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Abstract
Axisymmetric solitonic states (chiral skyrmions)werefirst predicted theoreticallymore than two
decades ago.However, until recently they have been observed in a formof skyrmionic condensates
(hexagonal lattices and othermesophases). In this paper we report experimental and theoretical
investigations of isolated chiral skyrmions discovered in PdFe/Ir(111) bilayers two years ago by
Romming et al (2013 Science 341 636). The results of spin-polarized scanning tunnelingmicroscopy
analyzedwithin the continuum and discretemodels provide a consistent description of isolated
skyrmions in thin layers. The existence region of chiral skyrmions is restricted by strip-out instabilities
at lowfields and a collapse at high fields.We demonstrate that the same equations describe
axisymmetric localized states in all condensedmatter systemswith brokenmirror symmetry, and thus
ourfindings establish basic properties of isolated skyrmions common for chiral liquid crystals,
different classes of noncentrosymmetricmagnets, ferroelectrics, andmultiferroics.

1. Introduction

Long-period homochiralmagnetizationmodulations (helical phases) [1] and axisymmetric solitonic patterns
(vortices or skyrmions) [2–4] are two types of unconventionalmagnetic states attributed solely tomagnetic
compoundswith broken inversion symmetry and distinguish them from common (achiral)magneticmaterials
(figures 1, 2). Both, extended chiralmodulated phases and localized skyrmionic states are stabilized by specific
Dzyaloshinskii-Moriya (DM) interactions arising in chiralmagnets owing to their crystallographic handedness
[1]. In themicromagnetic energy functionals of noncentrosymmetric ferromagnets these interactions are
described by energy contributions linear in the first spatial derivatives of themagnetization M (Lifshitz
invariants) [1]
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Axisymmetric localized structures (figure 1) are related tomultidimensional topological solitonswith
nonsingular internal structure and finite energy [5]. These particle-like objects are of special interest in
fundamental physics andmathematics [6–8]. Inmost nonlinear physical systems,multidimensional solitons can
exist only as dynamic excitations [9]. However, the corresponding static solutions are unstable and collapse
spontaneously into topological singularities [10].

In nonlinear field theory, the existence and stability of skyrmion solutions is provided by special terms in the
energy functionals.More than five decades ago THSkyrme introduced into the nonlinear fieldmodel an
interaction termwith higher order spatial derivatives that stabilize two- and three-dimensional topological
nonsingular solitons (now commonly addressed as skyrmions) [11]. Since that time, field theorists have been
intensively investigating this family of solitons (skyrmions)within the Faddeev–Skyrme and kindredmodels
[6, 11, 12].
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Lifshitz invariants of type (1) provide the only known alternative to the Skyrmemechanism that yield regular
solutions for axisymmetric skyrmions [3, 13–15]. These invariants arising in noncentrosymmetric condensed
matter systems (including chiralmagnets, liquid crystals,multiferroics, and nanolayers ofmagneticmetals with
interface inducedDzyaloshinskii–Moriya interactions) introduce a unique class ofmaterials wheremesoscopic
skyrmions can be induced andmanipulated.

In a broad range of appliedmagnetic fields and temperatures isolated skyrmions condense into hexagonal
lattices [3, 16, 17] or other types of two-dimensionalmodulated states [18, 19]. During the last years, intensive
experimental efforts have been undertaken tofind indications of hexagonal skyrmion lattices in different groups
of chiral ferromagnets (see e.g [20–29] and bibliography in [17]). Particularly, direct observations of skyrmion
lattices have been reported in free standing nanolayers of cubic helimagnets in [23] (and the following papers of
this group [24, 30]). These results reveal axial symmetry and homochirality of the embedded skyrmions, and
observed properties of skyrmion lattices were found to be in close correspondence with theoretical results. To
date the LTEMstudies of confined cubic helimagnets have focused on the skyrmion condensates (skyrmion
lattices and clusters) [23, 24, 29, 30]. Spin-polarized scanning tunnelingmicroscopy (SP-STM)has been able to
identify isolated skyrmions in the saturated states of PdFe/Ir(111)films [31], and subsequently resolve their
internal structure [32].

From a theoretical perspective, the basicmagnetic properties of isolated skyrmions and skyrmion lattices in
bulk noncentrosymmetricmagnets have been investigated in a number of earlier contributions [3, 14, 33].
Recently the experimental advances in the observation of chiral skyrmion states [16, 18, 21–30] have renewed
the interest to this phenomenon and triggered intensive theoretical studies of stationary andmoving skyrmions
[17, 19, 35–37, 42–47, 49–51]. Inmost of these contributions, onlymagnetic properties of bound skyrmionic
states are addressed (skyrmion lattices and individual skyrmions confined in nanodots, narrow strips,
nanowires). However,modern theoretical studies have practically paid no attention to the properties of isolated
skyrmions, which are fundamental to understanding the physics ofmagnetic skyrmions and their applications
in potential spintronic devices [34, 46].

The discoveries of isolated chiral skyrmions in PdFe/Ir (111) bilayers [31] and themethod for a
determination of their internal structure [32] open up a new dimension in the investigations of chiral skyrmions.

Figure 1.Axisymmetric isolated skyrmions: (a) in cubic helimagnets and uniaxial ferromagnets withDn symmetry; (b) in uniaxial
ferromagnets withCnv symmetry [2].

Figure 2.Basicmodulated phases in chiral ferromagnets: one-dimensional helicoids (a) and cycloids (b) and two-dimensional skyrmion
lattices (c, d). Bloch-typemodulations (a, c) arise in cubic helimagnets and ferromagnets withDn symmetries; Néel-typemodulations
(b, d) are attributed to uniaxial ferromagnets withCnv symmetries [2].
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Our paper devoted to experimental and theoretical investigations of the evolution of isolated skyrmion
structures under the influence of appliedmagnetic fields represent thefirst step in this direction.

