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Abstract. During the development of the ComFLOW simulation method many challenges
have to be tackled concerning the flow modelling and the numerical solution algorithm. Exam-
ples hereof are wave propagation, absorbing boundary conditions, fluid–solid body interaction,
turbulence modeling and numerical efficiency. Some of these challenges will be discussed in
the paper, in particular the design of absorbing boundary conditions and the numerical cou-
pling for fluid–solid body interaction. As a demonstration of the progress made, a number of
simulation results for engineering applications from the offshore industry will be presented: a
wave-making oscillating buoy, a free-fall life boat dropping into wavy water, and wave impact
against a semi-submersible offshore platform. For those applications, MARIN has carried out
several validation experiments.
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1 INTRODUCTION

Over the centuries, understanding the motion and behavior of waves in nature has been a very
popular subject among researchers from various fields of science. Even today, when we have
highly capable numerical methods and computational power at our disposal, numerical model-
ing of water wave propagation remains a formidable challenge. During the development of the
ComFLOW simulation method [1–5] many of the numerical challenges have been tackled:

- Waves should be allowed to freely enter or leave the domain, requiring absorbing or non-
reflecting boundary conditions which are able to deal with the dispersive character of waves
on deep water [6]. Such conditions will be discussed below in more detail.

- Accurate wave propagation requires much attention to the description (reconstruction and
advection) of the free surface. Info on this aspect is to be found in the PhD thesis of Duz [7]
and the forthcoming paper [8].

- The turbulence model not only has to deal with coarse grids, but should also recognize
wall-bounded turbulence from free-surface turbulence. This is tackled with a new class of
adaptive, minimum-dissipation turbulence LES models [9–11].

- The numerical coupling of the flow dynamics with the dynamics of a floating object has
to deal with situations where the added mass is larger than the mass of the object. Hereto
a more simultaneous type of numerical coupling is being developed. This paper contains
more details about this issue.

- The efficiency of the simulations is enhanced by means of local grid refinement and paral-
lelisation [12, 13].

The phenomena of interest are local but embedded in a vast spatial domain, like the in-
teraction between free-surface waves and man-made structures. For efficient computational
modeling, this spatial domain around the region of interest is truncated via artificial boundaries,
leading to the fundamental question: What is the boundary condition to be imposed on these
artificial boundaries in such a way that the solution in the compact domain coincides with the
solution in the original domain? We thus enter the realm of absorbing boundary conditions
(ABC), also known as non-reflecting, open, transparent or radiating boundary conditions. Fol-
lowing the pioneering research by Engquist and Majda [14], a wide variety of ABCs has been
developed. These conditions not only have to be considered from a theoretical modeling point
of view (well-posedness, modeling accuracy), but also from a numerical point of view (stability,
numerical accuracy, efficiency). An impression of the work done thus far can be obained from
several review papers [15–18]. For the work on ABCs done in the ComFLOW project we refer
to the PhD theses of Wellens [19] and Düz [7]. Below we will present our latest contributions
to this issue which focus on the treatment of dispersive waves, i.e. waves whose propagation
speed is not known beforehand but has to be deduced from the (local) solution.

Another dimension to the above problem is added when the structures under study are mov-
ing, either free-floating or attached to a mooring system, where the interaction between the
incoming waves and the dynamics of the structure comes into play. Physically, we can distin-
guish one-way or two-way interaction. In the former case the structure ‘simply’ reacts to the
oncoming flow field. But in the latter case the interaction is such that the motion of the structure
influences the flow field around the structure. The latter case also poses most challenges to the
numerical coupling between flow and structure. Such a numerical coupling approach can be
aggregated (monolithic) or segregated (partitioned). In the former case all discrete flow equa-
tions are combined into one single set of equations which is then solved simultaneously. In the
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latter case two separate discrete systems (modules) can be recognized equipped with recipes to
exchange information between the two separate modules. On the one hand this enhances the
flexibility of the approach, but on the other hand it requires a (hierarchical) iterative exchange
of information between the modules with its consequences for numerical stability and conver-
gence. Below we describe our efforts to find a compromise between the robust monolithic
approach and the more flexible but vulnerable partitioned approach. We will see that the ratio
between the mass of the structure and its added fluid mass plays an essential role.

