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ABSTRACT 

Exposure to early-life adversity may program brain function to prepare individuals for adaptation to 

matching environmental contexts. In this study we tested this hypothesis in more detail by examining 

the effects of early-life stress – induced by raising offspring with limited nesting and bedding material 

from postnatal days 2-9 – in various behavioral tasks and on synaptic function in adult mice. Early-life 

stress impaired adult performance in the hippocampal dependent low-arousing object-in-context 

recognition memory task. This effect was absent when animals were exposed to a single stressor 

before training. Early-life stress did not alter high-arousing context and auditory fear conditioning. 

Early-life stress-induced behavioral modifications were not associated with alterations in the dendritic 

architecture of hippocampal CA1 pyramidal neurons or principal neurons of the basolateral amygdala. 

However, early-life stress reduced the ratio of NMDA to AMPA receptor-mediated excitatory 

postsynaptic currents and glutamate release probability specifically in hippocampal CA1 neurons, but 

not in the basolateral amygdala. These ex vivo effects in the hippocampus were abolished by acute 

glucocorticoid treatment. Our findings support that early-life stress can hamper object-in-context 

learning via pre- and postsynaptic mechanisms that affect hippocampal function but these effects are 

counteracted by acute stress or elevated glucocorticoid levels.  

 

Keywords: Early life adversity, synapses, stress, AMPA, NMDA, Memory 

 

*Abstract



Early life stress determines the effects of glucocorticoids and stress on hippocampal function: 

electrophysiological and behavioral evidence respectively  

 

Anup G. Pillai1, Marit Arp2, Els Velzing2, Sylvie L. Lesuis2, Mathias V. Schmidt3, Florian Holsboer3, 

Marian Joëls1,4* and Harm J. Krugers2* 

 

1Dept. Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 

Utrecht University, The Netherlands 

2SILS-Center for Neuroscience, University of Amsterdam, The Netherlands 

3Max Planck Institute for Psychiatry, Department Stress Neurobiology and Neurogenetics, Munich, 

Germany 

4University of Groningen, University Medical Center Groningen, The Netherlands 

* These authors share senior authorship 

 

Correspondence and proofs to: 

Harm J. Krugers, SILS-Center for Neuroscience, University of Amsterdam, The Netherlands 

Science Park 904, 1098 XH, Amsterdam, The Netherlands 

Phone: + 31 20 5257621 

Email: h.krugers@uva.nl 

 

 

 

 

 

 

 

 

 

*Manuscript
Click here to view linked References



2 

    

 

ABSTRACT 

Exposure to early-life adversity may program brain function to prepare individuals for adaptation to 

matching environmental contexts. In this study we tested this hypothesis in more detail by examining 

the effects of early-life stress – induced by raising offspring with limited nesting and bedding material 

from postnatal days 2-9 – in various behavioral tasks and on synaptic function in adult mice. Early-

life stress impaired adult performance in the hippocampal dependent low-arousing object-in-context 

recognition memory task. This effect was absent when animals were exposed to a single stressor 

before training. Early-life stress did not alter high-arousing context and auditory fear conditioning. 

Early-life stress-induced behavioral modifications were not associated with alterations in the dendritic 

architecture of hippocampal CA1 pyramidal neurons or principal neurons of the basolateral amygdala. 

However, early-life stress reduced the ratio of NMDA to AMPA receptor-mediated excitatory 

postsynaptic currents and glutamate release probability specifically in hippocampal CA1 neurons, but 

not in the basolateral amygdala. These ex vivo effects in the hippocampus were abolished by acute 

glucocorticoid treatment. Our findings support that early-life stress can hamper object-in-context 

learning via pre- and postsynaptic mechanisms that affect hippocampal function but these effects are 

counteracted by acute stress or elevated glucocorticoid levels.  
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Highlights 

- An acute stressor overcomes effects of Early Life Stress on object-in-context memory 

- Brief glucocorticoid treatment in vitro prevents effects of Early Life Stress on hippocampal 

excitatory synaptic transmission 

- Limited nesting and bedding material does not impact hippocampal and amygdala dendritic 

morphology 
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1. Introduction 

Parental care is an important component of the gene-environment interactions in early-life that shape 

cognitive-emotional development, which is reflected throughout life (Bowlby, 1958). Lack of 

adequate parental care arising from parental neglect or lack of sensitivity constitute a dominant form 

of early-life stress in humans (Nelson et al., 2011) that hampers cognitive function, enhances 

emotionality and increases the risk to develop psychopathology later in life in vulnerable individuals 

(Caspi et al., 2003).  

Animal models of stress developed over the last decades have been beneficial in identifying 

causal relationships between early-life adversity and later-life cognitive and emotional disabilities and 

the underlying mechanisms (de Kloet et al., 2005; Meaney, 2001). In rodents, maternal sensory 

stimulation comes from a set of stereotyped behaviors such as licking/grooming and arched back 

nursing. Low levels of maternal care have been reported to hamper spatial learning and memory (Liu 

et al., 2000; Oomen et al., 2010) but enhance fear learning (Champagne et al., 2008; Oomen et al., 

2010). Similar effects have been reported in rodents that were raised with fragmented levels of 

maternal care - achieved by limiting the nesting and bedding material during the early postnatal period 

(Arp et al., 2016; Brunson et al., 2005; Ivy et al., 2010; Naninck et al., 2015; Rice et al., 2008; Wang 

et al., 2013). 

Indices of glutamatergic functionality in the rat dentate gyrus, such as synaptic responses via 

NMDA and AMPA receptors, which are critical for synaptic plasticity and memory formation 

(Kessels and Malinow, 2009), were recently reported to be sensitive to the level of maternal care 

(Bagot et al., 2012). However, several studies indicate that early-life conditions affect synaptic 

transmission and plasticity in adulthood differently depending on the experimental conditions during 

testing. Thus, in adult offspring from low (compared to high) caring mothers, hippocampal LTP was 

reduced and NMDAR-mediated transmission was enhanced under non-stressful conditions associated 

with low corticosterone concentrations (Bagot et al., 2009, 2012; Champagne et al., 2008). However, 

when corticosteroid levels were experimentally raised, LTP was increased in offspring of low caring 

mothers, while in the offspring of high-caring mothers LTP was reduced and NMDAR mediated 

transmission enhanced. This may suggest that synaptic transmission and plasticity are optimal and 
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facilitate behavioral adaptation when early and later-life conditions match, i.e. animals raised under 

stressful conditions perform well in arousing learning contexts (Champagne et al., 2008; Nederhof 

and Schmidt, 2012; Santarelli et al., 2017). 