In the theoretical part of this paper (section 2)wedevelop thefirst consistent theory of isolated chiral
skyrmions in thinmagnetic layers and apply ourfindings for the analysis of isolated skyrmions observed in
PdFe/Ir(111) bilayers. In section 2.2we apply the qualitative theory of differential equations to expoundmain
features of isolated chiral skyrmions and elucidate their physical nature, investigate the conditions of the
elliptical instability at lowfields and calculate within the discretemodel the skyrmion collapse field. In section
IICwe construct the phase diagramof the solutions for isolated skyrmions.

In the experimental part we present the detailed evolution of isolated skyrmions in PdFe/Ir(111) bilayers
from the strip-out at lowfields to the collapse at high fields.

2. Theory

Aphenomenological theory of chiralmodulations in noncentrosymmetricmagnetic crystals has been developed
by I. Dzyaloshinskii in 1964 [1]. These papers also include analytical solutions for one-dimensional chiral
modulations (helicoids and cycloids). Theoretical investigations of chiralmodulations in bulk and confined
noncentrosymmetric ferro- and antiferromagnets have been carried out inmany of the papers discussed in [17].

2.1. Themicromagnetics of chiralmodulations
2.1.1. Energy functional and symmetry
In this paper we investigate isolated skyrmions in a thin layer of a noncentrosymmetric ferromagnet. As amodel
we consider a thin plate infinite along the -x and -y axes and of thickness L along the -z axis. In the following
sectionswe specify themodel and discuss its limitations. For afilm of a noncentrosymmetric uniaxial
ferromagnet in the appliedmagneticfield ( )H e perpendicular to the film surface, themicromagnetic energy
density writtenwithin terms quadratic in the components of themagnetization vector M has the following
standard form [1]:

m m= + - - -( ) ( ) ( · ) · · ( )( ) ( )w A w K MH Mgrad m m m n m n m H 2, 2D
e d2 2

0 0

whereA is the exchange stiffness constant,K is the uniaxial anisotropy constant, ( )H d is the demagnetizing field,

q y q y q= =∣ ∣ ( ) ( )m M M sin cos , sin sin , cos 3

is the reducedmagnetization, n is the unity vector directed perpendicular to thefilm surface.
TheDzyaloshinskii-Moriya energy densitywD is composed of Lifshitz invariants (1):
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The functional forms of energy densitywD are determined by crystallographic symmetry of a
noncentrosymmetricmagnetic crystal and are listed in equations (A.1), (A.2). Lifshitz invariants (4) favour
spatialmodulations with afixed rotation sense along the xk directions [1]. A competition between the chiral
energywD and other energy contributions leads to the formation of isolated chiral states [2, 3, 14] and spatially
modulatedmagnetic phases [1, 3].

The Euler equations for energy functional (2) together withMaxwellʼs equations,

m= + =[ ] ( )( ) ( )H H Mrot 0, div 0, 5d d
0

yield solutions for different types of chiralmodulations (figures 1, 2, 12).

2.1.2. Demagnetization effects
Generally the equilibriummodulated patterns ( )m r in a chiralmagnet are derived by numerically solving the
above set of nonlinear differential equations including non-local stray-field calculations [14, 34]. Contrary to
softmagneticmaterials where demagnetization fields sufficiently influence the equilibriummagnetic states [38],
in chiralmagneticmaterials theDM interactions strongly suppress these effects [34]. As a result inmany
practical cases amagnetostatic problem is reduced to analytical solutions [3, 34, 39], and the stray-field energy
can be expressed as local energy contributions in energy functional (2) [3, 34].

It was also found that for one-dimensionalmodulations and two-dimensional axisymmetric structures, the
internal stray-field energy has a local character [3, 38]. Particularly, for ferromagnets with Cnv symmetry the
internal stray-field energy can be taken into account by the following redefinition of the anisotropy constant,

m + = ( )K K K K M, 2. 6d d 0
2
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2.1.3. The equations for axisymmetic skyrmions
We introduce cylindrical coordinates for the spatial variable j j= ( )r r zr cos , sin , and considermagnetic
patterns homogeneous along the z-axis with themagnetization antiparallel to the appliedfield in the center
(q p= for r= 0) and approaching the parallel orientationwhen the distance from the center approaches infinity
(q  0 for  ¥r ). For q j( )r, , y j( )r, the energy functional (2) is reduced to the following form:

/q q q y y q m q m= + + + + - - -j j · ( )( ) ( )⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥w A

r r
w K MH Mm H

1
sin

1
cos cos 2, 7r r D

e d2
2

2 2 2
2

2 2
0 0

and theDzyaloshinskii-Moriya energy functionals q y j( )w r, , ,D are listed in equations (A.1), (A.2).
The equationsminimizing energy (7) include rotationally symmetric solutions,

q q y y j= = =( ) ( ) ( ) ( )( ) ( )r rH H, , . 8d d

Analytical solutions y y j= ( ) for uniaxial noncentrosymmetric ferromagnets [2] and cubic helimagnets
(figures 1, 2) are listed in equation (A.7).

To date, only two types of skyrmionic states from this list have been identified in chiral ferromagnets by
direct experimental observations: skyrmionic patternswith Bloch-typemodulations (figure 1(a))

q q= +j ( ) ( ) ( )e r e rm sin cos 9z
 

have been observed in free standing nanolayers of cubic helimagnets (see e.g. [23, 24, 30]), and skyrmion lattices
with ́Neel-typemodulations (figure 1(b))

q q= +( ) ( ) ( )e r e rm sin cos 10r z
 

have been observed in Fe/Ir(111) and PdFe/Ir(111)nanolayers [27, 31, 32, 41] and in the rhombohedral
ferromagnet GaV4O8with C v3 symmetry [28].