The organization of the paper is as follows. After an introduction of the flow equations, the
new class of absorbing boundary conditions is presented. Thereafter we discuss the numerical
coupling strategy between fluid and solid structure. The paper finishes with some practical
applications: an oscillating buoy in a small domainn, a falling lifeboat and a semi-submersible
in waves. Some of these applications are validated by experiments carried out at MARIN.

Figure 1: Drop test with free-fall lifeboat (from: www.verhoef.eu)

2 MATHEMATICAL FLOW MODEL

Incompressible, turbulent fluid flow can be modelled by means of the Navier–Stokes equa-
tions.

Mu = 0,
∂u

∂t
+ C(u)u + Gp− Vu = f . (1)

Here M is the divergence operator 1 which describes conservation of mass. Conservation of
momentum is based on the convection operator C(u)v ≡ ∇(u ⊗ v), the pressure gradient
operator G = ∇, the viscous diffusion operator V(u) ≡ ∇ · ν∇u and a forcing term f . The
kinematic viscosity is denoted by ν.

Turbulence is modelled by means of large-eddy simulation (LES) using a low-dissipation
QR-model as formulated by Verstappen [9]. For its use in maritime applications, see [20, 21].
This model has been refined and extended in the PhD thesis of Rozema [10, 11].

The Navier–Stokes equations (1) are discretized on an Arakawa C-grid. The second-order
finite-volume discretization of the continuity equation at the ‘new’ time level ·n+1 is given by

M0un+1
h = −MΓun+1

h , (2)

1Calligraphic symbols denote analytic operators, whereas their discrete counterparts are denoted by upper-case
italic symbols.
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whereM0 acts on the interior of the domain andMΓ acts on the boundaries of the domain. In the
discretized momentum equation, convection C(uh) and diffusion D are discretized explicitly in
time. The pressure gradient is discretized at the new time level. In this exposition, for simplicity
reasons the first-order forward Euler time integration will be used. In the actual calculations, a
second-order Adams–Bashforth method is being applied.

Letting the diagonal matrix Ω denote the matrix containing the volumes of the control vol-
umes, gives the discretized momentum equation as

Ω
un+1 − un

δt
= −C(un)un + V un −Gpn+1 + f . (3)

The discrete convection operator is skew-symmetric, such that convection does not contribute to
energy production or dissipation; see Verstappen and Veldman [22]. In particular, its discretiza-
tion preserves the energy of the flow and does not produce artificial viscosity. To make the
discretization fully energy-preserving, the discrete gradient operator and the divergence opera-
tor are each other’s negative transpose, i.e. G = −M0T , thus mimicking the analytic symmetry
∇ = −(∇·)T . In this way, also the work done by the pressure vanishes discretely.

The solution of the discrete Navier–Stokes equations is split into two steps. Firstly, an aux-
iliary variable ũ is defined through

Ω
ũ− un

δt
= −C(un)un +Dun + f . (4)

With this abbreviation, the discrete momentum equation (3) can be reformulated as

un+1 = ũ− δtΩ−1Gpn+1. (5)

Secondly, by imposing discrete mass conservation (2) at the new time level, substitution of (5)
results in a discrete Poisson equation for the pressure:

δtM0Ω−1Gpn+1 = M0ũ +MΓun+1. (6)

The liquid region and the free liquid surface are described by an improved VOF-method; see
Hirt and Nichols [23] and Kleefsman et al. [1].

3 ABSORBING BOUNDARY CONDITIONS

Following the expose presentend in [7], a suitable ABC can be developed starting from the
radiation condition studied by Sommerfeld [24]:

∂

∂t
φ+ c

∂

∂x
φ = 0. (7)

This condition, formulated in the velocity potential φ, suppresses left-running waves at a right-
hand-side boundary. Therefore, it has been proposed as a non-reflecting boundary condition by
Engquist and Majda [14]. It was later extended to higher-order versions using powers of the
left-hand side operator; see e.g. the review by Givoli [18].

