
 

 

 University of Groningen

Using a Microbenchmark to Compare Function as a Service Solutions
Back, Timon; Andrikopoulos, Vasilios

Published in:
Service-Oriented and Cloud Computing

DOI:
10.1007/978-3-319-99819-0_11

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Final author's version (accepted by publisher, after peer review)

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Back, T., & Andrikopoulos, V. (2018). Using a Microbenchmark to Compare Function as a Service
Solutions. In K. Kritikos, P. Plebani, & F. De Paoli (Eds.), Service-Oriented and Cloud Computing: 7th IFIP
WG 2.14 European Conference, ESOCC 2018, Como, Italy, September 12-14, 2018, Proceedings (pp.
146-160). (Lecture Notes in Computer Science; No. 11116), (Programming and Software Engineering; No.
11116). Cham: Springer. https://doi.org/10.1007/978-3-319-99819-0_11

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 21-05-2019

https://doi.org/10.1007/978-3-319-99819-0_11
https://www.rug.nl/research/portal/en/publications/using-a-microbenchmark-to-compare-function-as-a-service-solutions(2a9cb1e6-b412-41c0-bc95-f5d8f2802453).html


Using a Microbenchmark to Compare
Function as a Service Solutions

Timon Back and Vasilios Andrikopoulos[0000−0001−7937−0247]

University of Groningen, the Netherlands
t.back@student.rug.nl, v.andrikopoulos@rug.nl

Abstract. The Function as a Service (FaaS) subtype of serverless com-
puting provides the means for abstracting away from servers on which
developed software is meant to be executed. It essentially offers an event-
driven and scalable environment in which billing is based on the invocation
of functions and not on the provisioning of resources. This makes it very
attractive for many classes of applications with bursty workload. How-
ever, the terms under which FaaS services are structured and offered
to consumers uses mechanisms like GB–seconds (that is, X GigaBytes
of memory used for Y seconds of execution) that differ from the usual
models for compute resources in cloud computing. Aiming to clarify these
terms, in this work we develop a microbenchmark that we use to evaluate
the performance and cost model of popular FaaS solutions using well
known algorithmic tasks. The results of this process show a field still
very much under development, and justify the need for further extensive
benchmarking of these services.

Keywords: Function as a Service (FaaS) · microbenchmark · perfor-
mance evaluation · cost evaluation

1 Introduction

The wide adoption of cloud-native enabling technologies and architectural con-
cepts like containers and microservices in the recent years has created an increasing
interest in serverless computing as a programming model and architecture. In
this model, code is executed in the cloud without any control of the resources
on which the code runs [1]. Serverless encompasses a wide range of technologies,
that following the discussion in [13] can be grouped into two areas: Back-end as a
Service (BaaS) and Function as a Service (FaaS). BaaS is especially relevant for
mobile application development and is closely related to the SaaS delivery model,
allowing the replacement of server-side components with third party services.
Google’s Firebase1 is an example of such a service. FaaS, on the other hand is
closer to the PaaS model, allowing individual business operations to be built
and deployed on a FaaS platform. The key difference between FaaS and PaaS

1 Firebase https://firebase.google.com/

https://firebase.google.com/


2 Timon Back and Vasilios Andrikopoulos

is the scaling scope as discussed by Mike Roberts2: in PaaS the developer is
still concerned with scaling an application up and down as a whole, while FaaS
provides complete transparency to the scaling of functions, since this is handled
by the platform itself.

There are a number of claimed benefits of serverless computing, and by
extension also of FaaS, identified for example by [13]. More importantly, scaling
becomes the responsibility of the platform provider and the application owner is
charged only for how long a function is running as a response to its invocation
(within a billable time unit — BTU). This is a big departure from the “traditional”
model of cloud computing so far, at least when compared to other compute–
oriented solutions like VM– and Container as a Service, where the owner is
charged for provisioning these resources irrespective of their utilization. As a
result, FaaS is perceived as the means to achieve significant cost savings, especially
in the case of bursty, compute-intensive workloads [1] such as the ones generated
by IoT applications.

