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Abstract. One of the challenges of simulating free-surface flow around moored or
floating objects is the modelling, including the algorithmic coupling, of objects whose dy-
namics is determined by a two-way interaction with the incoming waves. The ’traditional’
way of numerically coupling the flow dynamics with the dynamics of a floating object be-
comes unstable (or requires severe underrelaxation) when the added mass is larger than
the mass of the object. To deal with this two-way interaction, a more simultaneous type
of numerical coupling is being developed. The quasi-simultaneous method will be demon-
strated on a number of simulation results for engineering applications from the offshore
industry: the motion of a moored TLP platform in extreme waves, and the launch of a
free-fall life boat.

1 INTRODUCTION

Simulating the hydrodynamics of floating structures using a two-way partitioned cou-
pling poses a challenge when the coupling between the fluid and the structure is strong.
The incompressibility of the fluid plays an important role, and leads to strong coupling
when the ratio of so-called added mass to structural mass is considerate. Existing fluid-
structure interaction procedures become less efficient in such cases, and can even become
unstable [1, 2]. This paper proposes a coupling method that deals with the added-mass
effect by anticipation, and remains stable and efficient at all times.

Physically, the interaction between incoming waves and a structure can be labelled as
one-way or two-way. In the former case the structure ‘simply’ reacts to the oncoming flow
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field, but in the latter case the motion of the structure influences the flow field around
the structure. The latter case poses most challenges to the numerical coupling between
flow and structure. A numerical coupling approach can be aggregated (monolithic) or
segregated (partitioned). In the former case, all discrete equations are combined into
one single set of equations. In the latter case, two separate discrete systems (modules)
can be recognized equipped with recipes to exchange information. This enhances the
flexibility of the approach, but it also requires an iterative exchange of information with
its consequences for numerical stability [3, 4]. The paper describes our efforts to find a
compromise between the robust monolithic approach and the more flexible but vulnerable
partitioned approach

The structural model consists of a rigid body with elastic mooring lines, and the fluid
is modelled by a volume-of-fluid method for the free surface [5]. Instead of imposing the
structural displacement to the fluid, a combination of pressure and displacement is pre-
scribed that approximates the body dynamics [6]. Through this modified boundary condi-
tion, the flow can anticipate the structural motion. This anticipatory, quasi-simultaneous
coupling method increases the numerical efficiency, while the results are - by design - the
same as in the usual formulation.

To demonstrate the new method, a number of simulation results for engineering appli-
cations from the offshore industry will be presented, such as the motion of a moored TLP
platform in extreme waves, and the launch of a free-fall life boat.

Figure 1: Drop test with free-fall lifeboat (from: www.verhoef.eu)

2 MATHEMATICAL FLOW MODEL

Incompressible, turbulent fluid flow can be modelled by means of the Navier–Stokes
equations.

Du = 0,
∂u

∂t
+ C(u)u + Gp− Vu = f . (1)
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Here D is the divergence operator describing conservation of mass. Conservation of mo-
mentum is based on the convection operator C(u)v ≡ ∇(u ⊗ v), the pressure gradient
operator G = ∇, the viscous diffusion operator V(u) ≡ ∇ · ν∇u and a forcing term f .
The kinematic viscosity is denoted by ν.

Turbulence is modelled by means of large-eddy simulation (LES) using a low-dissipation
QR-model as formulated by Verstappen [7]; for its use in maritime applications, see [8,9].
This model has been refined and extended in the PhD thesis of Rozema [10] towards
the so-called anisotropic minimum dissipation (AMD) model, which can be applied at
(highly) anisotropic computational grids. It is being further explored in cooperation with
the Center for Turbulent Research (Stanford University) [11–13].

The Navier–Stokes equations (1) are discretized on an Arakawa C-grid. The second-
order finite-volume discretization of the continuity equation at the ‘new’ time level ·n+1

is given by
D0un+1 = −DΓun+1

Γ , (2)

where D0 acts on the interior of the domain and DΓ acts on the boundaries of the domain
(with uΓ denoting the velocity at the boundary). In the discretized momentum equation,
convection C(uh) and viscous diffusion V are discretized explicitly in time. The pressure
gradient is discretized at the new time level. In this exposition, for readability reasons
the first-order forward Euler time integration will be used. In the actual simulations, a
second-order Adams–Bashforth method is being applied.