Thefirst direct observations of isolated skyrmions have been reported in PdFe/Ir(111)nanolayers [31].
These chiral solitonic structures have been investigated in a broad range of appliedfields [31, 32].

After integrationwith respect tof, the total energy  for an isolated skyrmion of Bloch- and ́Neel-type in an
appliedmagnetic field perpendicular to thefilm surface can be reduced to the following form:

òp q=
¥

( ) ( ) f r r r2 , d . 11
0

Here q q= -( ) ( ) ( )f r w r w, , 0 is the difference between the skyrmion energy density and that of the saturated
state, m= - -( )w K MH0 0 :

q q q q q q q m q= + - + + + -( ) ( ) ( )⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠f r A

r
D

r
K H,

1
sin

1
sin cos sin 1 cos . 12r r

2
2

2 2
0

In equation (12) the perpendicular component of the internalmagnetic field ºH Hz equals the difference
between the value of the appliedmagnetic field º( ) ( )H He

z
e and the perpendicular component of the

demagnetization field imposed by the filmwith an isolated axisymmetric skyrmion ( ( )Hd
sk ): = -( ) ( )H H He

d
sk .

The analytical solution for the stray-field ( )Hd
sk has been derived by Y. Tu [34, 39]. Inmost nanolayers of chiral

magnets investigated so far, skyrmion sizes are smaller than the layer thickness ( <r ds ). For such ‘thick’films
the stray-field ( )Hd

sk can be simplified and yields the following relation between the applied and internalfields:
m= -( )H H Me

0 . In PdFe/Ir (111)films investigated in this paper, isolated skyrmion cores aremuch larger
than thefilm thickness (r ds  ). In this limiting case of‘ultrathin’films, the stray-field ( )Hd

sk becomes
exponentially small due to dipole-dipole interactions between the upper and bottom film surfaces, and the
internalfield is practically equal to the external field ( @ ( )H H e ). A similar drastic reduction of the stray-field
occurs in ultrathinmagnetic filmswith isolated bubble and stripe domains [40].

The Euler equation for energy functional (12),

q q q q q q q m q+ - + - - = ( )⎜ ⎟⎛
⎝

⎞
⎠A

r r

D

r
K MH

1 1
sin cos sin sin cos sin 0, 13rr r 2

2
0

with boundary conditions

q p q= ¥ =( ) ( ) ( )0 , 0, 14

yields the equilibrium structure of isolated axisymmetric skyrmions [2, 3, 14]. Note that for ́Neel-type
skyrmions,K includes the stray energy contribution (6).

Dimensionless variables

r p= = = ( )r L h H H k K K2 , , , 15D D 0

are commonly used in recent papers to describemodulated states in uniaxial chiral ferromagnets and cubic
helimagnets (see e.g. [17, 26, 32, 42]). Herewe use the characteristic parameters of a uniaxial chiral ferromagnet
[3, 42]:
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p
m= = =

∣ ∣
( )L

A

D
H

D

AM
K

D

A

4
,

2
,

4
. 16D D0

2

0

2

LD is the period of a helix at zerofield and zero anisotropy,HD is the saturatedfield andK0 is the critical
anisotropy (A.13).

With variables (15), the equation for axisymmetric skyrmions (13) is reduced to the following form:

q
q
r r

q q
q

r
q q q+ - + - - =rr

r ( )k h
1

sin cos
2 sin

sin cos sin 0, 17
2

2

with boundary conditions (14).

2.2. Solutions for axisymmetric skyrmions
The equilibrium skyrmion profiles q r( ) are derived by solving the boundary value problem (13) and (14)with a
finite-differencemethod [14]. Typical solutions of equation (13) are plotted infigure 3, and the existence areas
for isolated skyrmions are indicated in the phase diagramof the solutions (figure 4).

The solutions q r( ) are linear near the skyrmion axis ( p q r- µ( ) for r 1 ) and decay exponentially at
high distances from the center (r 1 ) q r rµ - +( )k hexp .

Usually the functions q r( ) have arrow-like shapewith the steepest slope at the center of the skyrmion
(r=0). They transform into bell-shape profiles only near the critical lineHel . Inmicromagnetism, the
characteristic size of a localizedmagnetization profile q r( ) is defined as [38]

q q= - =
-( ) ( )r r rd d , 18s r r0 0

1
0

where q(r ,0 0) is the inflection point of the profile q ( )r (figure 3(a)).
Theoretically, chiral skyrmions have been investigated by numericalmethods inmany recent publications

[17, 19, 35–37, 42–50]. These findings demonstrate their rich spectrumofmagnetic states characteristic for
chiral skyrmions and various scenarios of their evolution under the influence of applied fields [46, 49, 50].
However, they still require substantial analytical analysis and physical comprehension. The qualitative theory of
nonlinear differential equations together with other analyticalmethods provide effective tools to gain important
insight into the physics of chiral skyrmions and establishmathematical relations between them and other types
ofmagnetic solitons.

2.2.1. Visualization of solutions on the (q q, r) phase plane
Solutions q ( )r of the boundary value problem (14) can be derived by solving the auxiliary Cauchy initial value
problem for equation (13),

q p q= = -( ) ( ) ( )a0 , 0 . 19r

For illustrationwe consider theCauchy problem given by (13) and (19) forH= 0 and p= =( ) D AK4 0.8
(A.16). The calculated profiles q ( )r a, and the corresponding curves q q( )r in the interval < <[ ]a0.4 4.0 are
plotted infigures 3(c), (d).Most of curves q ( )r a, oscillate near lines q p=  21,2 , themaximumvalues of

q=w K sina
2 , and the corresponding profiles q q( )r spiral around the attractors, points ( p 2, 0). Among these

curves there is a singular line (with =a 1.62471)which ends in the saddle point (0, 0) and, thus, represents a
solution of the boundary value problem for isolated skyrmions.

