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ARTICLE OPEN

At-risk individuals display altered brain activity following
stress
J. M. C. van Leeuwen1, M. Vink2, G. Fernández3, E. J. Hermans3, M. Joëls4,5, R. S. Kahn1 and C. H. Vinkers1

Stress is a major risk factor for almost all psychiatric disorders, however, the underlying neurobiological mechanisms remain largely
elusive. In healthy individuals, a successful stress response involves an adequate neuronal adaptation to a changing environment.
This adaptive response may be dysfunctional in vulnerable individuals, potentially contributing to the development of
psychopathology. In the current study, we investigated brain responses to emotional stimuli following stress in healthy controls and
at-risk individuals. An fMRI study was conducted in healthy male controls (N= 39) and unaffected healthy male siblings of
schizophrenia patients (N= 39) who are at increased risk for the development of a broad range of psychiatric disorders. Brain
responses to pictures from the International Affective Picture System (IAPS) were measured 33min after exposure to stress induced
by the validated trier social stress test (TSST) or a control condition. Stress-induced levels of cortisol, alpha-amylase, and subjective
stress were comparable in both groups. Yet, stress differentially affected brain responses of schizophrenia siblings versus controls.
Specifically, control subjects, but not schizophrenia siblings, showed reduced brain activity in key nodes of the default mode
network (PCC/precuneus and mPFC) and salience network (anterior insula) as well as the STG, MTG, MCC, vlPFC, precentral gyrus,
and cerebellar vermis in response to all pictures following stress. These results indicate that even in the absence of a psychiatric
disorder, at-risk individuals display abnormal functional activation following stress, which in turn may increase their vulnerability
and risk for adverse outcomes.

Neuropsychopharmacology (2018) 43:1954–1960; https://doi.org/10.1038/s41386-018-0026-8

INTRODUCTION
Stress increases the risk for almost all psychiatric disorders [1]. It is
thought that a maladaptive response to stress may impair an
individual’s capacity to deal with a demanding environment and
that this contributes to the risk for psychopathology [2]. Never-
theless, there are large interindividual differences in outcomes
after stressful experiences [3]. Genetic variations influence the
neurobiological systems that shape an individual’s response to the
environment, and hence determine the degree to which
environmental factors such as stress may precipitate the devel-
opment of psychopathology [4].
Exposure to stress affects behavior and brain functioning in a

time-dependent manner [5]. Acute stress rapidly facilitates threat
detection and habitual behavior, but inhibits the ability to focus
attention and make complex decisions. These types of behavior
are accompanied by increased activity within the default mode
network (DMN) [6] and salience network (SN) [7]. In the aftermath
of stress, the stress hormone cortisol plays a major role in the
normalization in emotional reactivity with concomitant decreases
in the SN [5, 8,] and DMN [9]. This dynamic shift in brain
functioning during and following stress is hypothesized to
underlie an adaptive stress response. It has been hypothesized
that this adaptive response can become maladaptive in vulnerable
individuals and lead to psychopathology [10]. However, studies

investigating the effects of stress on the brain of at-risk individuals
are relatively scarce.
In this study, we therefore investigated emotion processing half

an hour after stress in healthy male individuals and unaffected
siblings of schizophrenia patients. Siblings of schizophrenia
patients are at risk for a wide range of psychiatric disorders
including schizophrenia, depression, and bipolar disorder [11] and
show increased sensitivity to daily life stress compared to healthy
controls [12]. Even in the absence of stress, individuals at
increased risk for schizophrenia show impaired emotion proces-
sing and regulation [13]. This may in turn increase their
vulnerability for the detrimental effects of stress. We hypothesized
that, following stress, healthy controls would exhibit a shift toward
decreased activity in the SN and DMN to emotional images,
whereas this shift would be impaired in at-risk individuals.