At the same time, however, the pricing model of FaaS solutions can be difficult
to decipher and surprisingly complex to model [2]. FaaS users are typically
charged based on two components: number of function invocations across all
functions belonging to the user, and function execution duration measured,
confusingly enough, in GB–seconds per billing cycle. The first metric is relatively
straightforward but potentially extremely dangerous in the case of decomposing
application functionality into too many fine–grained functions that result into
ever expanding cumulative costs. The second one is based on the practice of most
FaaS providers, as discussed in the following section, of requiring the user to define
a fixed memory amount to be allocated for each function execution. Users are
then charged for the BTUs (in seconds) for which a function executed, multiplied
by the allocated (or peak in the case of one provider) amount of memory in GB,
times the per GB–seconds cost defined by the provider. FaaS adoption essentially
also means loss of control over the performance of the functions themselves, since
their execution is hidden under multiple layers of virtualization and abstraction
by the platform providers, resulting into inconsistent performance results even
for the same service and configuration [13].

With the aim of investigating and clarifying these two phenomena and their
impact on FaaS adopters, this paper discusses the use of a microbenchmark in
order to study how different FaaS solutions, and especially ones in the public cloud
deployment model, behave in terms of performance and cost. More specifically,
Section 2 presents the FaaS solutions that we will consider for the rest of this
work and discusses related work. Section 3 incorporates a small set of algorithmic
tasks with known computational and memory requirements in a microbenchmark
of our design and implementation. Section 4 presents the results of executing
the benchmark in a time window and discusses our findings while evaluating the
selected FaaS solutions. Based on these findings we provide a series of lessons

2 For more on the subject, see https://martinfowler.com/articles/serverless.

html.

https://martinfowler.com/articles/serverless.html
https://martinfowler.com/articles/serverless.html


Using a Microbenchmark to Compare Function as a Service Solutions 3

that we learned and that we believe are relevant for FaaS adopters in Section 5.
Finally, Section 6 concludes this work with a short summary and future work.

2 Background & Related Work

Since the introduction of Amazon Web Services Lambda3 back in 2014 all major
cloud providers have developed their own FaaS solution. Table 1 summarizes and
compares the offerings of the most popular public Cloud providers [12]. More
specifically, and in alphabetical order:

– AWS Lambda was the first FaaS public offering. At the time of writing, it offers
memory usage to be specified in the [128, 3008] MB interval in increments of
64 MB. It offers the most flexibility in terms of configuration options, and is
the more mature of implementations from the offerings investigated by this
work.

– Google Cloud Functions4 is in beta status since its launch in February 2016.
While the least flexible in terms of configuration options, Cloud Functions is
the only of the FaaS solutions that clearly defines the amount of allocated
CPU cycles per memory allocation option in its documentation.

– IBM Cloud (formerly known as IBM Bluemix) Functions5 is based on the
Apache OpenWhisk6 FaaS platform implementation, allowing for easy hybrid
deployment. It requires all functions to run as Docker containers, which allows
for function development in any language.

– Microsoft Azure Functions7, also launched in 2016, differs significantly from
the other solutions in the sense that it does not expect the user to specify a
fixed amount of memory to be used by the function in advance. The service
bills only for the used memory per invocation, rounded up to the nearest 128
MB step, using at the same time the smallest billable time unit (1 ms).

In terms of related work, and considering how recently serverless computing
was introduced, existing literature on the subject is relatively limited. Van Eyk et
al. [3] for example identify the need for community consensus on what constitutes
FaaS, and set the goal of developing an objective benchmark of FaaS platforms
as a target for future work. The approaches presented by [8] and [15] investigate
the cost of FaaS solutions as an infrastructural platform for the hosting of
microservices. Their interest is in evaluating alternative deployment scenarios
involving FaaS services and not with the performance of FaaS solutions themselves.
The Costradamus approach [6] aims to measure the computation waste in FaaS
usage accrued by monitoring function calls duration and contrasting them to
billed BTUs. Both [5] and [14] use microbenchmarking of FaaS solutions in order
to compare providers and calibrate their proposed systems, but for these works