Figure 3. (a)Typical localized solutions of the boundary value problemwithmagnetization profile q r( ). The first three excitation
modes x r( )i with positive eigenvalues li (b) for the solution for K K0 = 2.8. ‘Shooting trajectories q r( ) of theCauchy problem (c)
and corresponding phase trajectories q qr ( ) (d).
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The visual representation of the solutions for the auxiliary Cauchy problem (13), (19) as parametrized
profiles q ( )r a, (figure 3(c)) and q q( )r curves in (q q, r) phase plane (figure 3(d)) revealmathematical regularities
in the formation of the localized states.

To demonstrate a crucial role of theDM interactions in the stabilization of chiral skyrmions, in the following
we compare the phase portrait infigure 3(d)with special cases ofmodel (12)withD= 0.

Isotropic ferromagnets ( = = =D K H 0). The Euler equations for energy functional of an isotropic
ferromagnet = ( )w A grad m 2 yield rigorous analytical solutions for axisymmetric skyrmions q ( )r , y j( )
derived by Belavin and Polyakov [52]

y j a q d= + =( ) ( ) ( )N r, tan 2 , 20N

whereα and d > 0 are arbitrary values andN are positive integers. The energy (11) for solutions (20)
p= AN80 , does not depend on values δ andα [52]. ForN= 1 a set ofmagnetization profiles q d( )r (20) and

phase portrait trajectories q q( )r

q d dq q= = -( ) ( ) ( )r2 arctan , 2 sin 2 , 21r
2

are plotted infigure 5. For d > 0, the curves q q( )r start in points (p d-, 2 ) and end in the saddle point (0, 0).
However, any anisotropy ormagnetic fieldwill destabilize this solution.

Uniaxial centrosymmetric ferromagnets (D= 0). In this case equation (13)has no stable solutions for isolated
skyrmions. For >H 0 all phase trajectories q q( )r spiral around attractor ( p- 2, 0). For <H 0 equation (13)
has radially unstable solutions for isolated skyrmions as proved byDerrick-Hobart theorem (For details
see [3, 10]).

2.2.2. Derrick scaling identities and a virial theorem for chiral skyrmions
Analysis of skyrmion energy  (11) under scaling transformations offers further important insight into the
physics of chiral skyrmions.We consider a family of functions J J h=( ) ( )r r obeying the boundary conditions
(14). Here h > 0 is an arbitrary constant describing uniform compressions ( h< <0 1) or expansions (h > 1)
of profile J ( )r . For rescaled functions J J h=( ) ( )r r , the skyrmion energy

~
 (11) can be expressed as a

function of η:

h h h= - +
~( ) ( )    . 22e D 0

2

The values of the exchange (e), Dzyaloshinskii-Moriya (D), and potential (0) energy contributions for profile
J ( )r (11) are given as follows:

òp J
x

J x x a= + ºx

¥


⎛
⎝⎜

⎞
⎠⎟A A2

1
sin d ,e

0

2
2

2
1

òp J
x

J J x x a= + ºx
¥

∣ ∣ ∣ ∣
⎛
⎝⎜

⎞
⎠⎟D D2

1
sin cos d ,D

0
2

Figure 4. In the phase diagram in variables k and h the existence area ofmetastable isolated skyrmions is restricted by the strip-out
critical line ( )h kel . The inset shows the regions of global stability of themodulated (helicoidal and skyrmion lattice) and the spatially
homogeneous saturated phases (for details see [17]).
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òp J m J x x= + -
¥

[ ( )] ( ) K MH2 sin 1 cos d 230
0

2
0

or a m a= + K MH0 3 0 4, where ai are the numerical coefficients given by the values of the integrals in
equation (23).

Equation (22) shows that theDMenergy plays a crucial role in stabilizing skyrmions [2, 13]. In
centrosymmetric ferromagnets ( = 0D ) isolated skyrmions are unstable with respect to compression and
collapse into a singular line (h  0) (Derrick-Hobard theorem [10]). Skyrmion solutions thatminimize the free
energy (22) only occur for nonzeroDzyaloshinskii-Moriya energy contributions.

Ansatz solutions. Potential h
~( ) (22) has a convenient form for analysis of skyrmion solutions with trial

functions of type J J r h= ( ) that obey the boundary conditions (14). Particularly, a linear ansatz

J p h h J h= - < = >[ ( )] ( ) ( ) ( )r r r1 , 0 , 24

has been used in [2] to introduce the phenomenon of chiral skyrmions. The ansatz,

J h h= -( ) [ ( )] ( )r r4 arctan exp , 25

based on solutions for isolated ◦360 Blochwalls [38] provides a goodfit to the solutions of equation (13). In [32],
magnetization profiles for isolated skyrmions have beenfitted by a combination of functions of type (25). For the
trial function J h( )r in equation (25), the total energy (22) can bewritten as

h p m h h= + + -( ) ( ) ( ) A K MH D2 4.31 1.59 1.39 3.020
2 . For zero anisotropy (k= 0) this ansatz yields

the transition field into the skyrmion lattice = =h H H 0.760s s D (cf. with the rigorous value =h 0.801s and
=h 0.675s for the linear ansatz (24) [2]).
For h

~( ) (22) the equilibrium skyrmion size is

h
p

a
a a

=
+

( )L

k h2 2
, 26D

0
2

3 4

expressed as a ratio of theDzyaloshinskii-Moriya to the potential energy contributions for the trial function.
The virial theorem for isolated axisymmetric skyrmions is derived by integration of the Euler equation (13).

Partial integration leads to the following virial relation between the equilibrium values of the potential andDM
energies [33] =¯ ¯ 2 D0 where ̄0, ̄D are the integrals (23) calculated for the solutions of
equation (13), J q r= ( ).