METHODS AND MATERIALS
Participants
A total of 40 healthy male siblings of schizophrenia patients
(referred to as “siblings” hereafter) and 40 healthy male controls
were recruited from the Genetic Risk & Outcome of Psychosis
(GROUP) study [14] (4 controls, 6 siblings) and via advertisements
(36 controls, 34 siblings). Current psychiatric disorders were
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excluded in all individuals using a semi-structured interview by a
trained researcher (The Mini-International Neuropsychiatric Inter-
view (MINI)) [15]. Furthermore, healthy controls did not have first-
degree relatives with a psychiatric disorder. Participants suffering
from a neuroendocrine disorder or claustrophobia were excluded.
None of the participants had been working night shifts in the
week preceding participation or were using any corticosteroids or
antipsychotics, which are known to influence the cortisol response
[16]. Participants were randomly assigned to the stress or no-stress
condition of the trier social stress test (see below for detailed
description) using block randomization (block size= 4). Two
subjects were excluded due to technical problems with the MRI
scanner. This resulted in four experimental groups: control-no-
stress (n= 19), control-stress (n= 20), sibling-no-stress (n= 20),
and sibling-stress (n= 19). The number of subjects did not vary
across analyses.
Participants were instructed to refrain from drugs (2 weeks prior

to participation), alcohol (24 h prior to participation), heavy
exercise (2 h prior to participation), and caffeine (4 h prior to
participation). Current use of psychoactive substances (ampheta-
mines, cocaine, opiates, methadone, benzodiazepines, and
cannabinoids) was determined with a urine multidrug screening
device (multiline) and self-report questionnaire. Two subjects (1
control and 1 sibling) scored positive for cannabis. Exclusion of
these participants did not influence any of the results. Participants
that smoked tobacco daily were defined as smoker. Prior to the
experiment, all participants gave written informed consent. All
procedures were checked and approved by the Utrecht Medical
Center Utrecht ethical review board and performed according to
the guidelines for Good Clinical Practice and the declaration of
Helsinki.

General procedures and stress induction
All participants were told that they were taking part in a study on
the effects of “cognitive load” on the brain and that not all the
information regarding the study purpose could be provided. The
trier social stress test (TSST) was carried out as previously
published [17]. In short, participants received instructions 5 min
prior to the stress or control condition, which was carried out
outside the scanner in a separate room. The stress condition
consisted of a 5 min job interview, followed by a 3 min mental
arithmetic task in front of a committee (one woman and one man).
The committee was instructed to act the same for all subjects. The
validated control condition consisted of a free speech (5 min)
followed by a simple arithmetic task (3 min) [18]. The experi-
menter was in the same room but did not evaluate the participant,
nor was there a committee present. The TSST was carried out
between 4:30 and 8:30 p.m. to minimize variation in diurnal
cortisol secretion. The picture task was carried out on average 33
min after TSST onset.

Picture task
The picture task consisted of the presentation of pictures from the
International Affective Picture System (IAPS) as previously published
[19]. Pictures belonging to three categories were shown: neutral,
negative, and positive, according to validated ratings of the IAPS.
Pictures were matched on arousal rating and shown in pseudo-
random order during four blocks (eight pictures of each condition)
interleaved with four rest blocks (attending to a fixation cross). Each
condition consisted of 32 pictures. Each picture was presented for 2
s. After 2 s, participants had to rate the picture (neutral, negative, or
positive) by pressing a button, after which a fixation cross appeared
for the remaining trial duration (maximum 2 s). A full description of
the task can be found in ref. [13].

Salivary cortisol and alpha-amylase assessment
In total, seven saliva samples were obtained throughout the
experiment using salivettes (Sarstedt, Nümbrecht, Germany) for

the quantification of cortisol and alpha-amylase. Salivary cortisol
concentrations are highly correlated with free cortisol (the
proportion biologically active cortisol) concentrations in the blood
[20]. Alpha-amylase, an enzyme secreted by the salivary gland, is a
marker for (nor)adrenergic activity and is only found in saliva, not
in blood [21]. Samples were obtained −10, +5, +20, +30, +65,
+90, and +120min relative to TSST onset. Samples were directly
stored at −20 °C and cortisol and alpha-amylase levels were
analyzed as previously described [22]. The cortisol area under the
curve with respect to the increase (AUCi) was quantified as
previously described in ref. [23]. Three out of 546 samples were
missing (all non-peak values) and were calculated by the mean
group decline. Exclusion of participants with missing data did not
affect any of the results. The alpha-amylase percentage increase
was based on the change from the first (before TSST) to the
second (during TSST) sample.

Questionnaires
To assess exposure to stress prior to the study, participants
completed data on validated childhood trauma (CTQ, Dutch
version [24]) and major life events (LSC-R [25] questionnaires).
During the experiment, subjective stress was assessed using a 100
mm visual analog scale (VAS), which was completed before,
during and after the stress or control test (−10, +5, and +20min
after onset).