3 AWS Lambda: https://aws.amazon.com/lambda/
4 Google Cloud Functions: https://cloud.google.com/functions/
5 IBM Cloud: https://console.bluemix.net/openwhisk/
6 Apache OpenWhisk: https://openwhisk.apache.org/
7 Microsoft Azure Functions: https://azure.microsoft.com/services/functions/

https://aws.amazon.com/lambda/
https://cloud.google.com/functions/
https://console.bluemix.net/openwhisk/
https://openwhisk.apache.org/
https://azure.microsoft.com/services/functions/


4 Timon Back and Vasilios Andrikopoulos

Amazon WS
Lambda

Google Cloud
Functions

IBM Cloud
Functions/
Apache Open-
Whisk

Microsoft
Azure
Functions

Memory Min 128 MB 128 MB 128 MB 128 MB

Memory Max 3008 MB 2048 MB 512 MB 1536 MB

Timeout Max 5 min 9 min 5 min 10 min

Billing Interval 100 ms 100 ms 100 ms 1 ms

Memory
Allocation

Fixed Fixed Fixed Dynamic

Natively
Supported
Languages

C#
Go
Java
Node.js
Python

Node.js Java
Node.js
PHP
Python
Swift
. . .

C#
F#
Node.js

HTTP
Invocation

X X X X

HTTP plus
Authentication

X — X X

Free Tier
(One time /
Periodical)

X/ X X/ X X/ X X/ X

Table 1. Comparison of the offerings by the major Cloud Service Providers (May 2018)

the comparison of providers is incidental and not the main focus. These works
are therefore relevant but not directly related to the goals set for this work.

From more related works, [7] and [10] set out to explicitly benchmark and
compare FaaS solutions in terms of performance and cost. While useful and
insightful in their own right, both works use much more coarse–grained tasks for
their evaluation, focusing on concurrency and latency, respectively. The work by
Malawski et al. [11] provides similar conclusions to ones discussed by this work,
and in some ways supplements our findings with further insights; however it only
discusses performance issues with FaaS solutions and does not investigate their
impact on cost.

With this work, we focus on investigating the differences between the FaaS
solutions presented above with respect to their compute/memory allocation
policies, and their consequent effect on the cost model of cloud functions running
on them.



Using a Microbenchmark to Compare Function as a Service Solutions 5

3 Microbenchmark Design

As discussed in the previous section, and given the current lack of a FaaS bench-
mark, it becomes a common and necessary practice to use a microbenchmark for
performance evaluation purposes. We chose a microbenchmark for this purpose
since we aim to measure a basic feature of FaaS services (compute/memory
allocation) for which a simple program should suffice, and because microbench-
marking is quite popular for cloud services evaluation [9]. The faas-µbenchmark
is available online8 and it actually contains more functions than the ones we
explain in the following. In the interest of space, we limit the presentation of
results to only three major functions from the microbenchmark.

Functions

The following functions were selected for inclusion in the faas-µbenchmark
based on their characteristics with respect to their computational and memory
requirements:

– Fast Fourier Transformation (FFT): performs an FFT computation using
the Cooley-Tukey method as implemented by the fft-js library of Node.js
(version 0.0.11)9 for an increasing amount of discrete signals k = 2i, i ∈ N+.
The Cooley-Tukey method has computational complexity O(NlogN) and is
therefore representative of a moderate load to the system.

– Matrix Multiplication (MM): multiply square matrices of increasing size
without any optimization (i.e. with complexity O(n3)); the length of the
matrices is defined as n = i× 100, i ∈ N+, i.e. it increases by a step of 100
starting from 100.

– Sleep (S): sleep for t = 2i, i ∈ N+ ms. This function is selected for evaluating
the sensitivity of the FaaS offering to its invocation. Measured execution
durations should in principle be equal to the specified parameter t, plus some
initialization time.