2.2.3. Radial stability and collapse at high field (discretemodel)
The stability of the solutions q r( ) of the boundary value problem (13), (14) under small radial distortions z r( )
(z z= ¥ =( ) ( )0 0) has been investigated in [14]. This problem is reduced to the spectral problem for the
perturbation energy functional [14]. By numerically solving the eigenvalue problem for this functional, the
radial stability of isolated skyrmions has been established in a broad range of the control parameters ( )k h, [3].
Contrary tomagnetic bubbles, which collapse withfinite radii at certain criticalfields [38], the solutions of the
boundary value problem (13) and (14) (figure 3) exist at arbitrary highfields. In increasing fields their sizes
gradually decrease and asymptotically approach zero.

The continuummodel (2), however, becomes invalid for localized solutions with sizes of few lattice
constants. In this regionwe investigate solutions for chiral skyrmionswithin the discretemodels.We consider
classical spins, Si, of unit length on a two-dimensional square lattice with the following energy functional [47]
= +E E ED0 where

Figure 5.Magnetization profiles for Belavin-Polyakov instantons (a) and the corresponding phase portraits of the solutions (b).
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å å= - - +
á ñ

( · ) [ · ( · ) ] ( )E J KS S H S S n , 27
i j

i j
i

i i0
,

2

and theDzyaloshinskii-Moriya energy equals

å= - ´ + ´+ +( · ˆ · ˆ) ( )ˆ ˆE D x yS S S S 28D
i

i i x i i y

for Bloch-typemodulations, and

å= - ´ - ´+ +( · ˆ · ˆ) ( )ˆ ˆE D y xS S S S 29D
i

i i x i i y

forNéel-typemodulations (á ñi j, denotes pairs of nearest-neighbor spins).
For a helix q q= ( )S cos , sin , 0i i i propagating along the x-axis at field and anisotropy ( = =KH 0), model

(27) is reduced to

å q q q q= - - - -+ +[ ( ) ( )] ( )ˆ ˆE J Dcos sin , 30
i

i i x i i x

and yields the equilibriumperiod p= ( )p D J2 arctan0 (p0 is the number ofmagnetic ions corresponding
to q pD = 2 ).

The equilibrium solutions for isolated skyrmions are derived by numerically solving the equations
minimizing the energy functional E (27). Typical solutions for the equilibrium skyrmion size p as a function of
the appliedfield are plotted infigure 6(c). The solutions withfinite sizes exist only below a certain critical
(collapse)field ( )h pc 0 (figure 6(a)). The criticalfield ( )h pc 0 increases without limit with increasing p0
(figure 6(b)) and, thus, signifies a transition from the discretemodel to the continuousmodel.

2.2.4. Elliptic instability (strip-out) at low fields
Isolated skyrmions exist asmetastable states above the criticalfield ( )h ks (figures 4(a), (b)). Below this line the
energy  (11) becomes negative and skyrmions tend to condense into a hexagonal lattice [3]. However, if the
formation of skyrmion lattices is suppressed (as in PdFe/Ir (111)films [32]) isolated skyrmions continue to exist
below the critical line ( )h ks (with the skyrmion core energy density lower than that of the surrounding saturated
state). At the same time isolated skyrmions have a tendency to elongate and expand into a bandwith helicoidal or
cycloidalmodulations and eventually tofill thewhole space, since the spiral state represents theminimumwith
lower energy as compared to the localminimawith themetastable isolated skyrmions. These (elliptic)
instabilities are similar to ‘strip-out’ instabilities of isolatedmagnetic bubbles at a certain critical field [53]
observed in common ‘bubble-domain’films [38] and inmagnetic nanolayers with perpendicular anisotropy
[54]. A theory of elliptic instabilities for chiral skyrmions have been developed in [33]where a strip-out field has
been derived from the stability analysis of the skyrmion energy (11)with respect to (elliptic) perturbations of
type

Figure 6.Micromagnetic energies of an isolated skyrmion (a) and a bubble-domain (b) as function of their sizes for selected values of
the appliedmagnetic fields [14, 38]. Isolated bubbles collapse at critical fieldHbcwith finite radius rbc. Isolated chiral skyrmions exist at
very high fieldswithout collapse. The equilibrium skyrmion sizes p as functions of the applied field calculated for different values of p0
(30) indicate the collapse of chiral skyrmions (c) (p is defined here as a diameter of a circle encompassing a skyrmion core areawith

m 0.995z ).
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r r eh r j y y z r j= + = +˜ ( ) ˜ ( ) ( )cos 2 , , , 31

where (e 1 )[33] . In [33], the strip-out fieldHel has been calculated for stray-field free elliptic distortions of
Bloch-type isolated skyrmions. There, a set of parametrized ansatz functions of type h r q q= +( ) ( )asin 1 sin
with optimized values of awere used [33]. In this paper the critical line ( )h kel ( < <k k0 a ) for a Bloch-type-
skyrmion (figure 4) has been calculated by directminimization of the perturbation energy.

Within the discretemodel (27) the critical field hel has been calculated for zero anisotropy (k= 0) and for
< <p6 300 . Figure 7 (a) shows that the strip-out field hel essentially decreases with the decreased size of

skyrmionswhat can be beneficial for possible application of such skyrmions. However, the existence region of
these isolated skyrmions is restricted by the lowerfield of collapse hc.