In order to examine this in more detail we here addressed three questions. We first examined 

the impact of early-life stress, induced by raising offspring with limited nesting and bedding material 

from postnatal days 2-9 (Rice et al., 2008) on memory in low-arousing (object-in-context) learning 

paradigms as well as its modulation by a brief exposure to stress. Next, we studied whether the lasting 

behavioral changes induced by early-life stress are associated with alterations in hippocampal 

dendritic complexity and/or glutamate-mediated synaptic transmission with corticosterone levels that 

are relevant for either non-stressful or stressful conditions. Finally, regional specificity was 

determined by investigating behavioral performance, dendritic complexity and glutamatergic 

transmission related to the basolateral amygdala. 

 

2. Materials and Methods 

 

2.1. Experimental animals and breeding 

The study used adult (10-14 weeks) male C57BL/6 mice bred in-house at the institutional animal 

facility. Mice were reared in standard conditions (21°C ± 1 and 55% ± 15 humidity on a 12 h 

light/dark cycle with lights on at 08:00 hr) and had unlimited access to food and water at all times. 

Experiments were performed in compliance with the European Union Directive on the protection of 

animals used for from the scientific purposes (2010/63/EU). All experiments were approved 

(DED192/DED256) by the local animal ethics and welfare committee (University of Amsterdam / 

Utrecht University). Efforts were made to reduce the number of animals used and their discomfort 

throughout the duration of the study.  

For breeding, 10 weeks old C57Bl/6J male and female mice were purchased from Harlan 

Laboratories, The Netherlands. One male was housed with two females for one week. Subsequently 

the male was removed and the females were left undisturbed until being individually housed 

approximately one week before giving birth. Day of birth was termed postnatal day zero (P0). 
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2.2. Early-life Stress 

Two days after birth (P2), the litter size per dam was adjusted. Litters contained 6 pups with at least 

one female pup and litters were randomly assigned to either the early-life stress (Arp et al., 2016; Rice 

et al., 2008; Wang et al., 2011) or control group. Dams and litters in the early-life stress group were 

shifted to cages having a fine-gauge aluminum mesh floor with limited bedding and nesting material 

(half-square piece of cotton nesting material (Technilab-BMI, The Netherlands) and little sawdust 

bedding). Control dams were transferred to standard housing cages with one full square (5 x 5 cm) 

nesting material and plenty of sawdust bedding. At P9, all animals (dams with litters) were transferred 

back to standard cages with sufficient nesting and bedding material. Between P22 and P24, the 

offspring was weaned and socially housed (2-4 animals per cage). Experimental groups for 

electrophysiological experiments rarely contained animals from the same litters. 

 

2.3. Adult stress  

Adult animals were stressed by transferring them to a clean and unfamiliar home cage (without 

food/water) for 20 min. From previous reports we know that this ‘novel-cage paradigm’ activates the 

HPA-axis resulting in moderately raised plasma corticosteroid levels (Pardon et al., 2004), and 

induces acute glucocorticoid receptor-mediated responses in the hippocampus (Sarabdjitsingh et al., 

2014). 

 

2.4. Quantification of corticosterone levels 

Radio immuno-assay was performed using a 125I-labeled corticosterone double-antibody kit (MP 

Biomedicals) on stored (-80°C) plasma isolated (centrifuged at 14000 rpm for 15 min at 4°C) from 

fresh trunk blood collected immediately after decapitation of adult mice on the day of the experiment. 

 

2.5. Object-in-context recognition memory test 

The object-in-context memory test assesses the recognition of a familiar object in a context that is 

different from where it was presented previously (Dix and Aggleton, 1999). Performance of this 
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behavior task requires associating a particular object with a specific context and is heavily dependent 

on the functional integrity of the hippocampus (Barker and Warburton, 2011; Mumby et al., 2002; 

Ramsaran et al., 2016).  The experiment was conducted over a period of 3 days (Fig. 1A). On day 1, 

the animals were habituated for 10 min in a rectangular blue box (L x W x H; 54 x 33 x 37 in cm) 

with no visual cues (context A) or objects apart from sawdust bedding. On day 2, the training day, 

each mouse was placed for 10 min in context A with two identical objects (Lego blocks) at diagonally 

opposite corners (15 cm from the closest vertex). Next, the animals were exposed to context B 

(striped walls) for 10 min with two identical objects (small bottles) before being returned back to their 

home cage. On day 3, the testing day, animals were placed for 10 min in context B with two familiar 

objects (one each from context A and B) of which one object (out-of-context object) was never 

encountered in context B. In a separate experiment, animals were exposed to 20 minutes of novelty 

stress (see section 2.3) one hour before training on day 2. Between individual sessions, all objects 

were thoroughly cleaned with 5% ethanol and fresh bedding material was added to the box. All 

sessions were videotaped and an experimenter blind to the groups scored and analyzed the number of 

visits and time spent with the out-of-context object. 

 

2.6 Fear conditioning 

Mice were tested for contextual fear acquisition as follows (Fig. 2A). On day 1, the conditioning day, 

each mouse was habituated to the conditioning box (context A, L x W x H: 25 x 25 x 30 in cm) fitted 

with a stainless steel grid floor connected to a shock generator. After 3 minutes of exploration, one 

footshock (2 sec, 0.4 mA) was delivered and 30 sec later the mouse was returned back to its home 

cage. On day 2, the testing day, the mouse was placed back into the same conditioning chamber for 3 

minutes. The sessions were videotaped and the freezing behavior (no body movements other than 

those related to breathing) was scored every 2 sec by an experimenter blind to the experimental 

groups.  

A different cohort of animals was tested on auditory fear conditioning that measured the 

amygdala-dependent form of associative fear learning (Phillips and LeDoux, 1992; Schafe and 

LeDoux, 2000). On day 1, mice were first habituated to the conditioning chamber (context A) similar 
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to the contextual fear conditioning described above (Fig. 2C). At the end of the habituation period, the 

mouse was presented with a pure tone (100 dB, 2.8 kHz, 30 sec duration) that co-terminated with a 

footshock (2 sec, 0.4 mA) and was returned back to the home cage after 30 sec. On day 2, the testing 

day, the mouse was placed in a box with striped walls and smooth floor (context B) and 3 min later 

was presented with the conditioning tone lasting for 30 sec. The mouse remained in the chamber for 

another 30 sec before being returned back to its home cage. At the end of the experiment, Context A 

and B were cleaned with 70% ethanol and  1% acetic acid, respectively. The sessions were videotaped 

and the freezing behavior was scored every 2 sec by an experimenter who was blind to the 

experimental groups.  