Functional MRI
All imaging was performed on a Philips 3.0-T whole-body MRI
scanner (Philips Medical Systems). First, a whole-brain three-
dimensional T1-weighted structural image was acquired with the
following scan parameters: voxel size 1 mm isotropic; repetition
time (TR)= 10ms; echo time (TE)= 4.6 ms; 200 slices; flip angle=
8°. Functional images were obtained using a two-dimensional
echo planar imaging-sensitivity encoding (EPI-SENSE) sequence
with the following parameters: voxel size 3 mm isotropic; TR=
2000 ms; TE= 35ms; 30 slices; gap= 0.43 mm; flip angle= 70°.
Two hundred fifty-six dynamic scans were acquired during the
task (acquisition time: 8 min 30 s).

Image preprocessing
First, data were realigned, and corrected for differences in
acquisition time between slices, co-registered, spatially normalized
into standard stereotactic space (Montreal Neurological Institute,
MNI, 152 space), and spatially smoothed using a 6-mm FWHM
Gaussian kernel to minimize noise and residual differences in
individual neuroanatomy.

Statistical analyses
Cortisol and alpha-amylase. For changes in cortisol level over
time, the effects of stress (stress/no-stress) and group (control/
sibling) were analyzed using a repeated measures analysis of
variance (ANOVA). For the AUCi and alpha-amylase percentage
change, we used a two-way ANOVA using SPSS 23.0 (Statistical
Package for the Social Sciences, Chicago, IL).

Behavior. We performed two repeated measures ANOVAs to test
for effects of valence (neutral, negative, and positive), stress, and
group on rating accuracy reaction time of the trials as well as head
movement using SPSS 23.0.

fMRI. Imaging data were analyzed using SPM8 (http://www.fil.
ion.ucl.ac.uk/spm). The effects of picture valence (neutral/nega-
tive/positive) on brain activity were estimated during individual
first-level analyses. A detailed description of the first-level analysis
can be found in ref. [19]. In short, we only included trials in which
the participant’s response corresponded to the IAPS rating to
improve detection of emotion-related brain activation [26] (see
Table S1 for percentage accurate trials for each valence and
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group). Subsequently, the design matrix consisted of three
regressors modeling the onsets and duration (2 s) of the neutral,
negative, and positive trials. These factors were convolved with a
canonical hemodynamic response function. The realignment
parameters (three translations and three rotations) obtained from
slice-time correction were added as factors to correct for head
movement. A high-pass filter with a cutoff period of 128 s was
applied to correct for signal drift. We chose to study the effects of
stress on negative, neutral, and positive pictures versus rest, rather
than subtracting neutral images from negative and positive
pictures as described in ref. [19], because a previous study has
found valence-independent effects of cortisol on brain responses.
However, since they only used negative and positive stimuli, it is
unknown whether the effects are restricted to emotional stimuli,
or that the effects are similar across emotional and neutral images.
Analyzing all three valences separately may provide an answer to
this question. Moreover, subjects with a (genetic vulnerability for)
psychiatric illness process neutral faces different than healthy
controls [27, 28,]. Therefore, the use of neutral stimuli (some of
which were neutral faces) as a baseline control condition may
affect the interpretation of results and conceal the true difference
in emotion-related brain responses.
On the group level, we investigated whether siblings showed

different activation patterns after stress than controls. First, we
assessed the interaction between group, stress and picture
valence using a 2 × 2 × 3 full factorial ANOVA with group
(control/sibling) and stress (stress/no-stress) as between-subject
factors and picture valence (neutral/negative/positive) as within-
subject factor. Subsequently, we investigated the group × stress
interaction independent of stimulus type using a 2 × 2 full factorial
ANOVA with group (control/sibling) and stress (stress/no-stress) as
between-subject factors. Group maps were tested for significance
and corrected for multiple comparisons using cluster-level
inference (cluster-defining threshold p < 0.001, cluster probability
of p < 0.05 family wise error (FWE) corrected). The anatomical
location of peaks was determined on the basis of the neuromor-
phometrics atlas in SPM (Neuromorphometrics, Inc. http://
neuromorphometrics.com/) and previously published coordinates
for ventrolateral and medial prefrontal cortices [19, 29, 30,]. If the
group×stress interaction resulted in significant clusters, they were
subsequently used as data-driven regions of interest (ROIs) for
subsequent statistical analyses using Marsbar [31]. The mean
regression coefficient (for the factors neutral, negative, and
positive in the contrast task versus rest) over all voxels within

each ROI was extracted for each subject and analyzed using a 2 ×
2 ANOVA with group (control/sibling) and stress (stress/no-stress)
as between-subject factors. Post hoc group comparisons were
Bonferroni corrected for testing four groups and multiple ROIs (p
= 0.05/(four groups × number of ROIs)).