Letting the diagonal matrix Ω denote the matrix containing the geometric size of the
control volumes, gives the discretized momentum equation as

Ω
un+1 − un

δt
= −C(un)un + Vun − Gpn+1 + f . (3)

For divergence-free velocity fields u, the conservative discrete convection operator is skew-
symmetric. In this way, the discrete convection does not contribute to energy production
or dissipation; see Verstappen and Veldman [14]. In particular, its discretization pre-
serves the energy of the flow and does not produce any artificial diffusion. To make the
discretization fully energy-preserving, the discrete gradient operator and the divergence
operator must be each other’s negative transpose, i.e. G = −D0T , thus mimicking the
analytic symmetry ∇ = −(∇·)T . Then, also the work done by the pressure vanishes dis-
cretely. The latter is computed in the standard way from the Poisson equation obtained
by combining (2) and (3).

The liquid region and the free liquid surface are described by an improved VOF-method;
see e.g. Hirt and Nichols [15], Kleefsman et al. [5] and Düz [16].

3 FLUID–SOLID BODY COUPLING

A further step is to allow the moving object to interact with the fluid dynamics, e.g.
it is floating on the water surface. This physical two-way coupling has to be mirrorred in
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the numerical coupling algorithm between the flow solver and the solid-body solver. The
coupling takes place along the common interface Γ between the fluid and the solid body;
quantities involved are the dynamics (position and acceleration) of the solid body, and
the dynamics of the fluid (in particular its pressure loads); see Fig. 2.

Figure 2: Schematic partitioning between fluid and solid body, with information exchange along their
common interface Γ.

1. The coupling conditions at the interface between fluid and solid body basically ex-
press ‘continuity’ of the physics on both sides of the common interface Γ. The
kinematic condition expresses that the boundary of the liquid region (partially) co-
incides with the surface of the solid body. In particular, material particles on both
sides have the same velocity and acceleration (when the no-slip condition does not
hold, only the normal velocity component is continuous). Hence, it makes sense
to talk about the velocity at the interface uΓ. Additionally, the dynamic coupling
condition is based on Newton’s 3rd law “action = −reaction”, which expresses equi-
librium of forces. In particular, we denote the fluid pressure by pΓ. In the sequel,
we will formulate the coupled problem in terms of the two interface variables: the
velocity uΓ and the integrated (force and moment) pressure load F(pΓ) (short: FΓ).

2. The solid-body dynamics is governed by an equation describing the accelaration u̇
of the solid body when reacting to the forces and moments f excerted by the fluid.
The latter are found by integration of the liquid pressure over the common interface
Γ. In abstract terms we denote this relation by

solid body dynamics: Msbu̇Γ = FΓ. (4)

The mass operator Msb (6 DOF) describes the intertial properties of the solid body,
thus the eigenvalues of Msb are porportional to the body mass and its moments of
inertia. The load operator FΓ involves the integration of the fluid pressure pΓ over
the interface to obtain the force and moments acting on the body. Note that we
do not show eventual external forces, as they play no essential role in the coupling
algorithm.
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3. The fluid dynamics governs the reaction of the fluid to the motion of the solid
body. The latter creates a boundary condition along the interface Γ which has to
be added to the Navier–Stokes equations (1). As a result, the pressure loads along
the interface and acting on the solid body can be computed. In abstract notation
we write

fluid dynamics: FΓ = −Madu̇Γ, (5)

where Mad is, by definition, the so-called added mass operator. Again, terms in u
have been omitted because of their minor role in the analysis of the coupling process.

The above formulation (4)+(5) in principle shows two equations for the two unknowns
along the interface: loads and acceleration. Their coupling can be done in an aggre-
gated or segregated way. An aggregated (or strong) coupling recombines both equations
(or modules) into one single global system which is solved simultaneously. In contrast,
a segregated (or weak) coupling keeps the two equations apart and solves them in an
iterative way. The former (monolithic) approach may not always be possible, e.g. due
to their ‘black-box’ character, or due to the large complexity of the modules; the latter
(partitioned) approach may diverge.

3.1 Weak coupling

In practice, often a segregated approach is followed. The usual way is to let the fluid
determine the load field (= integrated pressure forces) Fold

Γ which moves the solid body:

Msbu̇
new
Γ = Fold

Γ . (6)

This motion of the solid body is then transferred to the fluid, to react with a new pressure
field:

Fnew
Γ = −Madu̇

new
Γ . (7)

In this way, we effectively have created an iterative process

Fnew
Γ = −MadM

−1
sb F

old
Γ . (8)

The iterations in such a weak coupling method will converge if and only if the spectral
radius of the iteration matrix ρ(MadM

−1
sb ) < 1. Thus, this convergence condition is a

requirement for the ratio between added mass and body mass. Roughly speaking, the solid
body should be heavy enough. If it is not, underrelaxation can help achieving convergence,
but this will require (many) additional (sub)iterations and diminishes efficiency.