 

2.7 Golgi-Cox Staining 

In order to stain and compare dendritic architecture of individual neurons in the hippocampus and 

amygdala, the Golgi-Cox staining protocol was followed as reported before (Boekhoorn et al., 2006). 

Mice were decapitated when the circulating glucocorticoid levels were low (between 0800 and 0900) 

and the brain was quickly removed and immersed in the Golgi-Cox solution (5% K2CrO4, 5% HgCl, 

and 5% K2Cr2O7). The brains, after being left undisturbed for 30 days, were thoroughly rinsed in 

deionized water, dehydrated in ethanol, embedded in celloidine and kept immersed in chloroform for 

the next 16 hours. Subsequently, the brains were cut into thin (200 μm) coronal slices using a 

vibratome, stained in 16% ammonia and mounted on glass slides for microscopic analysis. 

Undamaged and isolated cells with good dye impregnation and clear from precipitations  were 

randomly imaged from both hemispheres of dorsal hippocampus and basolateral amygdala. Dendritic 

tracks were hand drawn using Neurodraw and Image-Pro softwares by an experimenter who was blind 

to the treatment groups. Dendritic parameters from 4-5 neurons per animal were averaged for 

statistical comparisons and plotting.  

 

2.8. Brain slice preparation and electrophysiological recordings 

Mice were quickly transferred from their home cage and decapitated without anesthesia before 10:30 

am on the day of the experiment. This was necessary to keep the circulating corticosteroid levels low 
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and uniform across experiments, as both the circadian cycle and anesthesia rapidly alter stress 

hormones levels in the plasma and brain (Jacobsen et al., 2012; Zardooz et al., 2010). Immediately 

after decapitation, the brain was quickly removed from the skull and chilled in oxygenated (95% O2 / 

5% CO2) ice-cold artificial cerebrospinal fluid (aCSF) of the following composition, in mM: 125 

NaCl, 26 NaHCO3, 1.2 NaH2PO4, 10 Glucose, 3 KCl, 1.3 MgSO4 and 2 CaCl2 at pH ~ 7.35. 

Subsequently, coronal sections of the brain, containing one or more of the regions of interest 

(hippocampus and/or amygdala), were cut at a thickness of 300-350 μm using a vibrating blade 

microtome (VT 1000S, Leica Biosystems, Germany). After a recovery period (10-15 min in aCSF at 

25 oC), slices were randomly assigned for acute treatment (20 min) with either corticosterone (100 

nM) or vehicle (0.01% ethanol) in an incubation chamber filled with oxygenated aCSF (30 oC).  After 

treatment, all slices were transferred back to the holding chamber containing normal aCSF at room 

temperature (~ 25 oC) until the commencement of recording.  

 For recording, one slice at a time was placed in the recording chamber of a patch-clamp setup 

with a running supply of warm oxygenated aCSF (30oC, ~ 2.5 ml/min) using a peristaltic pump (TC-

324B, Warner Instrument Corp., USA). Neurons were visualized using a 40x objective (NA: 0.75, 

with Nomarsky optics IR-DIC) coupled to a b/w high resolution CCD camera and monitor (TCCCD-

624 & CDM-1702, Monacor International, Bremen, Germany) that was attached to an AX10-

Examiner microscope (Zeiss, Germany). Whole-cell patch-clamp recording was carried out using an 

AxoPatch 200B amplifier (Axon Instruments, USA). The signals were sampled (at 50 kHz using 

Digidata 1322A 16 bit ADC, Axon Instruments, USA), amplified (10 mV/pA) and filtered at 2 kHz 

without series resistance and capacitance compensations, using pClamp 9.2 software. All recording 

were analyzed off-line with custom programs written in MATLAB. Excitatory postsynaptic currents 

(EPSCs) were evoked in CA1 pyramidal neurons by stimulating the Shaffer collateral axons using a 

concentric bipolar stimulation electrode (FHC, USA) placed ~ 200-300 μm from the patched neuron 

(Figure 4A). Whereas, in the amygdala, we recorded EPSCs elicited in the pyramidal-like principal 

neurons of the basolateral amygdala by electrical stimulation of the lateral amygdala (Figure 6A). The 

stimulations were performed at 0.04 Hz via a stimulus isolator (NeuroLog, Digitimer, UK) that 

delivered short current pulses. For each cell we adjusted the stimulus duration (100-150 μs) and 
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intensity (200-700 μA), to obtain monosynaptic EPSCs with an optimal amplitude (~ 100 pA) before 

commencing baseline recording. EPSCs mediated by α-amino-3-hydroxy-5-methyl-4-isoxazole 

propionate receptors (AMPARs) were recorded at -70 mV in the presence of a GABAAR-blocker 

bicuculline methobromide (BIC, 20 μM) for 10-15 min, following which N-methyl-D-aspartate 

receptors (NMDARs) mediated EPSCs were measured at -70 mV in Mg2+-free aCSF that also 

contained a competitive AMPA/kinate receptor antagonist (CNQX, 20 μM). In a subset of 

experiments we also blocked NMDAR-EPSCs (using APV, 20 μM) at the end of the recording 

session. Unless stated otherwise, all chemicals were purchased from Sigma-Aldrich (The 

Netherlands).   

 Patch electrodes were made from thick-walled borosilicate glass capillaries (inner/outer 

diameter in mm: 1.5/0.86; Harvard Apparatus, UK) pulled on a P-97 Flaming/Brown micropipette 

puller (Sutter Instruments, USA) to yield a tip of ~ 2 μm (4-6 MΩ with internal solution). The patch 

pipettes were filled with an intracellular solution that was composed in mM: 145 CH3CsO3S, 20 CsCl, 

10 HEPES, 3.3 BAPTA tetracesium salt, 4 ATP-Mg2+ and 0.4 GTP-Na2 at pH 7.36 (adjusted with 

CsOH).   

 Baseline EPSC recording typically commenced within 12 min after entering the whole-cell 

configuration, taking into account the time required for (1) dialysis of the cell by the cesium-

containing internal solution and (2) adjusting the stimulation (location and intensity) to obtain stable 

mono-synaptic EPSCs. After 5-10 minutes of baseline recording of AMPAR-mediated EPSCs, the 

extracellular perfusion medium (standard aCSF) was exchanged with Mg2+-free aCSF that also 

contained CNQX. Pure NMDAR-EPSCs were visible ~ 20 min after the start of the solution 

exchange, as confirmed by their relatively large rise and decay times as well as by its blockade by 

APV. We computed the NMDA / AMPA EPSC ratio from the averaged peak amplitudes of pure 

AMPAR- and NMDAR-EPSCs. Our computed values for rise time , decay time constants  and 

NMDA / AMPA ratio from vehicle treated control CA1 pyramidal neurons (Table 1) and basolateral 

amygdala principal neurons (Table 2) largely agree with earlier reported values largely agree with 

earlier reported values (Spruston et al., 1995; Lack et. al., 2007, Kröner et. al. 2005). Presynaptic 

changes were accessed using paired-pulse ratios of peak AMPAR-mediated EPSCs measured from 
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two consecutive stimulations with a 50 ms inter-pulse interval.  