Table 2 summarizes the characterization of the selected functions:

Function Computational Memory

Fast Fourier Transformation (FFT) Moderate Moderate

Matrix Multiplication (MM) High High

Sleep (S) Minimum Minimum

Table 2. Relative resource requirements for the benchmarking functions

8 faas-µbenchmark: https://github.com/timonback/faas-mubenchmark
9 https://www.npmjs.com/package/fft-js

https://github.com/timonback/faas-mubenchmark
https://www.npmjs.com/package/fft-js


6 Timon Back and Vasilios Andrikopoulos

The microbenchmark itself is highly configurable, allowing for subsetting or
extending the parameter values for each function as desired by the user. All
functions are implemented on top of the Node.js JavaScript runtime, since it is
the execution environment that is common across all FaaS offerings (see Table 1).

Instrumentation

In order to reduce the complexity of the deployment process of the defined
functions across different providers we decided to use the Serverless framework10,
as also adopted by [11]. This framework allows for the deployment of code to the
majority of FaaS/serverless solutions by a simple command, assuming of course
that an account has been created with the respective provider and the necessary
authentication credentials have been provided to it. Since FaaS providers expect
different bindings for functions executed in their platform we created a custom
minimal wrapper for each provider which reads the passed-in parameters, calls
the appropriate function, and returns the result. The called algorithm is the same
for every provider. The wrapper function is provided together with the rest of
the microbenchmark as discussed above.

4 Services Evaluation

In the following we discuss how we use the faas-µbenchmark to compare the
FaaS solutions presented in Section 2.

4.1 Evaluation Setup

Apache OpenWhisk is used as the baseline for the comparison between solutions.
The February 2018 version from the OpenWhisk GitHub repository was deployed
inside a VirtualBox machine (version 5.2.8) running Ubuntu Linux 14.04 LTS with
4 GB of memory allocated to it, on a notebook with a quad–core Intel i7–6700HQ
(@2.6GHz) and 8 GB of memory in total. The three functions discussed in the
previous section (i.e. FFT, MM and S) are deployed on it, and on the FaaS
solutions offered in the public cloud deployment model using the Serverless
framework. Five configurations for each FaaS service are selected for comparison
purposes by setting the allocated memory to 128, 256, 512, 1024 and 2048 MB,
and the functions are deployed in all of these configurations.

Looking at the comparison in Table 1, we need to clarify that IBM Cloud
Functions/Apache OpenWhisk has a maximum allocation limit of 512 MB per
function. However by building on Docker’s memory management, more memory
is addressable for function execution without terminating due to insufficient
memory. As we will show in the following, this works quite well for most of the
experiments we performed.

Moving on, in order to avoid potential differences among regions we try to
keep the location of the deployments comparable (more specifically, AWS Lambda:

10 Serverless: https://serverless.com/

https://serverless.com/


Using a Microbenchmark to Compare Function as a Service Solutions 7

us-east-1, Google Cloud Functions: us-central-1, Microsoft Azure Functions:
Central US) with the exception of IBM Cloud Functions that were deployed
in the United Kingdom region since this could not be changed for the free tier
version that we are using for all experiments. The functions are invoked by a
local machine at the University of Groningen using simply the curl command
on the Linux OS; as we will discuss in the following, the location of the invoker
does not affect any measurements, and it can therefore be placed anywhere it is
deemed more convenient. Timeout is set for all solutions and configurations at
300s (i.e. 5 minutes) except in the case of Google Cloud Functions where it is set
to 540s (9 minutes).

The microbenchmark was executed across 3 consecutive working days in the
end of April 2018, resulting in three measurements per function and parameter
for each service configuration. For each microbenchmark run we execute all three
functions in Table 2 sequentially with their parameters ranging over the following
intervals (i ∈ N+ in all cases):

1. S: t = 2i, i ∈ [1, 13]

2. MM: n = i× 100, i ∈ [1, 10]

3. FFT: k = 2i, i ∈ [13, 21]

For each invocation we are measuring the execution duration as reported by
the FaaS provider (i.e. without network latency affecting the measurements),
the execution status (i.e. success or reported type of error), the billed duration,
and the incurred cost for the function execution. All measurements are collected
from the respective logs of each service and are aggregated as CSV files for each
function for further processing. The measurements we report and analyze in the
following are also available in the faas-µbenchmark repository under /results/.