In practice, such iterations can be implemented as follows in the solution process for
the Navier–Stokes equation (3) during the time step from n → n + 1. An additional
subiteration process (with iteration count k) is included:

solid-body dynamics: Msb(u̇n+1
Γ )k = (Fn+1

Γ )k; (9)

Navier–Stokes: (Fn+1
Γ )k+1 = −Mad(u̇n+1

Γ )k. (10)
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If necessary, these subiterations can be made convergent by applying (severe) underrelax-
ation without disturbing the time accuracy of the time integration method, but often at
a considerable computational price.

Below we will demonstrate with an example of a falling life boat how many subiterations
can be required in practical situations. Because of this inefficiency, it is better to apply
an aggregated approach (which does not require subiterations), or at least to be as close
as possible to such an approach. Such an approach is the quasi-simultaneous method,
originally developed for interacting aerodynamic boundary layers along airplane wings
[17]; a historic overview is provided in [18,19].

3.2 Quasi-simultaneous coupling

For iterative efficiency reasons, it is worthwhile to follow the monolithic, simultaneous
approach as much as possible. With the full dynamics operator Msb being too complex, a
good approximation is sought M̃sb which anticipates the reaction of the full dynamics Msb

and which is simple enough to be used as a boundary condition inside the Navier–Stokes
solver (1). Such an approximation has been termed an interaction law [17–19]

M̃sbu̇Γ = FΓ. (11)

The interaction law (11) is then incorporated in the time integration process in defect
formulation:

interaction law: u̇n+1
Γ − M̃−1

sb F
n+1
Γ = (M−1

sb − M̃
−1
sb )Fn

Γ (12)

Navier–Stokes: Fn+1
Γ +Madu̇

n+1
Γ = 0. (13)

Another interpretation in terms of time integration is that the part M̃sb of the dynamics
equation (4) is treated implicitly and the remaining part Msb − M̃sb explicitly.

Figure 3: Weak versus quasi-simultaneous coupling.

The interaction law is a boundary condition for the Navier–Stokes equations along
the interface Γ. More precisely, it will be implemented as a boundary condition for the
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pressure Poisson equation.The latter is derived by first rewriting the boundary condition
(12) for u as

un+1
Γ − δt M̃−1

sb F(pn+1
Γ ) = un

Γ + δt (M−1
sb − M̃

−1
sb )F(pnΓ).

Then the discrete momentum equation is written in the form (2), wherein the above
relation is substituted through the term DΓuΓ. Finally a relation is obtained featuring
FΓ as a boundary condition for the Poisson equation; see also [20].

The above quasi-simultaneous integration can be analysed by eliminating u̇ from (12)+(13),
which leads to

(I +MadM̃
−1
sb )Fn+1

Γ = −Mad(M−1
sb − M̃

−1
sb )Fn

Γ . (14)

For M̃−1
sb ≡ 0, the iteration process (8) is recovered, which breaks down when Mad is ‘too

large’. But with the term MadM̃
−1
sb on the left-hand side and the difference M−1

sb −M̃
−1
sb on

the right-hand side, it will be clear that this process will converge when M̃sb is sufficiently
close to Msb, in spite of a possibly ‘large’ Mad.

4 EXAMPLES

To show the performance of the quasi-simultaneous approach, two test cases are pre-
sented: i) a free-fall life boat; and ii) a moored TLP platform.

4.1 Falling life boat

The first test case is a simulation of a life boat dropped into calm water. Four snapshots
of the simulation are shown in Fig. 4. The dynamics of the life boat is modelled by means
of a 6-DOF mechanical model.

Figure 4: Four simulation snapshots of the drop of a life boat into calm water. The colors represent
vorticity; the locally refined regions are indicated.
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The fluid flow is modelled with the Navier-Stokes equations and solved on a grid con-
sisting of about 0.5 million active (i.e. within the fluid) grid points, with local grid refine-
ment [21,22] around the life boat (Fig. 4).