 The following EPSC parameters were measured off-line using custom MATLAB routines: 

Peak amplitude: EPSC amplitude averaged within a 100 μs window centered around the actual peak; 

Rise time: time between 20-80% of the peak amplitude; EPSC decay tau: based on a single 

exponential fit from peak to tail.  

 

2.9 Statistical Analysis 

All statistical tests and plotting were done with the 'R' statistical software (R Development Core 

Team, 2016). The data were examined using either one-way or two-way ANOVA with early-life 

treatment (early-life stress or control) and later-life treatment (with or without stress/corticosterone 

exposure) as fixed-factors. A two-way ANOVA with repeated measures (distance from soma) was 

used to test distance-dependent effects on dendritic length between early-life stress and control 

groups. Posthoc comparisons between individual groups were done using Welch's t-test (Saville, 

1990). The assumptions underlying ANOVA were tested using Shapiro-Wilks and Levene's test of 

normality and homogeneity of variance, respectively. In plots, the error bars represent SEM, and 

number of animals or cells is given.  

 

3. Results 

 

3.1. Plasma corticosterone levels and body weight 

At P9, body weight of all animals in the ELS group (3.7 g ± 0.1, N = 15), including female mice 

which were subsequently not used in this study, was lower than in control animals (4.9 g ± 0.1, N = 

16), p < 0.001, as reported earlier (Rice et al., 2008). Basal plasma corticosteroid level was examined 

in both control and early-life stressed adult mice as readout for persistent alterations in HPA axis 

activity (Figure 1B). In adulthood, control and early-life stressed mice had comparable levels of basal 

plasma corticosterone levels (control: 7.9 ± 1.6 ng/ml; els: 6.5 ± 1.5 ng/ml; t(36) = 0.67, p = 0.51) as 

reported previously (Naninck et al., 2015). Also, we have no evidence that stress-induced plasma 

corticosterone levels are altered after ELS (Lesuis et al., 2017). 
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3.2. Exposure to stress prevents early-life stress-induced impairment in object-in-context recognition 

memory 

The impact of stress in adulthood on putative early-life stress mediated impairment in hippocampus-

dependent memory was examined using the object-in-context memory task. To test this, we exposed 

animals in both the early-life stress and control group to a brief episode of novel-cage stress (or 

control treatment) one hour before training on day 2 (Figure 1A). Two-way ANOVA revealed a 

significant interaction between early-life stress and later-life stress on exploration time, F(3, 26) = 

4.69, p = 0.04, and frequency of visits to the out-of-context object, F(3, 26) = 6.74, p = 0.02. Follow-

up analysis showed that control mice spent a considerable amount of time and visits to the out-of-

context object, whereas adult animals that were exposed to early-life stress were impaired in 

recognizing the new object in a familiar context (Figure 1C & D). This is evident from the significant 

difference between groups in mean values for both number of visits (control: 65 % ± 2; els: 55 % ± 2), 

t(12) = 4.5, p = 0.001, and time spent (control: 62 % ± 2; els: 52 % ± 2), with the out-of-context 

object, t(12) = 3.2, p = 0.007.  

This effect was not seen when mice were exposed to a brief stressor prior to testing. Thus, 

when assessed for memory on day 3, control and early-life stressed mice that were exposed to brief 

stress showed similar recognition of the out-of-context object (Figure 1C & D). We found no 

significant difference between early-life stress and control groups in both exploration time (control + 

stress: 59 % ± 3; els + stress: 62 % ± 4; t(13) = -0.6, p = 0.5) and visits to the out-of-context object 

(control + stress: 61 % ± 3; els + stress: 64 % ± 3; t(14) = -0.6, p = 0.5).  

 

3.3. Early-life stress does not affect context and auditory fear memory in adult mice 

In the previous experiment we showed that mice exposed to early-life stress are cognitively impaired 

in a non-aversive, non-stressful task but perform normally when primed with a brief stress before 

training. This may suggest that mice that were exposed to early-life adversity perform well when 

trained under stressful learning conditions later in life. When tested in a contextual fear conditioning 

paradigm (Figure 2A), mice that were exposed to early-life stress showed slightly enhanced freezing 
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behavior in response to the footshock (Figure 2B, t(9) = -2.05, p = 0.07) while freezing behavior of 

control and early-life stressed mice during the pre-shock period was identical for the groups, t(8) = -1, 

p = 0.35, indicating that basal behavioral activity was similar between groups. On the next day, when 

animals were tested for contextual fear in the same context as in the training day but without shock, 

both early-life stressed and control mice showed similar levels of freezing behavior, t(16) = 0.85, p = 

0.4. Thus, apart from the enhanced sensitivity immediately following shock, contextual fear memory 

was unaffected in mice subjected to early-life stress.  

 Subsequently, we tested for auditory fear memory in a different cohort of animals (Figure 

2C). Two-way ANOVA showed significant main effect of training sessions (pre-tone, tone and post-

tone), F(2, 22) = 25.9, p < 0.001, but no significant effect for group (p > 0.8) or interactions (p > 0.8). 

These results were also consistent with the observations on the testing day (Figure 2D). There was a 

significant effect of testing session in both groups, F(2, 22) = 61.3, p < 0.001, indicating that 24 hr 

after pairing all animals exhibited significant fear learning. However, this learning was not modified 

by early-life stress (p > 0.5). These results together demonstrate that learning of both context and 

auditory fear memories were not altered by early-life stress.  

 

3.4. Early-life stress does not lead to lasting alterations in the dendritic architecture of pyramidal 

neurons in the CA1 hippocampal area or basolateral amygdala 

We quantified the distribution of dendritic material between concentric spheres placed at equidistance 

and centered at the soma (Sholl, 1953), Figure 3A. Segmental distributions of apical and basal 

dendrites of CA1 pyramidal neurons from adult early-life stress and control mice were similar (Figure 

3B). This was revealed by a two-way ANOVA which indicated no significance for main effect of 

group, F(1, 13) = 0.68, p = 0.425, or its interaction with radial distance, F(24, 312) = 1.182, p = 0.256, 

for the apical side. Similar results were obtained for the basal region for main effect of group, F(1, 12) 

= 0.11, p = 0.75, and interaction, F(13, 156) = 0.98, p = 0.47. In agreement with this, total dendritic 

length were also identical between groups, t(13) = 0.83, p = 0.4 and  t(11) = 0.32, p = 0.75, for apical 

and basal sides respectively (Figure 3C).  