4.2 Microbenchmark Results & Findings

Note: for the rest of this discussion we will be using the convention FunM, as a
shorthand for function Fun ∈ {FFT,MM,S} executed on a service configuration
with M MBs of allocated memory, where M ∈ {128, 256, 512, 1024, 2048}, across
all providers of interest. MM1024, for example, refers to the execution of the
matrix multiplication function in configurations with 1024 MB of allocated
memory in all providers, for all parameter values n = [100, 1000] with step 100.
For purposes of space saving, in the following we are also using only the provider’s
name instead of the full name of the FaaS solution, with the exception of Apache
OpenWhisk which is simply shortened to OpenWhisk.

https://github.com/timonback/faas-mubenchmark/results/


8 Timon Back and Vasilios Andrikopoulos

Fig. 1. Measured durations for S128 across all providers (log2–log plot). The straight
lines show the fitted linear models to the observed data per provider.

Provider

Configuration Amazon Google IBM Microsoft OpenWhisk

S128 265.82 2597.61 1.63 22.4 6.18

S256 62.46 1589.33 12.4 57.72 24.1

S512 41.96 726.93 1.79 20.04 12.06

S1024 31.62 757.52 2.03 14.63 15.96

S2048 12.31 851.3 2.4 18.75 5.72

mean(MSE) 81.03 1304.54 4.05 26.71 12.8

Table 3. Mean Square Error (MSE) for linear regression to the observed data of S
per provider for the different memory configurations.

Sleep: With respect to function S, Fig. 1 shows the measured execution durations
for S128. As it can be seen in the figure, the benchmarked FaaS solutions behave
for the most part as expected, with a linear relation between execution time and
sleep parameter t. This holds true however only after a sufficient large value of
t — 64ms in our measurements — which is also around half of the BTU for all
providers (except Microsoft, see Table 1). The solution that delays the most to
converge into a linear relation with t, and at the same time exhibits the most
variance, is actually the one by Google. This phenomenon appears also in the



Using a Microbenchmark to Compare Function as a Service Solutions 9

Fig. 2. Execution of MM1024 & MM2048 across all providers (norm–norm plots).

rest of the memory allocation configurations of this provider, as summarized
by Table 3 which presents the mean square error (MSE) for the fitting of the
measurements to a linear model with parameter t. The lm function of the R
programming language (version 3.4.3) is used for the model fitting in Table 3.
While the error in most configurations can be deemed acceptable, in the case of
S128 as illustrated in Fig. 1 it is roughly ±51ms for the 128MB configuration
of Google Cloud Functions — that is, 50% of the service’s BTU — and still an
order or two magnitudes larger than the other ones in Table 3.

Matrix Multiplication: For MM we discuss our findings for the largest configura-
tions (i.e. 1024 and 2048 MB), since we know that this function is the heaviest, at
least in theory, of the functions that we include in the microbenchmark. Similar
findings, but with the observed phenomena proportionally exaggerated are also
concluded from the measurements in smaller configurations.

Figure 2 illustrates the collected measurements for progressively increasing
matrix size n. Since we are in the normal–normal scale and we expect O(n3)
complexity, we use the loess method of R for local polynomial regression fitting
instead of the linear one. Looking at the measurements, it appears that the
policy of Microsoft Azure Functions to assign memory dynamically instead
of allocating it in advance is resulting in the relative worse among providers
performance for this function as n grows. Further investigations in the effect of
memory allocation in such calculations is necessary. On the other end of the
spectrum, the OpenWhisk and consequently the IBM Cloud Functions solutions
appear to be better able to handle the memory and computational requirements
of this task when compared to the other providers. It also seems that adding



10 Timon Back and Vasilios Andrikopoulos

more memory to Amazon and Google’s solutions results in better performance.
Using only n = 1000 as a reference, the average execution times in these two
solutions improve by 31.5% and 17.4%, respectively, when comparing the two
configurations. We are going to use FFT to investigate this improvement in more
depth in the following.