3.1 Three dimensions

In the three-dimensional case, Higdon [25, 26] showed it possible to allow the wave under
an angle of incidence α with the outflow boundary. In the higher-order conditions even more
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angles can be chosen: αp, p = 1, . . . , P , where P denotes the order:

P∏
p=1

(
cosαp

∂

∂t
+ c

∂

∂x

)
φ = 0. (8)

To show the benefit of using (8) as opposed to (7), the amount of spurious reflection is inves-
tigated as a function of the angle of incidence θ. Hereto, at the artificial boundary the solution
can be expressed as the sum of the outgoing and reflected waves

φ(x, y, t) = ei(kxx+kyy−ωt) +Rei(−kxx+kyy−ωt), (9)

where the first term represents the wave with amplitude equal to unity impinging on the bound-
ary, and the second term represents the spuriously reflected wave with amplitude R. The latter
amplitude can be evaluated by substituting (9) into the general Higdon boundary condition (8):

|RH | =
P∏

p=1

∣∣∣∣cosαp − cos θ

cosαp + cos θ

∣∣∣∣ . (10)

Here, θ is the ‘real’ angle of incidence measured in the clockwise or counter-clockwise direction
from the positive x-direction (|θ| < π/2). Higdon’s boundary condition (8) is non-reflecting as
soon as θ equals one of the ±αp’s, whereas (7) is non-reflecting for θ = 0 only. A comparison
of the theoretical reflection coefficients for the various ABC variants is shown in Fig. 2.

Figure 2: Reflection coefficient of four absorbing boundary conditions versus the angle of incidence θ. E&M-1 and
E&M-2 stand for the 1st- and 2nd-order Engquist-Majda ABC. The 1st- and 2nd-order Higdon ABC are denoted
H-1 (with α1 = 30◦) and H-2 (with α1 = 0◦, α2 = 45◦), respectively [7].

For use in a Navier–Stokes context, the potential has to be related to the velocity (via the
gradient of the potential) and pressure (via the dynamic free-surface condition). Doing so,
it becomes a boundary condition featuring velocity and pressure. It can be embedded in the
pressure Poisson equation as a boundary condition in a similar way as the substitution of (5) in
(2); see also [7].

3.2 Dispersive ABC

Because of dispersion each individual wave component has its own phase speed c. Therefore,
a boundary condition like (8) cannot annihilate all these wave components. We expect some
amount of reflection for such a boundary condition, but it will hopefully be restricted within
certain limits.
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Figure 3: Padé approximation of the dispersion relation. For the coefficients in (11), a0 = 1.04, a1 = 0.106 and
b1 = 0.289 are used [7].

Firstly, we introduce a rational Padé expression which approximates the dispersion relation
as

exact: c2 = gh
tanh (kh)

kh
; approximation: ca =

√
gh

a0 + a1(kh)2

1 + b1(kh)2
. (11)

A proper choice of coefficients a0 , a1 and b1 leads to a close approximation for the targeted
range of kh values. In Fig. 3 the difference between the two curves gives an indication for the
amount of reflection caused by the rational approximation. Note that the higher wave numbers
will be damped by the physics of the problem, hence some reflection will disappear quickly.

A further improvement is introduced into the design of the boundary condition, by exploit-
ing the exponential behavior of the wave potential in the z-direction. The wave number k is
computed locally from the potential itself, via

k2φ =
∂2

∂z2
φ. (12)

This relation can be substituted into (11) and combined with (8) for P = 1, to reach the final
form of the 1st-order absorbing boundary condition ABC-1:

cosα

(
1 + b1h

2 ∂
2

∂z2

)
∂φ

∂t
+
√
gh

(
a0 + a1h

2 ∂
2

∂z2

)
∂φ

∂x
= 0. (13)

A stability analysis of this boundary condition can be found in the PhD thesis of Wellens [19].