 We next examined dendritic complexity of pyramidal cells in the basolateral amygdala (Fig. 
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3D). Although there was a trend towards longer dendrites in the early-life stress group, it did not reach 

statistical significance (Figure 3E & F). A two-way ANOVA indicated no significant main effect, F(1, 

10) = 3.37, p = 0.1, or interaction, F(19, 190) = 0.81, p = 0.7, of early-life stress on dendritic 

morphology at increasing distance from soma. This was also evident from total dendritic length 

wherein the early-life stress group was not significantly different from the control group, t(10) = -1.8, 

p = 0.1. 

 

3.5. Effects of early-life stress on glutamate receptor currents and synaptic transmission in the 

hippocampus are normalized by acute corticosterone treatment 

We have shown that early-life stress impairs memory in a hippocampus-dependent object-in-context 

learning test that is normalized by acute stress in adult animals. However, no major structural 

alterations in the hippocampal CA1 area of adult early-life stress mice were evident. We next asked 

whether the mechanisms for the observed effects of early-life stress might putatively be mediated by 

modifications in excitatory synaptic transmission in the hippocampus. To address this question, we 

recorded excitatory post-synaptic currents (EPSCs) evoked by stimulation of Schaffer collaterals 

inputs to CA1 pyramidal neurons (Figure 4A). In order to examine the delayed and presumably gene-

mediated effects of glucocorticoids on synaptic transmission, we adopted the protocol from a previous 

study that reported corticosterone-mediated slow genomic effects on glutamate-activated synaptic 

currents in the hippocampal CA1 area (Karst and Joëls, 2005). For better between the behavioral 

effects (particularly during the consolidation phase) and the glucocorticoid effects in vitro, synaptic 

currents were recorded, on average, fours hours after treatment with either corticosterone or vehicle. 

The peak amplitudes of recorded AMPAR-EPSCs were not different among the four groups 

(Figure 4B & C), as confirmed by two-way ANOVA (Table 1). There was a main effect of 

corticosterone treatment on the decay, but not rise time of EPSCs. A similar effect was also evident on 

the membrane capacitance of the recorded cells while input resistance remained unaffected (Table 1). 

We next measured NMDAR-EPSCs by exchanging the extracellular solution with one that had no 

Mg2+ ions and contained the competitive AMPAR antagonist CNQX. Unlike what we had observed 

with AMPAR-EPSCs, the peak NMDAR-EPSCs were significantly reduced in vehicle-treated early-
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life stress animals when compared to control mice (Figure 4B&D). This was confirmed by we 

observed a significant interaction between early-stress and control treatment (F(3, 30) = 2.26, p = 

0.017) regarding the peak NMDAR-EPSCs. Post-hoc analysis revealed that in vehicle-treated 

neurons, early-life stress was associated with a significant decrease in NMDAR-EPSC amplitude 

(Table 1, Figure 4). However, this reduction completely disappeared after corticosterone treatment. 

Importantly, corticosterone treatment itself increased in NMDAR-EPSCs in early-life stress animals 

(Table 1, Figure 4D). Moreover, similar to the effect on AMPAR-EPSCs, there was also a decrease in 

the NMDAR-EPSC decay constant with corticosterone treatment (Table 1).  

 The NMDAR-EPSCs recorded from individual cells apart from being modulated by 

treatments (corticosterone, early-life stress or both) are also highly dependent on the amount of 

synaptic glutamate as inferred from the strength of AMPAR-EPSCs. We therefore, scaled averaged 

NMDAR-EPSC from each cell with its corresponding AMPAR-EPSC amplitude. Early-life stress, 

similar to its previously described effect on NMDA-EPSC amplitude, significantly reduced 

NMDA/AMPA ratio when compared to control animals (Figure 4E). The significant interaction 

between early-stress and corticosterone treatment as revealed by two-way ANOVA was further 

confirmed by post-hoc tests (Table 1). Interestingly, this reduction in the NMDA/AMPA ratio after 

early-life stress was completely absent after corticosterone treatment, t (14) = -1.1, p = 0.30. Similar 

to the earlier result, in the early-life stress group, but not in control, we found a significant increase in 

NMDA/AMPA ratio after glucocorticoid treatment (Table 1). 

We next examined the effect of early-life stress and later-life glucocorticoid-treatment on 

paired-pulse facilitation (PPF), which is readout for presynaptic release probability (Zucker and 

Regehr, 2002). PPF was computed from the peak amplitude ratio of the second to the first of a pair of 

(AMPA receptor mediated) EPSCs separated by a 50 ms interval evoked by stimulating axon 

terminals arriving at the stratum radiatum layer of CA1 pyramidal neurons (Figure 5A). Two-way 

ANOVA revealed a significant interaction between early-life stress and corticosterone-treatment, F(3, 

35) = -2.4, p = 0.023. Not only was the PPF ratio significantly increased after early-life stress (t(19) = 

-2.47, p = 0.023), but this change was absent after corticosterone treatment (Table 1, Figure. 5B).  
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3.6. Glutamate receptor currents in the basolateral amygdala are not affected by early-life stress or 

glucocorticoid treatment. 

AMPA and NMDA-mediated EPSCs were recorded from BLA pyramidal neurons similar to the 

procedure described above for CA1 neurons (see Materials and Methods, Figure 6A & B). Similar to 

effects of early-life stress and corticosterone treatment described for the hippocampus, there was no 

significant change in AMPA-EPSC amplitude between groups (Figure 6C). However, unlike 

hippocampal CA1 pyramidal neurons, BLA neurons also showed no change in peak NMDA-EPSC 

amplitudes, either with early-life stress or corticosterone treatment (Table 2, Figure 6D). Importantly, 

there was also no effect on the ratio of NMDA/AMPA responses between control and early-life stress 

groups there were treated with either vehicle or corticosterone (Figure 6E). Additionally, the kinetic 

characteristics of AMPAR- and NMDAR-EPSCs in BLA principal neurons were similar across 

groups (Table 2).  