Fig. 3. Measured durations of successful executions of FFT128–FFT1024 across all
providers (log2–log plots).

FFT: Figure 3 shows the reported execution durations of FFT across the first four
memory configurations for comparison purposes, omitting any error responses.
As it can be seen better in Table 4, only the dynamic memory allocation scheme
of Microsoft Azure Functions allows for all values of parameter k to be calculated
successfully. OpenWhisk is able to get additional memory from the local VM
in order to calculate the FFT for k in most of the higher values, at the clear
expense of speed however, as shown in Fig. 3. The figure also shows that for the
rest of the providers, allocating more memory to the function results in more
successful executions as k grows.

Zooming in on the interval of k values for which all FaaS solutions are able
to successfully execute FFT, that is k ∈ [8192, 131072] as shown in Table 4, we
can study better the effect of memory allocation to the overall performance of
each solution.



Using a Microbenchmark to Compare Function as a Service Solutions 11

Provider

k = Amazon Google IBM Microsoft OpenWhisk

[8192, 131072] 15 15 15 15 15

262144 15 15 12 15 15

524288 12 12 9 15 15

1048576 9 9 0 15 15

2097152 6 6 0 15 13

Total: ∼ 86.7% ∼ 86.7% ∼ 71.1% 100% ∼ 98.5%

Table 4. Successful executions of FFT across all configurations per parameter k value.

Fig. 4. Total duration per configuration and provider for FFT in seconds using only
successful executions, i.e. k ∈ [8192, 131072] (log2–log plot).

More specifically, as shown in Fig. 4, the solutions are separated into two
groups. In the first group, the FaaS implementations by Microsoft and IBM/Apache
do not meaningfully benefit from faster execution times by allocating more mem-
ory — in the former case because memory is actually allocated dynamically
anyway, and in the latter because of the way OpenWhisk allows for partially
dynamic memory allocation through its interaction with Docker. As shown in Ta-
ble 4, however, the latter case can only cope with additional load so far before
it starts producing error responses. In the second group, Amazon and Google’s



12 Timon Back and Vasilios Andrikopoulos

Provider

Amazon Google IBM Microsoft OpenWhisk*

sum(cost) 2.832 1.941 0.258 3.305 2.228

mean(cost) 0.708 0.485 0.065 0.826 0.557

Table 5. Cumulative total and average costs per provider across all configurations
for FFT in USD cents (April 2018 prices), respectively. See Footnote 11 for the cost
calculation of OpenWhisk.

Fig. 5. Cumulative cost per provider and configuration for FFT in USD cents (April
2018 prices) with regression formulas (norm–norm scale).

implementations clearly benefit from additional allocated memory, not only in
terms of more successful executions, but also in terms of performance.

Focusing now on the cost incurred by the execution of FFT, Table 5 summarizes
the cost calculation for all studied solutions11 as cumulative total (sum) cost
including all function invocations and consequent executions, and mean cumulative
cost across configurations of 128 to 1024 MB per provider. While normalizing the
cost per invocation may seem a more attractive option, the use of cumulative
costs fits better the interest of the consumer on the total cost of the FaaS service
usage, especially given the observed variance we discussed in the previous.

11 OpenWhisk is deployed in a local VM, and therefore execution costs are not directly
relevant; however for illustrative purposes we use the GB–seconds cost of IBM Cloud
Functions for cost calculations. This makes the comparison between the private and
public, in essence, deployment of OpenWhisk particularly interesting.



Using a Microbenchmark to Compare Function as a Service Solutions 13

As it can be seen from Table 5 and further reinforced by Fig. 5, when
considering only successful function executions, IBM Cloud Functions is the most
cost effective solution. Its high error rate due to its inability to deal with larger
values of k has, however, to be taken seriously into consideration. Following on,
Google’s solution produces the next best solution in terms of cost, at the expense
of high variability in its performance. Microsoft’s solution on the other hand
seems to be the most expensive and slow option, but at the time the one being
able to scale better with k. Given the above, AWS Lambda seems to offer a good
trade–off between performance, cost, and ability to cope with the requirements of
the FFT function — but only if enough memory has been allocated per function.