3.3 Dispersive directional ABC

A further modification of the dispersive ABC accounts for both dispersive and directional
effects of the waves. As the 2nd-order Higdon ABC has superior performance over the 1st-order
one in terms of directional effects, we will incorporate the improvements that we made in the
previous section by adding dispersive effects. As this ABC consists of the product of two oper-
ators, and considering the relations (11) and (12), we realize that only one of the operators can
include the approximation for the dispersion relation. Otherwise, the product of two approx-
imations would yield a fourth-order derivative in the z-direction which will cause difficulties
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when discretized at the boundaries. Therefore, we substitute the relations (11) and (12) in only
one of the two operators. The resulting expression for the 2nd-order ABC-2 becomes(

cosα1
∂

∂t
+ c

∂

∂x

)[
cosα2

(
1 + b1h

2 ∂
2

∂z2

)
∂φ

∂t
+
√
gh

(
a0 + a1h

2 ∂
2

∂z2

)
∂φ

∂x

]
= 0. (14)

An in-depth analysis of the implementation and effectiveness of these boundary conditions in
practical situations can be found in the PhD thesis of Duz [7, 27].

3.4 Example

As an illustration of the new type of absorbing boundary conditions we show some simu-
lations of an oscillating sphere, with prescribed motion, producing a concentric circular wave
pattern. A sphere (radius 4m) is initially located 4m above a free water surface and moves ver-
tically along the z-direction with a sinusoidal motion zs(t) = 2 + 2 cos(2.4t). After the impact
of the sphere on the water surface, a series of circular concentric waves is produced radiating
outward from the center. Both ABC-1 and ABC-2 are used at the outflow boundaries and their
performance in absorbing these waves is compared.

A reference solution is obtained by repeating the simulation in a large domain: see Fig. 4
for the setup of the two domains. The small domain ΩS has LxΩS

= LyΩS
= 50m, its depth

is LzΩS
= 10m. The larger domain ΩL has the same depth but different length and width,

LxΩL
= LyΩL

= 400m. The size of ΩL is chosen in such a way that radiating circular waves
do not reach the outflow boundaries of ΩL during the simulation.

solid oscillating sphere

p#2

p#6
p#5

−25

0

y (m)

−200 25−25 200

y (m)

Ω L Ω
S

−25 0 25

p#1 p#3

p#4
25

200

−200

−25

25

Figure 4: Setup for the test with the oscillating solid sphere showing the domain sizes (left) and the positions of
the wave probes (right). The solution in ΩL is considered as the reference solution for the solution in ΩS .

Simulations are performed for 30s at two uniform grid resolutions of 0.25m and 0.50m.
Several probes are placed in the domain to compare the free surface elevation records; see Fig. 4.
Due to the prescribed motion of the sphere the generated circular wave is regular, and both the
ABC-1 and ABC-2 are tuned to absorb this regular wave. But because the wave is circular,
it reaches the outflow boundaries at different angles at different positions. To account for this
directional effect, the angle coefficients in both boundary conditions are set to 45◦ (combined
with 0◦ for the second order condition).

Figure 5 shows the free surface elevation history from the first three probes on both grid
resolutions. The results in the other three probes are comparable [7]. As the circular concentric
wave travels out from the center, the amplitude of the wave decreases because the energy of
the wave is spread over a larger area. The probes show a significant difference between the
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Figure 5: Free surface elevations as a function of time at various locations. From top to bottom results are shown
at p#1, p#2 and p#3 [7].

performance of the ABC-1 and ABC-2, and clearly demonstrate the superiority of the ABC-2
over ABC-1.

Fig. 6 shows snapshots of the simulations at t ≈ 25s when ABC-1 and ABC-2 are used
on the fine grid. With ABC-1 different amounts of reflection at different locations result in
a graphically-interesting but highly disturbed free surface. In contrast, with ABC-2 the free
surface is considerably less disturbed.

(a) ABC-1 (b) ABC-2

Figure 6: Snapshots of the simulations of an oscillating sphere at t ≈ 25s (fine grid with resolution of 0.25m). The
colors correspond with the vertical velocity at the free surface.
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4 FLUID–SOLID BODY COUPLING

A further step is to allow the moving object to interact with the fluid dynamics, e.g. it
is floating on the water surface. This physical two-way coupling has to be mirrorred in the
numerical coupling algorithm between the flow solver and the solid-body solver. The coupling
takes place along the common interface Γ between the fluid and the solid body; quantities
involved are the dynamics (position and acceleration) of the solid body, and the dynamics of the
fluid (in particular its pressure forces); see Fig. 7.

Figure 7: Schematic partitioning between fluid and solid body, with information exchange along their common
interface Γ.