RESULTS
Group characteristics
No significant differences were present across groups with regard
to age, handedness, education, BMI, ethnicity, or smoking (all p
values > 0.1) (Table 1).

Stress comparably increases cortisol, alpha-amylase levels, and
subjective measures in controls and unaffected siblings
Stress-induced cortisol and alpha-amylase levels were comparable
between controls and siblings (Fig. 1). Acute stress increased
alpha-amylase (main effect of stress on percentage increase F
(1,74)= 5.78, p= 0.019), cortisol (time × stress interaction, F(6,69)
= 12.04, p < 0.001, main effect of stress on AUCi, F(1,74)= 22.251,
p < 0.001), and subjective stress (time × stress interaction, F(2,72)
= 9.43, p < 0.001). No significant differences were present
between controls and siblings in stress-induced alpha-amylase,
cortisol, or subjective stress (all p values > 0.05).

Behavior
Stress did not significantly affect accuracy, reaction time, or head
movement during the IAPS task, nor were there significant
difference between controls and siblings in accuracy, reaction
time, or head movement (Table S1) (all p values > 0.05).

Responses to neutral, negative, and positive pictures following
acute stress are different in at-risk individuals
We performed whole-brain analyses to examine the differences in
stress-induced brain responses between siblings and controls. We
found no group × stress × valence interaction. We did find a group
× stress interaction in the left superior frontal gyrus (SFG), left
superior temporal gyrus (STG), precuneus/PCC, left angular gyrus,
mPFC, bilateral ventrolateral prefrontal cortex (vlPFC), left
precentral gyrus, cerebellar vermis, right anterior insula, and the
midcingulate cortex (MCC) (Fig. 2 and Table 2). These results
indicate that the effects of stress on subsequent responses to the
pictures were not restricted to emotionally arousing stimuli. For
our subsequent post hoc analyses, we therefore did not
differentiate between valences.
Individual average brain activity for the three picture valences

combined was extracted for each of these ROIs. Bonferroni-
corrected post hoc comparisons between the four groups
revealed a significant difference in eight regions between healthy
controls in the no-stress and healthy controls in the stress
condition, but not between siblings in the no-stress condition and
siblings in the stress condition (Fig. 2 and Table S2). Moreover,
activity within eight regions was significantly different between
controls and siblings in the stress condition, but not in the no-
stress condition. These results indicate that in these brain areas,
the effects of stress on subsequent processing of environmental
stimuli are different between healthy controls and siblings (Fig. 2
and Table S2). Valence-stratified analyses showed comparable
results, indicating that the effect of stress was generalized to all
stimuli and independent of valence (Figure S1).
To confirm that the results of the emotion processing task were

consistent with previous literature [19, 32,], whole-brain analyses
of negative versus neutral and positive versus neutral contrasts
confirmed that the emotion task activated the expected emotion
processing network in the control-no-stress group. Significant
clusters were found in the occipital cortex, precuneus, middle
temporal gyrus (MTG), ventromedial prefrontal cortex (vmPFC),
amygdala, and hippocampus (Table S3).