5 Discussion & Lessons Learned

Before proceeding further, we have to identify the main threats to the validity of
this work:

1. Not sufficient data points were collected during the microbenchmark execution
to ensure the robustness of the findings. This is a known issue with this work
and we plan to run it again for a longer period. Nevertheless, we can claim
that anecdotally, the reported behavior of the FaaS solutions is consistent
with any measurements we took outside of the reported ones in different days
of April and May 2018. We are therefore confident in their validity, at least
at this point in time.

2. Function implementation was done exclusively on Node.js; in principle, result
replication is necessary in other programming languages but in the interest
of time this is left as future work. In any case, as shown in Table 1, Node.js is
the only common platform across all examined solutions. Comparing across
programming languages could potentially only dilute the findings.

3. All measurements reported in the previous were taken on the free tier model
offered by platform providers. We do not expect significant deviations when
using the paid model, as the free tier seems to be a discount to have people
try out (new) products. However, further experimentation is necessary in
order to test this hypothesis.

4. The effect of the use of the Serverless framework for cross-provider deployment
was not controlled; however we have no evidence of it affecting the validity
of our measurements.

With respect to the lessons learned by the comparison of the various FaaS
solutions, they can be summarized by the following:

1. The maturity of the examined FaaS solutions varies significantly when consid-
ering their observed performance. Especially Google’s Cloud Functions seems
to justify its label of beta state based on our measurements (see both Fig. 1
and Fig. 2).

2. There is a three–way trade–off between performance, cost, and ability to
gracefully scale with each function’s load before running out of memory or



14 Timon Back and Vasilios Andrikopoulos

maximum execution time (see Fig. 2 and Fig. 3). Notice that there was no
measurement with concurrent requests, so it is not possible to comment on
the scaling of each solution with the overall load.

3. Adding more allocated memory only has a significant effect for some of the
providers in terms of performance improvement (Fig. 4) and this has also
been shown by [11]; however if the reliability of a function is important to
the application developer then more memory is definitely recommended.

4. However, in addition to the above, it needs to be taken into account that
while the relation between memory and cost appears to be linear, there is a
significant difference between the coefficients of the cost functions per solution
(see Fig. 5).

5. More extensive benchmarking of FaaS solutions is necessary in order to get a
clearer picture of the state of play in FaaS solutions. As with the related works
discussed in Section 2, this can extend beyond compute/memory evaluation
to e.g. network and I/O parameters.

6 Conclusions & Future Work

In the previous sections we developed and used a microbenchmark in order
to investigate two aspects of the Function as a Service (FaaS) sub–type of
serverless computing: the differences in observable behavior with respect to the
computer/memory relation of each FaaS implementation by the providers, and
the complex pricing models currently being in use. For this purpose, we chose
to include to our faas-µbenchmark three very common algorithmic tasks (Fast
Fourier Transformation, matrix multiplication, and a simple sleep as a baseline),
and implement them on top of the Node.js environment as the common denomina-
tor across the FaaS solutions under consideration. Executing the microbenchmark
itself produced some unforeseen results with respect to the maturity of the offered
solutions, and provided insights into the relation between performance and cost
for software that is running in this cloud delivery model.

Future work is aimed at addressing the concerns discussed in the previous
section. This entails proceeding with extensive benchmarking of the FaaS solutions
across a longer period, considering also additional functions that impose different
computational or memory constraints, and endeavor to clarify further the relation
between memory and CPU cycle allocation. Potential differences between the
perceived performance when functions are being executed in a free tier or not
are also to be investigated. Furthermore, we also plan to expand the evaluation
to OpenLambda [4], which is explicitly positioned as a research–oriented, non
production–ready environment. The comparison with OpenWhisk as the only
other open source solution would be particularly interesting. Finally, we aim to
take the lessons learned by this work and put them into practice by developing
instrumentation that allows application developers to route load across serverless
or “traditional” IaaS resources in order to maximize their cost efficiency based
on the characteristics of the application load.