1. The coupling conditions at the interface between fluid and solid body basically express
‘continuity’ of the physics on both sides of the common interface Γ. The kinematic condi-
tion expresses that the boundary of the liquid region (partially) coincides with the surface
of the solid body. In particular, material particles on both sides have the same veloc-
ity and acceleration (when the no-slip condition does not hold, only the normal com-
ponent is continuous). Hence, it makes sense to talk about the velocity at the interface
uΓ. Additionally, the dynamic coupling condition is based on Newton’s 3rd law “action
= −reaction”, which expresses equilibrium of forces. In particular, we denote the fluid
pressure by pΓ. In the sequel, we will formulate the coupled problem in terms of the two
interface variables: uΓ and pΓ.

2. The solid-body dynamics is governed by an equation describing the accelaration u̇ of the
solid body when reacting to the forces and moments f excerted by the fluid. The latter
are found by integration of the liquid pressure over the common interface Γ. In abstract
terms we denote this relation by

solid body dynamics: u̇Γ = DpΓ. (15)

The dynamics operator D involves the integration of the fluid pressure over the interface
to obtain the force and moments acting on the body. Through the dynamics equations of
the solid body these lead to an acceleration of the body. Thus the eigenvalues of D are
inversely related to the body mass and its moments of inertia. Note that we do not show
eventual external forces, as they play no essential role in the coupling algorithm.

3. The fluid dynamics governs the reaction of the fluid to the motion of the solid body. The
latter creates a boundary condition along the interface Γ which has to be added to the
Navier–Stokes equations (1). As a result, the pressure along the interface and acting on
the solid body can be computed. In abstract notation we write

fluid dynamics: pΓ = −Mau̇Γ, (16)
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where Ma is, by definition, the so-called added mass operator. Again, terms in u have
been omitted because of their minor role in the analysis of the coupling process.

The above formulation (15)+(16) in principle shows two equations for the two unknowns
along the interface: pressure and acceleration. Their coupling can be done in an aggregated
/ monolithic or segregated / partitioned way. An aggregated (or strong) coupling recombines
both equations (or modules) into one single global system which is solved simultaneously. In
contrast, a segregated (or weak) coupling keeps the two equations apart and solves them in an
iterative way. The former approach may not always be possible, e.g. due to their ‘black-box’
character, or due to the large complexity of the modules; the latter approach may diverge.

4.1 Weak coupling

In practice often a segregated approach is followed. The usual way is to let the fluid deter-
mine a pressure field pold

Γ which moves the solid body:

u̇new
Γ = Dpold

Γ . (17)

This motion of the solid body is then transferred to the fluid to react with a new pressure field:

pnew
Γ = −Mau̇

new
Γ . (18)

In this way, we effectively have created an iterative process

pnew
Γ = −MaDp

old
Γ . (19)

The iterations in such a weak coupling method will converge if and only if the spectral radius of
the iteration matrix ρ(MaD) < 1. Recalling that D inversely scales with the mass and inertia of
the solid body, this condition becomes a requirement for the ratio between added mass and body
mass. Roughly speaking, the solid body should be heavy enough. If it is not, underrelaxation
can help achieving convergence, but this will require (many) additional (sub)iterations.

In practice, such iterations can be implemented as follows in the solution process for the
Navier–Stokes equation (3) during the time step from n → n + 1. An additional subiteration
process (with iteration count k) is included:

solid-body dynamics: (u̇n+1
Γ )k = D(pn+1

Γ )k; (20)
Navier–Stokes: (pn+1

Γ )k+1 = Ma(u̇
n+1
Γ )k. (21)

If necessary, these subiterations can be made convergent by applying (severe) underrelaxation
without disturbing the time accuracy of the time integration method, but often at a considerable
computational price.