Table 1. Group characteristics

Con-no-
stress

Con-
stress

Sib-no-
stress

Sib-stress

n 19 20 20 19

Age (years) 32.6 (8.5) 34.8
(9.1)

33.8
(10.8)

32.5 (7.4)

Childhood maltreatment
(CTQ total score)

34.4 (9.2) 35.7
(13.4)

36.2 (9.8) 34.0 (5.9)

Major life events (LSC-R
total score)

4.3 (2.3) 4.6 (1.7) 4.8 (3.1) 4.9 (2.7)

Handedness (% right) 89.5 95 70 89.5

Education level 7.6 (2.7) 7.1 (1.9) 7.0 (1.6) 7.4 (1.5)

Body mass index 24.1 (2.7) 24.2
(2.1)

24.0 (3.0) 24.9 (3.9)

Ethnicity (% caucasian) 84.2 90 90 84.2

Smoker (% yes) 5.3 35 30 31.6

Mean values (SD) are denoted for age, education, and body mass index. All
other values are reported in frequency
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DISCUSSION
This study investigated the effects of stress on subsequent brain
responses in healthy controls and unaffected siblings of schizo-
phrenia patients. We found that controls and siblings display large
differences in brain activity in response to neutral and emotional
pictures half an hour after acute stress, even though the
endocrine, subjective, and autonomic stress responses were
comparable. Following stress, core default mode network (DMN)
regions and a region of the salience network (SN) were
deactivated in healthy controls but not in schizophrenia siblings.
We also identified regions outside of the DMN and SN that were
suppressed after stress in controls but not in siblings, including
the STG, MTG, MCC, vlPFC, precentral gyrus, and cerebellar vermis.
To the best of our knowledge, this is the first study to show that
stress-induced suppression of brain activity during the processing
of pictures is extensively altered in siblings of schizophrenia
patients who are at increased risk for a wide range of psychiatric
disorders [11]. These results indicate that in healthy controls, other
biological relevant processes compete for neuronal resources after
stress [5], resulting in a suppression of self-referential processes,
salience detection, but also emotional affect (vlPFC and cerebellar
vermis) as well as motor functions (precentral gyrus) in response
to neutral and emotional pictures.
The DMN is involved in self-referential processes such as mind-

wandering, self-agency, and autobiographical memory retrieval
[33]. Here, we found a significant difference between controls and
siblings in brain responses following stress in core regions of the
DMN, including the PCC, precuneus, angular gyrus, and mPFC, as
well as the MCC, STG, and MTG. Although not included in the
conventional DMN, the MCC, STG, and MTG are also activated
during self-reference [34]. Activity within the DMN decreases
during cognitively demanding tasks, promoting attention to
external sensations rather than introspective processes [35]. Acute
stress temporarily hampers this task-induced suppression of the
DMN, increasing interference from internal emotional states, and
thereby decreasing focused attention [6]. Later on, in the
aftermath of stress, DMN connectivity decreases [9]. In the current

study we found a robust deactivation of the DMN following stress
in controls, but not in siblings. Several studies have demonstrated
aberrant DMN activity in the absence of stress in several
psychiatric disorders. First, both schizophrenia patients and
relatives of patients failed to deactivate the DMN during rest as
well as during a working memory task [36–40]. In addition, in
schizophrenia patients, the normalization of DMN functional
connectivity after antipsychotic treatment correlated with the
change in illness severity [41] and poor DMN suppression is linked
to feelings of hopelessness and rumination in remitted major
depressive disorder patients [42, 43,]. Together, these results
indicate that mental health is associated with the ability to
deactivate the DMN and that an adaptive recovery from stress
involves a dynamic shift away from the DMN after stress. In
siblings, sustained activity within the DMN may result in increased
rumination following stress and may be a precipitating factor in
the development of psychopathology.
Our whole-brain analysis revealed that the right anterior insula

deactivates following stress in controls, but not in unaffected
siblings of schizophrenia patients. The anterior insula is part of the
SN [44]. The SN is involved in the detection of salient stimuli and
the rapid generation of behavioral responses to these stimuli by
switching between functional networks [44, 45,]. An adaptive
stress response involves the reallocation of neuronal resources to
the SN during stress, improving threat detection and promoting
survival by taking rapid actions [5], and an adequate termination
of these responses in the aftermath of stress, promoting
adaptation [46]. Sustained activation of this area after stress
might lead to a chronic state of hypervigilance and predispose an
individual to develop psychopathology on the longer term.
However, we cannot exclude the possibility that in schizophrenia
siblings, this is an adaptive, compensatory neuronal mechanism,
which may have prevented the development of psychopathology.
In the present study, stress-induced neuronal deactivation was

independent of the valence of the stimulus, and comparable results
were found across neutral, negative, and positive pictures. These
results are in line with previous studies that found reduced