For physical accuracy this grid is rather coarse, but the focus in these simulations is on
the numerical behaviour of the coupling process. Thus both the weak coupling procedure
(8) as well as the quasi-simultaneous procedure (13) have been applied. In the latter
case, the interaction law is based on the under-water part of the lifeboat (as the Poisson
equation is only solved under water).

Figure 5: Left: The number of SOR iterations per time step for the underrelaxed weak coupling method
(blue) and the anticipatory quasi-simultaneous method (green)). Right: The estimated added mass for
the falling lifeboat as a function of time. The crossing of the free surface is clearly visible in the added
mass.

The most important result concerns the amount of work that is needed per time step to
achieve the coupling between solid-body dynamics and fluid flow. The weak method often
requires dozens of subiterations, in each of which a Poisson equation has to be solved.
This number is dependent on the amount of fluid that is moved aside by the moving body,
represented by the added-mass operator Ma. To be fair, the later subiterations have a
good initial guess so they are not as expensive as the earlier ones. Thus the amount of
work is better represented by the total number of ierations, in this case SOR [23], that is
needed for all Poisson solves within one time step. For other matrix solvers, the situation
is relatively similar, as the number of required Poisson solves is basically independent of
the solver choice.

The amount of work for a typical simulation (actually another one than presented in
Fig. 4) is shown in Fig. 5(left). The close relation with the added mass becomes visible
when plotting the time history of the estimated added mass in Fig. 5(right). Note that
the ‘gaps’ in the curve are due to loss of figures during the estimation of the added
mass. Comparison with Fig. 5(left) shows clearly that the number of iterations grows
rapidly when the ‘added-mass ratio’ ρ

(
MadM

−1
sb

)
growths beyond 1. In contrast, the

quasi-simultaneous method requires only 1 or 2 subiterations (with additional Poisson
solver), resulting in much less work per time step (Fig. 5(left)). This reduction in the
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Figure 6: A snapshot from the simulation of a tension-leg platform in a Stokes-5 wave.

number of subiterations is highly independent of the grid size and of the chosen Poisson
solver. More specifically, the number of subiterations is (to first order) only dependent

on the difference between the analytic pendants of Msb and M̃sb.
The added mass varies greatly over time during the impact, as the boat enters the

water and a larger part of the wave has to respond. It is clear that the relaxation-based
method (9)+(10) is sensitive to this ratio, as the workload increases during the entry
phase. The anticipative method (12)+(13) however remains efficient regardless of the
added-mass ratio, as the boundary condition inside the wave simulation predicts the boat
motion. It is observed that in this application the workload is reduced by a factor around
10 for the complete simulation.

4.2 Moored TLP

The second test case is a tension-leg platform in a long-crested wave. The platform
is modelled as a rigid 6-DOF body with elastic mooring lines. It can perform large but
finite translations and rotations in three dimensions, but it cannot deform or change in
volume. The generalization of the algorithmic coupling method to deformable bodies is
presented in a paper at this year’s OMAE conference [6].

The incoming wave is a nonlinear 5th-order Stokes wave. Since the variations around
the waterline are small compared to the size of the platform, the added-mass ratio is
relatively constant. Even for this moderate added-mass ratio however, the anticipative
method outperforms the relaxation-based method by a factor 2.5 to 3.

5 CONCLUSIONS

The ComFLOW simulation method has been designed to simulate and study extreme
waves and their impact on falling, floating and moored structures. In particular, in this
paper the interaction between the dynamics of a structure and the oncoming wave field
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Figure 7: Workload of the simulation of a tension-leg platform in a Stokes-5 wave. Left: Variation of
the effective added-mass ratio over time. Right: The workload for the simulation corresponds to the area
under the curve.

is investigated. The efficiency of the numerical coupling algorithm is largely determined
by the added-mass ratio, which seriously affects the existing partitioned coupling schemes
based on the (sequential) exchange of loads and motions: a stronger coupling with a
higher range of added-mass ratios leads to loss of performance in these traditional coupling
schemes.

Inspired by developments in aerodynamic boundary-layer theory, an anticipatory, quasi-
simultaneous coupling scheme has been developed which intends to circumvent most of
the iterative coupling action. Application to two maritime applications, a free-fall life boat
and a moored TLP, shows the anticipatory scheme to be robust and rather insensitive to
the added-mass ratio.

Future work will focus on more general applications such as interaction of multiple,
possibly interconnected, rigid bodies (e.g. the RUG Ocean Grazer [24]).
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