2.2.5. The k— h phase diagrams
In this sectionwe consider the existence area for isolated skyrmions in themagnetic phase diagram (figure 4).
The energy functional for uniaxial chiral ferromagnets (2)depends on the two independent control parameters,
the reduced values of the applied field, h and uniaxial anisotropy, k (15). Themagnetic phase diagram in
variables k and h collects all possible solutions formodel (2). The calculated phase diagram in the inset offigure 4
shows the existence areas of the cycloids and skyrmion lattices and the transition lines between thesemodulated
phases and the saturated state. The phase diagram indicates the criticalfields at zero anisotropy, the bicritical
pointB (1.90, 0.10), and the critical pointA (2.67, 0) [3] (for a detailed description of this phase diagram see
[17]). Figure 4 shows critical lines for isolated skyrmions (results of the continuummodel (2)). Isolated
skyrmions condense into a skyrmion latticewhen the appliedmagnetic field decreases to the critical value ( )h ks .
However, isolated skyrmions can exist as localized objects below the critical line ( )h ks and strip-out into
helicoids at the critical line hel.

3. Experiment: isolated skyrmions in PdFe/Ir(111)bilayers

Sample preparation and spin-polarized (SP)- STMexperiments were performed in amulti-chamberUHV
system at a base pressure of -·5 10 11mbar.Details of the sample preparation can be found in [31].We use
antiferromagnetic bulkCr tips tominimizemagnetostatic interactions between tip and sample. The SP-STM
measurements were performed at =T 4.2K in perpendicularmagnetic fields of−3 to+3Tesla.We repeatedly
scanned the same sample area while continuously sweeping themagneticfield at a speed of 12.8mT/min,
resulting in a series of imageswith afield difference ofD =B 87 mT.Constant current images andmaps of
differential conductance (dI/dU)weremeasured simultaneously by lock-in technique. All SP-STM images
displayed in this work are dI/dUmaps.We used small bias voltages (U= 20mV) andmoderate currents
(I= 3 nA) tominimize the influence of the tunnel process on the field-dependentmagnetic evolutionwithin the
PdFe bilayer [31].

PdFe/Ir(111) bilayers have a uniaxial anisotropy of ‘easy-axis’ type and exhibit chiralmodulations of ́Neel-
type [31, 32]. It was also established by SP-STMobservations that a cycloid (figure 2(b)) is the ground state of
PdFe/Ir(111)films [31]. Thematerial parameters ofmodel (2) for PdFe/Ir(111) at =T 4.2Kdetermined in
[32, 55] yield the following values for the characteristic parameters (16): = =L a6.44 nm 23.85D 0 i.e. =p 240

( =a 0.27 nm0 is the lattice constant ), m =H 3.46D0 T, = ´K 1.9 100
6 J/m3, m= = ´K M 2 0.76 10d 0

2 6 J/

Figure 7.Collapse (Hc) and strip-out or elliptic instability (Hel) critical fields calculatedwithin the discretemodel (27) for k= 0 and
different values of p0 (30). At the dashed line ( )H ps 0 the isolated skyrmion energy  equals zero, and below this line skyrmions can
condense into the hexagonal lattice (a). Calculated distributions of themagnetization of the skyrmion core for =k 1.315, =p 240
and for =h 0.42 (b) and =h 1.27 (c).
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m3 (‘shape anisotropy’). The sufficiently strong values of ‘easy-axis’ anisotropy ( = =k K K 1.3150 ) ensures the
stability of chiralmodulations in PdFe/Ir(111)filmswith respect to stray-field effects [34, 38] andmake them
convenient objects for investigations of chiral skyrmions [31, 32].

The calculatedmagnetic phase diagramof easy-axis chiral ferromagnets includes the existence areas of one-
dimensionalmodulations and skyrmion lattices (figure 4, Inset) [3, 17]. These chiralmodulations and
transitions between themhave been directly observed by Lorentz transmission electronmicroscopy (LTEM) in
free standing nanolayers of cubic helimagnets [23, 24, 29, 30] and in PdFe/Ir(111) bilayer films by SP-STM
[31, 32].

Isolated skyrmions and their internal structure have been investigated by SP-STM in PdFe bilayers [31, 32].
Following [32]we reconstruct themagnetization profile q ( )r for one of the isolated skyrmions in the film at the
appliedfield m =H 1.110 T (figure 8). These experimental results are in close agreement with the solution of
equation (17) for =k 1.315 and =h 0.321 (or m =H 1.110 T). In free standing films ofmagnetically soft cubic
helimagnets, chiral skyrmions readily condense into hexagonal lattices below ( )h ks (figure 4, inset)
[23, 24, 30, 31]. At low temperatures, however, an enhanced coercitivity of PdFe/Ir (111) bilayers prevents the
formation of skyrmion lattices below ( )h ks (see the results of [32] for =T 4.2K). This offers a unique
opportunity to investigate isolated skyrmions in a broad range of applied fields.

Figure 9 shows selected frames from thewhole SP-STMdata set where the evolution from isolated
skyrmions at highfields to spin spirals at zero field can be observed. The two-lobe appearance of skyrmions is
due to a predominantly in-planemagnetization of theCr tip [31, 32]. The strip-out of skyrmions starts in
figure 9(c)where a skyrmion, labeled (1), has jumped to a different position and a skyrmion (2) has developed an
elongated shape. Infigure 9(f)more skyrmions have adopted elongated shapes, a process that seems to be
influenced and assisted by defects, see skyrmion (3), and the repulsive interactions with other skyrmions and
chiralmodulations along the sample edges (so called surface twists) [35, 56]. The strip-out process can be
quantifiedmore accurately in an areawith only one strongly pinning defect, see detailed view infigure 10. In
figure 10(c) the skyrmion shape starts to deviate from rotational symmetry at m »H 1.10 T and becomesmore
andmore elongated through figures 9(d) and (e). Other skyrmions retain axial symmetry even atmuch lower
fields. The calculated value of the strip-out field for =k 1.315 equals m =H 0.65el0 T. The images infigure 9 (see
also videomaterials in [32]) show that the elliptical instability field has different values for different skyrmions
and strongly depends on skyrmion-skyrmion interactions, interactions with sample edges and defects. Similar
effects are characteristic for strip-out instabilities of isolated bubble domains (see e.g. [54]).