Below we will demonstrate with an example of a falling life boat how many subiterations can
be required. Because of this inefficiency, we would like to apply an aggregated approach (which
does not require subiterations), or at least to be as close as possible to such an approach. Such an
approach is the quasi-simultaneous method, originally developed for interacting aerodynamic
boundary layers along airplane wings [28]; a historic overview is provided in [29, 30].
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4.2 Quasi-simultaneous coupling

For iterative efficiency reasons, we would like to follow the monolithic, simultaneous ap-
proach as much as possible. With the full dynamics operator D being too complex, we look for
a good approximation D̃ which is simple enough to be used as a boundary condition inside the
Navier–Stokes solver (1). Such an approximation has been termed an interaction law [28–30]

u̇Γ = D̃pΓ. (22)

The interaction law (22) is then incorporated in the time integration process in defect formula-
tion:

interaction law: u̇n+1
Γ − D̃pn+1

Γ = (D − D̃)pnΓ (23)

Navier–Stokes: pn+1
Γ −Mau̇

n+1
Γ = 0. (24)

Another interpretation in terms of time integration is that the part D̃ of the dynamics equation
(15) is treated implicitly and the remaining part D − D̃ explicitly.

Figure 8: Weak versus quasi-simultaneous coupling.

The interaction law is a boundary condition for the Navier–Stokes equations along the inter-
face Γ. More precisely, it will be implemented as a boundary condition for the pressure Poisson
equation (6). The latter is derived by first rewriting the boundary condition (23) for u as

un+1
Γ − δt D̃pn+1

Γ = un
Γ + δt (D − D̃)pnΓ.

Then the discrete momentum equation is written in the form (2), wherein the above relation is
substituted through the term MΓu. Finally a relation is obtained featuring pΓ as a boundary
condition for the Poisson equation; see also [31].

The above quasi-simultaneous integration can be analysed by eliminating u̇ from (23)+(24),
which leads to

(I +MaD̃)pn+1
Γ = −Ma(D − D̃)pnΓ. (25)

For D̃ ≡ 0, we recover the iteration process (19) which breaks down when Ma is ‘too large’.
But with the term MaD̃ on the left-hand side, it will be clear that this process will converge
when D̃ is sufficiently close to D, in spite of a possibly ‘large’ Ma.

4.3 Example

To show the performance of the quasi-simultaneous approach, we now present an example of
a the simulation of a life boat falling into a large breaking wave. A snapshot of the simulations
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Figure 9: A snapshot of the life boat falling into a large wave. Also the locally-refined grid regions are shown.

is shown in Fig. 9. The dynamics of the life boat is modelled by means of a 6-DOF mechanical
model.

The fluid flow is modelled with the Navier-Stokes equations and solved on a grid consisting
of about 0.7 million active (i.e. within the fluid) grid points, with local grid refinement [12]
around the life boat (Fig. 9). For physical accuracy this grid is rather coarse, but the focus in
these simulations is on the numerical behaviour of the coupling process. Thus both the weak
coupling procedure (19) as well as the quasi-simultaneous procedure (24) have been applied. In
the latter case, the interaction law is based on the under-water part of the lifeboat (as the Poisson
equation is only solved under water).

Figure 10: Left: The number of SOR iterations per time step for the underrelaxed weak coupling method (blue)
and the anticipating quasi-simultaneous method (green)). Right: The estimated added mass for the falling lifeboat
as a function of time. The moment of impact is clearly visible.

The most important result concerns the amount of work that is needed per time step to
achieve the coupling between solid-body dynamics and fluid flow. The weak method often
requires dozens of subiterations, in each of which a Poisson equation has to be solved. This
number is dependent on the amount of fluid that is moved aside by the moving body, repre-
sented by the added-mass operator Ma. Fortunately, the later subiterations have a good initial
guess so they are not as expensive as the earlier ones. Thus the amount of work is better rep-
resented by the total number of SOR-iterations [32] that is needed for all Poisson solves within
one time step. This amount of work is shown in Fig. 10(left). The relation with the added mass
becomes visible when plotting the time history of the estimated added mass in Fig. 10(right);
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note that the ‘gaps’ in the curve are due to loss of figures during the estimation of the added
mass. Comparison with Fig. 10(left) shows clearly that the number of iterations grows rapidly
when the ‘added-mass ratio’ ρ(DMa) growths beyond 1. In contrast, the quasi-simultaneous
method requires 1 or 2 subiterations (with additional Poisson solver), resulting in much less
work per time step (Fig. 10).

