, 34].
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