To determine the skyrmion collapse fieldwith reasonable statistical accuracy, we havemonitored the
repeated creation and annihilation of a skyrmion at higher tunnel bias and current as a function of applied field.
With the tip positioned above the pinning defect, wemonitored the telegraph noise in the spin-resolved dI/dU
signal and extracted the average lifetime of the skyrmion as a function of applied field (see insets infigure 11).
The skyrmion lifetime decreases roughly exponentially [57] down to a value of 5ms at 4.5 T reaching the time

Figure 8.Magnetization profile q ( )r for an isolated skyrmion (circles) derived fromSP-STMdata (inset) for the applied field
m =H 1.110 T.Data has been taken along the arrow in the inset. The profile q ( )r can be directly calculated after determining the tip
magnetization direction by fitting a trial function to the skyrmion profile[32]. The solid line is the solution of equation (17) for
=k 1.315 and =h 0.321, rs is the skyrmion core radius defined by equation (18).
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resolution limit of our setup. At this field value the skyrmion state is stillmetastable and the collapse fieldmust
therefore be higher than 4.5 T.

Minimization of functional (27)with =p 240 and =k 1.315 yields the collapse field 4.4 T, in reasonable
agreementwith the experimental data.

4. Conclusions

Detailed SP-STM investigations ofmagnetic states in PdFe/Ir (111) thinfilms and a comprehensive theoretical
analysis within the standardmodel (2) enable to describe the basicmagnetic properties of isolated chiral
skyrmions and describe their evolution in a broad range of appliedmagnetic fields.

The equilibrium states of isolated axisymmetric skyrmions are described by differential equation (17)
common for different groups of chiralmagnets [2, 3].Moreover, similar equations describe axisymmetric
solitonic states in other condensedmatter systemswith broken inversion symmetry [15] including
noncentrosymmetric antiferromagnets [68, 69] and chiral liquid crystals [58–60].

This implies a universal character of chiral skyrmion properties and allows to consider the investigations in
PdFe/Irfilms as representative of the entire phenomenon. These investigations include general features of the
chiral skyrmion evolution in appliedmagnetic fields terminated at lowerfields by the formation of skyrmion
condensates or by elliptic instabilities of individual skyrmions and the collapse of the skyrmion core at high
fields.

In this paperwe have investigatedmagnetic properties of solitary skyrmions only and neglected their
interactionswith other skyrmions, with chiralmodulations arising at the sample edges[56], and different types
of defects.We also have considered skyrmionsmagnetically homogeneous along their axis. This assumption is
justified by the structure of PdFe/Ir (111) bilayers that excludemagneticmodulations along the film thickness

Figure 9. Field-dependent dI/dUmaps of PdFe/Ir(111) taken at =T 4.2K,U= 20 mVand I= 3 nA. The extension of elliptic
deformations in isolated skyrmions in decreasing appliedmagnetic fields (a-f) is terminated by the formation of cycloid patterns (g, h).

Figure 10.Detailed view of an isolated skyrmion.With decreasing externalmagneticfield the skyrmion gradually develops an elliptical
shape and finally stretches into a spiral domain.
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[2]. In thicker cubic helimagnets and uniaxial ferromagnets withDn andCn symmetry, however, such
modulations are physically admissible and influencemagnetic properties of these systems [35, 56].

Recently chiral skyrmions and bubble domains have been investigated inmagneticmultilayers with a strong
easy-axismagnetic anisotropy [54, 65–67]. In such systems, the interlayer exchange and dipole couplings play an
important role in the formation of the equilibriummagnetic states. Strayfields for bubble domains inmagnetic
multilayers have been calculated and investigated in [54]. In a similar way, the equilibriummagnetic
configurations and stray-field energy can be derived for chiral skyrmions by applyingmethods and results of
[34, 39, 40, 54].
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Appendix

A.1. Skyrmion structure in different classes of uniaxial helimagnets
Functional forms ofwD energy contributions are determined by crystallographic symmetry of a
noncentrosymmetricmagnetic crystal [1, 2, 61].

=  =   ( )( ) ( ) ( ) ( ) ( ) ( )   w w, , A.1zx
x

zy
y

zx
y

zy
x
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Figure 11. Skyrmion lifetime as a function of externalmagnetic field at =T 4.2K.Data points are derived from telegraph noise (see
insets)measuredwith the SP-STM tip held stationary above the pinning defect at = +U 600 mV,I= 100 nA. The lifetime is still
finite at m =H 4.50 T,whichmeans that the collapse field is above this value.

Figure 12.Projections of m onto the basal plane in the core of chiral skyrmions for noncentrosymmetric uniaxial ferromagnets [2].
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The solutions y f( ) are determined by crystal classes of the system [2].
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For ferromagnets belonging to S4 andCn classes energy functionalswD include two terms:
= +- -( ) ( )w D w D wD 1 1 2 2 for S4 and = ++ +( ) ( )w D w D wD 1 1 2 2 forCn. Angles y = ( )D Darctan1 2 1 and the

effective values of theDMconstant are = +D D D1
2

2
2 .

For noncentrosymmetric cubic ferromagnets belonging to T andO crystallographic classes the energy
functionalwDhas the following form [61]

= + + = · ( )( ) ( ) ( )  w m mrot , A.8D yx
z

xz
y

zy
x

and stabilizes solutionswith y p j= +2 .
The skyrmion energy densities for all these structures can be reduced to a common functional form [3].