5 WAVE IMPACT

As a third we present simulations and experiments for run-up against a semi-submersible
offshore platform. The setup of the experiment, carried out at MARIN on a scale of 1 : 50, is
sketched in Fig. 11. A simplified semi-submersible is located in the center of the flow domain.
On full scale it measures 114.5 m ×17.5 m ×28.0 m with a draft of 16.0 m. The waves are
generated by a flap-type wave generator. The basin width is 4 m, i.e. 200 m on full scale, with
solid side walls. The incoming wave has a full scale wave height of 14.7 m and a wave period of
11.0 s. The wave elevation and pressure are measured at several positions, indicated in Fig. 11.

Figure 11: Wave run-up against a semi-submersible: snapshot of experiment (left) and position of sensors (right).

To reduce computational costs, the boundaries of the flow domain are brought closer to the
structure than in the experiment, with an inflow boundary located at 240 m from the center of the
semi-submersible. To account for this decreased distance between the wave maker and the semi-
submersible in the simulations, the incoming waves have been analyzed by wave calibration
tests (without semi-submersible in the flow) [33]. The incoming computational wave thus is
modeled as a 5th-order Stokes wave. Note that the shape of the experimental wave differs from
a theoretical Stokes wave: the wave crests can be made to correspond nicely, but a difference
in the troughs is left (see Fig. 13). This has to be taken into account when comparing the
simulations with the model tests.

The ComFLOW simulations used a one-phase flow model (as shown above) with a modern
minimum-dissipation turbulence LES model [20]. Central spatial discretization with Adams-
Bashforth time stepping is used throughout. The numerical simulations are shown for two
different, stretched grids: 180 × 40 × 60 = 430k and 360 × 80 × 120 = 3.5M grid cells.
The grid sizes near the semi-submersible are about 80 cm and 40 cm, respectively, in all three
directions. An absorbing boundary condition, as discussed above, is applied at the outflow
boundary and the simulations are carried out for several wave periods (5-10 periods, depending
upon the size of the computational grid). Also results for a locally-refined grid [12, 13] are
shown, with cells of around 10 m away from the structure and four refinement levels, down to
50 cm near the object, making a total of 0.5M cells (Fig. 12).

In the presentation of results we focus on the region in front of the first column, i.e. wave-
height probes WH01 and WH09, and pressure probes P11 and P15; see Fig. 11. Firstly, in
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Figure 12: The grid with local refinements around the free surface and around the semi-submersible. Each box
contains a refined grid level (no grid lines are shown).

Figure 13: The wave height development in front of the semi-submersible (WH01) and at the first column (WH09)
for several grids compared with experimental data.

Fig. 13 the wave run-up against the column is shown for the first two wave periods in the sim-
ulation. The results from the locally-refined simulation are pretty similar to those of the finest
grid, although the amount of grid points is about 7× less.

The pressure development near bottom (P11) and top (P15) of the first column of the semi-
submersible is shown in Fig. 14. Near the top of the first column, at transducer P15, the peak
pressure values in the simulations are relatively low, which can be attributed to the limited
number of grid cells along the column. The locally-refined grid, with its higher resolution
near the semi-submersible, seems to catch the pressure peaks somewhat better. More detailed
simulations can be found in the PhD thesis of Wemmenhove [5, 34] and the forthcoming PhD
thesis of Van der Plas [12, 13].

6 CONCLUSIONS

Some recent developments in the ComFLOW simulation method have been presented. It is
designed to simulate and study extreme waves and their impact on falling, floating and moored
structures. Firstly, an absorbing boundary condition has been presented that adapts itself to the
(local) wave number and phase speed of dispersive waves. Waves generated by an oscillating
buoy show that the computational boundaries can be put close to the wave-generating object.
Secondly, a life boat falling into an extreme wave reveals that the interaction between solid-body
dynamics and fluid dynamics poses serious numerical challenges for their numerical coupling.
It is demonstrated that a quasi-simultaneous coupling strategy can efficiently handle these chal-
lenges. Thirdly, simulations of large turbulent waves against a fixed semi-submersible, validated
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Figure 14: The pressure at the first column for several grids compared with experimental data. Left: P11 near the
foot of the column; right: P15 near the top.

through experiments, demonstrate the efficiency of local grid refinement.
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