 

 

4. Discussion 

In this study we investigated whether early-life stress, induced by fragmented and erratic levels of 

maternal care (Arp et al., 2016; Brunson et al., 2005; Rice et al., 2008), alters later cognitive 

performance and synaptic function in the hippocampus and BLA and whether these effects could be 

modulated by acute exposure to stress or glucocorticoid hormones respectively. Our results 

demonstrate that early-life stress-induced impairment on object-in-context memory was absent after a 

single brief exposure to stress in adult animals. This effect of early-life stress was associated with a 

reduced ratio of NMDA/AMPA EPSCs and increased paired pulse ratio in the hippocampal CA1 area 

(but not in the BLA) but without persistent changes in the dendritic architecture of hippocampal CA1 

and basolateral amygdala neurons. Interestingly, synaptic changes (NMDA/AMPA EPSC ratio and 

paired pulse ratio) were normalized by stress levels of corticosterone in adult animals. The behavioral 

findings indicate that stress-exposure in early-life alters the way later-life stressors affect hippocampal 

function and behavior. This provides evidence in favor of the match/mismatch hypothesis that early-

life adverse events tune neuronal mechanisms to function optimally under stressful conditions 
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(Champagne et al., 2008; Daskalakis et al., 2013; Nederhof and Schmidt, 2012; Schmidt, 2011).  

There is strong evidence from several studies that early-life stress in rodents induced by low 

levels of maternal care, maternal deprivation or fragmented care, affects hippocampus-dependent 

learning and memory processes (Brunson et al., 2005; Liu et al., 2000; Naninck et al., 2015; Oomen et 

al., 2010; Rice et al., 2008). However, there is also considerable variation in the direction and 

magnitude of early-life stress-induced cognitive effects across studies. One reason for the observed 

variability in results could be the differences in stress levels of the behavioral task itself. Interestingly, 

studies have used behavioral paradigms ranging from low stress learning protocols to high stress fear-

conditioning tasks. In order to clearly separate the influence of stress we therefore assessed the impact 

of early-life stress on cognitive performance using the object-in-context memory test that is low-

arousing and also heavily dependent on hippocampal integrity (Barker and Warburton, 2011; Dix and 

Aggleton, 1999; Mumby et al., 2002; Ramsaran et al., 2016). In line with earlier findings (Rice et al., 

2008; Naninck et al., 2015; Kanatsou et al., 2017) we report here that early-life stress impairs the 

ability of mice to explore a novel object in a familiar context. In stark contrast, several studies have 

also indicated that the ability to form fear memories are preserved or may even be enhanced by early-

life adversity, albeit with variable experimental protocols. Offspring from low-licking grooming 

mothers exhibited enhanced context fear memories (Champagne et al., 2008) and rodents that were 

exposed to maternal deprivation displayed enhanced context and auditory fear conditioned responses 

(Oomen et al., 2010). Erratic and fragmented levels of maternal care did not alter auditory fear 

conditioning (Arp et al., 2016) but enhanced freezing in-between repeated exposure to auditory cues. 

In agreement to the above, the current study also showed that conditioned fear was remembered well 

(though not significantly better) in animals that were raised with fragmented levels of maternal care.

 Overall, findings from previous studies as well as the current suggest a maintenance or 

improvement in cognitive performance in tasks that are moderate to highly stressful in animals that 

were subjected to stress in early-life. This led us to hypothesize that the impairment in object-in-

context memory in mice with an early-life stress history should disappear when animals are exposed 

to a brief stress. To verify this hypothesis, we subjected animals to a novelty stress protocol (Pardon et 

al., 2004) one hour before training on the object-in-context paradigm. The observed lack of cognitive 
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impairment in adult animals that had experienced early-life stress is entirely in agreement with the 

match/mismatch hypothesis (Daskalakis et al., 2013; Schmidt, 2011) that proposes enhanced ability to 

cope with stress in animals subjected to early-life adversities.  

Various studies have reported that maternal care impacts dendritic morphology in adult 

hippocampal subfields (Bagot et al., 2009; Liao et al., 2014) including CA1 pyramidal neurons 

(Champagne et al., 2008; van Hasselt et al., 2012). However, the effects of fragmented care on 

hippocampal dendritic morphology may be age-dependent. Accordingly, dendritic atrophy in the 

hippocampal CA1 area of mice exposed to limited nesting and bedding material was only observed in 

middle-aged, and not in young adult animals (Brunson et al., 2005; Ivy et al., 2010). In agreement 

with the latter finding, we did not observe effects of early-life stress in the CA1 dendritic architecture 

of young adult mice. Similar results (unpublished observations) have been obtained when mice were 

tested at three weeks of age, indicating the possibility that morphological effects on hippocampal 

dendritic structure are slow in onset and may follow rather than precede changes in synaptic function. 

This of course does not exclude the possibility that other regions of the hippocampus, especially the 

CA3 field, which was found to be more susceptible to stressful events, are affected. Indeed, at 6 

months of age, animals subjected to fragmented maternal care displayed significant loss of spines in 

area CA3 but not in CA1 (Wang et al., 2011). The rodent amygdala appears to be resilient to early life 

stress. Indeed, in young male and female rodents (3 months of age), a 24 h severe maternal 

deprivation failed to induce any lasting effects on dendritic morphology of amygdala neurons 

(Krugers et al., 2012). The present study also suggests that dendritic structure in the basolateral 

amygdala is not strongly affected by early-life stress at this age.  

Glutamate and NMDA receptors have central roles in the cellular, functional and behavioral 

changes induced by stress and glucocorticoids (Krugers et al., 2010; Popoli et al., 2012). Among the 

hippocampal subregions, the CA1 subfield is strongly implicated in contextual memory formation 

(Suthana et al., 2009), specifically for novel stimuli (Leutgeb et al., 2004) and CA1 NMDA receptors 

are crucial for the encoding of recognition information (Place et al., 2012). We therefore probed CA1 

pyramidal neurons to understand the mechanisms behind the persistent effects of early-life stress in 

object-in-context memory. Our results demonstrate that the lasting impact of early-life stress as 
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evidenced by reduced hippocampal-dependent memory in adult animals is also associated with a 

reduction in NMDA currents as well as a decrease in NMDA/AMPA ratio. In contrast with our 

results, another study that used the same early life stress model but a different technique to measure 

NMDARs failed to observe changes in NMDA receptor contribution (Brunson et al., 2005). Likely, 

differences in the manner in which NMDAR EPSCs were measured, such as a direct (Mg2+-free aCSF 

in the presence of AMPAR blocker, as employed by us) versus indirect (tail current measurement 

without blocking AMPARs) approach as well as our use of cesium based internal solution to improve 

voltage-clamp fidelity might have contributed to the differences in the results. 