Fig. 1 Endocrine, subjective, and autonomic stress measures. Con control, Sib schizophrenia sibling, TSST trier social stress test, AUCi area
under the curve with respect to increase. Error bars represent standard error of the mean (SEM)
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Fig. 2 Significant clusters showing a group (control/sibling) × stress (stress/no-stress) interaction during the IAPS task after stress induction.
Activation maps overlaid onto an anatomical scan in MNI-space (cluster-defining threshold of p < 0.001, cluster probability of p < 0.05, FWE-
corrected). Con control, Sib schizophrenia sibling, PCC posterior cingulate cortex, MCC midcingulate cortex, mPFC medial prefrontal cortex,
vlPFC ventrolateral prefrontal cortex, STG superior temporal gyrus, L left, R right. X and z coordinates refer to MNI coordinates. *survived
Bonferroni correction of p < 0.00125 (p < 0.05/(four groups × ten ROIs)). Error bars represent standard error of the mean (SEM)

Brain response to stress in at-risk individuals...
JMCvan Leeuwen et al.

1958

Neuropsychopharmacology (2018) 43:1954 – 1960



responsiveness of the amygdala [8] and reduced acoustic startle
reflex [47] after exogenous cortisol administration, both indepen-
dent on valence. These findings indicate that corticosteroids aid an
adequate termination or limitation of the stress response, protecting
the organism against the detrimental effects of stress. We suggest
that in healthy controls, cortisol nonspecifically attenuates DMN and
SN responses to emotional and neutral pictures and thereby reduces
vigilance and interference of internal emotional states. It should be
taken into account though that the brain regions that are
differentially affected by stress between groups are not necessarily
task-specific regions and therefore it should be considered that
other tasks might be more specific to the observed effect.
Another possible explanation for the neuronal suppression after

stress in healthy controls is mental exhaustion or distraction.
However, we consider this possibility unlikely since Esposito et al.
[48] found that self-reported exhaustion ratings after prolonged
mental performance were associated with increased DMN
connectivity. Moreover, reaction time and accuracy were compar-
able across groups.
Although it has been suggested that HPA-axis activity is related

to the genetic risk for schizophrenia [49], we found that the stress-
induced cortisol response was not different between healthy
controls and schizophrenia siblings. Despite comparable endo-
crine and behavioral outcomes, brain activity at the peak of stress-
induced cortisol levels was significantly different, highlighting the
importance of performing multimodal research in order to
understand the susceptibility to stress-related psychopathology.
Our study has several strengths. We carefully selected a group

of unaffected siblings and matched healthy controls with
comparable trauma scores. We excluded any current psychiatric
disorders as well as medication that could have influenced the
cortisol response. However, there are also limitations. First, we
only included male subjects which weakens the generalizability of
the results. Second, 34 out of 39 siblings were recruited through
advertisements. In these, the diagnosis of schizophrenia could not
officially be confirmed due to privacy regulations. However, since
we extensively asked siblings about characteristics of the disorder
in their affected sibling, the likelihood of false positives is very

small. Third, although parameter estimates for all valences were
analyzed separately, and thereby the misinterpretation of our
results caused by differential responses to one of the valences was
avoided, it cannot be ruled out that reduced parameters estimates
in the control-stress group were caused by increased activity
during rest (fixation cross). Fourth, we did not assess subclinical
symptoms in the participants. Although psychiatric disorders were
excluded in all participants, subclinical symptoms may have been
higher in the unaffected siblings as compared to the healthy
controls. However, a previous study in a Dutch sibling sample did
not find any differences in the positive, negative, and depressive
dimensions of the community assessment of psychic experiences
(CAPE) [50]. Therefore, we do not expect that large or clinically
meaningful differences in symptoms may have been present in
our sample. Finally, we only included one specific at-risk group,
and it is unknown whether the results in these individuals can be
extrapolated to other at-risk groups. Future longitudinal studies
are warranted to examine whether differential patterns of brain
activity following a stress manipulation predict negative outcomes
after chronic or acute stress.
In conclusion, our results show that in healthy controls, acute stress

results in the suppression of several brain areas including the DMN
half an hour later, suggesting that an adequate response to acute
stress involves a dynamic and widespread reallocation of neuronal
resources after stress. However, this neuronal reallocation was absent
in unaffected siblings of schizophrenia patients, indicating that
sustained responses of these brain areas following stress may
increase the vulnerability to stress in these at-risk individuals.
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