Using a Microbenchmark to Compare Function as a Service Solutions 15

References

1. Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian, V., Mitchell, N.,
Muthusamy, V., Rabbah, R., Slominski, A., Suter, P.: Serverless computing: Current
trends and open problems. In: Research Advances in Cloud Computing, pp. 1–20.
Springer (2017)

2. Eivy, A.: Be wary of the economics of ”serverless” cloud computing. IEEE Cloud
Computing 4(2), 6–12 (2017)

3. van Eyk, E., Iosup, A., Seif, S., Thömmes, M.: The spec cloud group’s research
vision on faas and serverless architectures. In: Proceedings of the 2nd International
Workshop on Serverless Computing. pp. 1–4. ACM (2017)

4. Hendrickson, S., Sturdevant, S., Harter, T., Venkataramani, V., Arpaci-Dusseau,
A.C., Arpaci-Dusseau, R.H.: Serverless computation with OpenLambda. Elastic
60, 80

5. Jonas, E., Pu, Q., Venkataraman, S., Stoica, I., Recht, B.: Occupy the cloud:
distributed computing for the 99%. In: Proceedings of the 2017 Symposium on
Cloud Computing. pp. 445–451. ACM (2017)

6. Kuhlenkamp, J., Klems, M.: Costradamus: A cost-tracing system for cloud-based
software services. In: International Conference on Service-Oriented Computing. pp.
657–672. Springer (2017)

7. Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environ-
ments. Tech. rep. (04 2018), http://dx.doi.org/10.13140/RG.2.2.28642.84165

8. Leitner, P., Cito, J., Stckli, E.: Modelling and managing deployment costs of
microservice-based cloud applications. In: Proc. IEEE/ACM 9th Int. Conf. Utility
and Cloud Computing (UCC). pp. 165–174 (Dec 2016)

9. Li, Z., Zhang, H., O’Brien, L., Cai, R., Flint, S.: On evaluating commercial cloud
services: A systematic review. Journal of Systems and Software 86(9), 2371–2393
(2013)

10. Lloyd, W., Ramesh, S., Chinthalapati, S., Ly, L., Pallickara, S.: Serverless computing:
An investigation of factors influencing microservice performance. In: Proceedings of
the IEEE International Conference on Cloud Engineering (IC2E 2018). IEEE

11. Malawski, M., Figiela, K., Gajek, A., Zima, A.: Benchmarking heterogeneous cloud
functions. In: Euro-Par 2017: Parallel Processing Workshop. pp. 415–426. Springer
(2017)

12. RightScale: RightScale 2018 State of the Cloud Report (2018), https://www.

rightscale.com/lp/state-of-the-cloud

13. Roberts, M., Chapin, J.: What is Serverless? O’Reilly Media (2017)
14. Spillner, J.: Exploiting the cloud control plane for fun and profit. arXiv preprint

arXiv:1701.05945 (2017), https://arxiv.org/pdf/1701.05945.pdf
15. Villamizar, M., Garcs, O., Ochoa, L., Castro, H., Salamanca, L., Verano, M.,

Casallas, R., Gil, S., Valencia, C., Zambrano, A., Lang, M.: Infrastructure cost
comparison of running web applications in the cloud using aws lambda and
monolithic and microservice architectures. In: Proc. Cloud and Grid Comput-
ing (CCGrid) 2016 16th IEEE/ACM Int. Symp. Cluster. pp. 179–182 (May 2016).
https://doi.org/10.1109/CCGrid.2016.37

http://dx.doi.org/10.13140/RG.2.2.28642.84165
https://www.rightscale.com/lp/state-of-the-cloud
https://www.rightscale.com/lp/state-of-the-cloud
https://arxiv.org/pdf/1701.05945.pdf
https://doi.org/10.1109/CCGrid.2016.37

	Using a Microbenchmark to Compare Function as a Service Solutions