 Extending our observation that exposure to stress prevents the effect of early-life stress on 

object-in-context memory, we examined whether the important stress hormone corticosterone can also 

differently regulate synaptic transmission in the hippocampal CA1 area between control and early-life 

stress animals. It is well established that corticosterone by acting on the glucocorticoid receptors can 

mediate both fast and slow modulation of glutamate-mediated excitatory postsynaptic currents in the 

adult brain (Karst and Joëls, 2005; Krugers et al., 2010; Karst et al., 2010). Exactly how 

corticosterone normalizes NMDA/AMPA receptor current, needs to be examined in detail, but 

preliminary data suggests that corticosterone can increase NMDA currents (Tse et al., 2011), and 

corticosterone can via activation of mineralocorticoid receptors within minutes increase synaptic 

GluN2B content and NMDA currents (Mikasova et al., 2017). Several studies have established that 

the NMDA to AMPA receptor ratio is a good index for probing synaptic modifications as this ratio is 

fairly conserved across brain regions (Myme, 2003) and a good indicator for experience-dependent 

plasticity, in particular with stress (Kole et al., 2002; Suvrathan et al., 2014). Together, the effects of 

early life stress on NMDAR- mediated currents, NMDA/AMPA ratio, glutamate release and its 

modification by corticosterone provides a mechanism that may explain reduced synaptic plasticity 

after early life adversity (Champagne et al., 2008; Bagot et al., 2009; Bagot et al., 2012). The 

normalization by high levels of corticosterone in vitro further strengthens the role of synaptic 

mechanisms in the behavioral effects of both early and later-life stress episodes on cognitive function.  

It remains to be investigated whether glucocorticoids mediate the effects of stress on 

enhancing contextual memory in ELS mice, e.g. by measuring hippocampal synaptic function after 
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stress-exposure or conversely (and more directly) whether GR-antagonists are able to modify the 

effect of stress on behavior in ELS mice. This clearly is a limitation of the current design and future 

studies will need to resolve this.   

Additionally, it interesting to speculate what potential mechanisms might mediate the early-

life stress-induced effects on synaptic function. A decrease in NMDAR function alongside enhanced 

synaptic facilitation in ELS animals, as we observed, might be a result of reduced glutamate 

availability at CA1 synapses. Several reports indicate that stress and glucocorticoids modulate both 

NMDAR and AMPAR trafficking as well as the activation of Ca2+-dependent kinases to alter 

vesicular glutamate release (Popoli et al., 2011). Apart from the direct release from axon terminals, 

synaptic glutamate levels are also critically dependent on its clearance by the surrounding astrocytes. 

Stressful insults can modulate the glutamate profile by altering the astrocytic coverage and thereby 

affect synaptic transmission (Roque et al., 2016; Saur et. al., 2016; Zhang et. al., 2015). Future 

experiments may provide more insight in the underlying mechanism by e.g. investigating mEPSC 

properties. 

 

4.1. Conclusion 

This study, apart from providing cellular and behavioral level evidence for the lasting impact of early-

life stress, also reveals glutamate-mediated synaptic transmission as a candidate mechanism through 

which cognitive performance might be enhanced in stressful situations. Lastly, our results provide 

direct support for the match/mismatch hypothesis that proposes that early-life adversity may program 

behavior and synapses to function well under stressful conditions (Santarelli et al., 2017).  
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Table 1: Cellular and synaptic properties of hippocampal CA1 pyramidal neurons 

 Mean  ±  SEM P-values 
Two-factor ANOVA 

P-values 
Between group 

comparisons 

Parameter Ctrl 
 + 

Veh 

ELS  
+ 

Veh 

Ctrl  
+ 

Cort 

ELS  
+ 

Cort 

Main 
effect: 
ELS 

Main 
effect: 
Cort 

Interaction:  
ELS Vs 

Cort 

Ctrl  
+  

Veh 
Vs  

ELS  
+  

Veh 

Ctrl  
+  

Cort 
Vs  

ELS  
+ 

 Cort 

Ctrl 
 + 

Veh 
Vs  
Ctrl  
+ 

Cort 

ELS 
 +  

Veh  
Vs  

ELS  
+  

Cort 

Input resistance 
(MΩ) 

164.4 
±18 

160.6 
±21 

155.3 
±8 

173.0±17 0.68 0.94 0.52 0.89 0.39 0.66 0.68 

Membrane 
capacitance (pF) 

165.6 
±17 

189.7 
±25 

135.5 
±10 

144.0±20 0.36 0.04 0.66 0.45 0.71 0.15 0.19 

AMPA-EPSC  
Peak (-pA) 

133.8 
±15 

166.5 
±47 

101.4 
±8 

126.8±27 0.22 0.13 0.88 0.53 0.39 0.08 0.48 

AMPAR-EPSC 
Rise time (ms) 

2.2 
±0.1 

3.0 
±0.7 

2.3 
±0.2 

2.5 
±0.1 

0.08 0.50 0.30 0.31 0.28 0.61 0.52 

AMPAR-EPSC  
Decay constant 
(ms) 

14.8 
±1.2 

21.5 
±6.4 

12.7 
±1.7 

12.4 
±0.9 

0.23 0.045 0.20 0.35 0.89 0.34 0.22 

NMDAR-EPSC 
Peak (-pA) 

33.8 
±4 

17.7 
±2 

29.8 
±4 

49.4 
±13 

0.81 0.06 0.02 0.005 0.17 0.50 0.04 

NMDAR-EPSC 
Rise time (ms) 

7.3 
±0.8 

10.4 
±1.6 

7.1 
±0.7 

6.8 
±0.8 

0.13 0.05 0.08 0.13 0.82 0.83 0.09 

NMDAR-EPSC  
Decay constant 
(ms) 

59.8 
±9.1 

64.4 
±14.5 

39.7 
±4.9 

36.9 
±4.1 

0.91 0.006 0.65 0.79 0.66 0.07 0.12 

EPSC ratio 
(NMDA/AMPA)  

0.26 
±0.03 

0.14 
±0.03 

0.31 
±0.05 

0.37 
±0.02 

0.44 0.001 0.03 0.017 0.30 0.37 0.0002 

Paired-pulse ratio 1.68 
±0.10 

2.04 
±0.10 

1.77 
±0.13 

1.65 
±0.07 

0.23 0.13 0.02 0.02 0.45 0.63 0.005 

No. of cells 
(animals) 

9 (8) 6 (5) 11 (8) 8 (5)        
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Table 2: Cellular and synaptic properties of basolateral amygdala pyramidal neurons 

 Mean  ±  SEM P-values 
 Two-factor ANOVA 

P-values 
Between group comparisons  

Parameter Ctrl 
+ 

Veh 

ELS 
+ 

Veh 

Ctrl 
+ 

Cort 

ELS 
+ 

Cort 

Main 
effect: 
ELS 

Main 
effect: 
Cort 

Interaction:  
ELS Vs 

Cort 

Ctrl  
+  

Veh 
Vs  

ELS  
+  

Veh 

Ctrl  
+  

Cort 
Vs  

ELS 
 + 

Cort 

Ctrl  
+  

Veh 
Vs  
Ctrl 
 + 

Cort 

ELS 
 +  

Veh 
Vs  

ELS  
+ 

 Cort 

Input resistance  
(MΩ) 