A.2. Solutions for one-dimensionalmodulations
For one-dimensionalmodulations propagating along the x- axis the energy functional (2) can bewritten as

q qy q m q= + + - -x x( ) ( )w A w K MHsin cos cos . A.9D
2 2 2 2

0

In theDMenergy contributionwD (A.9) Lifshitz invariants of type ( )ij
x , ( )ij

y inducemodulations

propagating in the xy plane (e.g. helicoids and cycloids infigures 2(a), (b)), and invariants ( )xy
z favourmodulations

along the z-axis (cones).
Helicoids and cycloids. To be specific, we consider in-planemodulations propagating along the -x axis.

Depending on themagnetic crystal symmetry, different types ofmodulations are stabilized by thewD energy
functional [2]. Particularly, in cubic helimagnets and uniaxial ferromagnets ofDn crystallographic classes, M
rotates as a Bloch-type domainwall (helicoids), and in uniaxial ferromagnets withCnv symmetry the
magnetization rotates along the propagation direction like aNéel-type domainwall (cycloids) (figures 2(a), (b)):

q q
q q

= +
= +

( ) ( ) ( )
( ) ( ) ( ) ( )

e x e x

e x e x

m

m

sin cos helicoids ,

sin cos cycloids . A.10

y z

y z

 
 

The Euler equation for the functional

q q q m q q= - - -( ) ( )w A D MH Kcos cos A.11x xh
2

0
2

yieldsmagnetization profiles q ( )x for helicoids and cycloids [1]. Analytical solutions for q ( )x describe helical
modulations distorted by the appliedfield and uniaxial anisotropy [1]. These helicoids (cycloids) gradually
unwind into a set of isolated domainwalls at critical line ( )H Kh [1, 3, 17].

Cones. In cubic helimagnets and uniaxial ferromagnets withCn andDn symmetries, theDMenergy
functionalwD includes Lifshitz invariants

( )xy
z (A.2), (A.8) favouring chiralmodulations (cone phases) along the

-z axis.Minimization of the energy functional

q q q m q q= - - -( ) ( )w A D MH Kcos cos A.12z zh
2

0
2
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yields the solutions for single-harmonicmodulations describing the cone phase [42, 61]:

q y= - =
-

( )
⎛
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⎞
⎠⎟

H

H

K

K
z Lcos 1 , . A.13

D
D

0

1

These equations include the characteristic parameters of a uniaxial chiral ferromagnet (16).

A.3. Characteristic lengths and critical parameters
In uniaxial noncentrosymmetric ferromagnets, chiralmodulations arise as a result of a competition between the
DM interactions favouring a rotation of themagnetization, the exchange coupling and the ‘potential’ energy

q m q q= - -( )f MH Kcos cos0
2 tending to suppress suchmodulations. The balance between the chiral

energy q qr( )w ,D and the potential energy contributions q( )f determine the equilibrium spin configurations in
chiralmagnets. At zero field and for zero anisotropy single-harmonicmodulations q = q x0 ( = ( )q D A20 )
minimize the functional (A.9). In the opposite limit of strong anisotropy ( p> ( )K D A162 2 ) thesemodulations
transform into a set of isolated ◦180 domainwalls separating the homogeneous states with q = 01 , q p=2 .

Thewidth of an isolated Bloch domainwall LB, its energy, gB, and anisotropy fieldHa are as follows:

p g
m

= = = ( )L
A

K
AK H

K

M
, 4 . A.14B B a

0 0

These are the fundamental parameters describingmagnetic states in a common (centrosymmetric) uniaxial
ferromagnet [38]. To demonstrate a competing character of themagnetic interactions in chiral uniaxial
ferromagnets, we consider an isolated domainwall at zerofield that separates the homogeneous states with
q = 01 and q p=2 . The equilibrium states of this domainwall are derived byminimization of functional (A.9)
forH= 0 [38]. The standard calculation of thewall energy [38] òg q= -

¥
[ ( ) ( )]w w dx0w 0 h h yields the

following result [3, 62]

g p p
p

= - = -∣ ∣ ( )
⎛
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⎞
⎠⎟AK D A

L L
4 4

1
. A.15

B D
w

Thefirst (positive) term in (A.15) is thewall energy of a uniaxial ferromagnet [38] arising as a common effect of
the uniaxial anisotropy pinning themagnetization vector along the easy-axis and the exchange stiffness
suppressing deviations of M from these directions. The negative energy contribution in gw (A.15) is due to the
DM interactions favouringmodulations of themagnetizationwith a specific rotation sense. The strength of this
‘winding force’ is characterized by L1 D: the larger theDMcoupling, the smaller the period of themodulations.
For p<L LD B thewall energy becomes negativemanifesting the instability of the homogeneous states with
respect to chiralmodulations.

The dimensionless parameter introduced as [3, 62]

g
p p

= - = =( ) ∣ ∣ ( ) AK
D

AK

L

L
4 1 ,

4
, A.16B

D
w

provides the criterion for the existence of chiralmodulated states. For > 1, theDM interactions overcome a
pinning of themagnetization along easy-axis direction and stabilizemodulated states. For < <0 1chiral
modulated phases are totally suppressed, and chiral patterns exist asmetastable localized states in a formof
isolated skyrmions and domainwalls (kinks).

Parameter (A.16) is similar to theGinzburg-Landau parameter l x=GL in the theory of Abrikosov
vortices (themixed state) in superconductors [63]. The parameterGL is a ratio of two characteristic lengths, the
coherence length ξ and the penetration depthλ. Abrikosov vortices exist in superconductors with > 1 2GL

(type-II superconductors) [63, 64]. Physical analogies between superconductorʼsmixed states and chiralmagnetic
modulations are discussed in [3, 62]. The characteristic lengths LD and LB provide different ways to introduce
reduced variables intomodel (12).

The reduced energy functional based on the characteristic length LBwith control parameters =h̃ H Ha

and (A.16) and the reducedmagneticfield (whereHa define in equation (A.14) is convenient for investigations
of isolated skyrmions in helimagnets with a strong uniaxial anisotropy ( < <0 1) [33, 34].
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