145.0 
±30 

126.9 
±19 

264.2 
±83 

180.4 
±31 

0.32 0.10 0.52 0.63 0.37 0.21 0.17 

Membrane 
capacitance (pF) 

280.4 
±24 

277.4 
±22 

245.2 
±24 

219.4 
±16 

0.52 0.046 0.61 0.93 0.39 0.32 0.057 

AMPA-EPSC  
Peak (-pA) 

142.3 
±28 

151.0 
±24 

132.5 
±29 

161.2 
±32 

0.52 0.99 0.72 0.82 0.52 0.81 0.80 

AMPAR-EPSC 
Rise time (ms) 

4.7 
±1.4 

4.3 
±1.0 

2.9 
±0.5 

3.6 
±1.0 

0.87 0.21 0.61 0.85 0.56 0.27 0.59 

AMPAR-EPSC 
Decay constant 
(ms) 

13.9 
±1.4 

18.2 
±5.3 

12.2 
±0.9 

20.9 
±5.3 

0.10 0.9 0.59 0.45 0.16 0.36 0.73 

NMDAR-EPSC  
Peak (-pA) 

23.4 
±6 

18.6 
±3 

16.9 
±3 

19.5 
±6 

0.81 0.53 0.41 0.48 0.71 0.34 0.90 

NMDAR-EPSC 
Rise time (ms) 

10.2 
±1.3 

10.4 
±2.1 

11.3 
±1.5 

9.5 
±2.1 

0.67 0.97 0.59 0.93 0.51 0.61 0.76 

NMDAR-EPSC 
Decay constant 
(ms) 

93.1 
±21.9 

92.2 
±40.8 

79.7 
±15.4 

79.2 
±24.6 

0.98 0.65 0.99 0.98 0.98 0.63 0.79 

EPSC ratio 
(NMDA/AMPA)  

0.20 
±0.05 

0.14 
±0.03 

0.16 
±0.03 

0.12 
±0.02 

0.20 0.37 0.75 0.39 0.33 0.51 0.55 

No. of cells 
(animals) 

7 (7) 8 (8) 8 (6) 7 (7)        
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Figure legends 

 

Fig. 1. Early-life adversity impairs object-in-context memory only under non-stressful conditions. (A)  

Schematic of the experimental setup for object-in-context memory test. Mice were habituated on day 

1 and were trained on the subsequent day 1 hr post novel-cage stress or control treatment. On day 3, 

mice were tested for recognition of the context-mismatched familiar object (arrow). (B) Basal plasma 

corticosterone levels were not altered by early-life stress. (C) Normalized (% of total) number of visits 

to the out-of-context object. (D) Normalized time spent with the out-of-context object. Numbers 

indicate the number of animals/group. 

 

Fig. 2. Early-life stress does not impair contextual and auditory cued fear memory. (A) The procedure 

for contextual fear conditioning consisted of habituation followed by conditioning with the shock on 

day 1 and testing on day 2. (B) Early-life mice froze more immediately after shock on the 

conditioning day but did not differ from controls on contextual fear memory tested 24 hours later. (C) 

Auditory fear conditioning on day 1 was carried out similar to contextual fear conditioning, except 

that it also included a tone that co-terminated with a shock and on day 2 the animals were tested in a 

different context in the presence of the same tone. (D) Both early-life stressed mice and controls 

exhibited similar levels of freezing during conditioning and testing, indicating that auditory fear 

memory was not altered by early-life stress. Numbers indicate the number of animals/group. 

 

Fig. 3. Early-life stress does not alter dendritic morphology of principal neurons in the hippocampal 

CA1 region and basolateral amygdala. (A) Representative CA1 pyramidal neuron impregnated using 

the Golgi-Cox procedure is overlaid on hand-drawn trace of its dendrites. (B) Averaged segmented 

dendritic length of the apical and basal sides of the CA1 pyramidal neurons at increasing distance 

from cell soma are not different between groups. (C) No difference in total dendritic length at the 

apical and basal regions between adult early-life stress and control animals. (D) Representative 

basolateral amygdala principal neuron stained using the Golgi-Cox procedure is overlaid over hand-

drawn trace of its dendritic tree. (E) Mean segmented dendritic length between equidistant concentric 
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spheres. (F) total dendritic length of basolateral amygdala neurons were not significantly altered by 

early-life stress. Numbers indicate the number of animals/group.  

 

Fig. 4. Early-life stress modulates glutamate currents in the hippocampus.  (A) Schematic of the 

experimental configuration for slice electrophysiology with the recording (R) and stimulation (S) 

electrode positions.  (B) Representative traces of averaged and individual AMPAR- and NMDAR-

mediated EPSCs from each experimental group. (C) Peak amplitude of AMPAR-EPSCs are similar 

across groups. (D) Early-life stress reduces peak amplitude of NMDAR-EPSCs and is normalized 

after acute glucocorticoid treatment in adulthood. (E) Early-life stress reduces NMDA/AMPA EPSC 

ratio and is normalized after acute glucocorticoid treatment in adulthood. Numbers indicate cells 

(animals in parentheses) per group. 

 

Fig. 5. Acute glucocorticoid treatment normalizes early-life stress-induced increase in paired-pulse 

facilitation in hippocampal CA1 pyramidal neurons. (A) Representative traces of averaged and 

individual paired AMPAR-EPSCs evoked at 50 ms interval. (B) Paired-pulse ratio is significantly 

enhanced in adult animals subjected to early-life stress and is normalized by acute glucocorticoid 

treatment. Numbers indicate cells (animals in parentheses) per group. 

 

Fig. 6. Glutamatergic currents in the basolateral amygdala are unaffected by early-life stress or acute 

glucocorticoid treatment. (A) Schematic of the experimental configuration for slice electrophysiology 

with the recording (R) and stimulation (S) electrode positions. (B) Representative traces of averaged 

and individual AMPAR- and NMDAR-mediated EPSCs from all the experimental groups. (C) Peak 

amplitude of AMPAR-EPSCs are similar across groups. (D) Peak amplitude of NMDAR-EPSCs are 

similar across groups. (E) Ratio of NMDA/AMPA EPSCs remains unchanged after after early-life 

stress or acute glucocorticoid treatment in adulthood. Numbers indicate cells (animals in parentheses) 

per group. 
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